
�-alulusandCombinatory LogiA brief introdutionTDDA43
Jan Ma luszy�nski

Marh 2001

Contents
1 Introdution 31.1 Motivation . 31.2 Computation as rewriting . 41.3 Abstrat redution systems . 71.4 Properties of arss . 82 Lambda alulus and ombinatory logi 112.1 Lambda terms . 112.2 The rewrite rules . 122.3 Rewrite strategies . 152.4 The power of lambda alulus 162.5 Combinatory logi . 18

1

2 CONTENTS

Chapter 1IntrodutionThese notes present the material disussed at a separate leture of the ourseTDDA43 Programming Theory in Spring 2000.1.1 MotivationThe main topi of the ourse is the semantis of programming language. Se-mantis of programming languages is often desribed by (higher-order) fun-tions. A natural question is thus what is a suitable way of speifying om-putable higher-order funtions. In this leture we present two related for-malisms: �-alulus (alternative spelling: lambda alulus) and ombinatorylogi. Eah of them makes it possible to desribe omputable funtions with asmall number of primitive onepts. Lambda alulus introdued by Churh[3℄ in 1941 (as a proper formulation of his earlier ideas of 1930's) is basedon primitives that losely resemble the mehanisms for de�ning and allingproedures used in ontemporary programming languages, and is therefore ofprimary importane for the main topi of this ourse. On the other hand, om-binatory logi, originating from Sh�on�nkel [10℄(1924) and Curry [5℄ (1930) isa related formalism that has later played important role in implementation offuntional programming languages. Both formalisms desribe omputation ofa funtion as a rewriting proess. We give here only a very brief and inompleteintrodution to these formalisms. More material an be found in the introdu-tory textbook by Hindley and Seldin [6℄ and in the monograph by Barendregt[1℄. Before presenting the formalisms we disuss �rst some notions related withthis view of omputations. We will refer to them when presenting the for-malisms. 3

4 CHAPTER 1. INTRODUCTION1.2 Computation as rewritingAn introdutory exampleThe view we will adopt is that omputation an be thought of as makingtransformations in a state spae, where one step of omputation orrespondsto a move from one state to another. When a �nal state is reahed, the ompu-tation halts and the result is presented. Desribing this a little bit di�erently,omputation ould be viewed as suessive rewriting of expressions into otherexpressions, determined by a set of rewrite rules. When no rewrite rule isappliable to an expression, the expression is said to be a normal form, andonsidered to be the result of the omputation. This proess is nondeter-ministi in general, sine several rewrite rules may be appliable to a givenexpression, yielding di�erent resulting expressions.The rewriting view on omputation seems partiularly appropriate whendealing with problems of the type: \Simplify the expression e as muh aspossible". For example the polynomial expression (0 + a)(a + b) simpli�es toa2 + ab, using rules as0 + x! x0 � x! 0x(y + z)! xy + xz(x+ y)z ! xz + yzNote that there are many possible redutions from the initial expression tothe result, two of whih are: 1(0 + a)(a+ b)! a(a+ b)! a2 + ab(0+a)(a+b)! (0+a)a+(0+a)b! (0�a+a2)+(0+a)b! (0+a2)+(0+a)b! a2+(0+a)b! a2+(0 �b+ab) ! a2+(0+ab) ! a2+abFor the expression onsidered (i) all redutions are �nite, and (ii) the resultwill always be the same, no matter how the redution is arried out. If thesetwo desirable and important properties holds for any expression, the rewriterules are alled (i) terminating and (ii) onuent. However, these propertiesare in no way guaranteed to hold for an arbitrary set of rewrite rules. Even ourexample rules are not onuent, sine the expression x(0+y) an be simpli�edeither to xy or to x � 0 + xy, depending on the hoie of the used rules.The view of omputation as rewriting is ommon in the theory of ompu-tation, as illustrated by the following examples.1We assume here that the operators have the usual priorities so that the superuousparantheses in the expression a2 + (ab) an be omitted.

