
�-
al
ulusandCombinatory Logi
A brief introdu
tionTDDA43
Jan Ma luszy�nski

Mar
h 2001

Contents
1 Introdu
tion 31.1 Motivation . 31.2 Computation as rewriting . 41.3 Abstra
t redu
tion systems . 71.4 Properties of arss . 82 Lambda
al
ulus and
ombinatory logi
 112.1 Lambda terms . 112.2 The rewrite rules . 122.3 Rewrite strategies . 152.4 The power of lambda
al
ulus 162.5 Combinatory logi
 . 18

1

2 CONTENTS

Chapter 1Introdu
tionThese notes present the material dis
ussed at a separate le
ture of the
ourseTDDA43 Programming Theory in Spring 2000.1.1 MotivationThe main topi
 of the
ourse is the semanti
s of programming language. Se-manti
s of programming languages is often des
ribed by (higher-order) fun
-tions. A natural question is thus what is a suitable way of spe
ifying
om-putable higher-order fun
tions. In this le
ture we present two related for-malisms: �-
al
ulus (alternative spelling: lambda
al
ulus) and
ombinatorylogi
. Ea
h of them makes it possible to des
ribe
omputable fun
tions with asmall number of primitive
on
epts. Lambda
al
ulus introdu
ed by Chur
h[3℄ in 1941 (as a proper formulation of his earlier ideas of 1930's) is basedon primitives that
losely resemble the me
hanisms for de�ning and
allingpro
edures used in
ontemporary programming languages, and is therefore ofprimary importan
e for the main topi
 of this
ourse. On the other hand,
om-binatory logi
, originating from S
h�on�nkel [10℄(1924) and Curry [5℄ (1930) isa related formalism that has later played important role in implementation offun
tional programming languages. Both formalisms des
ribe
omputation ofa funtion as a rewriting pro
ess. We give here only a very brief and in
ompleteintrodu
tion to these formalisms. More material
an be found in the introdu
-tory textbook by Hindley and Seldin [6℄ and in the monograph by Barendregt[1℄. Before presenting the formalisms we dis
uss �rst some notions related withthis view of
omputations. We will refer to them when presenting the for-malisms. 3

4 CHAPTER 1. INTRODUCTION1.2 Computation as rewritingAn introdu
tory exampleThe view we will adopt is that
omputation
an be thought of as makingtransformations in a state spa
e, where one step of
omputation
orrespondsto a move from one state to another. When a �nal state is rea
hed, the
ompu-tation halts and the result is presented. Des
ribing this a little bit di�erently,
omputation
ould be viewed as su

essive rewriting of expressions into otherexpressions, determined by a set of rewrite rules. When no rewrite rule isappli
able to an expression, the expression is said to be a normal form, and
onsidered to be the result of the
omputation. This pro
ess is nondeter-ministi
 in general, sin
e several rewrite rules may be appli
able to a givenexpression, yielding di�erent resulting expressions.The rewriting view on
omputation seems parti
ularly appropriate whendealing with problems of the type: \Simplify the expression e as mu
h aspossible". For example the polynomial expression (0 + a)(a + b) simpli�es toa2 + ab, using rules as0 + x! x0 � x! 0x(y + z)! xy + xz(x+ y)z ! xz + yzNote that there are many possible redu
tions from the initial expression tothe result, two of whi
h are: 1(0 + a)(a+ b)! a(a+ b)! a2 + ab(0+a)(a+b)! (0+a)a+(0+a)b! (0�a+a2)+(0+a)b! (0+a2)+(0+a)b! a2+(0+a)b! a2+(0 �b+ab) ! a2+(0+ab) ! a2+abFor the expression
onsidered (i) all redu
tions are �nite, and (ii) the resultwill always be the same, no matter how the redu
tion is
arried out. If thesetwo desirable and important properties holds for any expression, the rewriterules are
alled (i) terminating and (ii)
on
uent. However, these propertiesare in no way guaranteed to hold for an arbitrary set of rewrite rules. Even ourexample rules are not
on
uent, sin
e the expression x(0+y)
an be simpli�edeither to xy or to x � 0 + xy, depending on the
hoi
e of the used rules.The view of
omputation as rewriting is
ommon in the theory of
ompu-tation, as illustrated by the following examples.1We assume here that the operators have the usual priorities so that the super
uousparantheses in the expression a2 + (ab)
an be omitted.

