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Abstract. In this paper, we derive 7 quadratic relations over GF (2)
from the input and output bits of the S-boxes of DES. We apply one of
those to an improved linear attack of full round DES. We describe an
improved algorithm by combining the non-linear approximation method
proposed by Knudsen and Robshaw, and the multiple approximation
method proposed by Kaliski and Robshaw. This improvement can reduce
the number of required plaintexts and ciphertexts pairs to 25/34 (73.5
%) of those number of pairs 243 required in the linear attack by Matsui.

1 Introduction

It is well known that there is no linear relation between the input and output
bits of each S-box of DES [Hel76,Bra77]. On the other hand, by representing S-
boxes as Boolean polynomials [Sch82,Dav83,Way92,SAM97], it is easy to derive
some algebraic relations of the input and output bits of S-boxes. We know that
the degrees of these polynomials are less than or equal to 6, so there are alge-
braic relations of S-boxes with degree less than or equal to 6. Thus, the following
problem may be natural to consider; what is the smallest degree of all algebraic
relations of the S-boxes, and how are the algebraic relations which have the
smallest degree represented? It can be shown that there is an algebraic relation
over GF (2) which has degree 3 in all S-boxes, so the above question is rewritten
as follows; does there exist a quadratic relation? This paper shows that there are
7 quadratic relations of S-boxes S1, S4 and S5 of DES; they can be derived by
calculating the Gröbner bases of S-boxes with respect to the degree reverse lexi-
cographic order in the Boolean polynomial ring. We apply one of these quadratic
relations to improve the linear cryptanalysis offered by Matsui [Mat93].

In 1993, Matsui succeeded in recovering the secret key of the 16-round DES by
using linear cryptanalysis in computational experiments [Mat94]. His main idea
was the approximation of the S-boxes by linear relations. He recovered the key of
16-round DES by using 243 pairs of plaintext and ciphertext, which took 50 days.
Since then, some theoretical and practical enhancements or extensions to lin-
ear cryptanalysis have been proposed [LH94,KR94,KR96,THHK98]. Kaliski and
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Robshaw proposed an algorithm using multiple linear approximations [KR94].
They applied it to small-round versions of DES to confirm its performance. As
an example, they tried the 1-R attack and 2-R attack of 7-round DES, and suc-
ceeded to reduce the number of required texts. On the other hand, Knudsen and
Robshaw proposed an algorithm using non-linear approximation [KR96]. They
considered whether the linear approximations can be replaced with non-linear
approximations. They constructed relatively simple non-linear approximations
whose absolute bias are larger than that of the best linear approximation to
S-box S5, and adopted to 5-round DES. However, their techniques do not seem
to offer any significant advantage over the existing attack to full round DES.

In this paper, we deal with derived quadratic relations of the round function
of DES, like non-linear approximations, whose probabilities are 1. By using one
of the quadratic relations, we construct an improved linear attack algorithm for
full round DES. We combine the non-linear approximations method and the
multiple approximations method. This improvement can reduce the number of
plaintexts and ciphertexts to 25/34 (73.5 %) of the 243 pairs required in Matsui’s
attack.

2 Deriving the Algebraic Relations of S-Boxes

In [Sch82,Dav83,Way92,SAM97], the polynomial expressions of the S-boxes of
DES in the Boolean polynomial ring over GF (2) were constructed.

At first we summarize the notion of the Boolean polynomial ring. The Boolean
polynomial ring over GF (2) with n variables t1, ..., tn is defined by the following
quotient ring of the polynomial ring

GF (2)[t1, ..., tn]/Id(t21 + t1, ..., t
2
n + tn), (1)

where Id(t21 + t1, ..., t
2
n + tn) is the ideal generated by the fundamental relations

t21 + t1 = 0, ..., t2n + tn = 0 of Boolean variables t1, ..., tn.
Now we review how to obtain representations of the input and output bits

of S-boxes in Boolean polynomial. For example, since the output of S-box S1

corresponding to input 4 (= (0,0,0,1,0,0)) is 13 (= (1,1,0,1)) (Figure 1), we have
the following algebraic relation of input Boolean variables x1, ..., x6 and output
Boolean variables y1, ..., y4.

