
ON WORST-CASE ROBIN HOOD HASHING∗

LUC DEVROYE† , PAT MORIN† , AND ALFREDO VIOLA‡

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 4, pp. 923–936

Abstract. We consider open addressing hashing and implement it by using the Robin Hood
strategy; that is, in case of collision, the element that has traveled the farthest can stay in the slot. We
hash ∼ αn elements into a table of size n where each probe is independent and uniformly distributed
over the table, and α < 1 is a constant. Let Mn be the maximum search time for any of the elements
in the table. We show that with probability tending to one, Mn ∈ [log2 logn + σ, log2 logn + τ] for
some constants σ, τ depending upon α only. This is an exponential improvement over the maximum
search time in case of the standard FCFS (first come first served) collision strategy and virtually
matches the performance of multiple-choice hash methods.

Key words. open addressing, hashing, Robin Hood, worst-case search time, collision resolution,
probabilistic analysis of algorithms

AMS subject classifications. 60D05, 68U05

DOI. 10.1137/S0097539702403372

1. Introduction. In hashing with chaining with a table of size n holding m =
�αn� elements, where α > 0 is a constant, the worst-case search time is equal
to the length of the longest chain. If the hash values are independent and uni-
formly distributed over the table, then the maximum chain length is asymptotic to
log n/ log log n in probability (Gonnet (1981); Devroye (1985)) for any fixed value of
α.

In this paper we consider open addressing hashing with random probing. A table
of size n is given, into which we place m = �αn� elements, where α ∈ (0, 1) is a fixed
constant. Each element has associated with it an infinite probe sequence consisting of
independently and identically distributed (i.i.d.) integers uniformly distributed over
{1, . . . , n}, representing the consecutive places of probes for that element. It is as-
sumed that when searching for an element, its infinite probe sequence is available to
the searcher. The probe sequence for the ith element is denoted by Xi,0, Xi,1, Xi,2,
Elements are inserted sequentially into the table. If the ith element is placed in po-
sition Xi,j , then we say that the ith element has age j, as it requires j hops to reach
the element in case of a search. When the ith element of age j and the i′th element
of age j′ compete for the same slot (Xi,j = Xi′,j′), a collision resolution strategy is
needed. Several collision resolution strategies have dominated the literature.

The standard open addressing method resolves the collision by giving the place
to the first key to arrive there according to a first come first served (FCFS) policy, so
the test is based on min(i, i′). Amble and Knuth (1974) suggested the idea that any of
the colliding elements could get the position in the hope of speeding up unsuccessful
searches. Note that for random probing, for any strategy that does not look ahead, the
sum of the ages of all elements in a hash table has a distribution that is independent

∗Received by the editors February 28, 2002; accepted for publication (in revised form) September
29, 2003; published electronically May 25, 2004.

http://www.siam.org/journals/sicomp/33-4/40337.html
†School of Computer Science, McGill University, Montreal, Canada H3A 2K6 (luc@cs.mcgill.ca,

morin@scs.carleton.ca). Research for these authors was supported by NSERC grant A3456 and
FCAR grant 90-ER-0291.

‡Pedeciba Informatica, Districto 6, Casilla de Correo 16120, Universidad de la República, Mon-
tevideo, Uruguay (viola@fing.edu.uy). Research for this author was supported by Proyectos de
investigación CSIC fondos 2000-2002 and 2002-2004 at Universidad de la República.

923

924 LUC DEVROYE, PAT MORIN, AND ALFREDO VIOLA

of the collision resolution strategy. There are differences, though, when one considers
the maximal age among all elements in a table. Two of the strategies that do not look
ahead before deciding which element should get the position are the LCFS (last come
first served) heuristic (Poblete and Munro (1989)), in which the position is given to
the last element that arrives (thus, using max(i, i′)), and the Robin Hood strategy
(Celis (1986); Celis, Larson, and Munro (1985); Viola and Poblete (1998)), in which
the position is given to the element that is farthest away from its home location (the
element corresponding to max(j, j′)). The Robin Hood strategy tends to equalize
the ages of all inserted elements (hence the name Robin Hood), thus reducing the
maximum successful search time. Both FCFS and Robin Hood decrease the variance
of the search time. As pointed out earlier, for random probing, the expected search
time for a single random element is identical for all collision resolution strategies that
do not look ahead. An interesting property of Robin Hood is that every permutation
of the insertion sequence produces the same final hash table, provided that a consistent
tiebreaker is used (for example, min(i, i′)).