1.2. COMPUTATION AS REWRITING 5Turing ma
hinesThe Turing ma
hine (TM),
on
eived by Alan Turing in 1936 [11℄, is a simplebut powerful mathemati
al model of a
omputational devi
e. A TM has a�nite set Q of states, and a storage devi
e
onsisting of a one-dimensionalarray (a tape) of
ells, ea
h of whi
h
an
ontain a symbol out of a �nite set�, that in
ludes a distinguished blank symbol. Asso
iated with the tape is aread/write head that
an move right or left on the tape and that
an readand write a single symbol on ea
h move. The tape is in�nitely long in bothdire
tions. : : : : : :0 1 1 0
Read/write head6

Figure 1.1: A snapshot of a Turing ma
hine at workWhen the
omputation starts, the TM is in its initial state, the tape
on-tains a �nite string of non-blank symbols pla
ed in
onsequtive
ells, whileall other
ells
ontain blank symbols, and the head is s
anning the leftmostsymbol of the string. The ma
hine's a
tions are determined by its program,whi
h is given as a partial fun
tion Æ from Q�S to Q�S�fleft ; rightg. Thusif the ma
hine is in state q, and the read/write head is s
anning the symbols, then the program spe
i�es the next state, the symbol to repal
e s on thetape, and the dire
tion in whi
h to move the read/write head. If Æ(q; s) isunde�ned, then the ma
hine halts in an error state. If a �nal state is rea
hed,the
omputation terminates and the
ontents of the tape is the result of the
omputation. Noti
e that at every step of a
omputation only a �nite num-ber of
ells
ontains non-blank symbols; the
ontents of the tape may thus bedes
ribed by a �nite string.At any given moment, the TM's
on�guration is des
ribed by the
ontentson the tape and the
urrent state. Suppose that the
ontents of the tape iss1 : : : si�1si : : : sn, the read/write head is s
anning the symbol si, and the TMis in state q. Then we let the strings1 : : : si�1 q si : : : sn

6 CHAPTER 1. INTRODUCTIONrepresent the
on�guration of the ma
hine. Now if the program
ontains theinstru
tion Æ(q; si) = (q0; t; left), then the ma
hine may
hange its
on�gura-tion a

ording to the rewrite rules1 : : : si�1 q si : : : sn ! s1 : : : si�2 q0 si�1 t : : : snIf the program
ontains the instru
tion Æ(q; si) = (q0; t; right), then the
orre-sponding rewrite rule iss1 : : : si�1 q si : : : sn ! s1 : : : si�1 t q0 si+1 : : : snThe renowned Chur
h-Turing's hypothesis (also known as Chur
h's thesis)states that these fun
tions are indeed all fun
tions that are
omputable in theintuitive sense.Context-free grammarsContext-free grammars play a fundamental role in string-pro
essing appli
a-tions, notably in the de�nition of programming languages, parsing of program-ming languages and natural languages, et
. The origin of the formalism
anbe found in Chomsky [2℄.A
ontext-free grammar is a spe
i�
ation of a (
ontext-free) language (oversome alphabet �) by means of produ
tion rules of the form:A! �where A belongs to a set V of non-terminals, and � is a string in (� [V)�.We assume that V and � are disjoint.Suppose �1 and �2 are (possibly empty) strings in (� [V)�. Then �1A�2derives �1��2, using the produ
tion rule above. We write this as�1A�2) �1��2If it is possible to rea
h a string
 2 ��, starting from the spe
ial startnon-terminal S, and by using a sequen
e of derivation steps, then
 belongs tothe language generated by the grammar. As an example, we give a grammarthat generates all strings over fa; bg� with an equal number of a's and b's.Here S is the only non-terminal, and � denotes the empty string.S ! SSS ! �S ! aSbS ! bSaFor instan
e, the string abba
an be derived as follows:

1.3. ABSTRACT REDUCTION SYSTEMS 7S) SS) aSbS) abS) abbSa) abbaWe have used the �rst, third, se
ond, fourth and se
ond rules of the gram-mar in the di�erent steps.1.3 Abstra
t redu
tion systemsAn abstra
tion based on the examples of the pre
eding se
tions gives thefollowing de�nition:De�nition 1.1 An abstra
t redu
tion system (ars) is a pair (A;!), whereA is a set, and ea
h ! is a binary relation on A,
alled a rewrite relation. 2Notation: If a; b 2 A and (a; b) 2 !, then we write this as a! b and
all b aredu
t of a. The re
exive and transitive
losure of! is written as!! (a usualnotation R� for the transitive and re
exive
losure of the relation R may alsobe used). !i denotes redu
tion in i steps. The inverse relation of ! (!!) isdenoted by or !�1 (or !!�1). If a and b are identi
al (i.e. they denotethe same element in A), we write a � b. a and b are
onvertible (a = b) if a
an be rewritten into b using the ! relation forwards or ba
kwards a �nitenumber of times. Thus, we let = be the relation (!! [)�. 2Figure 1.2 shows an example rewrite relation, in whi
h a and b are
on-vertible.
a bq q q q q q q q q q: : :
��	 ��	 ��R ��R ��R ��	 ��R ��R ��	 ��	

Figure 1.2: a = bDe�nition 1.2 Given an ars (A;!), a 2 A is a normal form if there is nob su
h that a ! b. We write NF (A) to denote the set of normal forms in A