(x1 + 1)(x2 + 1)(x3 + 1)(x4 + 0)(x5 + 1)(x6 + 1)
((y1 + 0)(y2 + 0)(y3 + 1)(y4 + 0) + 1) = 0 (2)

Since there is an algebraic relation corresponding to each input from 0 to 63, we
have 64 algebraic relations for each S-box which are similar to equation (2).

In commutative algebra, the technique of Gröbner basis is well-known as a
basic tool [Bec93]. By using this technique, we can obtain another representation
of these algebraic relations. For example, we can obtain the representation of each
output bit yi by the polynomial of input bits x1, ..., x6 by computing the Gröbner
basis with respect to the lexicographic order of the sum set of polynomials in the
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Fig. 1. S-box S1 of DES
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Table 1. The number of the quadratic and cubic relations of the S-boxes

S-box S1 S2 S3 S4 S5 S6 S7 S8

quadratic 1 0 0 5 1 0 0 0
cubic 103 112 112 75 103 112 112 112

above 64 algebraic relations and the fundamental relations x2
1 + x1 = 0, ..., y2

4 +
y4 = 0 of all Boolean variables [SAM97]. We compute the Gröbner basis1 in
order to obtain algebraic relations which have much smaller degrees of S-boxes.
With reference to the problem of the degree of the algebraic relations of S-boxes,
we have the following lemma.

Lemma 1 1. There is no linear relation for all S-boxes. [Hel76,Bra77].
2. There is a cubic (that is, it has degree 3) algebraic relation for each S-box.
(See Appendix A.)

Does there exists a quadratic (that is, it has degree 2) algebraic relation of
each S-box? In order to see that, we can use the reduced Gröbner basis. By using
the reduced Gröbner basis with respect to the degree reverse lexicographic order,
we can obtain all algebraic relations of each S-box which are linearly independent
over GF (2). Table 1 shows the number of quadratic and cubic polynomials in the
reduced Gröbner basis of the Boolean algebraic relations of S-boxes as derived
above with respect to the degree reverse lexicographic order.

From Table 1, we know that there are 7 quadratic relations of S-boxes in
total. All quadratic relations are given in Appendix B. Now we pay attention to
the quadratic relation corresponding to the S-box S5 : (x1, x2, x3, x4, x5, x6) →
(y1, y2, y3, y4) as follows.

x1y1 + x1y2 + x1y3 + x1y4 + x2y1 + x2y2 + x2y3

+x2y4 + x2x1 + x5y1 + x5y2 + x5y3 + x5y4 + x5x2

+y1 + y2 + y3 + y4 + x1 + x2 + x5 + 1 = 0
(3)

1 In order to compute the Gröbner Basis over GF (2), we used the computer algebra
system Risa/Asir developed by Fujitsu LABORATORIES LTD. [Nor92].
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It can be factorized into the polynomial as follows2.

(y1 + y2 + y3 + y4 + x2 + 1) · (x1 + x2 + x5 + 1) = 0 (4)

It is surprising that, in the first factor of the left side of the polynomial (4),
there is the best linear approximation (5) with bias 5/16 corresponding to the
input and output bits of S5 discovered by Matsui [Mat93].

y1 + y2 + y3 + y4 + x2 = 0 (5)

In the remaining part of this paper, we will try to apply the quadratic relation
(4) for improving the linear attack of 16-round DES.

3 Application to Non-Linear Cryptanalysis

We denote the sum of the coordinates from i1 to ij by X [i1, i2, . . . , ij ] for each
vector X ∈ GF (2)n. In particular, we denote the i-th coordinate of X by X [i].
We can easily extend the algebraic relation (4) to the algebraic relation of i-th
round function Fi : (Xi, Ki) → Fi(Xi, Ki) as follows;

A∗ : (Fi[3, 8, 15, 24] + Xi[17] + Ki[26] + 1)
·(Xi[16, 17, 20] + Ki[25, 26, 29] + 1) = 0,

(6)

where Xi ∈ GF (2)32 is an input of i-th round and Ki ∈ GF (2)48 is a i-th round
key of the round function Fi.

In [KR96], Knudsen and Robshaw tried to apply the following non-linear
approximations of S-boxes S5 in order to raise the bias of best linear approxi-
mation of 5-round DES. Each non-linear approximation has bias 24/64, 18/64,
respectively.