1.2. COMPUTATION AS REWRITING 5Turing mahinesThe Turing mahine (TM), oneived by Alan Turing in 1936 [11℄, is a simplebut powerful mathematial model of a omputational devie. A TM has a�nite set Q of states, and a storage devie onsisting of a one-dimensionalarray (a tape) of ells, eah of whih an ontain a symbol out of a �nite set�, that inludes a distinguished blank symbol. Assoiated with the tape is aread/write head that an move right or left on the tape and that an readand write a single symbol on eah move. The tape is in�nitely long in bothdiretions. : : : : : :0 1 1 0
Read/write head6

Figure 1.1: A snapshot of a Turing mahine at workWhen the omputation starts, the TM is in its initial state, the tape on-tains a �nite string of non-blank symbols plaed in onsequtive ells, whileall other ells ontain blank symbols, and the head is sanning the leftmostsymbol of the string. The mahine's ations are determined by its program,whih is given as a partial funtion Æ from Q�S to Q�S�fleft ; rightg. Thusif the mahine is in state q, and the read/write head is sanning the symbols, then the program spei�es the next state, the symbol to repale s on thetape, and the diretion in whih to move the read/write head. If Æ(q; s) isunde�ned, then the mahine halts in an error state. If a �nal state is reahed,the omputation terminates and the ontents of the tape is the result of theomputation. Notie that at every step of a omputation only a �nite num-ber of ells ontains non-blank symbols; the ontents of the tape may thus bedesribed by a �nite string.At any given moment, the TM's on�guration is desribed by the ontentson the tape and the urrent state. Suppose that the ontents of the tape iss1 : : : si�1si : : : sn, the read/write head is sanning the symbol si, and the TMis in state q. Then we let the strings1 : : : si�1 q si : : : sn

6 CHAPTER 1. INTRODUCTIONrepresent the on�guration of the mahine. Now if the program ontains theinstrution Æ(q; si) = (q0; t; left), then the mahine may hange its on�gura-tion aording to the rewrite rules1 : : : si�1 q si : : : sn ! s1 : : : si�2 q0 si�1 t : : : snIf the program ontains the instrution Æ(q; si) = (q0; t; right), then the orre-sponding rewrite rule iss1 : : : si�1 q si : : : sn ! s1 : : : si�1 t q0 si+1 : : : snThe renowned Churh-Turing's hypothesis (also known as Churh's thesis)states that these funtions are indeed all funtions that are omputable in theintuitive sense.Context-free grammarsContext-free grammars play a fundamental role in string-proessing applia-tions, notably in the de�nition of programming languages, parsing of program-ming languages and natural languages, et. The origin of the formalism anbe found in Chomsky [2℄.A ontext-free grammar is a spei�ation of a (ontext-free) language (oversome alphabet �) by means of prodution rules of the form:A! �where A belongs to a set V of non-terminals, and � is a string in (� [V)�.We assume that V and � are disjoint.Suppose �1 and �2 are (possibly empty) strings in (� [V)�. Then �1A�2derives �1��2, using the prodution rule above. We write this as�1A�2) �1��2If it is possible to reah a string 2 ��, starting from the speial startnon-terminal S, and by using a sequene of derivation steps, then belongs tothe language generated by the grammar. As an example, we give a grammarthat generates all strings over fa; bg� with an equal number of a's and b's.Here S is the only non-terminal, and � denotes the empty string.S ! SSS ! �S ! aSbS ! bSaFor instane, the string abba an be derived as follows:

1.3. ABSTRACT REDUCTION SYSTEMS 7S) SS) aSbS) abS) abbSa) abbaWe have used the �rst, third, seond, fourth and seond rules of the gram-mar in the di�erent steps.1.3 Abstrat redution systemsAn abstration based on the examples of the preeding setions gives thefollowing de�nition:De�nition 1.1 An abstrat redution system (ars) is a pair (A;!), whereA is a set, and eah ! is a binary relation on A, alled a rewrite relation. 2Notation: If a; b 2 A and (a; b) 2 !, then we write this as a! b and all b aredut of a. The reexive and transitive losure of! is written as!! (a usualnotation R� for the transitive and reexive losure of the relation R may alsobe used). !i denotes redution in i steps. The inverse relation of ! (!!) isdenoted by or !�1 (or !!�1). If a and b are idential (i.e. they denotethe same element in A), we write a � b. a and b are onvertible (a = b) if aan be rewritten into b using the ! relation forwards or bakwards a �nitenumber of times. Thus, we let = be the relation (!! [)�. 2Figure 1.2 shows an example rewrite relation, in whih a and b are on-vertible.
a bq q q q q q q q q q: : :
��	 ��	 ��R ��R ��R ��	 ��R ��R ��	 ��	

Figure 1.2: a = bDe�nition 1.2 Given an ars (A;!), a 2 A is a normal form if there is nob suh that a ! b. We write NF (A) to denote the set of normal forms in A