In open addressing hashing, most of the proposed schemes to improve the search
cost of a random element in a hash table (like Brent’s method, binary tree, optimal
and min-max hashing) have very high cost for table creation. Other methods like
multiple-choice hashing are more inefficient in the use of space. As presented in Celis
(1986), Robin Hood is an open addressing hashing scheme that is as simple to program
as the standard algorithm, takes only Θ(n log n) on the average to load a full table,
requires no additional memory for insertions, and has very small variance. This last
fact is a key observation in Celis (1986), to speed up the searching cost of a random
element. The main idea is not to probe the first position in the probe sequence but
rather the most probable place and then move away from it in both directions.

For uniform probing (that is, a probe sequence without repetition) the expected
value of the longest probe sequence for the standard FCFS algorithm for α-full tables
(α < 1) is log1/α n−log1/α(log1/α n)+O(1) and for full tables is 0.631587 . . .×n+O(1)
(Gonnet (1981)).

Poblete and Munro (1989) prove that for random probing (that is, a probe se-
quence with repetition) the expected value of the longest probe sequence for the LCFS
heuristic is bounded by

1 + Γ
−1(αn)

(
1 +

log log(1/(1 − α))

log Γ−1(αn)
+ O

(
1

log2
Γ−1(αn)

))
,

where Γ is the Gamma function, and

Γ
−1(αn) =

log n

log log n

(
1 +

log log log n

log log n
+ O

(
1

log log n

))
.

Although this is not a tight bound, this was the first open addressing method for
which a sublogarithmic bound in n was proven.

Celis (1986) proves that the expected value of the longest probe sequence for
random probing and a full Robin Hood hash table (α = 1) is Θ(logn). Moreover,
when α < 1 he proved that for random probing, the expected value of the longest probe
sequence for the Robin Hood heuristic is bounded by 3(Hn−Hn−m)/α+�log(n−2)�,
where Hn =

∑
1≤i≤n 1/i. This bound is improved in this paper to log2 log n. For

further discussions and results, see Knuth (1998), Vitter and Flajolet (1990), Gonnet
and Baeza-Yates (1991), or Flajolet, Poblete, and Viola (1998). It is perhaps worth

ON WORST-CASE ROBIN HOOD HASHING 925

Table 1.1

Expected length of longest successful probe sequence.

n α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1021 3.629 ± .065 4.000 ± .013 4.329 ± .064 5.105 ± .041 10.443 ± .187
4093 3.967 ± .024 4.062 ± .033 4.800 ± .054 5.329 ± .064 12.133 ± .208

16273 4.014 ± .016 4.262 ± .060 5.000 ± .000 5.771 ± .057 13.819 ± .172
65537 4.029 ± .023 4.614 ± .066 5.000 ± .000 6.000 ± .000 15.181 ± .178

262139 4.098 ± .040 4.967 ± .024 5.022 ± .020 6.000 ± .000 16.815 ± .179

reproducing Table 5.9 from Celis’s dissertation, in which empirical estimates were
computed for the longest successful probe length with the Robin Hood strategy, which
suggests a Θ(log log n) complexity for the problem when α < 1 (see Table 1.1).

It is perhaps worth mentioning that there are several other ways of obtaining
dynamic hash tables with O(log log n) expected maximum successful search times.
Consider hashing with chaining, and let the elements have a choice of two randomly
picked positions. An element is placed into the slot with the least number of elements
(at the time of insertion). This simple double choice shows that the maximum slot
occupancy is in probability asymptotic to log2 log2 n (Azar et al. (1999); Broder and
Karlin (1990); Czumaj and Stemann (1997); Mitzenmacher (1997)).