A′ : y1 + y2 + y3 + y4

= x2 + x1x2 + x1x5 + x2x6 + x5x6 + x1x2x6 + x1x5x6

D′ : y1 + y2 + y3

= x2 + x4 + x1x4 + x1x6 + x2x4 + x2x6 + x1x2x4 + x1x2x6

(7)

By replacing linear approximation with these non-linear approximations, we can
raise the bias 2.26 times more than those of linear approximation of 5-round
DES, which reduces the number of plaintexts and ciphertexts pairs required for
recovering one bit of key information of 5-round DES. They tried to recover
more key bits using Matsui’s 1-round and 2-round elimination method. They
said, however, their techniques do not seem to offer any significant advantage
over the basic attack.

In the above, we derived the quadratic representation (6) of the round func-
tion. In the first factor of equation (6), we can find the following best linear
2 Because the Boolean polynomial ring is not a unique factored domain, each poly-

nomial in the ring may have another factorized form. In fact, polynomial (3) can be
factorized into another form (y1 + y2 + y3 + y4 +x1 +x5 +1) · (x1 +x2 +x5 +1) = 0.
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approximation A for the i-th round function Fi with the absolute valued bias of
5/16 that appeared in [Mat93].

A : Fi[3, 8, 15, 24] + Xi[17] + Ki[26] = 0 (8)

Matsui derived the following linear approximation (9) for 16-round DES by using
best linear approximation of 14-round A-ACD-DCA-ACD- whose bias is p14 =
1.19 · 2−21 which is a concatenation of the three linear approximations A,C,D of
the round function [Mat93],

Pr[3, 8, 14, 25] + Pl[17] + Cl[8, 14, 25] + F1(Pr, K1)[17]
+F16(Cr, K16)[8, 14, 25] = K2[26] + K4[26] + K5[4] + K6[26]

+K8[26] + K9[4] + K10[26] + K12[26] + K13[4] + K14[26],
(9)

where Pl, Pr are left and right halves of plaintext and Cl, Cr are left and right
halves of ciphertext, respectively.

Since A∗ is a non-linear approximation with bias 1/2, we obtain the following
non-linear approximation A∗-ACD-DCA-ACD- of 16-round DES by replacing the
linear approximation A with quadratic relation A∗ which has higher bias than
(9).

(Pr [3, 8, 14, 25] + Pl[17] + Cl[8, 14, 25] + F1(Pr, K1)[17]
+F16(Cr, K16)[8, 14, 25] + K2[26] + K4[26] + K5[4] + K6[26]

+K8[26] + K9[4] + K10[26] + K12[26] + K13[4] + K14[26] + 1)
·(Pl[16, 17, 20] + F1(Pr, K1)[16, 17, 20] + K2[25, 26, 29] + 1) = 0

(10)

The bias of non-linear approximation (10) is higher than (9). We may not,
however, be able to use (10) directly in order to reduce the number of required
plaintexts and ciphertexts for recovering the effective key bits of 16-round DES,
involved in (10), because the numbers of effective text bits and effective key bits
involved in (10) become much larger than those in (9). In the next section, we
will apply (10) to the multiple approximations to avoid this problem.

4 Application to Multiple Approximations Method

In the previous section, we showed the non-linear approximation (10) of 16-round
DES. The numbers of effective text bits and effective key bits corresponding to
(10) are 24 and 26. We think it is not efficient to derive all 26 effective key bits
at once, because the size of counter table corresponding to the effective keys
is quite large. In order to avoid this problem, we deal with each factor in (10)
independently. The following equation is the second factor of (10).

Pl[16, 17, 20] + F1(Pr, K1)[16, 17, 20] = K2[25, 26, 29] (11)

When (11) holds, the bias of (9) changes to ε0 = (1/2)/(5/16)p14 = 8/5p14.
When (11) does not hold, it changes to ε1 = 2 · (1− (8/5)/2)p14 = 2/5p14. Thus,
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we deal with the linear approximation (9) as two linear approximations; one is
when the equation (11) holds, and the other is when it does not hold.

