A-calculus
and
Combinatory Logic

A brief introduction

TDDAA43

Jan Matuszynski

March 2001

Contents

1 Introduction 3
1.1 Motivation 3
1.2 Computation as rewriting 4
1.3 Abstract reduction systems L. 7
1.4 Propertiesof ARSS 8
2 Lambda calculus and combinatory logic 11
2.1 Lambdaterms 11
2.2 Therewriteruleso 12
2.3 Rewrite strategies.o 0oL, 15
2.4 The power of lambda calculus 16
2.5 Combinatory logic oo 18

CONTENTS

Chapter 1

Introduction

These notes present the material discussed at a separate lecture of the course
TDDA43 Programming Theory in Spring 2000.

1.1 Motivation

The main topic of the course is the semantics of programming language. Se-
mantics of programming languages is often described by (higher-order) func-
tions. A natural question is thus what is a suitable way of specifying com-
putable higher-order functions. In this lecture we present two related for-
malisms: A-calculus (alternative spelling: lambda calculus) and combinatory
logic. Each of them makes it possible to describe computable functions with a
small number of primitive concepts. Lambda calculus introduced by Church
[3] in 1941 (as a proper formulation of his earlier ideas of 1930’s) is based
on primitives that closely resemble the mechanisms for defining and calling
procedures used in contemporary programming languages, and is therefore of
primary importance for the main topic of this course. On the other hand, com-
binatory logic, originating from Schonfinkel [10](1924) and Curry [5] (1930) is
a related formalism that has later played important role in implementation of
functional programming languages. Both formalisms describe computation of
a funtion as a rewriting process. We give here only a very brief and incomplete
introduction to these formalisms. More material can be found in the introduc-
tory textbook by Hindley and Seldin [6] and in the monograph by Barendregt
[1].

Before presenting the formalisms we discuss first some notions related with
this view of computations. We will refer to them when presenting the for-
malisms.

4 CHAPTER 1. INTRODUCTION

1.2 Computation as rewriting

An introductory example

The view we will adopt is that computation can be thought of as making
transformations in a state space, where one step of computation corresponds
to a move from one state to another. When a final state is reached, the compu-
tation halts and the result is presented. Describing this a little bit differently,
computation could be viewed as successive rewriting of expressions into other
expressions, determined by a set of rewrite rules. When no rewrite rule is
applicable to an expression, the expression is said to be a normal form, and
considered to be the result of the computation. This process is nondeter-
ministic in general, since several rewrite rules may be applicable to a given
expression, yielding different resulting expressions.

The rewriting view on computation seems particularly appropriate when
dealing with problems of the type: “Simplify the expression e as much as
possible”. For example the polynomial expression (0 + a)(a + b) simplifies to
a® + ab, using rules as

O+z—2x
0-z—0
z(y+2) = zy+az
(x+vy)z = z2+yz

Note that there are many possible reductions from the initial expression to
the result, two of which are: !

0O+a)la+b) = ala+b) = a®+ab
(() ()

)
(0+a)(a+b) = (0+a)a+(0+a)b — (0-a+a?)+(0+a)b — (0+a?)+
(0+a)b — a*+(0+a)b — a®+(0-b+ab) — a*+(0+ab) — a*+ab

For the expression considered (i) all reductions are finite, and (ii) the result
will always be the same, no matter how the reduction is carried out. If these
two desirable and important properties holds for any expression, the rewrite
rules are called (i) terminating and (ii) confluent. However, these properties
are in no way guaranteed to hold for an arbitrary set of rewrite rules. Even our
example rules are not confluent, since the expression z(0+vy) can be simplified
either to zy or to z - 0 + zy, depending on the choice of the used rules.

The view of computation as rewriting is common in the theory of compu-
tation, as illustrated by the following examples.

"We assume here that the operators have the usual priorities so that the superfluous
parantheses in the expression a® + (ab) can be omitted.

1.2. COMPUTATION AS REWRITING)

Turing machines

The Turing machine (TM), conceived by Alan Turing in 1936 [11], is a simple
but powerful mathematical model of a computational device. A TM has a
finite set) of states, and a storage device consisting of a one-dimensional
array (a tape) of cells, each of which can contain a symbol out of a finite set
3], that includes a distinguished blank symbol. Associated with the tape is a
read/write head that can move right or left on the tape and that can read
and write a single symbol on each move. The tape is infinitely long in both
directions.