There has been interest in obtaining O(1) expected worst-case performance, or
even O(1) deterministic worst-case performance, for search in hash tables. For static
hash tables, Fredman, Komlós, and Szemerédi (1984) proposed a solution. Czumaj
and Stemann (1997) showed that if each element has two randomly chosen hash
positions, then with high probability, a static (off-line) chaining hash table can be
constructed that has worst chain length 2, provided that the table size is at least αn
for some threshold constant α. For dynamic hash tables, the early research was in
the direction of dynamic perfect hash functions (Dietzfelbinger and Meyer auf der
Heide (1990); Dietzfelbinger et al. (1992); Dietzfelbinger et al. (1994); Brodnik and
Munro (1999)). Cuckoo hashing (Pagh and Rodler (2001)) is also an attempt in this
direction. It stands out though through its simplicity and the promising experimental
results reported by Pagh and Rodler: each of m data points has two hash functions,
one to be used in each of two tables of size n ≥ (1+ ε)m. The element must be placed
in one of the tables at one of the two locations. Upon insertion of a new element,
old elements get kicked out and move around, kicking out other elements if necessary,
until either a loop is detected or the insertion process halts. In case of a loop, the
entire table is rehashed. The expected time for an insertion is still O(1), and the
worst-case successful search time is bounded by 2. However, one needs a powerful
collection of hash functions, as each rehash operation requires an entirely new and
independent set of hash values.

Let us denote by Mn the maximal successful search time, that is, the maximal
age among any of the m elements in the hash table, and by Tn the maximum insertion
cost of an element. In an FCFS strategy, we note that Mn = Tn − 1, but this is no
longer true for other strategies. In fact, in this paper we show the following.

Theorem 1.1. In open addressing with Robin Hood collision resolution, there
exists a constant C depending upon α only such that

lim
n→∞

P {Mn ≥ log2 log n + C} = 0 .

We will see that C → ∞ when α → 1, so this result is meaningful only when

926 LUC DEVROYE, PAT MORIN, AND ALFREDO VIOLA

α < 1. The result above implies an exponential improvement over the FCFS strategy.
Furthermore, this bound is optimal modulo a finite constant, as follows.

Theorem 1.2. In open addressing with Robin Hood collision resolution (and any
method of breaking ties),

P{Mn ≤ log2 log n− log2(6 log(8/α))} = O(1/
√
n) .

The implications of this should not be underestimated, as open addressing tables
are the oldest and simplest hashing structures. The multiple-choice hashing meth-
ods in their original form are intrinsically chaining methods, and thus slightly more
inefficient spacewise.

The log2 log n behavior follows, roughly speaking, from the following observation.
If we place all m elements in their first choice bins, then all but one element from each
bin must move to another bin. The number of these excess elements is about m2/n
times a constant. Just looking at these displaced elements, we repeat the argument k
times, obtaining increasingly smallest sets to be displaced. After k steps, the number

of elements left is of the order of n(m/n)2
k

, or nα2k

. This is of constant order when
k is about log2 log n.

1.1. Balls in urns. Throw m balls uniformly at random into n urns. Let urn i
receive Ni balls, and define

A =

n∑
i=1

(Ni − 1)+

as the number of balls left after removing one ball from each occupied urn. We say
that A has the (m,n) urn distribution.

The (m,n) urn distribution. Let A have the (m,n) urn distribution. Then

E{A} =
m∑
j=1

(
1 − (1 − 1/n)j−1

)
.

Note that (1− 1/n)m ≥ 1−m/n and (1− 1/n)m ≤ 1−m/n+m(m− 1)/2n2, so
that

m2

2n
≥ m(m− 1)

2n

=

m−1∑
j=1

j

n

≥ E{A}

≥
m−1∑
j=1

j

n
−

m−1∑
j=1

j(j − 1)

2n2
(1)

=
m(m− 1)

2n
− m(m− 1)(m− 2)

6n2

≥ m(m− 1)

3n

≥ m2

4n
(the last step is true only if m ≥ 4) .

ON WORST-CASE ROBIN HOOD HASHING 927

We also need some concentration inequalities for A. To present these inequalities, let
(X1, . . . , Xn) be a vector of independent random variables (on an arbitrary measurable
space S), let f : S → R be a measurable function, and set

Z = f(X1, . . . , Xm) .