Let N be the number of plaintexts and ciphertexts pairs. T0 (, T1) be the
number of plaintexts and ciphertexts pairs such that the left side of equation
(9) is equal to 0 and the equation (11) holds (, does not holds). We calculate
the statistic U = a0T0 + a1T1 for some weights a0 a1 such that a0 + a1 = 2.
For maximizing the distance between N/2 and the average E[U ] in terms of the
standard deviation σU , we use Lemma 2.

Lemma 2 (Kaliski and Robshaw [KR94) ] The distance |N/2− E[U ]|/σU

is maximized for given N when the weights ai are proportional to the biases of
the linear approximations.

From Lemma 2, we conclude that the best choices of the weights are a0, a1

such that a0 : a1 = ε0 : ε1 = 4 : 1.

Lemma 3 (Kaliski and Robshaw [KR94) ] The success rate of the algo-
rithm with optimal weights ai with respect to the biases εi is

Φ

(
2
√

N

√ ∑
ε2i

1− 4
∑

ε2i

)
. (12)

Lemma 3 tells us that the success rate of original attack with N plain texts
is the same as that of the improved attack with N ′ plaintexts as long as the
following relation holds. On the assumption of random input, we can assume
that the number of times of holding the equation (11) is N ′/2.

2

√
N ′

2

√
(8/5p14)2 + (2/5p14)2

1− 4((8/5p14)2 + (2/5p14)2)
= 2

√
Np14 (13)

This is equivalent to

N ′ =
25
34

(
1− 4 · 68

25
p14

)
·N ≈ 25

34
N = 0.735 ·N. (14)

Therefore, we can reduce the number of pairs to 73.5 % by using our attack.

5 Improved Algorithm for Attacking 16-Round DES

In this section, we show the improved attack algorithm for 16-round DES. It
still requires a large number of effective texts and effective keys in equations (9)
and (11). In order to minimize the work spent in processing the data, we divide
the algorithm into two parts. The first part is Matsui’s original attack (part 1,
2, 3). The second is an improved part which replaces the exhaustive key search
part in Matsui’s attack with multiple approximations (part 4, 5, 6).
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1 Compute plaintexts and ciphertexts pairs and count up the effective text
bits of equation (9) and (11).

2 Count up the counters in the set K corresponding to effective key bits of (9)
if the left side of (9) is zero.

3 Sort the effective keys of (9) using the counters K in order of reliability.
4 For the most reliable effective key of (9) when the right hand of (9) is zero,

count up the counters in the setH0 corresponding to effective key bits of (11),
with bias 4 or 1 by whether the left hand of (11) is zero or not, respectively,
count up counters in the set H1 with bias 1 or 4, respectively, in the same
way as H0.

5 Sort the effective keys of (11) using the counters H0 and H1 in order of
reliability.

6 From the most reliable effective keys of (9) and (11), search for the remaining
key bits.

In [Mat94], the effective text and key bits of (9) are shown. The 13 effective
text bits of the left half of equation (9) are

Pr[32], Pr[1], ..., Pr[5], Pr[16], ..., Pr[21], Pr[3, 8, 14, 25]+Pl[17]+Cl[3, 8, 14], (15)

and the 12 effective key bits of left half of equation (9) are

K1[1], ..., K1[6], K1[25], ..., K1[30]. (16)

The 11 effective text bits of (11), if the key bits in (16) are fixed, are

Pl[16, 17, 20], Pr[8], ..., Pr[17], (17)

and the 13 effective key bits of (11) if the key bits in (16) are fixed are

K1[13], ..., K1[24], K2[25, 26, 29]. (18)

Moreover, we can use another approximation replacing the plaintexts P and
ciphertexts C in (9) and (11), similarly.

In our algorithm, we prepare a counter corresponding to the effective keys
of equation (9) in the first part whose size is 12 bits long, and those of equation
(11) in the second part whose size is 13 bits long. Thus, we can reduce the total
size of effective key counter from 2×225 to 2× (212 +213) by using the improved
algorithm.