Read/write head

Figure 1.1: A snapshot of a Turing machine at work

When the computation starts, the TM is in its wnitial state, the tape con-
tains a finite string of non-blank symbols placed in consequtive cells, while
all other cells contain blank symbols, and the head is scanning the leftmost
symbol of the string. The machine’s actions are determined by its program,
which is given as a partial function § from @ x S to Q x S x {left, right}. Thus
if the machine is in state ¢, and the read/write head is scanning the symbol
s, then the program specifies the next state, the symbol to repalce s on the
tape, and the direction in which to move the read/write head. If d(q,s) is
undefined, then the machine halts in an error state. If a final state is reached,
the computation terminates and the contents of the tape is the result of the
computation. Notice that at every step of a computation only a finite num-
ber of cells contains non-blank symbols; the contents of the tape may thus be
described by a finite string.

At any given moment, the TM’s configuration is described by the contents
on the tape and the current state. Suppose that the contents of the tape is
S1...8i-18i...Sn, the read/write head is scanning the symbol s;, and the TM
is in state ¢. Then we let the string

S1...8-14S8;...8p

6 CHAPTER 1. INTRODUCTION

represent the configuration of the machine. Now if the program contains the
instruction §(q, s;) = (¢',t, left), then the machine may change its configura-
tion according to the rewrite rule

/
$1...8-1q98;...8, — S1...8-2q Si—1t...8p

If the program contains the instruction d(q, s;) = (¢', t, right), then the corre-
sponding rewrite rule is

/
81...8-1Q98;...8;, — 81...8-11tq Sijy1...5p

The renowned Church-Turing’s hypothesis (also known as Church’s thesis)
states that these functions are indeed all functions that are computable in the
intuitive sense.

Context-free grammars

Context-free grammars play a fundamental role in string-processing applica-
tions, notably in the definition of programming languages, parsing of program-
ming languages and natural languages, etc. The origin of the formalism can
be found in Chomsky [2].

A context-free grammar is a specification of a (context-free) language (over
some alphabet 3) by means of production rules of the form:

A=«

where A belongs to a set V' of non-terminals, and « is a string in (X U V)*.
We assume that V and ¥ are disjoint.

Suppose 31 and P are (possibly empty) strings in (X U V)*. Then (1 AS
derives 1afs, using the production rule above. We write this as

B1ABy = [rafs

If it is possible to reach a string v € X*, starting from the special start
non-terminal S, and by using a sequence of derivation steps, then v belongs to
the language generated by the grammar. As an example, we give a grammar
that generates all strings over {a,b}* with an equal number of a’s and b’s.
Here S is the only non-terminal, and e denotes the empty string.

S—SS
S —e

S — aSh
S — bSa

For instance, the string abba can be derived as follows:

1.3. ABSTRACT REDUCTION SYSTEMS 7

S = 85 = aSbS = abS = abbSa = abba

We have used the first, third, second, fourth and second rules of the gram-
mar in the different steps.

1.3 Abstract reduction systems

An abstraction based on the examples of the preceding sections gives the
following definition:

Definition 1.1 An abstract reduction system (ARS) is a pair (A, —), where
A is a set, and each — is a binary relation on A, called a rewrite relation. O

Notation: If a,b € A and (a,b) € —, then we write this as a — b and call b a
reduct of a. The reflexive and transitive closure of — is written as — (a usual
notation R* for the transitive and reflexive closure of the relation R may also
be used). —* denotes reduction in i steps. The inverse relation of — (—) is
denoted by + or — ! (¢~ or —»!). If @ and b are identical (i.e. they denote
the same element in A), we write a = b. a and b are convertible (a = b) if a
can be rewritten into b using the — relation forwards or backwards a finite
number of times. Thus, we let = be the relation (— U «—)*. 0

Figure 1.2 shows an example rewrite relation, in which ¢ and b are con-
vertible.

N\

Figure 1.2: a =b

Definition 1.2 Given an ARS (A, =), a € A is a normal form if there is no
b such that « — b. We write NF(A) to denote the set of normal forms in A

8 CHAPTER 1. INTRODUCTION

(w.r.t. =). a has a normal form if there is a b € NF(A) such that a — b (we
say that b is a normal form of a). O

Note that an element may have zero, one, or many normal forms.