Let X ′
1, . . . , X

′
m be independent copies of X1, . . . , Xm, and write

Z(i) = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xm) .

The Efron–Stein inequality (Efron and Stein (1981); Steele (1986)) states that

V{Z} ≤ 1

2
E

{
m∑
i=1

(Z − Z(i))2

}
.

If Z ≡ A, and X1, . . . , Xm are the urns chosen by elements 1 through m, and X ′
i is

independent of the Xj ’s and distributed as Xi, then |Z(i) − Z| ≤ 1. Thus, V{Z} ≤
m/2. With the inequalities for E{A} taken into account, we have, by Chebyshev’s
inequality, for all t > 0,

P {|A− E{A}| ≥ t} ≤ V{A}
t2

≤ m

2t2
.

1.2. The head-and-belly view. The construction of the hash table may be
looked at in a global manner for Robin Hood strategies, since every permutation of
the input sequence produces the same hash table. We start by placing all elements
at their first choices Xi,0, 1 ≤ i ≤ m. Some bins in the table may have many
elements, but that is acceptable. We call this the first stage. At the kth stage in our
construction, picture a hash table (“the head”) containing elements of age k, possibly
many per cell, and a second hash table (“the belly”) containing at most one element
per cell, and that element is of age less than k. Furthermore—and this is crucial—if
cell i in the head is occupied, then cell i is empty in the belly. This head-and-belly
view allows us to proceed, by letting k grow until finally the head is empty, and all
elements are in the belly.

The belly is initially empty, and all elements are in the head, in stage one. Given
the (k − 1)st stage situation, we construct the kth stage as follows (see Figure 1.1).

A. All elements in the (k − 1)-stage head that are in positions two and above in
their bins move to a randomly selected bin in the k-head.

B. The remaining elements of the (k − 1)-head (at most one per cell) are added
to the (k − 1)-belly (in the corresponding position). Note that this may create some
conflicts with the k-head just created.

C. While there is a head-belly conflict, take a conflicting element in the belly (that
is, an element in cell i, such that the k-head also has an element in cell i), and let it
start hopping uniformly and randomly (and aging by one with each hop), according
to the rules of Robin Hood hashing, until it, or the element it causes to move, finds a
position in a cell by itself in the belly, without conflict with the k-head, or a position
in the k-head (an element that reaches age k must move to the k-head). In the latter
case, a new conflict may be triggered. At the end of this, there is no further conflict,
and the resulting tables are called the k-head and the k-belly.

Lemma 1.3. Let N be the number of elements added to the k-head in step C,
given that the k-head has at most K elements to start with after steps A and B,

928 LUC DEVROYE, PAT MORIN, AND ALFREDO VIOLA

(a)

HEAD

(b)

BELLY

(c) (d)

(e) (f)

Fig. 1.1. In (a), we show a (k − 1)-head that is not empty. The elements in position one in
their bins (in white) move to the belly (step B). The other elements (in black) move to a random
position in the k-head, shown in figure (b). This is step A. Clearly, there are some conflicts between
head and belly in (b). In step C, these are resolved. For each conflict, an element in the belly is
taken and is moved to a random position in the belly. For example, in (c), we show the moves of
an element, as it first ages to age k (so that its randomly picked position lands it in the head),
which triggers a new conflict in the belly, which is immediately taken care of by letting that element
move to a random position, which again happens to be in the head (gray element), and finally, the
last conflict generated leads to yet another element in the head, causing no further conflicts. The
resulting configuration is (d). In (e), the last remaining conflict is taken care of by random hops,
resulting in the final configuration (f) of the k-belly and k-head. In example (e), all hops remain in
the belly, and result finally in a cell in the belly being filled with a new element.

and given any distribution of elements in belly and head at that point. Then, with
λ = 1/ log(1/α), N is stochastically smaller than λGK + K, where GK is a gamma
(K) random variable. In particular, E{N} ≤ (λ + 1)K, and

P{N ≥ (2λ + 1)K} ≤
(

2

e

)K

.