8 CHAPTER 1. INTRODUCTION(w.r.t. !). a has a normal form if there is a b 2 NF (A) suh that a!! b (wesay that b is a normal form of a). 2Note that an element may have zero, one, or many normal forms.The operational intuition behind the relation(s) ! is that if a ! b, thena an be redued to b. As shown by the examples in the previous hapter,our aim is often to redue (in a number of steps) a given element to (one of)its normal forms, using the rewrite relation. This naturally raises questionsabout existene and uniqueness of normal forms; questions we will address inthe next setion.1.4 Properties of arssThroughout this setion, we assume that an ars (A;!) is given.De�nition 1.3(1) ! is weakly normalizing (WN) if every a 2 A has a normal form.(2) ! is strongly normalizing (SN) (or terminating , or Noetherian) if thereis no in�nite sequene a0 ! a1 ! a2 ! : : :2 If ! is weakly normalizing, then we an redue every element to a normalform. Pratially however, the omputation might not terminate if the wrongredution strategy is used. In the example below, the redution sequenea0 ! a1 ! : : : is in�nite. a0a1 b0a2 b1a3 b2...
��	 ��R��	 ��R��	 ��R��	 ��RFigure 1.3: A rewrite relation whih is WN but not SNIf ! is terminating, then every redution sequene will eventually endin a normal form. Generally, there may be many normal forms. We are

1.4. PROPERTIES OF ARSS 9interested in omputing values of funtions. The following notion gives asuÆient ondition for an ars under whih eah element has at most onenormal form. This is important for our purposes, sine we want to representfuntion alls as elements of ars's, and the orresponding normal forms asthe omputed results of these alls. Hene we annot admit ars's where thenormal forms are not unique.De�nition 1.4(1) ! is Churh-Rosser (CR) (or onuent) if for all a; b; 2 A suh thata!! b and a!! , there is a d 2 A suh that b!! d and !! d.(2)! is weakly Churh-Rosser (WCR) (or weakly onuent) if for all a; b; 2A suh that a ! b and a ! , there is a d 2 A suh that b !! d and!! d.2 The above de�nition is probably easiest understood in diagram format (seeFig. 1.4). ab dCR
����	 ����	 ����R����R����R��R ����	��	

ab dWCR����	 ����R����R��R ����	��	Figure 1.4: Shemati desription of the CR and WCR properties (dashedarrows are existentially quanti�ed)Theorem 1.5 If ! is onuent, then the normal form of every element (if itexists) is unique (i.e. if a!! b, a!! , and b; 2 NF (A), then b �).The proof is left as an exerise.The distintion between onuene and weak onuene is subtle but im-portant. The following example shows the di�erene.Example 1.6 Consider the rewrite relation de�ned by the following diagram:

10 CHAPTER 1. INTRODUCTIONa b d� -� �?� �6Figure 1.5: A rewrite relation whih is WCR but not CRBy a simple ase analysis we see that ! is weakly onuent. For instane,b an be redued to both a and , but a!! a and !! a. However, ! is notonuent, sine b!! a and b!! d, and a and d have no ommon redut. 2For terminating rewrite relations, onuene and weak onuene are equiv-alent. This is a onsequene of the following fundamental theorem, �rst statedby Newman [9℄. We quote it without proof.Theorem 1.7 [Newman's lemma℄ If ! is weakly onuent and terminat-ing, then ! is onuent.Notie that a onuent ars A = (A;!) de�nes a partial funtion fA on A:fA(a) = (b; if b 2 NF (A) and a!! bunde�ned elseIn addition:� if ! is weakly normalizing, then f is a total funtion.� if! is strongly normalizing, then f an be omputed with any redutionstrategy.In the next hapter we survey lambda alulus and ombinatory logi asars's: de�ning funtions in terms of redution to normal forms.

Chapter 2Lambda alulus andombinatory logiThis hapter introdues lambda alulus and ombinatory logi as rewritesystems and relates them to eah other.2.1 Lambda termsAs any rewrite system the lambda alulus de�nes a domain of expressionsand a rewrite relation on this domain. The expressions are alled lambdaterms. Intuitively, lambda terms represent funtions on lambda terms. Thismay seem somewhat onfusing, sine one might have expeted �rst a domainof elementary values on whih an hierarhy of �rst- and higher-order funtionsould be de�ned. However, as will be disussed later, the elementary valuessuh as natural numbers an easily be oded as funtions.The funtional intuition is reeted by the syntax of lambda terms. Abasi lambda term is a variable. The role of variables in lambda alulus anbe ompared to the role of the variables used in proedures of programminglanguages. Certain kinds of expressions in programming languges, e.g. arith-meti expressions like x+y an be transformed into proedures by identifyingsome of the variables as formal parameters.
11