8 CHAPTER 1. INTRODUCTION(w.r.t. !). a has a normal form if there is a b 2 NF (A) su
h that a!! b (wesay that b is a normal form of a). 2Note that an element may have zero, one, or many normal forms.The operational intuition behind the relation(s) ! is that if a ! b, thena
an be redu
ed to b. As shown by the examples in the previous
hapter,our aim is often to redu
e (in a number of steps) a given element to (one of)its normal forms, using the rewrite relation. This naturally raises questionsabout existen
e and uniqueness of normal forms; questions we will address inthe next se
tion.1.4 Properties of arssThroughout this se
tion, we assume that an ars (A;!) is given.De�nition 1.3(1) ! is weakly normalizing (WN) if every a 2 A has a normal form.(2) ! is strongly normalizing (SN) (or terminating , or Noetherian) if thereis no in�nite sequen
e a0 ! a1 ! a2 ! : : :2 If ! is weakly normalizing, then we
an redu
e every element to a normalform. Pra
ti
ally however, the
omputation might not terminate if the wrongredu
tion strategy is used. In the example below, the redu
tion sequen
ea0 ! a1 ! : : : is in�nite. a0a1 b0a2 b1a3 b2...
��	 ��R��	 ��R��	 ��R��	 ��RFigure 1.3: A rewrite relation whi
h is WN but not SNIf ! is terminating, then every redu
tion sequen
e will eventually endin a normal form. Generally, there may be many normal forms. We are

1.4. PROPERTIES OF ARSS 9interested in
omputing values of fun
tions. The following notion gives asuÆ
ient
ondition for an ars under whi
h ea
h element has at most onenormal form. This is important for our purposes, sin
e we want to representfun
tion
alls as elements of ars's, and the
orresponding normal forms asthe
omputed results of these
alls. Hen
e we
annot admit ars's where thenormal forms are not unique.De�nition 1.4(1) ! is Chur
h-Rosser (CR) (or
on
uent) if for all a; b;
 2 A su
h thata!! b and a!!
, there is a d 2 A su
h that b!! d and
!! d.(2)! is weakly Chur
h-Rosser (WCR) (or weakly
on
uent) if for all a; b;
 2A su
h that a ! b and a !
, there is a d 2 A su
h that b !! d and
!! d.2 The above de�nition is probably easiest understood in diagram format (seeFig. 1.4). ab
dCR
����	 ����	 ����R����R����R��R ����	��	

ab
dWCR����	 ����R����R��R ����	��	Figure 1.4: S
hemati
 des
ription of the CR and WCR properties (dashedarrows are existentially quanti�ed)Theorem 1.5 If ! is
on
uent, then the normal form of every element (if itexists) is unique (i.e. if a!! b, a!!
, and b;
 2 NF (A), then b �
).The proof is left as an exer
ise.The distin
tion between
on
uen
e and weak
on
uen
e is subtle but im-portant. The following example shows the di�eren
e.Example 1.6 Consider the rewrite relation de�ned by the following diagram:

10 CHAPTER 1. INTRODUCTIONa b
 d� -� �?� �6Figure 1.5: A rewrite relation whi
h is WCR but not CRBy a simple
ase analysis we see that ! is weakly
on
uent. For instan
e,b
an be redu
ed to both a and
, but a!! a and
 !! a. However, ! is not
on
uent, sin
e b!! a and b!! d, and a and d have no
ommon redu
t. 2For terminating rewrite relations,
on
uen
e and weak
on
uen
e are equiv-alent. This is a
onsequen
e of the following fundamental theorem, �rst statedby Newman [9℄. We quote it without proof.Theorem 1.7 [Newman's lemma℄ If ! is weakly
on
uent and terminat-ing, then ! is
on
uent.Noti
e that a
on
uent ars A = (A;!) de�nes a partial funtion fA on A:fA(a) = (b; if b 2 NF (A) and a!! bunde�ned elseIn addition:� if ! is weakly normalizing, then f is a total fun
tion.� if! is strongly normalizing, then f
an be
omputed with any redu
tionstrategy.In the next
hapter we survey lambda
al
ulus and
ombinatory logi
 asars's: de�ning fun
tions in terms of redu
tion to normal forms.

Chapter 2Lambda
al
ulus and
ombinatory logi
This
hapter introdu
es lambda
al
ulus and
ombinatory logi
 as rewritesystems and relates them to ea
h other.2.1 Lambda termsAs any rewrite system the lambda
al
ulus de�nes a domain of expressionsand a rewrite relation on this domain. The expressions are
alled lambdaterms. Intuitively, lambda terms represent fun
tions on lambda terms. Thismay seem somewhat
onfusing, sin
e one might have expe
ted �rst a domainof elementary values on whi
h an hierar
hy of �rst- and higher-order fun
tions
ould be de�ned. However, as will be dis
ussed later, the elementary valuessu
h as natural numbers
an easily be
oded as fun
tions.The fun
tional intuition is re
e
ted by the syntax of lambda terms. Abasi
 lambda term is a variable. The role of variables in lambda
al
ulus
anbe
ompared to the role of the variables used in pro
edures of programminglanguages. Certain kinds of expressions in programming languges, e.g. arith-meti
 expressions like x+y
an be transformed into pro
edures by identifyingsome of the variables as formal parameters.
11