Proof. There are initially at most K elements in the belly that can cause a conflict
with the head. When these elements move, at each step we have a probability at least
1 − α of finding an empty slot (empty for both head and belly). When such a slot
is found, the chain of moves ends. In each step, at most one element moves to the
k-head. The number of additions to the k-head to just eliminate one belly conflict is
thus stochastically smaller than one plus a geometric (α) random variable Y :

P{Y ≥ i} ≤ αi, i ≥ 0 .

ON WORST-CASE ROBIN HOOD HASHING 929

If E is unit exponential, then we see that

P{λE ≥ i} = exp

(
− i

λ

)
= αi ,

provided that α = exp(−1/λ) or λ = 1/ log(1/α). Therefore, Y ≺ E/ log(1/α).
Since we have to eliminate K possible conflict elements in the belly, the total number
of elements added to the head is stochastically smaller than K + Y1 + · · · + YK ,
where the Yi’s are independent and are all stochastically dominated by λE. Thus, if
E1, . . . , EK are independent exponential random variables, and GK is a gamma (K)
random variable, we see that the number N of additions to the head in part C is

stochastically smaller than K + λ(E1 + · · · + EK)
L
= K + λGK . In other words,

P{N ≥ (2λ + 1)K} ≤ P{λGK ≥ 2λK}
= P{GK ≥ 2K}
≤ E

{
etGKe−2tK

}
(any t > 0)

=

(
e−2t

1 − t

)K

=

(
2

e

)K

(take t = 1/2) .

This concludes the proof of Lemma 1.3.
It is important to note that if α → 1, then λ → ∞, so the results below are

meaningful only when α < 1.
Lemma 1.4. Define b = (2λ + 2)α and assume that b < 1. Let D be the integer

D =

⌊
log2

(
2

3 log(1/b)

)
− 0.1

⌋
.

Let Z be the number of elements in the r-head, with r = �log2 log n� + D. Then

lim
n→∞

P

{
Z ≥ nb2

r

2λ + 2

}
= 0 .

In particular,

lim
n→∞

P
{
Z ≥ n1−1/(6×20.1)

}
= 0 .

Proof. Given that the (k − 1)-head has K elements or less, then if A denotes the
number of elements in the k-head after step A (not including steps B and C), we have

E{A} ≤ K2

2n

and

P{|A− E{A}| ≥ t} ≤ K

2t2
.

In particular, we note that

P

{
A ≥ K2

n

}
≤ 2n2

K3
.

930 LUC DEVROYE, PAT MORIN, AND ALFREDO VIOLA

After steps B and C, N more elements are added to the k-head. We have

P

{
A + N ≥ (2λ + 2)K2

n

}
≤ P

{
A ≥ K2

n

}
+ P

{
N ≥ (2λ + 1)K2

n

∣∣∣A ≤ K2

n

}

≤ 2n2

K3
+

(
2

e

)K2

n

.

Now define the sequence ak by a0 = m,

ak+1 =
(2λ + 2)a2

k

n
.

Then it is easy to see that for k > 0,

ak =
n

2λ + 2

(
(2λ + 2)a0

n

)2k

=
n

2λ + 2
((2λ + 2)α)

2k

.

Let Ak, Nk denote the k-head cardinalities as defined above. Then

P{Ar + Nr ≥ ar} ≤P {Ar + Nr ≥ ar | Ar−1 + Nr−1 ≤ ar−1}
+ P{Ar−1 + Nr−1 ≥ ar−1 | Ar−2 + Nr−2 ≤ ar−2}
+ · · · + P{A1 + N1 ≥ a1 | A0 + N0 ≤ a0} ,

since A0 + N0 = m = a0. By the definition of the ak sequence, we note that the
general term

P{Ak + Nk ≥ ak | Ak−1 + Nk−1 ≤ ak−1}

is bounded by

2n2

a3
k−1

+

(
2

e

) a2
k−1
n

.