The operational intuition behind the relation(s) — is that if a — b, then
a can be reduced to b. As shown by the examples in the previous chapter,
our aim is often to reduce (in a number of steps) a given element to (one of)
its normal forms, using the rewrite relation. This naturally raises questions
about existence and uniqueness of normal forms; questions we will address in
the next section.

1.4 Properties of ARSs
Throughout this section, we assume that an ARS (A, —) is given.

Definition 1.3

(1) — is weakly normalizing (WN) if every a € A has a normal form.

(2) — is strongly normalizing (SN) (or terminating, or Noetherian) if there
is no infinite sequence ag — a1 = as — ...

a

If — is weakly normalizing, then we can reduce every element to a normal
form. Practically however, the computation might not terminate if the wrong
reduction strategy is used. In the example below, the reduction sequence
ap — a1 — ... 1s infinite.

N
AN
e
AN

Figure 1.3: A rewrite relation which is WN but not SN

by

If — is terminating, then every reduction sequence will eventually end
in a normal form. Generally, there may be many normal forms. We are

1.4. PROPERTIES OF ARSS 9

interested in computing values of functions. The following notion gives a
sufficient condition for an ARS under which each element has at most one
normal form. This is important for our purposes, since we want to represent
function calls as elements of ARS’s, and the corresponding normal forms as
the computed results of these calls. Hence we cannot admit ars’s where the
normal forms are not unique.

Definition 1.4

(1) — is Church-Rosser (CR) (or confluent) if for all a,b,c¢ € A such that
a —» b and a —» ¢, there is a d € A such that b —» d and ¢ —» d.

(2) — is weakly Church-Rosser (WCR) (or weakly confluent) if for all a,b,c €
A such that a — b and a — ¢, there is a d € A such that b —» d and
c—»d.

The above definition is probably easiest understood in diagram format (see
Fig. 1.4).

Figure 1.4: Schematic description of the CR and WCR properties (dashed
arrows are existentially quantified)

Theorem 1.5 If — is confluent, then the normal form of every element (if it
exists) is unique (i.e. if a = b, a — ¢, and b,c € NF(A), then b = ¢).

The proof is left as an exercise.

The distinction between confluence and weak confluence is subtle but im-
portant. The following example shows the difference.

Example 1.6 Consider the rewrite relation defined by the following diagram:

10 CHAPTER 1. INTRODUCTION

()
_J

Figure 1.5: A rewrite relation which is WCR but not CR

By a simple case analysis we see that — is weakly confluent. For instance,
b can be reduced to both a and ¢, but a = a and ¢ = a. However, — is not
confluent, since b — a and b —» d, and a and d have no common reduct. O

For terminating rewrite relations, confluence and weak confluence are equiv-
alent. This is a consequence of the following fundamental theorem, first stated
by Newman [9]. We quote it without proof.

Theorem 1.7 [Newman’s lemma] If — is weakly confluent and terminat-
ing, then — is confluent.

Notice that a confluent ARS A = (A, —) defines a partial funtion f4 on A:

b, if be NF(A) and a—»b
undefined else

fala) = {
In addition:

e if — is weakly normalizing, then f is a total function.

e if — is strongly normalizing, then f can be computed with any reduction
strategy.

In the next chapter we survey lambda calculus and combinatory logic as
ARS’s: defining functions in terms of reduction to normal forms.

Chapter 2

Lambda calculus and
combinatory logic

This chapter introduces lambda calculus and combinatory logic as rewrite
systems and relates them to each other.

2.1 Lambda terms

As any rewrite system the lambda calculus defines a domain of expressions
and a rewrite relation on this domain. The expressions are called lambda
terms. Intuitively, lambda terms represent functions on lambda terms. This
may seem somewhat confusing, since one might have expected first a domain
of elementary values on which an hierarchy of first- and higher-order functions
could be defined. However, as will be discussed later, the elementary values
such as natural numbers can easily be coded as functions.

The functional intuition is reflected by the syntax of lambda terms. A
basic lambda term is a variable. The role of variables in lambda calculus can
be compared to the role of the variables used in procedures of programming
languages. Certain kinds of expressions in programming languges, e.g. arith-
metic expressions like = +y can be transformed into procedures by identifying
some of the variables as formal parameters.