6 The Computer Experiments

In this section, we show the results of computer experiments. Detail of the al-
gorithm is shown in Appendix C. In order to estimate the complexity of our
improved attack on 16-round DES, we consider the attack of 8-round DES by
using plaintexts and ciphertexts pairs whose number is

1.49 · 25/34 · 217 = 1.09 · 217, (19)
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Table 2. Complexity and success rate of attacks on 16-round DES (%)

complexity 237 238 239 240 241 242 243 244

(1) 47.9 54.9 62.0 68.7 74.3 81.4 86.6 90.9
(2) 24.7 30.3 36.6 44.1 52.2 60.5 68.8 76.2
(3) 50.1 54.4 61.3 68.2 75.1 81.3 86.8 91.2

(1) : The original algorithm with 243 pairs.
(2) : The original algorithm with 25/34 · 243 pairs.
(3) : Our improved algorithm with 25/34 · 243 pairs.

which is equivalent to the attack of 16-round DES using 25/34 · 243 pairs. Our
computer experiments recovered the all round keys 10,000 times. Table 2 shows
the comparison of the complexity and the success rate of the Matsui’s original
algorithm and our improved algorithm.

We also conducted a computer experiment of recovering all round keys of
full round DES using 25/34 × 243 pairs by our improved algorithm. The com-
puter environments we used are 16 Sun workstations (Ultra SPARC 167MHz ×
14 and 200 MHz × 2)3 and a DEC workstation (Alpha 21164A 500MHz). By
using the above machines and by implementing the algorithms in a bitslice man-
ner [Bih97,NM97,SAM97] with Kwan’s instructions sets of S-boxes [Kwa98]4,
we achieved 1.14 Gbps in total5. It took about 6 days to compute all pairs of
plaintexts and ciphertexts, 44 seconds for arranging the order of the key bits
and about 4 hours for exhaustive key search (= about 237 times of encryption).
In total, we could recover the all key bits in less than 7 days.

7 Concluding Remarks

In this paper, we derived the 7 quadratic relations of S-boxes. We used one
of those quadratic relations for improving the linear cryptanalysis with 2-round
elimination method proposed by Matsui. We constructed an improved algorithm
for attacking 16-round DES which is a combination of the non-linear apprxima-
tion method and multiple approximation method. Moreover, we showed an effec-
tive algorithm that consisted of two parts to reduce the size of counter table of
effective keys and minimizing the effort in processing the data. Overall, we could
reduce the number of required plaintexts and ciphertexts pairs to 25/34 = 73.5
% of that demanded by Matsui’s original attack for recovering the key of 16-
round DES. From computer experiments, when we attack 16-round DES with
25/34 ·243 pairs, the probability of finding the secret key equals that of Matsui’s
original attack.
3 These workstations construct the parallel computer AP3000 with 16 nodes devel-

oped by FUJITSU LTD.
4 For calculating one S-box, 51 instructions are required on average.
5 Ultra SPARC 167MHz : 51 Mbps, 200MHz : 62 Mbps, Alpha 500MHz : 336 Mbps



208 Takeshi Shimoyama and Toshinobu Kaneko

References

Bec93. T. Becker, V. Weispfenning., “Gröbner Bases.” Springer-Verlag, New York,
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Appendix A. Proof of Lemma 1 (2)

For each S-box Si : (x1, x2, x3, x4, x5, x6) → (y1, y2, y3, y4), there are Boolean
polynomial representations in input bits x1, x2, x3, x4, x5, x6 of output bits y1,
. . ., y4 as follows. 


y1 = f1(x1, ..., x6)
y2 = f2(x1, ..., x6)
y3 = f3(x1, ..., x6)
y4 = f4(x1, ..., x6)

(20)

From these Boolean polynomials, we obtain the following algebraic relations.

xiyj = xifj(x1, ..., x6) (i ∈ {1, ..., 6}, j ∈ {1, ..., 4}) (21)

The number of these polynomials in (20) and (21) is 28 (= 4 + 4× 6). It is easy
to see that the right halves of these Boolean polynomials in (20) and (21) have
degrees at most 6, and these polynomials are linearly independent over GF (2).
Since the number of terms with degree more than 3 in a Boolean polynomial
with 6 variables are 22 (= 15 + 6 + 1), we can eliminate the terms with degree
more than 3 from these algebraic relations.

Appendix B. All Quadratic Relations of S-Boxes

We label the input and output bits to S-box as follows.