Thus, defining b = (2λ + 2)α, and assuming that b < 1, we have

P{Ar + Nr ≥ ar} ≤
r−1∑
k=0

⎛
⎜⎝2n2

a3
k

+

(
2

e

) a2
k
n

⎞
⎟⎠

=
r−1∑
k=0

⎛
⎜⎝ 2(2λ + 2)3

n ((2λ + 2)α)
3×2k +

(
2

e

) ((2λ+2)α)2
k+1

n

(2λ+2)2

⎞
⎟⎠

≤ C

⎛
⎝ 1

nb3×2r−1 +

(
2

e

) nb2
r

(2λ+2)2

⎞
⎠

(for some constant C) .

Let r = �log2 log n� + D for some integer D. Then 2D−1 log n ≤ 2r ≤ 2D log n, and

nb2
r ≥ nb3×2r−1 ≥ nb(3/2)2

D logn = n1+(3/2)2D log b. Thus, if 2D log(1/b) < 2/3, then

lim
n→∞

P{Ar + Nr ≥ ar} = 0 .

ON WORST-CASE ROBIN HOOD HASHING 931

The last statement follows from the fact that

nb2
r ≤ nb2

D−1 logn

= n1−2D−1 log(1/b)

≤ n1−2
log2

(
2

3 log(1/b)

)
−2.1

log(1/b)

= n1−1/(6×20.1) .

This concludes the proof of Lemma 1.4.
Remark. The condition b = (2λ + 2)α < 1 reduces to (2 + 2/ log(1/α))α < 1.

This is satisfied if α ≤ 0.306891
Lemma 1.5. Let r be as in Lemma 1.4. Then the probability that the (r+3)-head

has at least one element is o(1). Thus, with probability tending to one, the maximum
successful search time is bounded by r + 2.

Proof. Let r be as in Lemma 1.4, and let Z be the number of elements in the r-
head. Then it is of interest to study Zj , the number of elements in the (r+j)-head, for

j > 0. Recall that ar ≤ n1−1/(6×20.1). Given Z, we have E{Z1 | Z} ≤ (2 + λ)Z2/2n,
where we used (1) and Lemma 1.3. On Z ≤ ar, we have E{Z1 | Z} ≤ (2 +λ)a2

r/2n ≤
(2 + λ)n1−20.9/6. Thus, P{Z1 > (2 + λ) log n× n1−20.9/6 | Z} ≤ 1/ log n by Markov’s

inequality, on Z ≤ ar. Next, on Z1 ≤ (2 + λ) log n× n1−20.9/6,

E{Z2 | Z1} ≤ (2 + λ)
(
(2 + λ) log n× n1−20.9/6

)2

/2n < (2 + λ)3 log2 n× n1−21.9/6 .

Thus,

P
{
Z2 > (2 + λ)3 log3 n× n1−21.9/6 | Z1

}
≤ 1

log n
.

Finally, on Z2 ≤ (2 + λ)3 log3 n× n1−21.9/6,

E{Z3 | Z2} ≤ (2+λ)
(
(2 + λ)3 log3 n× n1−21.9/6

)2

/2n < (2+λ)7 log6 n×n1−22.9/6 = o(1) .

Thus,

P {Z3 ≥ 1 | Z2} ≤ E{Z3 | Z2} = o(1) .

Thus,

P{Z3 > 0} ≤ P
{
Z ≥ n1−1/(6×20.1)

}
+ P

{
Z1 ≥ (2 + λ) log n× n1−20.9/6 | Z ≤ n1−1/6×20.1

}
+ P

{
Z2 ≥ (2 + λ)3 log3 n× n1−21.9/6 | Z1 ≤ (2 + λ) log n× n1−20.9/6

}
+ P

{
Z3 ≥ 1 | Z2 ≤ (2 + λ)3 log3 n× n1−21.9/6

}
= o(1).

Thus far, we have shown that if α ≤ 0..306891 . . ., the probability that the maxi-
mal displacement of any element is more than log2 log n+C for a constant C depending
upon α only tends to zero. This matches the lower bound that we will present later
on. We will now fill the gap and show this result for all α.