11

12 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGIC

For example, in ML the expression 2#*x is transformed into a unary function
twice with a formal parameter x in the following way:

fun twice x = 2*x;

A similar kind of syntactic construct is defined for lambda terms and it is
called functional abstraction. A difference is that the expression above gives
the name twice to the created function, while, as we will see below, the
functional abstraction gives no name to the created function.

The function twice can then be called with an argument, represented typ-
ically by an arithmetic expression, e.g twice(2). A similar kind of syntactic
construct is defined for lambda terms and it is called application.

The call twice(2)in ML will produce the value 4 as a result. In lambda
calculus an application expression can be reduced and the reduction may pro-
duce a normal form, which will be considered the computed result. Encoding
of twice in lambda calculus will be discussed later.

Formally, the lambda terms are defined as follows:
(i) a variable z,y, z, ... is a lambda term;

(ii) if M and N are lambda terms, then (M N) is a lambda term, (called
functional application);

(iii) if M is a lambda term, then (Az.M) is a lambda term (called functional
abstraction).

A term of the form (ii) represents the application of a function M to N. A term
of the form (iii) makes the term M into a unary function; (Az.M) represents
the function of one variable z.

A commonly used notational convention allows for suppression of some
parantheses. Application is understood to associate to the left, so we can write
zyz instead of ((zy)z). The notation Az.P(Q) is used instead of (Az.(PQ)) and
AT1%9... Ty . M instead of (Azq.(Aza.(...(Azp.M)...)).

2.2 The rewrite rules

In a lambda term of the form Az.M, every occurrence of x in M is said to be
bound. If an occurrence of z is not bound in M, then it is said to be free in
M.

The rewrite rules of lambda calculus make an essential distinction between
free and bound variable occurrences. Intuitively the bound occurrences play
a role similar to that of the formal parameters of procedures in programming
languages, while the free occurrences can be compared to global variables in

2.2. THE REWRITE RULES 13

the procedure. The essential mechanism used in rewriting is the operation of
simultaneous replacement of all free occurrences of a variable z in a term M
by a term N. The operation should be defined with care since it should not
affect the status of the occurrences of the remaining variables. In particular,
free occurrences should not be changed to bound occurrences. Such a danger
exists if M and N share some variables. Problem can be avoided by renaming
some of the bound variables in the case of conflicts.

The commonly adopted solution can be presented as the following recursive
definition of the replacement operation. We define [z — N]|M to be the lambda
term obtained from M as follows:

(i) [x— N]zis N,

(ii) [x — Nly is y for any variable y different from =z,
(iii) [z — N](PQ) is ([x — N]P[z — N|Q),

(iv) [z = N]Az.P is Az.P,

(v) [z = N]M\y.P is A\y.[t — N]|P if y is different from 2 and has no free
occurrence in N, or if z has no free occurrence in P,

(vi) [z = N]Ay.P is A\z[x — N]|([y — z]P) if y is different from 2 and has a
free occurrence in IV, and z has a free occurrence in P. z is a variable
that does not occur free in N nor in P.

The cases (i) and (ii) above are basic ones, when no conflict is possible.
Replacement in the term which is a functional application is defined by case
(iii). In that case the replacement of z is to be made independently in both
component terms. The difficulties may only concern functional abstraction,
which is handled by the cases (iv), (v) and (vi). Intuitively, the replacement
concerns only the free occurrences of 2 in M. If M is of the form Az.P (case
(iv)), there is no free occurrence of z in M hence the operation leaves M
unchanged. Case (v) identifies the conflict-free situations. Replacing x by N
in Ay.P would have changed the status of free occurrences of y in N. This
cannot happen if y does not appear free in V. On the other hand, if z does
not appear free in P the replacement will not change P, hence will not change
the status of any variable occurrence.

The problem may only arise if y occurs free in N and = occurs free in P.
For example take the term y as N and the term zy as P. In that case M is of
the form Ay.zy. A direct replacement of £ by N in M would have resulted in
the term Ay.yy, thus changing the status of y in N. To avoid this, case (vi)
requires that the bound variable in M is renamed, e.g. to z. The effect of the
operation is thus the term Az.yz, and the status of y in N remains unchanged
after the replacement.

14 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGIC

The rewrite relation of lambda calculus is defined by the o- and S-rules:
(o) If y is not free in M, then Ae.M —, Ay.[z — y|M.