12 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICFor example, in ML the expression 2*x is transformed into a unary funtiontwie with a formal parameter x in the following way:fun twie x = 2*x;A similar kind of syntati onstrut is de�ned for lambda terms and it isalled funtional abstration. A di�erene is that the expression above givesthe name twie to the reated funtion, while, as we will see below, thefuntional abstration gives no name to the reated funtion.The funtion twie an then be alled with an argument, represented typ-ially by an arithmeti expression, e.g twie(2). A similar kind of syntationstrut is de�ned for lambda terms and it is alled appliation.The all twie(2)in ML will produe the value 4 as a result. In lambdaalulus an appliation expression an be redued and the redution may pro-due a normal form, whih will be onsidered the omputed result. Enodingof twie in lambda alulus will be disussed later.Formally, the lambda terms are de�ned as follows:(i) a variable x; y; z; : : : is a lambda term;(ii) if M and N are lambda terms, then (MN) is a lambda term, (alledfuntional appliation);(iii) if M is a lambda term, then (�x:M) is a lambda term (alled funtionalabstration).A term of the form (ii) represents the appliation of a funtionM to N . A termof the form (iii) makes the term M into a unary funtion; (�x:M) representsthe funtion of one variable x.A ommonly used notational onvention allows for suppression of someparantheses. Appliation is understood to assoiate to the left, so we an writexyz instead of ((xy)z). The notation �x:PQ is used instead of (�x:(PQ)) and�x1x2:::xn:M instead of (�x1:(�x2:(:::(�xn:M):::)).2.2 The rewrite rulesIn a lambda term of the form �x:M , every ourrene of x in M is said to bebound . If an ourrene of x is not bound in M , then it is said to be free inM . The rewrite rules of lambda alulus make an essential distintion betweenfree and bound variable ourrenes. Intuitively the bound ourrenes playa role similar to that of the formal parameters of proedures in programminglanguages, while the free ourrenes an be ompared to global variables in

2.2. THE REWRITE RULES 13the proedure. The essential mehanism used in rewriting is the operation ofsimultaneous replaement of all free ourrenes of a variable x in a term Mby a term N . The operation should be de�ned with are sine it should nota�et the status of the ourrenes of the remaining variables. In partiular,free ourrenes should not be hanged to bound ourrenes. Suh a dangerexists ifM and N share some variables. Problem an be avoided by renamingsome of the bound variables in the ase of onits.The ommonly adopted solution an be presented as the following reursivede�nition of the replaement operation. We de�ne [x 7! N ℄M to be the lambdaterm obtained from M as follows:(i) [x 7! N ℄x is N ,(ii) [x 7! N ℄y is y for any variable y di�erent from x,(iii) [x 7! N ℄(PQ) is ([x 7! N ℄P [x 7! N ℄Q),(iv) [x 7! N ℄�x:P is �x:P ,(v) [x 7! N ℄�y:P is �y:[x 7! N ℄P if y is di�erent from x and has no freeourrene in N , or if x has no free ourrene in P ,(vi) [x 7! N ℄�y:P is �z[x 7! N ℄([y 7! z℄P) if y is di�erent from x and has afree ourrene in N , and x has a free ourrene in P . z is a variablethat does not our free in N nor in P .The ases (i) and (ii) above are basi ones, when no onit is possible.Replaement in the term whih is a funtional appliation is de�ned by ase(iii). In that ase the replaement of x is to be made independently in bothomponent terms. The diÆulties may only onern funtional abstration,whih is handled by the ases (iv), (v) and (vi). Intuitively, the replaementonerns only the free ourrenes of x in M . If M is of the form �x:P (ase(iv)), there is no free ourrene of x in M hene the operation leaves Munhanged. Case (v) identi�es the onit-free situations. Replaing x by Nin �y:P would have hanged the status of free ourrenes of y in N . Thisannot happen if y does not appear free in N . On the other hand, if x doesnot appear free in P the replaement will not hange P , hene will not hangethe status of any variable ourrene.The problem may only arise if y ours free in N and x ours free in P .For example take the term y as N and the term xy as P . In that ase M is ofthe form �y:xy. A diret replaement of x by N in M would have resulted inthe term �y:yy, thus hanging the status of y in N . To avoid this, ase (vi)requires that the bound variable in M is renamed, e.g. to z. The e�et of theoperation is thus the term �z:yz, and the status of y in N remains unhangedafter the replaement.