12 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICFor example, in ML the expression 2*x is transformed into a unary fun
tiontwi
e with a formal parameter x in the following way:fun twi
e x = 2*x;A similar kind of synta
ti

onstru
t is de�ned for lambda terms and it is
alled fun
tional abstra
tion. A di�eren
e is that the expression above givesthe name twi
e to the
reated fun
tion, while, as we will see below, thefun
tional abstra
tion gives no name to the
reated fun
tion.The fun
tion twi
e
an then be
alled with an argument, represented typ-i
ally by an arithmeti
 expression, e.g twi
e(2). A similar kind of synta
ti

onstru
t is de�ned for lambda terms and it is
alled appli
ation.The
all twi
e(2)in ML will produ
e the value 4 as a result. In lambda
al
ulus an appli
ation expression
an be redu
ed and the redu
tion may pro-du
e a normal form, whi
h will be
onsidered the
omputed result. En
odingof twi
e in lambda
al
ulus will be dis
ussed later.Formally, the lambda terms are de�ned as follows:(i) a variable x; y; z; : : : is a lambda term;(ii) if M and N are lambda terms, then (MN) is a lambda term, (
alledfun
tional appli
ation);(iii) if M is a lambda term, then (�x:M) is a lambda term (
alled fun
tionalabstra
tion).A term of the form (ii) represents the appli
ation of a fun
tionM to N . A termof the form (iii) makes the term M into a unary fun
tion; (�x:M) representsthe fun
tion of one variable x.A
ommonly used notational
onvention allows for suppression of someparantheses. Appli
ation is understood to asso
iate to the left, so we
an writexyz instead of ((xy)z). The notation �x:PQ is used instead of (�x:(PQ)) and�x1x2:::xn:M instead of (�x1:(�x2:(:::(�xn:M):::)).2.2 The rewrite rulesIn a lambda term of the form �x:M , every o

urren
e of x in M is said to bebound . If an o

urren
e of x is not bound in M , then it is said to be free inM . The rewrite rules of lambda
al
ulus make an essential distin
tion betweenfree and bound variable o

urren
es. Intuitively the bound o

urren
es playa role similar to that of the formal parameters of pro
edures in programminglanguages, while the free o

urren
es
an be
ompared to global variables in

2.2. THE REWRITE RULES 13the pro
edure. The essential me
hanism used in rewriting is the operation ofsimultaneous repla
ement of all free o

urren
es of a variable x in a term Mby a term N . The operation should be de�ned with
are sin
e it should nota�e
t the status of the o

urren
es of the remaining variables. In parti
ular,free o

urren
es should not be
hanged to bound o

urren
es. Su
h a dangerexists ifM and N share some variables. Problem
an be avoided by renamingsome of the bound variables in the
ase of
on
i
ts.The
ommonly adopted solution
an be presented as the following re
ursivede�nition of the repla
ement operation. We de�ne [x 7! N ℄M to be the lambdaterm obtained from M as follows:(i) [x 7! N ℄x is N ,(ii) [x 7! N ℄y is y for any variable y di�erent from x,(iii) [x 7! N ℄(PQ) is ([x 7! N ℄P [x 7! N ℄Q),(iv) [x 7! N ℄�x:P is �x:P ,(v) [x 7! N ℄�y:P is �y:[x 7! N ℄P if y is di�erent from x and has no freeo

urren
e in N , or if x has no free o

urren
e in P ,(vi) [x 7! N ℄�y:P is �z[x 7! N ℄([y 7! z℄P) if y is di�erent from x and has afree o

urren
e in N , and x has a free o

urren
e in P . z is a variablethat does not o

ur free in N nor in P .The
ases (i) and (ii) above are basi
 ones, when no
on
i
t is possible.Repla
ement in the term whi
h is a fun
tional appli
ation is de�ned by
ase(iii). In that
ase the repla
ement of x is to be made independently in both
omponent terms. The diÆ
ulties may only
on
ern fun
tional abstra
tion,whi
h is handled by the
ases (iv), (v) and (vi). Intuitively, the repla
ement
on
erns only the free o

urren
es of x in M . If M is of the form �x:P (
ase(iv)), there is no free o

urren
e of x in M hen
e the operation leaves Mun
hanged. Case (v) identi�es the
on
i
t-free situations. Repla
ing x by Nin �y:P would have
hanged the status of free o

urren
es of y in N . This
annot happen if y does not appear free in N . On the other hand, if x doesnot appear free in P the repla
ement will not
hange P , hen
e will not
hangethe status of any variable o

urren
e.The problem may only arise if y o

urs free in N and x o

urs free in P .For example take the term y as N and the term xy as P . In that
ase M is ofthe form �y:xy. A dire
t repla
ement of x by N in M would have resulted inthe term �y:yy, thus
hanging the status of y in N . To avoid this,
ase (vi)requires that the bound variable in M is renamed, e.g. to z. The e�e
t of theoperation is thus the term �z:yz, and the status of y in N remains un
hangedafter the repla
ement.