Si : (x1, x2, x3, x4, x5, x6) → (y1, y2, y3, y4)

S1 : • x2x1 + x3x2 + x4x2 + x5x2 + x6x2 + y1x1 + y1x2 + y1x3 + y1x4 + y1x5 +
y1x6 + y2x1 + y2x2 + y2x3 + y2x4 + y2x5 + y2x6 + y3x1 + y3x2 + y3x3 +
y3x4 + y3x5 + y3x6 + y4x1 + y4x3 + y4x4 + y4x5 + y4x6 + y4y1 + y4y2 +
y4y3 + x1 + x2 + x3 + x4 + x5 + x6 + y1 + y2 + y3 + y4 + 1 = 0,

S4 : • x3x1 + x5x1 + x5x3 + y1x3 + y1x5 + y2x3 + y2x5 + y3x3 + y3x5 + y4x3 +
y4x5 + x1 + x3 + x5 + y1 + y2 + y3 + y4 + 1 = 0,

• x2x1 + x3x2 + x4x1 + x5x1 + x5x4 + y1x5 + y1x6 + y2x5 + y2x6 + y3x5 +
y3x6 + y4x5 + y4x6 + x1 + y2 + y3 = 0,

• x3x2 + x4x1 + x4x3 + x5x1 + x5x2 + x5x3 + y1x1 + y1x2 + y1x4 + y1x6 +
y2x1 + y2x2 + y2x4 + y2x6 + y3x1 + y3x2 + y3x4 + y3x6 + y4x1 + y4x2 +
y4x4 + y4x6 + x1 + x3 + x6 + y1 + y3 + 1 = 0,

• x3x1 + x3x2 + x4x3 + x5x1 + x5x2 + x5x4 + y3y1 + y3y2 + y4y1 + y4y2 +
x2 + x3 + x4 + y1 + y3 + 1 = 0,

• x4x1 + x5x1 + x5x4 + y1x2 + y1x4 + y2x2 + y2x4 + y2y1 + y3x2 + y3x4 +
y3y2 +y4x2 +y4x4 +y4y1 +y4y3 +x2 +x3 +x4 +x5 +x6 +y1 +y4 +1 = 0,

S5 : • x2x1 + x5x2 + y1x1 + y1x2 + y1x5 + y2x1 + y2x2 + y2x5 + y3x1 + y3x2 +
y3x5 + y4x1 + y4x2 + y4x5 + x1 + x2 + x5 + y1 + y2 + y3 + y4 + 1 = 0.
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Appendix C. Detail of Our Algorithm

In this section, we show detail of our improved algorithm. The following two
non-linear equations are obtained from best linear expression of 14-round DES
with 2-R elimination method and the quadratic relation of the input and output
bits of S-box S5;

(Pr[3, 8, 14, 25] + Pl[17] + Cl[8, 14, 25] + F1(Pr , K1)[17]
+F16(Cr , K16)[8, 14, 25] + K2[26] + K4[26] + K5[4] + K6[26]
+K8[26] + K9[4] + K10[26] + K12[26] + K13[4] + K14[26] + 1)

·(Pl[16, 17, 20] + F1(Pr , K1)[16, 17, 20] + K2[25, 26, 29] + 1) = 0,

(22)

(Cr[3, 8, 14, 25] + Cl[17] + Pl[8, 14, 25] + F16(Cr, K16)[17]
+F1(Pr , K1)[8, 14, 25] + K3[26] + K4[4] + K5[26] + K7[26]
+K8[4] + K9[26] + K11[26] + K12[4] + K13[26] + K15[26] + 1)

·(Cl[16, 17, 20] + F16(Cr, K16)[16, 17, 20] + K15[25, 26, 29] + 1) = 0,
(23)

where Pl, Pr are left and right halves of plaintext and Cl, Cr are left and right
halves of ciphertext, respectively, and Ki is i-th round key with 48 bit long. We
define the notations of the vectors of effective text and key bits corresponding
to equation (22) as follows.