(B) M\z.M)N —5 [z+ NM

For example:

(Az.xzz)(Ay.y)z = Ayy)(Ay.y)z = (A\y.y)z — 2

The intuition of the a-rule is that the name of a bound variable is irrelevant.
We have seen already that renaming is used in the definition of the replacement
operation. The restriction in the a-rule requires that “fresh” variables are used
for renaming to avoid confusion with the free variables already present in the
term, which in that case would become bound by this transformation. For
example, the variable z in the term Az.zy cannot be renamed to y. It should
be noticed that the rewrite relation —, is symmetric. This means that one
need not to distinguish between “forward” and “backward” application of the
a-rule. Any “backward” rewriting of a given term can also be achieved by a
“forward” rewriting. For this reason the « rule is called a-conversion rule in
accordance with the terminology of Section 1.3. The lambda terms X and Y
such that X —», Y are called a-congruent terms.

The B-rule captures the intuition of computation by rewriting. It can be
applied to any term which has the form of functional application, where the
first component is a functional abstraction, representing the function applied
and the other is the actual argument. Such a term, which may appear within
a larger lambda term, is called a redex. Intuitively, redexes resemble procedu-
ral calls in programming languages. The S-reduction can be compared with
invocation of a procedure with one argument. The computation step con-
sists in removing the procedure header and replacing every occurrence of the
(only) formal parameter by the actual parameter of the call. As a result a new
lambda term is obtained which may also include redexes.

This process may or may not terminate. A normal form obtained upon
termination can be seen as the value of the function for the actual argument.
Generally, a lambda term can have more than one redex, and can thus be
subject to more than one reduction strategy. For the above intuition to be
valid, a terminating computation in any strategy should give the same result.
Otherwise, the term having different normal forms could not be considered as
a function. Note that the formal definition of S-reduction uses the replacement
operation, which in certain cases may cause renaming. Therefore the result
of the B-reduction is only unique up to renaming of the bound variables. The
uniqueness of normal form follows from the famous Church-Rosser theorem[4]
that states confluence of lambda calculus up to a-conversion. We quote the

2.3. REWRITE STRATEGIES 15

result without proof which can be found e.g. in [6]. There are several proofs
of this result in the literature but all of them are quite technical and long.

Theorem 2.1 If P —%3 M and P —%5 N then there exist a-congruent terms
Ty and T3 such that M —5 T and N —»g T5.

Consequently, every lambda term has a unique (up to a-conversion) normal
form, or no normal form at all. The latter case is due to the fact that lambda
calculus is not a terminating ARS. For example the term (Az.zxz)(Az.zz) is a
redex and it reduces to itself.

The Church-Rosser theorem justifies the intuition of viewing lambda terms
as partial functions. A lambda term X can be seen as a function on lambda
terms. If its application (XY') to another lambda term Y reduces to a normal
form N then N is unique and can be seen as a value of the function X on the
argument Y. The function is undefined on the arguments for which no normal
form exists.

2.3 Rewrite strategies

The two most important strategies are normal-order reduction, where the
leftmost redex is chosen, and applicative-order reduction, where the leftmost
innermost redex is chosen. Consider a lambda term which is a redex. As
discussed above, such a term resembles a call of a procedure in a programming
language. The normal-order reduction step will thus replace every occurrence
of the formal parameter in the body by the (unchanged) actual parameter.
But the actual parameter may be/include another redex. Thus, under this
strategy the computation of the value of the actual parameter is postponed.
This resembles the mechanism of procedure invocation known as “call-by-
name” or “lazy evaluation”, since the computation of the argument is deferred
as long as possible. The situation is different in the applicative-order strategy.
Here the normal forms of the nested redexes are computed starting from the
innermost level. This resembles the “call-by-value” mechanism of procedure
invocation where the values of the actual parameters are computed first.

Consider for example the term (Az.zz)((Ay.y)(Ay.y)). Its normal-order
reduction goes as follows:

16 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGIC

On the other hand, the applicative-order reduction requires fewer steps to
obtain the same normal form :

(Az.z2)((Ay.y) (Ay.y)) —
E)\x xm)(y) —

Termination may depend on the reduction strategy. Consider for example
the term Y of the form (Ay.yy)(Ay.yy). It has only one [-redex and the
reduction step rewrites the term into itself. Hence Y has no normal form.
Consider also the term Z of the form Az.Az.z. Application of Z to any term
T can be (-reduced in one step to the term Az.z regardless of the form of
T since x does not appear in Az.z. Consider now the term ZY. it has two
redexes: ZY and Y. The normal-order reduction will in one step produce the
normal form Az.z. On the other hand, the applicative-order reduction will
keep reducing Y to Y in ZY, hence it will not terminate.