14 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICThe rewrite relation of lambda
al
ulus is de�ned by the �- and �-rules:(�) If y is not free in M , then �x:M !� �y:[x 7! y℄M .(�) (�x:M)N !� [x 7! N ℄MFor example:(�x:xx)(�y:y)z ! (�y:y)(�y:y)z ! (�y:y)z ! zThe intuition of the �-rule is that the name of a bound variable is irrelevant.We have seen already that renaming is used in the de�nition of the repla
ementoperation. The restri
tion in the �-rule requires that \fresh" variables are usedfor renaming to avoid
onfusion with the free variables already present in theterm, whi
h in that
ase would be
ome bound by this transformation. Forexample, the variable x in the term �x:xy
annot be renamed to y. It shouldbe noti
ed that the rewrite relation !!� is symmetri
. This means that oneneed not to distinguish between \forward" and \ba
kward" appli
ation of the�-rule. Any \ba
kward" rewriting of a given term
an also be a
hieved by a\forward" rewriting. For this reason the � rule is
alled �-
onversion rule ina

ordan
e with the terminology of Se
tion 1.3. The lambda terms X and Ysu
h that X !!� Y are
alled �-
ongruent terms.The �-rule
aptures the intuition of
omputation by rewriting. It
an beapplied to any term whi
h has the form of fun
tional appli
ation, where the�rst
omponent is a fun
tional abstra
tion, representing the fun
tion appliedand the other is the a
tual argument. Su
h a term, whi
h may appear withina larger lambda term, is
alled a redex. Intuitively, redexes resemble pro
edu-ral
alls in programming languages. The �-redu
tion
an be
ompared withinvo
ation of a pro
edure with one argument. The
omputation step
on-sists in removing the pro
edure header and repla
ing every o

urren
e of the(only) formal parameter by the a
tual parameter of the
all. As a result a newlambda term is obtained whi
h may also in
lude redexes.This pro
ess may or may not terminate. A normal form obtained upontermination
an be seen as the value of the fun
tion for the a
tual argument.Generally, a lambda term
an have more than one redex, and
an thus besubje
t to more than one redu
tion strategy. For the above intuition to bevalid, a terminating
omputation in any strategy should give the same result.Otherwise, the term having di�erent normal forms
ould not be
onsidered asa fun
tion. Note that the formal de�nition of �-redu
tion uses the repla
ementoperation, whi
h in
ertain
ases may
ause renaming. Therefore the resultof the �-redu
tion is only unique up to renaming of the bound variables. Theuniqueness of normal form follows from the famous Chur
h-Rosser theorem[4℄that states
on
uen
e of lambda
al
ulus up to �-
onversion. We quote the

2.3. REWRITE STRATEGIES 15result without proof whi
h
an be found e.g. in [6℄. There are several proofsof this result in the literature but all of them are quite te
hni
al and long.Theorem 2.1 If P !!� M and P !!� N then there exist �-
ongruent termsT1 and T2 su
h that M !!� T1 and N !!� T2.Consequently, every lambda term has a unique (up to �-
onversion) normalform, or no normal form at all. The latter
ase is due to the fa
t that lambda
al
ulus is not a terminating ars. For example the term (�x:xx)(�x:xx) is aredex and it redu
es to itself.The Chur
h-Rosser theorem justi�es the intuition of viewing lambda termsas partial fun
tions. A lambda term X
an be seen as a fun
tion on lambdaterms. If its appli
ation (XY) to another lambda term Y redu
es to a normalform N then N is unique and
an be seen as a value of the fun
tion X on theargument Y . The fun
tion is unde�ned on the arguments for whi
h no normalform exists.2.3 Rewrite strategiesThe two most important strategies are normal-order redu
tion, where theleftmost redex is
hosen, and appli
ative-order redu
tion, where the leftmostinnermost redex is
hosen. Consider a lambda term whi
h is a redex. Asdis
ussed above, su
h a term resembles a
all of a pro
edure in a programminglanguage. The normal-order redu
tion step will thus repla
e every o

urren
eof the formal parameter in the body by the (un
hanged) a
tual parameter.But the a
tual parameter may be/in
lude another redex. Thus, under thisstrategy the
omputation of the value of the a
tual parameter is postponed.This resembles the me
hanism of pro
edure invo
ation known as \
all-by-name" or \lazy evaluation", sin
e the
omputation of the argument is deferredas long as possible. The situation is di�erent in the appli
ative-order strategy.Here the normal forms of the nested redexes are
omputed starting from theinnermost level. This resembles the \
all-by-value" me
hanism of pro
edureinvo
ation where the values of the a
tual parameters are
omputed �rst.Consider for example the term (�x:xx)((�y:y)(�y:y)). Its normal-orderredu
tion goes as follows:(�x:xx)((�y:y)(�y:y)) !((�y:y)(�y:y))((�y:y)(�y:y)) !(�y:y)((�y:y)(�y:y)) !((�y:y)(�y:y))!�y:y