A(P, C, K) = Pr[3, 8, 14, 25] + Pl[17] + Cl[8, 14, 25]
+F1(Pr, K1)[17] + F16(Cr , K16)[8, 14, 25] ∈ GF (2)

B(P, C) = (Pr [3, 8, 14, 25] + Pl[17] + Cl[8, 14, 25],
Pr[32], Pr[1], ..., Pr[5], Cr[16], ..., Cr[21]) ∈ GF (2)13

D(K) = K2[26] + K4[26] + K5[4] + K6[26] + K8[26]
+K9[4] + K10[26] + K12[26] + K13[4] + K14[26] ∈ GF (2)

E(K) = (K1[1], ..., K1[6], K15[25], ..., K15[30]) ∈ GF (2)12

G(P ) = Pl[16, 17, 20] + F1(Pr , K1)[16, 17, 20] ∈ GF (2)
H(P ) = (Pl[16, 17, 20], Pr[8], ..., Pr[17]) ∈ GF (2)11

I(K) = K2[25, 26, 29] ∈ GF (2)
J(K) = (K1[13], ..., K1[24]) ∈ GF (2)12

Similarly, we define the following notations of effective text and key bit vectors
related with equation (23).

A′(P, C, K), B′(P, C), D′(K), E′(K), G′(C), H ′(C), I ′(K), J ′(K)

Algorithm 1 (Improved Attack Algorithm)

1 (Data Counting Phase) For N pairs {(P1, C1), ..., (PN , CN )} of input and
output, count up the following counters.

V (b, d) = #{ n | b = B(Pn, Cn), d = H(Pn)}
V ′(b′, d′) = #{ n | b′ = B′(Pn, Cn), d′ = H ′(Cn)}

2 (Original Linear Attack Phase)
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W (b) =
∑

d V (b, d), (0 ≤ b < 213)
W ′(b′) =

∑
d′ V ′(b′, d′), (0 ≤ b′ < 213)

By using the above counters W, W ′, sort the effective key vectors correspond-
ing to the following in order of reliability by using the original linear attack.

((D(K), E(K)), (D′(K), E′(K)))

3 (Data Counting Phase II) Let (k, k′) ∈ GF (2)26 be the most reliable key
vector obtained in the step (2).

T (d) =
∑

cond1
V (b, d),

T ′(d′) =
∑

cond2
V ′(b′, d′),

cond1 : A(b, k) = D(k), cond2 : A′(b′, k′) = D′(k′).

4 (Key Counting Phase) For m, m′ (0 ≤ m, m′ < 212), calculate the following
counters.

U(e, a) = 4
∑

cond3
T (d) +

∑
cond4

T (d)
cond3 : G(d, a) = e, cond4 : G(d, a) = e + 1,

U ′(e′, a′) = 4
∑

cond5
T ′(d′) +

∑
cond6

T ′(d′)
cond5 : G′(d′, a′) = e′, cond6 : G′(d′, a′) = e′ + 1.

5 (Key Sort Phase) Sort the set of key vectors {hj(= (e, a))}, {h′j′(= (e′, a′))}
which are belong to effective key vectors of

((I(K), J(K)), (I ′(K), J ′(K))),

in order of |U(hj)− 5/4N |, |U ′(h′j′) − 5/4N |, respectively, and sort the set
of pairs of key vector (hj , h

′
j′) ∈ GF (2)26 in order of reliability.

6 (Exhaustive Search Phase) For each key vectors (ki, k
′
i′ , hj , h

′
j′), search for

the remaining 14 secret key bits in order of reliability until the correct value
is found.

In exhaustive search phase (Algorithm 1,(6)), the reliability of a vector (ki, k
′
i′ , hj,

h′j′) has been determined in order of the magnitude of ((i + 1) × (i′ + 1))128 ×
(j + 1) × (j′ + 1) which is the formula derived experimentally from the case of
8-round DES.

In the improved attack algorithm, all of effective key bits are 52 bits, that
is, D(K), E(K), D′(K), E′(K), I(K), J(K), I ′(K), J ′(K) in total. There are,
however, 10 of 52 bits are duplicated as below. Therefore, the number of the
remaining key bits which should be executed exhaustive search is 56−52+10 =
14.

K1[3] = K16[15], K1[5] = K16[24], K1[13] = K16[4], K1[14] = K16[22],
K1[15] = K16[23], K1[16] = K16[6], K1[17] = K16[21], K1[19] = K16[2],
K1[20] = K16[18], K1[23] = K16[1].
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