An important result is that if the normal form exists, it is reachable by a
finite normal-order reduction sequence.

2.4 The power of lambda calculus

This section shows that both natural numbers and functions on natural num-
bers can be represented as lambda terms.

Church proposed to represent a natural number n by the term Azy.z"y,
where z"y denotes n applications of z to y, i.e. the term z(z...(zy) including
n ocurrences of z. Such terms are called Church numerals. In the sequel we
will abbreviate Azy.y as 0, Azy.zy as 1, etc. Notice that a Church numeral is
in normal form. It can also be seen as a binary function on lambda terms: for
given terms M and N the term nM N reduces to M"N.

An m-ary function ¢ on natural numbers is said to be lambda-defined by
a lambda term F' iff for arbitrary natural numbers nq, ..., n,,

Fny ... ng —» niff ¢(ng,...,np) = n.

A function is lambda-definable if it is lambda-defined by some lambda term.

A classical result is that the class of lambda-definable functions is exactly
the class of the functions defined by Turing machines. Thus, lambda calculus
can be used as a foundation of computation theory.

On the other hand, some concepts of lambda calculus turn out to be useful
in the context of programming languages. As already pointed out, the (-
reduction mechanism resembles parameter passing in programming languages.
Another interesting observation is that all functions represented by lambda

2.4. THE POWER OF LAMBDA CALCULUS 17

terms have fixed points. More precisely, for every term M there exists a term
P such that M P =g P . Moreover, there exists a lambda term Y such that
Y M is a fixpoint of M for every M. In particular consider Y defined as
Az.((Ay.z(yy))(Ay.z(yy))). Then for any M

YM = Az.(Ay.z(yy)) (Ay.z(yy)) M —

(
(Ay-M (yy))(\y. M (yy)) —
M ((Ay-M(yy))(Ay-M(yy))) = M(Y M)

Hence M(YM) =g YM. Thus Y M is a fixpoint of M. This has some
relevance for the theory of programming languages, where semantics is often
defined in terms of fixpoints.

In the pure version of lambda calculus discussed here, the functions are
defined from very few primitive concepts. For this reason, even relatively
simple functions can only be coded by rather complex lambda terms, and
computation of their values requires a large number of reduction steps. In
this sense, the expressive power of pure lambda calculus is rather low. We
illustrate this statement by an example.

The first step towards definition of the arithmetic operations is to define
the successor function s by a lambda term s such that sn — n+1. A solution
proposed in the literature is to define s as Auzy.z(uzy). We get:

sn = Auzy.z(uzy)(Azv.z2"v) —
Azy.x((Azv.2"v)zy) —
Azy.z((Av.z™v)y) —
Azy.x(x"y) =n+1

Thus, computation of the successor is not too complicated. Now the addi-
tion can be expressed in terms of the successor. Knowing that nzy — x"y, and
that z +y = s"sY(0) we can define addition by the lambda term Azy.zs(ys0).

In the extended form it is:

Azy.x(Auzy.z(ury) (y(Auzy.x(uzy)) (Azy.y)).

This term is indeed not that easy to grasp and following the reduction steps
needed to compute 2+2 would definitely be beyond one’s patience.
Another way of defining addition is by the following recursive definition

plus(0,y) =y
plus(s(z),y) = s(plus(z,y))

This is a special case of the use of the primitive recursion scheme

18 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGIC

$(0,9) = ¥(y)
¢(s(z),y) = 0(z, p(z,y))

defining a function ¢ on natural numbers in terms of given functions 4 and 6.
It turns out that such a scheme can be represented by a lambda term, which
is however quite complex. We refer for details e.g. to [6].

While the pure lambda calculus is too primitive for defining functions in
practice, the S-reduction is very close to procedure invocation mechanism in
high-level languages. We may enrich the pure calculus by a number of prede-
fined data types. The theory tells us that in principle it is possible to compile
them into the pure calculus, but we can implement them in some alternative
way. Taking this approach we can define a realistic programming language
starting from more convenient higher-level primitives and use lambda calculus
as a basis for defining its semantics. Understanding of this relation between
procedures and lambda calculus has had a big impact on the design and im-
plementation of programming languages, starting from ALGOL 60 design in
late fifties (see e.g. [8]).