16 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICOn the other hand, the appli
ative-order redu
tion requires fewer steps toobtain the same normal form :(�x:xx)((�y:y)(�y:y)) !(�x:xx)(�y:y)!((�y:y)(�y:y))!�y:yTermination may depend on the redu
tion strategy. Consider for examplethe term Y of the form (�y:yy)(�y:yy). It has only one �-redex and theredu
tion step rewrites the term into itself. Hen
e Y has no normal form.Consider also the term Z of the form �x:�z:z. Appli
ation of Z to any termT
an be �-redu
ed in one step to the term �z:z regardless of the form ofT sin
e x does not appear in �z:z. Consider now the term ZY . it has tworedexes: ZY and Y . The normal-order redu
tion will in one step produ
e thenormal form �z:z. On the other hand, the appli
ative-order redu
tion willkeep redu
ing Y to Y in ZY , hen
e it will not terminate.An important result is that if the normal form exists, it is rea
hable by a�nite normal-order redu
tion sequen
e.2.4 The power of lambda
al
ulusThis se
tion shows that both natural numbers and fun
tions on natural num-bers
an be represented as lambda terms.Chur
h proposed to represent a natural number n by the term �xy:xny,where xny denotes n appli
ations of x to y, i.e. the term x(x:::(xy) in
ludingn o
urren
es of x. Su
h terms are
alled Chur
h numerals. In the sequel wewill abbreviate �xy:y as 0, �xy:xy as 1, et
. Noti
e that a Chur
h numeral isin normal form. It
an also be seen as a binary fun
tion on lambda terms: forgiven terms M and N the term nMN redu
es to MnN .An m-ary fun
tion � on natural numbers is said to be lambda-de�ned bya lambda term F i� for arbitrary natural numbers n1; :::; nmFn1 ::: nm !! n i� �(n1; :::; nm) = n.A fun
tion is lambda-de�nable if it is lambda-de�ned by some lambda term.A
lassi
al result is that the
lass of lambda-de�nable fun
tions is exa
tlythe
lass of the fun
tions de�ned by Turing ma
hines. Thus, lambda
al
ulus
an be used as a foundation of
omputation theory.On the other hand, some
on
epts of lambda
al
ulus turn out to be usefulin the
ontext of programming languages. As already pointed out, the �-redu
tion me
hanism resembles parameter passing in programming languages.Another interesting observation is that all fun
tions represented by lambda

2.4. THE POWER OF LAMBDA CALCULUS 17terms have �xed points. More pre
isely, for every term M there exists a termP su
h that MP =� P . Moreover, there exists a lambda term Y su
h thatYM is a �xpoint of M for every M . In parti
ular
onsider Y de�ned as�x:((�y:x(yy))(�y:x(yy))). Then for any MYM = �x:(�y:x(yy))(�y:x(yy))M !(�y:M(yy))(�y:M(yy))!M((�y:M(yy))(�y:M(yy))) =M(YM)Hen
e M(YM) =� YM . Thus YM is a �xpoint of M . This has somerelevan
e for the theory of programming languages, where semanti
s is oftende�ned in terms of �xpoints.In the pure version of lambda
al
ulus dis
ussed here, the fun
tions arede�ned from very few primitive
on
epts. For this reason, even relativelysimple fun
tions
an only be
oded by rather
omplex lambda terms, and
omputation of their values requires a large number of redu
tion steps. Inthis sense, the expressive power of pure lambda
al
ulus is rather low. Weillustrate this statement by an example.The �rst step towards de�nition of the arithmeti
 operations is to de�nethe su

essor fun
tion s by a lambda term s su
h that sn!! n+1. A solutionproposed in the literature is to de�ne s as �uxy:x(uxy). We get:sn = �uxy:x(uxy)(�zv:znv)!�xy:x((�zv:znv)xy)!�xy:x((�v:xnv)y)!�xy:x(xny) = n+ 1Thus,
omputation of the su

essor is not too
ompli
ated. Now the addi-tion
an be expressed in terms of the su

essor. Knowing that nxy !! xny, andthat x+ y = sxsy(0) we
an de�ne addition by the lambda term �xy:xs(ys0).In the extended form it is:�xy:x(�uxy:x(uxy)(y(�uxy:x(uxy))(�xy:y)).This term is indeed not that easy to grasp and following the redu
tion stepsneeded to
ompute 2+2 would de�nitely be beyond one's patien
e.Another way of de�ning addition is by the following re
ursive de�nitionplus(0; y) = yplus(s(x); y) = s(plus(x; y))This is a spe
ial
ase of the use of the primitive re
ursion s
heme