932 LUC DEVROYE, PAT MORIN, AND ALFREDO VIOLA

Proof of Theorem 1.1. In the proof, we let m = �αn� without loss of generality.
We define the level of an element as the number of probes required to locate it. The
level is one if the element is stored at its original location. (Thus, the level is one
more than the age of an element.) We define the level of a cell in the table as the
level of the element occupying the cell if the cell is occupied, and zero otherwise. At
time t, when the table holds t elements, we define

Nt(i) = # elements of level ≥ i .

Note that Nt(i) is monotone in t for fixed i. When inserting the tth element, let Kt

be the number of cells probed. Clearly, Kt is geometric:

P{Kt = k} =

(
1 − t− 1

n

)(
t− 1

n

)k−1

, k ≥ 1 .

We begin with a rough tail bound for Nt(i).
Lemma 1.6. Define

β =
2(1 + α)

(1 − α) log((1 + α)/2α)
.

Then for all t ≤ m, i ≥ 1,

P
{
Nt(i) ≥ βmαi−1

}
≤ P

{
Nm(i) ≥ βmαi−1

}
≤ exp

(
−1 + α

1 − α
mαi−1

)
.

Proof. When we insert the tth element, we can increase the number of elements
of level ≥ i by at most (Kt − i)+. Therefore,

Nt(i) ≤
t∑

j=1

(Kj − i)+ ,

where K1,K2, . . . ,Kt are independent. As K1 ≺ K2 ≺ · · · ≺ Kt (where ≺ denotes
stochastic ordering), we see that

Nt(i) ≺
t∑

j=1

(Kt,j − i)+ ,

where Kt,1, . . . ,Kt,t are i.i.d. and distributed as Kt. We will use Chernoff bounding
(Chernoff (1952); Hoeffding (1963); Azuma (1967); McDiarmid (1989, 1998)). Let
λ, u > 0. Then

P{Nt(i) ≥ u} ≤ P{Nm(i) ≥ u}

≤ e−λu
(
E
{
eλ(Km−i)+

})m

≤ e−λu

⎛
⎝P{Km ≤ i} +

∞∑
j=1

eλjP {Km = i + j}

⎞
⎠

m

≤ e−λu

⎛
⎝1 +

∞∑
j=1

eλj
(

1 − m− 1

n

)(
m− 1

n

)i+j−1
⎞
⎠

m

ON WORST-CASE ROBIN HOOD HASHING 933

≤ e−λu

⎛
⎝1 +

∞∑
j=1

eλj (α)
i+j−1

⎞
⎠

m

≤ e−λu

(
1 + αi−1 eλα

1 − eλα

)m

= e−λu

(
1 +

1 + α

1 − α
αi−1

)m

(set eλα = (1 + α)/2)

≤ exp

(
−u log((1 + α)/2α) +

1 + α

1 − α
αi−1m

)

= exp

(
−1 + α

1 − α
αi−1m

)
(
set u = 2(1+α)αi−1m

(1−α) log((1+α)/2α)

)
.

This concludes the proof.
Note that, for any given R, the cardinality of the R-head in the previous section is

not more than Nm(R). Assume that we were to start with an R-head of size m′ ≤ α′n,
where R and α′ are defined in Lemma 1.7. Then, by mimicking the argument of the
previous section, we have the following.

Lemma 1.7. Define b = (2λ + 2)α′ and assume that b < 1. Define

D =

⌊
log2

(
2

3 log(1/b)

)
− 0.1

⌋

and

R = �λ log (β(2λ + 3))� .

Let Z be the number of elements in the (R+ r)-head, with r = �log2 log n�+D. Then

lim
n→∞

P

{
Z ≥ nb2

r

2λ + 2

}
= 0 .

In particular,

lim
n→∞

P
{
Z ≥ n1−1/(6×20.1)

}
= 0 .

Note in particular that the only difference between Lemma 1.4 and Lemma 1.7 is
in the replacement of α in the definition of b by α′. The definition of λ is unaltered.
Lemma 1.5 would then imply that with probability tending to one, Mn ≤ R + r + 2,
with r as in Lemma 1.7. Since the number of elements in the R-head is random, we
use the following argument, based on Lemma 1.6. Define

β =
2(1 + α)

(1 − α) log((1 + α)/2α)
.