2.5 Combinatory logic

This section presents yet another rewriting system, called the combinatory
logic. A motivation behind it is to represent functions without the technical
difficulties related to the use of bound variables in lambda calculus. The
combinatory logic has only free variables, so that it does not suffer from these
difficulties. Still it has the computational power equivalent to that of lambda
calculus. However, it does not seem to have as clear intuition as the lambda
calculus. The combinatory logic plays an important role in the implementation
of functional languages. This topic is, however, outside of the scope of these
notes.

Combinatory terms

We define first the domain of the rewriting system. Its elements will be called
combinatory logic terms, or briefly combinatory terms.

They are constructed by application from the basic elements which are
the variables and the two basic combinators K and S. Thus, formally the
combinatory terms are defined as follows:

(i) A variable is a combinatory term,
(ii) The basic combinators K and S are combinatory terms,

(iii) If X and Y are combinatory terms, then (XY') is a combinatory term.

2.5. COMBINATORY LOGIC 19

For example, ((SK)K) and (((SK)K)z) are combinatory terms. A com-
monly used notation is to omit parantheses following the convention of associa-
tion to the left. For example, the term ((SS)(K((SK)K))) will be represented
as SS(K(SKK))

A combinatory term not including variables is called a combinator. The in-
tuition of combinators is to represent operators on functions, e.g. composition
of functions, identity operator, etc. Formally the transformation correspond-
ing to such an operator is achieved by reduction of combinator terms using
the rewrite rules of the system. According to the definition, any combinator
is constructed from the basic combinators K and S. The examples in the
next section show that even operators with simple intuition may require quite
complicated combinators for their representation.

The rewrite relation

We now define the rewrite relation on combinatory terms.
Any combinatory term of the form KXY or SXY Z, where X, Y and Z
are arbitrary terms, is called a redexz. The contractum of a redex is defined as:

e X for a redex of the form KXY , and
e XZ(YZ) for a redex of the form SXY Z.

The rewrite relation — on combinatory terms is defined as follows: P — @)
iff () can be obtained by replacing one occurrence of a redex in P by its
contractum. For example, SK Ky — Ky(Ky) — y.

This example shows that the combinator SK K behaves as identity oper-
ator on combinatory terms. Its application to an arbitrary term Y reduces to
Y. Thus SKK is an important combinator, with a very simple intuition. It
is often denoted by I. Still its definition is relatively complicated.

The intuition of the basic combinators K and S is not as simple as that
of I. K forms constant functions: application of K to a term P is a function
returning P for every argument, since (KP)x — P. S is a function com-
position operator. Given the arguments X, Y, Z it applies the function X Z
to the function Y Z. This kind of composition does not seem very natural.
On the other hand, the combinator corresponding to the usual composition of
functions is more complicated. It has the form S(KS)K and it is denoted B.
Indeed, for every X,Y, Z the application BXY Z reduces to X (Y Z):

BXYZ =S(KS)KXY 7 —
(KS)X(KX)YZ —
S(KX)Y Z —

(KX)Z(YZ) —

X(YZ)

20 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGIC

Thus the result is the application of X to the (result of) application of YV
to Z. This corresponds to the usual intuition of composition of functions.

An important result about the rewrite system of combinatory logic is the
Church-Rosser theorem, analogous to that for lambda calculus, stating con-
fluence of this rewrite system.

Another important result analogous to that for lambda calculus states that
if a combinatory term has a normal form, then the reduction under the normal
strategy terminates. Due to the confluence of the system, such a reduction
results in this normal form, which is unique.

Relating combinatory logic to lambda calculus

As mentioned above, both lambda calculus and combinatory logic are intended
to represent and compute functions. The question is then how the formalisms
are related to each other. A part of the answer can be obtained by studying the
“compilation ” of combinatory terms into lambda terms, called in the literature
the transformation X. As discussed below, this transformation preserves the
rewrite relation.

The transformation A associates to each combinatory term X a lambda
term X, defined as follows, by induction on the structure of X:

e 1y, =y, for every variable y,
e K\ =Mzy.x, S\ = Azyz.zz(yz),
e (YZ)) =Y,\Z), for arbitrary combinatory terms Y and Z.