14 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICThe rewrite relation of lambda alulus is de�ned by the �- and �-rules:(�) If y is not free in M , then �x:M !� �y:[x 7! y℄M .(�) (�x:M)N !� [x 7! N ℄MFor example:(�x:xx)(�y:y)z ! (�y:y)(�y:y)z ! (�y:y)z ! zThe intuition of the �-rule is that the name of a bound variable is irrelevant.We have seen already that renaming is used in the de�nition of the replaementoperation. The restrition in the �-rule requires that \fresh" variables are usedfor renaming to avoid onfusion with the free variables already present in theterm, whih in that ase would beome bound by this transformation. Forexample, the variable x in the term �x:xy annot be renamed to y. It shouldbe notied that the rewrite relation !!� is symmetri. This means that oneneed not to distinguish between \forward" and \bakward" appliation of the�-rule. Any \bakward" rewriting of a given term an also be ahieved by a\forward" rewriting. For this reason the � rule is alled �-onversion rule inaordane with the terminology of Setion 1.3. The lambda terms X and Ysuh that X !!� Y are alled �-ongruent terms.The �-rule aptures the intuition of omputation by rewriting. It an beapplied to any term whih has the form of funtional appliation, where the�rst omponent is a funtional abstration, representing the funtion appliedand the other is the atual argument. Suh a term, whih may appear withina larger lambda term, is alled a redex. Intuitively, redexes resemble proedu-ral alls in programming languages. The �-redution an be ompared withinvoation of a proedure with one argument. The omputation step on-sists in removing the proedure header and replaing every ourrene of the(only) formal parameter by the atual parameter of the all. As a result a newlambda term is obtained whih may also inlude redexes.This proess may or may not terminate. A normal form obtained upontermination an be seen as the value of the funtion for the atual argument.Generally, a lambda term an have more than one redex, and an thus besubjet to more than one redution strategy. For the above intuition to bevalid, a terminating omputation in any strategy should give the same result.Otherwise, the term having di�erent normal forms ould not be onsidered asa funtion. Note that the formal de�nition of �-redution uses the replaementoperation, whih in ertain ases may ause renaming. Therefore the resultof the �-redution is only unique up to renaming of the bound variables. Theuniqueness of normal form follows from the famous Churh-Rosser theorem[4℄that states onuene of lambda alulus up to �-onversion. We quote the

2.3. REWRITE STRATEGIES 15result without proof whih an be found e.g. in [6℄. There are several proofsof this result in the literature but all of them are quite tehnial and long.Theorem 2.1 If P !!� M and P !!� N then there exist �-ongruent termsT1 and T2 suh that M !!� T1 and N !!� T2.Consequently, every lambda term has a unique (up to �-onversion) normalform, or no normal form at all. The latter ase is due to the fat that lambdaalulus is not a terminating ars. For example the term (�x:xx)(�x:xx) is aredex and it redues to itself.The Churh-Rosser theorem justi�es the intuition of viewing lambda termsas partial funtions. A lambda term X an be seen as a funtion on lambdaterms. If its appliation (XY) to another lambda term Y redues to a normalform N then N is unique and an be seen as a value of the funtion X on theargument Y . The funtion is unde�ned on the arguments for whih no normalform exists.2.3 Rewrite strategiesThe two most important strategies are normal-order redution, where theleftmost redex is hosen, and appliative-order redution, where the leftmostinnermost redex is hosen. Consider a lambda term whih is a redex. Asdisussed above, suh a term resembles a all of a proedure in a programminglanguage. The normal-order redution step will thus replae every ourreneof the formal parameter in the body by the (unhanged) atual parameter.But the atual parameter may be/inlude another redex. Thus, under thisstrategy the omputation of the value of the atual parameter is postponed.This resembles the mehanism of proedure invoation known as \all-by-name" or \lazy evaluation", sine the omputation of the argument is deferredas long as possible. The situation is di�erent in the appliative-order strategy.Here the normal forms of the nested redexes are omputed starting from theinnermost level. This resembles the \all-by-value" mehanism of proedureinvoation where the values of the atual parameters are omputed �rst.Consider for example the term (�x:xx)((�y:y)(�y:y)). Its normal-orderredution goes as follows:(�x:xx)((�y:y)(�y:y)) !((�y:y)(�y:y))((�y:y)(�y:y)) !(�y:y)((�y:y)(�y:y)) !((�y:y)(�y:y))!�y:y