18 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGIC�(0; y) = (y)�(s(x); y) = �(x; �(x; y))de�ning a fun
tion � on natural numbers in terms of given fun
tions and �.It turns out that su
h a s
heme
an be represented by a lambda term, whi
his however quite
omplex. We refer for details e.g. to [6℄.While the pure lambda
al
ulus is too primitive for de�ning fun
tions inpra
ti
e, the �-redu
tion is very
lose to pro
edure invo
ation me
hanism inhigh-level languages. We may enri
h the pure
al
ulus by a number of prede-�ned data types. The theory tells us that in prin
iple it is possible to
ompilethem into the pure
al
ulus, but we
an implement them in some alternativeway. Taking this approa
h we
an de�ne a realisti
 programming languagestarting from more
onvenient higher-level primitives and use lambda
al
ulusas a basis for de�ning its semanti
s. Understanding of this relation betweenpro
edures and lambda
al
ulus has had a big impa
t on the design and im-plementation of programming languages, starting from ALGOL 60 design inlate �fties (see e.g. [8℄).2.5 Combinatory logi
This se
tion presents yet another rewriting system,
alled the
ombinatorylogi
. A motivation behind it is to represent fun
tions without the te
hni
aldiÆ
ulties related to the use of bound variables in lambda
al
ulus. The
ombinatory logi
 has only free variables, so that it does not su�er from thesediÆ
ulties. Still it has the
omputational power equivalent to that of lambda
al
ulus. However, it does not seem to have as
lear intuition as the lambda
al
ulus. The
ombinatory logi
 plays an important role in the implementationof fun
tional languages. This topi
 is, however, outside of the s
ope of thesenotes.Combinatory termsWe de�ne �rst the domain of the rewriting system. Its elements will be
alled
ombinatory logi
 terms, or brie
y
ombinatory terms.They are
onstru
ted by appli
ation from the basi
 elements whi
h arethe variables and the two basi

ombinators K and S. Thus, formally the
ombinatory terms are de�ned as follows:(i) A variable is a
ombinatory term,(ii) The basi

ombinators K and S are
ombinatory terms,(iii) If X and Y are
ombinatory terms, then (XY) is a
ombinatory term.

2.5. COMBINATORY LOGIC 19For example, ((SK)K) and (((SK)K)x) are
ombinatory terms. A
om-monly used notation is to omit parantheses following the
onvention of asso
ia-tion to the left. For example, the term ((SS)(K((SK)K))) will be representedas SS(K(SKK))A
ombinatory term not in
luding variables is
alled a
ombinator. The in-tuition of
ombinators is to represent operators on fun
tions, e.g.
ompositionof fun
tions, identity operator, et
. Formally the transformation
orrespond-ing to su
h an operator is a
hieved by redu
tion of
ombinator terms usingthe rewrite rules of the system. A

ording to the de�nition, any
ombinatoris
onstru
ted from the basi

ombinators K and S. The examples in thenext se
tion show that even operators with simple intuition may require quite
ompli
ated
ombinators for their representation.The rewrite relationWe now de�ne the rewrite relation on
ombinatory terms.Any
ombinatory term of the form KXY or SXY Z, where X, Y and Zare arbitrary terms, is
alled a redex. The
ontra
tum of a redex is de�ned as:� X for a redex of the form KXY , and� XZ(Y Z) for a redex of the form SXY Z.The rewrite relation! on
ombinatory terms is de�ned as follows: P ! Qi� Q
an be obtained by repla
ing one o

urren
e of a redex in P by its
ontra
tum. For example, SKKy! Ky(Ky)! y.This example shows that the
ombinator SKK behaves as identity oper-ator on
ombinatory terms. Its appli
ation to an arbitrary term Y redu
es toY . Thus SKK is an important
ombinator, with a very simple intuition. Itis often denoted by I. Still its de�nition is relatively
ompli
ated.The intuition of the basi

ombinators K and S is not as simple as thatof I. K forms
onstant fun
tions: appli
ation of K to a term P is a fun
tionreturning P for every argument, sin
e (KP)x ! P . S is a fun
tion
om-position operator. Given the arguments X;Y;Z it applies the fun
tion XZto the fun
tion Y Z. This kind of
omposition does not seem very natural.On the other hand, the
ombinator
orresponding to the usual
omposition offun
tions is more
ompli
ated. It has the form S(KS)K and it is denoted B.Indeed, for every X;Y;Z the appli
ation BXY Z redu
es to X(Y Z):BXY Z = S(KS)KXY Z !(KS)X(KX)Y Z !S(KX)Y Z !(KX)Z(Y Z)!X(Y Z)

20 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICThus the result is the appli
ation of X to the (result of) appli
ation of Yto Z. This
orresponds to the usual intuition of
omposition of fun
tions.An important result about the rewrite system of
ombinatory logi
 is theChur
h-Rosser theorem, analogous to that for lambda
al
ulus, stating
on-
uen
e of this rewrite system.Another important result analogous to that for lambda
al
ulus states thatif a
ombinatory term has a normal form, then the redu
tion under the normalstrategy terminates. Due to the
on
uen
e of the system, su
h a redu
tionresults in this normal form, whi
h is unique.Relating
ombinatory logi
 to lambda
al
ulusAs mentioned above, both lambda
al
ulus and
ombinatory logi
 are intendedto represent and
ompute fun
tions. The question is then how the formalismsare related to ea
h other. A part of the answer
an be obtained by studying the\
ompilation " of
ombinatory terms into lambda terms,
alled in the literaturethe transformation �. As dis
ussed below, this transformation preserves therewrite relation.The transformation � asso
iates to ea
h
ombinatory term X a lambdaterm X� de�ned as follows, by indu
tion on the stru
ture of X:� y� = y, for every variable y,� K� = �xy:x, S� = �xyz:xz(yz),� (Y Z)� = Y�Z� for arbitrary
ombinatory terms Y and Z.Thus, for example,(SKK)� = (SK)�K� = S�K�K� =�xyz:xz(yz)(�xy:x)(�xy:x) ! �yz:(�xy:x)z(yz)�xy:x!�yz:(�y:z)(yz)�xy:x! �yz:z�xy:x! �z:zAs illustrated by the above example, the transformation preserves the \na-ture" of the fun
tion. Both SKK and �z:z represent the identity fun
tion.For arbitrary
ombinatory term X the appli
ation SKKX redu
es to X in
ombinatory logi
. On the other hand, for arbitrary lambda term t the appli-
ation (�z:z)t �-redu
es to t. Noti
e that the transformation preserves the freevariables of the term transformed. Thus, the
ombinators are transformed tolambda terms without free variables. Su
h lambda terms are sometimes also
alled
ombinators (of lambda
al
ulus).Generally, the transformation � preserves the rewrite relation. Formally,if Y
an be obtained from a
ombinatory term X by a number of redu
tion