Thus, for example,

(SKK)\ = (SK)ZK\ = S\KLK), =
Ayz.(Ay.z)(yz) \ey.x — Ayz.zAzy.x — A\z.z

As illustrated by the above example, the transformation preserves the “na-
ture” of the function. Both SKK and Az.z represent the identity function.
For arbitrary combinatory term X the application SKK X reduces to X in
combinatory logic. On the other hand, for arbitrary lambda term ¢ the appli-
cation (Az.z)t S-reduces to t. Notice that the transformation preserves the free
variables of the term transformed. Thus, the combinators are transformed to
lambda terms without free variables. Such lambda terms are sometimes also
called combinators (of lambda calculus).

Generally, the transformation A\ preserves the rewrite relation. Formally,
if Y can be obtained from a combinatory term X by a number of reduction

2.5. COMBINATORY LOGIC 21

steps in the combinatory logic then the lambda term Y, can be obtained by a
number of S-reduction steps from X.

A related question, how to compile lambda terms into combinatory terms,
has also been discussed in the literature. One of the proposed solutions, a
transformation denoted H will be described now.

The first step concerns simulation of functional abstraction in combinatory
terms. For every variable z and for every combinatory term M we construct a
combinatory term denoted A\°x.M. The intention is that combinatory rewrit-
ing of (A°z.M N) would replace the occurrences of z in M by N. In this way
B-reduction would be simulated by rewriting of combinatory terms.

One can check that the goal can be achieved with the following definition:

e \Nz.x = SKK
e \z.P = KP if £ does not appear in P,
e \z.PQ = S(\°2.P)(A°x.Q) if the previous case do not apply.
For example,

XNz. Kz = SNz K)(\z.x) = S(KK)(SKK).
Now, for any term P,

S(KK)(SKK)P - (KKP)(SKKP) - KP

The same term can be otained by replacement of by P in Kx.
The transformation H is now defined as follows:

e 1y = 1z for every variable z,
e (PQ)y = PgQpg for any lambda terms P and Q,
o (Az.P)g = Xz.(P)m
For example:
A\zyy)m = Xz.0y.y) g = A2.(\y.y) = X0.SKK = K(SKK)

The transformation A discussed above is a kind of inverse of H, since for
every lambda term M the term My, is convertible to M (in lambda calculus).
For example:

(Az.z) gy = (SKK)y = Mryz.oz(yz)(Aey.x)(Axy.z) =g Az.2 =4 Ax.2

One can compile a lambda term M to the combinatory term My, reduce
it, and transform the result R of the reduction to the lambda term R). As

22 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGIC

mentioned above, the transformation A\ preserves the rewrite relation. Hence
My x —#g Ry. This may motivate the use of combinatory logic as the imple-
mentation language for lambda calculus.

It should be stressed that the results outlined above do not give a full
picture of the relation between lambda calculus and combinatory logic. A
more comprehensive discussion of the issue can be found in [6].

Bibliography

[1]

H.P. Barendregt. The Lambda calculus: its syntax and semantics, 2nd
edition. North-Holland, 1984.

N. Chomsky. Three models for the description of language. In IRFE trans-
actions on information theory, 2:3, pp. 113-124, 1956.

A. Church. The calculi of Lambda-conversion. Annals of mathematical
studies 6, Princeton University Press, 1941.

A. Church and J.B. Rosser. Some properties of conversion. Transactions
of the American Mathematical Society 39, pp. 472 482, 1936.

H. Curry. Grundlagen der kombinatorischen Logik. American J. Math.
52, pp.509 536,789 834, 1930.

R. Hindley and J. Seldin. Introduction to combinators and \-calculus.
Cambridge University Press, 1986.

J. Hopcroft and J. Ullman. Introduction to automata theory, languages
and computation, 2nd edition. Addison-Wesley, 1979.

Peter Landin. A correspondence between ALGOL 60 and Church’s
lambda notation. Comm. of the ACM, 8 89 101, 1965.

M. Newman. On theories with a combinatorial definition of “equivalence”.
Ann. Math. 43, pp. 223 243, 1942.

M. Schinfinkel. Uber die Bausteine der matematischen Logik. Math. Ann.
92, pp. 305-316, 1924.

A. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London mathematical society, 2:42, pp.
230 265. Corrected in ibid. 43, pp. 544 546, 1936.

23