16 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICOn the other hand, the appliative-order redution requires fewer steps toobtain the same normal form :(�x:xx)((�y:y)(�y:y)) !(�x:xx)(�y:y)!((�y:y)(�y:y))!�y:yTermination may depend on the redution strategy. Consider for examplethe term Y of the form (�y:yy)(�y:yy). It has only one �-redex and theredution step rewrites the term into itself. Hene Y has no normal form.Consider also the term Z of the form �x:�z:z. Appliation of Z to any termT an be �-redued in one step to the term �z:z regardless of the form ofT sine x does not appear in �z:z. Consider now the term ZY . it has tworedexes: ZY and Y . The normal-order redution will in one step produe thenormal form �z:z. On the other hand, the appliative-order redution willkeep reduing Y to Y in ZY , hene it will not terminate.An important result is that if the normal form exists, it is reahable by a�nite normal-order redution sequene.2.4 The power of lambda alulusThis setion shows that both natural numbers and funtions on natural num-bers an be represented as lambda terms.Churh proposed to represent a natural number n by the term �xy:xny,where xny denotes n appliations of x to y, i.e. the term x(x:::(xy) inludingn ourrenes of x. Suh terms are alled Churh numerals. In the sequel wewill abbreviate �xy:y as 0, �xy:xy as 1, et. Notie that a Churh numeral isin normal form. It an also be seen as a binary funtion on lambda terms: forgiven terms M and N the term nMN redues to MnN .An m-ary funtion � on natural numbers is said to be lambda-de�ned bya lambda term F i� for arbitrary natural numbers n1; :::; nmFn1 ::: nm !! n i� �(n1; :::; nm) = n.A funtion is lambda-de�nable if it is lambda-de�ned by some lambda term.A lassial result is that the lass of lambda-de�nable funtions is exatlythe lass of the funtions de�ned by Turing mahines. Thus, lambda alulusan be used as a foundation of omputation theory.On the other hand, some onepts of lambda alulus turn out to be usefulin the ontext of programming languages. As already pointed out, the �-redution mehanism resembles parameter passing in programming languages.Another interesting observation is that all funtions represented by lambda

2.4. THE POWER OF LAMBDA CALCULUS 17terms have �xed points. More preisely, for every term M there exists a termP suh that MP =� P . Moreover, there exists a lambda term Y suh thatYM is a �xpoint of M for every M . In partiular onsider Y de�ned as�x:((�y:x(yy))(�y:x(yy))). Then for any MYM = �x:(�y:x(yy))(�y:x(yy))M !(�y:M(yy))(�y:M(yy))!M((�y:M(yy))(�y:M(yy))) =M(YM)Hene M(YM) =� YM . Thus YM is a �xpoint of M . This has somerelevane for the theory of programming languages, where semantis is oftende�ned in terms of �xpoints.In the pure version of lambda alulus disussed here, the funtions arede�ned from very few primitive onepts. For this reason, even relativelysimple funtions an only be oded by rather omplex lambda terms, andomputation of their values requires a large number of redution steps. Inthis sense, the expressive power of pure lambda alulus is rather low. Weillustrate this statement by an example.The �rst step towards de�nition of the arithmeti operations is to de�nethe suessor funtion s by a lambda term s suh that sn!! n+1. A solutionproposed in the literature is to de�ne s as �uxy:x(uxy). We get:sn = �uxy:x(uxy)(�zv:znv)!�xy:x((�zv:znv)xy)!�xy:x((�v:xnv)y)!�xy:x(xny) = n+ 1Thus, omputation of the suessor is not too ompliated. Now the addi-tion an be expressed in terms of the suessor. Knowing that nxy !! xny, andthat x+ y = sxsy(0) we an de�ne addition by the lambda term �xy:xs(ys0).In the extended form it is:�xy:x(�uxy:x(uxy)(y(�uxy:x(uxy))(�xy:y)).This term is indeed not that easy to grasp and following the redution stepsneeded to ompute 2+2 would de�nitely be beyond one's patiene.Another way of de�ning addition is by the following reursive de�nitionplus(0; y) = yplus(s(x); y) = s(plus(x; y))This is a speial ase of the use of the primitive reursion sheme