2.5. COMBINATORY LOGIC 21steps in the
ombinatory logi
 then the lambda term Y�
an be obtained by anumber of �-redu
tion steps from X�.A related question, how to
ompile lambda terms into
ombinatory terms,has also been dis
ussed in the literature. One of the proposed solutions, atransformation denoted H will be des
ribed now.The �rst step
on
erns simulation of fun
tional abstra
tion in
ombinatoryterms. For every variable x and for every
ombinatory termM we
onstru
t a
ombinatory term denoted �
x:M . The intention is that
ombinatory rewrit-ing of (�
x:MN) would repla
e the o

urren
es of x in M by N . In this way�-redu
tion would be simulated by rewriting of
ombinatory terms.One
an
he
k that the goal
an be a
hieved with the following de�nition:� �
x:x = SKK� �
x:P = KP if x does not appear in P ,� �
x:PQ = S(�
x:P)(�
x:Q) if the previous
ase do not apply.For example,�
x:Kx = S(�
x:K)(�
x:x) = S(KK)(SKK):Now, for any term P ,S(KK)(SKK)P ! (KKP)(SKKP)! KPThe same term
an be otained by repla
ement of x by P in Kx.The transformation H is now de�ned as follows:� xH = x for every variable x,� (PQ)H = PHQH for any lambda terms P and Q,� (�x:P)H = �
x:(P)HFor example:(�xy:y)H = �
x:(�y:y)H = �
x:(�
y:y) = �
x:SKK = K(SKK)The transformation � dis
ussed above is a kind of inverse of H, sin
e forevery lambda termM the termMH� is
onvertible toM (in lambda
al
ulus).For example:(�x:x)H� = (SKK)� = �xyz:xz(yz)(�xy:x)(�xy:x) !!� �z:z =� �x:xOne
an
ompile a lambda term M to the
ombinatory term MH , redu
eit, and transform the result R of the redu
tion to the lambda term R�. As

22 CHAPTER 2. LAMBDA CALCULUS AND COMBINATORY LOGICmentioned above, the transformation � preserves the rewrite relation. Hen
eMH;� !!� R�. This may motivate the use of
ombinatory logi
 as the imple-mentation language for lambda
al
ulus.It should be stressed that the results outlined above do not give a fullpi
ture of the relation between lambda
al
ulus and
ombinatory logi
. Amore
omprehensive dis
ussion of the issue
an be found in [6℄.

Bibliography[1℄ H.P. Barendregt. The Lambda
al
ulus: its syntax and semanti
s, 2ndedition. North-Holland, 1984.[2℄ N. Chomsky. Three models for the des
ription of language. In IRE trans-a
tions on information theory , 2:3, pp. 113{124, 1956.[3℄ A. Chur
h. The
al
uli of Lambda-
onversion. Annals of mathemati
alstudies 6, Prin
eton University Press, 1941.[4℄ A. Chur
h and J.B. Rosser. Some properties of
onversion. Transa
tionsof the Ameri
an Mathemati
al So
iety 39, pp. 472{482, 1936.[5℄ H. Curry. Grundlagen der kombinatoris
hen Logik. Ameri
an J. Math.52, pp.509{536,789{834, 1930.[6℄ R. Hindley and J. Seldin. Introdu
tion to
ombinators and �-
al
ulus.Cambridge University Press, 1986.[7℄ J. Hop
roft and J. Ullman. Introdu
tion to automata theory, languagesand
omputation, 2nd edition. Addison-Wesley, 1979.[8℄ Peter Landin. A
orresponden
e between ALGOL 60 and Chur
h'slambda notation. Comm. of the ACM, 8 89{101, 1965.[9℄ M. Newman. On theories with a
ombinatorial de�nition of \equivalen
e".Ann. Math. 43, pp. 223{243, 1942.[10℄ M. S
h�on�nkel. �Uber die Bausteine der matematis
hen Logik.Math. Ann.92, pp. 305{316, 1924.[11℄ A. Turing. On
omputable numbers with an appli
ation to the Ents
hei-dungsproblem. Pro
eedings of the London mathemati
al so
iety , 2:42, pp.230{265. Corre
ted in ibid. 43, pp. 544{546, 1936.
23