18 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGIC�(0; y) = (y)�(s(x); y) = �(x; �(x; y))de�ning a funtion � on natural numbers in terms of given funtions and �.It turns out that suh a sheme an be represented by a lambda term, whihis however quite omplex. We refer for details e.g. to [6℄.While the pure lambda alulus is too primitive for de�ning funtions inpratie, the �-redution is very lose to proedure invoation mehanism inhigh-level languages. We may enrih the pure alulus by a number of prede-�ned data types. The theory tells us that in priniple it is possible to ompilethem into the pure alulus, but we an implement them in some alternativeway. Taking this approah we an de�ne a realisti programming languagestarting from more onvenient higher-level primitives and use lambda alulusas a basis for de�ning its semantis. Understanding of this relation betweenproedures and lambda alulus has had a big impat on the design and im-plementation of programming languages, starting from ALGOL 60 design inlate �fties (see e.g. [8℄).2.5 Combinatory logiThis setion presents yet another rewriting system, alled the ombinatorylogi. A motivation behind it is to represent funtions without the tehnialdiÆulties related to the use of bound variables in lambda alulus. Theombinatory logi has only free variables, so that it does not su�er from thesediÆulties. Still it has the omputational power equivalent to that of lambdaalulus. However, it does not seem to have as lear intuition as the lambdaalulus. The ombinatory logi plays an important role in the implementationof funtional languages. This topi is, however, outside of the sope of thesenotes.Combinatory termsWe de�ne �rst the domain of the rewriting system. Its elements will be alledombinatory logi terms, or briey ombinatory terms.They are onstruted by appliation from the basi elements whih arethe variables and the two basi ombinators K and S. Thus, formally theombinatory terms are de�ned as follows:(i) A variable is a ombinatory term,(ii) The basi ombinators K and S are ombinatory terms,(iii) If X and Y are ombinatory terms, then (XY) is a ombinatory term.

2.5. COMBINATORY LOGIC 19For example, ((SK)K) and (((SK)K)x) are ombinatory terms. A om-monly used notation is to omit parantheses following the onvention of assoia-tion to the left. For example, the term ((SS)(K((SK)K))) will be representedas SS(K(SKK))A ombinatory term not inluding variables is alled a ombinator. The in-tuition of ombinators is to represent operators on funtions, e.g. ompositionof funtions, identity operator, et. Formally the transformation orrespond-ing to suh an operator is ahieved by redution of ombinator terms usingthe rewrite rules of the system. Aording to the de�nition, any ombinatoris onstruted from the basi ombinators K and S. The examples in thenext setion show that even operators with simple intuition may require quiteompliated ombinators for their representation.The rewrite relationWe now de�ne the rewrite relation on ombinatory terms.Any ombinatory term of the form KXY or SXY Z, where X, Y and Zare arbitrary terms, is alled a redex. The ontratum of a redex is de�ned as:� X for a redex of the form KXY , and� XZ(Y Z) for a redex of the form SXY Z.The rewrite relation! on ombinatory terms is de�ned as follows: P ! Qi� Q an be obtained by replaing one ourrene of a redex in P by itsontratum. For example, SKKy! Ky(Ky)! y.This example shows that the ombinator SKK behaves as identity oper-ator on ombinatory terms. Its appliation to an arbitrary term Y redues toY . Thus SKK is an important ombinator, with a very simple intuition. Itis often denoted by I. Still its de�nition is relatively ompliated.The intuition of the basi ombinators K and S is not as simple as thatof I. K forms onstant funtions: appliation of K to a term P is a funtionreturning P for every argument, sine (KP)x ! P . S is a funtion om-position operator. Given the arguments X;Y;Z it applies the funtion XZto the funtion Y Z. This kind of omposition does not seem very natural.On the other hand, the ombinator orresponding to the usual omposition offuntions is more ompliated. It has the form S(KS)K and it is denoted B.Indeed, for every X;Y;Z the appliation BXY Z redues to X(Y Z):BXY Z = S(KS)KXY Z !(KS)X(KX)Y Z !S(KX)Y Z !(KX)Z(Y Z)!X(Y Z)

20 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICThus the result is the appliation of X to the (result of) appliation of Yto Z. This orresponds to the usual intuition of omposition of funtions.An important result about the rewrite system of ombinatory logi is theChurh-Rosser theorem, analogous to that for lambda alulus, stating on-uene of this rewrite system.Another important result analogous to that for lambda alulus states thatif a ombinatory term has a normal form, then the redution under the normalstrategy terminates. Due to the onuene of the system, suh a redutionresults in this normal form, whih is unique.Relating ombinatory logi to lambda alulusAs mentioned above, both lambda alulus and ombinatory logi are intendedto represent and ompute funtions. The question is then how the formalismsare related to eah other. A part of the answer an be obtained by studying the\ompilation " of ombinatory terms into lambda terms, alled in the literaturethe transformation �. As disussed below, this transformation preserves therewrite relation.The transformation � assoiates to eah ombinatory term X a lambdaterm X� de�ned as follows, by indution on the struture of X:� y� = y, for every variable y,� K� = �xy:x, S� = �xyz:xz(yz),� (Y Z)� = Y�Z� for arbitrary ombinatory terms Y and Z.Thus, for example,(SKK)� = (SK)�K� = S�K�K� =�xyz:xz(yz)(�xy:x)(�xy:x) ! �yz:(�xy:x)z(yz)�xy:x!�yz:(�y:z)(yz)�xy:x! �yz:z�xy:x! �z:zAs illustrated by the above example, the transformation preserves the \na-ture" of the funtion. Both SKK and �z:z represent the identity funtion.For arbitrary ombinatory term X the appliation SKKX redues to X inombinatory logi. On the other hand, for arbitrary lambda term t the appli-ation (�z:z)t �-redues to t. Notie that the transformation preserves the freevariables of the term transformed. Thus, the ombinators are transformed tolambda terms without free variables. Suh lambda terms are sometimes alsoalled ombinators (of lambda alulus).Generally, the transformation � preserves the rewrite relation. Formally,if Y an be obtained from a ombinatory term X by a number of redution

2.5. COMBINATORY LOGIC 21steps in the ombinatory logi then the lambda term Y� an be obtained by anumber of �-redution steps from X�.A related question, how to ompile lambda terms into ombinatory terms,has also been disussed in the literature. One of the proposed solutions, atransformation denoted H will be desribed now.The �rst step onerns simulation of funtional abstration in ombinatoryterms. For every variable x and for every ombinatory termM we onstrut aombinatory term denoted �x:M . The intention is that ombinatory rewrit-ing of (�x:MN) would replae the ourrenes of x in M by N . In this way�-redution would be simulated by rewriting of ombinatory terms.One an hek that the goal an be ahieved with the following de�nition:� �x:x = SKK� �x:P = KP if x does not appear in P ,� �x:PQ = S(�x:P)(�x:Q) if the previous ase do not apply.For example,�x:Kx = S(�x:K)(�x:x) = S(KK)(SKK):Now, for any term P ,S(KK)(SKK)P ! (KKP)(SKKP)! KPThe same term an be otained by replaement of x by P in Kx.The transformation H is now de�ned as follows:� xH = x for every variable x,� (PQ)H = PHQH for any lambda terms P and Q,� (�x:P)H = �x:(P)HFor example:(�xy:y)H = �x:(�y:y)H = �x:(�y:y) = �x:SKK = K(SKK)The transformation � disussed above is a kind of inverse of H, sine forevery lambda termM the termMH� is onvertible toM (in lambda alulus).For example:(�x:x)H� = (SKK)� = �xyz:xz(yz)(�xy:x)(�xy:x) !!� �z:z =� �x:xOne an ompile a lambda term M to the ombinatory term MH , redueit, and transform the result R of the redution to the lambda term R�. As

22 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICmentioned above, the transformation � preserves the rewrite relation. HeneMH;� !!� R�. This may motivate the use of ombinatory logi as the imple-mentation language for lambda alulus.It should be stressed that the results outlined above do not give a fullpiture of the relation between lambda alulus and ombinatory logi. Amore omprehensive disussion of the issue an be found in [6℄.

Bibliography[1℄ H.P. Barendregt. The Lambda alulus: its syntax and semantis, 2ndedition. North-Holland, 1984.[2℄ N. Chomsky. Three models for the desription of language. In IRE trans-ations on information theory , 2:3, pp. 113{124, 1956.[3℄ A. Churh. The aluli of Lambda-onversion. Annals of mathematialstudies 6, Prineton University Press, 1941.[4℄ A. Churh and J.B. Rosser. Some properties of onversion. Transationsof the Amerian Mathematial Soiety 39, pp. 472{482, 1936.[5℄ H. Curry. Grundlagen der kombinatorishen Logik. Amerian J. Math.52, pp.509{536,789{834, 1930.[6℄ R. Hindley and J. Seldin. Introdution to ombinators and �-alulus.Cambridge University Press, 1986.[7℄ J. Hoproft and J. Ullman. Introdution to automata theory, languagesand omputation, 2nd edition. Addison-Wesley, 1979.[8℄ Peter Landin. A orrespondene between ALGOL 60 and Churh'slambda notation. Comm. of the ACM, 8 89{101, 1965.[9℄ M. Newman. On theories with a ombinatorial de�nition of \equivalene".Ann. Math. 43, pp. 223{243, 1942.[10℄ M. Sh�on�nkel. �Uber die Bausteine der matematishen Logik.Math. Ann.92, pp. 305{316, 1924.[11℄ A. Turing. On omputable numbers with an appliation to the Entshei-dungsproblem. Proeedings of the London mathematial soiety , 2:42, pp.230{265. Correted in ibid. 43, pp. 544{546, 1936.
23