Then

P {Mn > R + r + 2}
≤ P

{
Nm(R) ≥ βmαR−1

}
+ P{Mn > R + r + 2 | Nm(R) ≤ βmαR−1}

≤ exp

(
−1 + α

1 − α
mαR−1

)
+ o(1) ,

934 LUC DEVROYE, PAT MORIN, AND ALFREDO VIOLA

provided that βmαR−1 ≤ α′n, where α′ = 1/(2λ + 3) (to make b in Lemma 1.7 less
than one). But βmαR−1 ≤ βnαR, and thus it suffices to set

R =

⌈
log (β(2λ + 3))

log(1/α)

⌉
= �λ log (β(2λ + 3))� .

With this choice of R, and the choice of r given in Lemma 1.7, we thus conclude that

lim
n→∞

P{Mn > R + r + 2} = 0 .

This concludes the proof of Theorem 1.1.

Proof of Theorem 1.2. We prove the theorem by construction. This is done by
identifying a subset of elements that must be of age at least 1, a further subset of age
2, and so forth. We show that this process can be carried out at least k times with
high probability until we run out of elements, where k is of the order of log logn. We
consider all values Xi,0, 1 ≤ i ≤ m, first. Consider that ball i is dropped in urn Xi,0.
If an urn receives j elements, then at least j− 1 of them must move on, and will have
an age at least equal to 1. Who moves on depends upon the tiebreaking strategy, but
in our analysis, it only matters to know how many move on. We introduce Ar, the
number of elements that are marked in the rth step. A1 is the number of elements of
age at least 1 in the process above. We formally set A0 = m. Given Ar−1, we take
the Ar−1 elements of age at least r − 1 (note: these are not the only ones of age at
least r − 1) and look at their Xi,r values, with the number of i’s clearly being Ar−1.
We consider the subset that has to move on, so only urns with at least two elements
can be of any use. Note that in view of the tiebreaking policy, an earlier element may
move on. But in any case, if an urn receives j elements from the Ar−1, at least j−1 of
them must move on and increase their age by one. These j− 1 elements are collected
and form a further subset of size Ar, consisting entirely of elements of age at least r.

We return now to our process Ar. We observe that Ar has the (Ar−1, n) urn
distribution. The inequalities (1) suggest natural bounds for Ar. We define an integer
sequence ar such that with high probability, ar ≤ Ar. We have a0 = m = �αn�. Then
set

ar+1 = a2
r/8n .

Note that

ar = 8n(a0/8n)2
r ≥ 8n(α/8)2

r

.

Define the events

Er = ∩j≤r[aj ≤ Aj]

and let (.)c denote the complement of an event. Observe the following:

P{Ec
r} ≤ P{Ec

1} +

r∑
j=2

P{Ec
j | E0, . . . , Ej−1} =

r∑
j=2

P{Ec
j | Ej−1} .

Also, if r is so small that at all times ar−1 ≥ 4 (a condition that is needed so that we
may apply the inequalities derived in section 1.1), we have

P{Ec
r | Er−1} ≤ P {[Ar < ar] | ar−1 ≤ Ar−1}

≤ P

{
Ar <

1

2
E{Ar | ar−1 ≤ Ar−1} | ar−1 ≤ Ar−1

}
,

ON WORST-CASE ROBIN HOOD HASHING 935

provided that ar ≤ (1/2)E{Ar | ar−1 ≤ Ar−1}. But this follows from ar = a2
r−1/8n =

(1/2)a2
r−1/4n ≤ E{Ar | ar−1 ≤ Ar−1}. We let A have the (�ar−1�, n) urn distribution.

Thus,

P{Ec
r | Er−1} ≤ P

{
A <

1

2
E{A}

}

≤ �ar−1�
2(E{A}/2)2

≤ 2�ar−1�
((�ar−1�)2/4n)2

≤ 32n2

a3
r−1

≤ (8/α)3×2r−1

16n
.

Therefore,

P{Ec
r} ≤

r−1∑
j=0

(8/α)3×2j

16n
=

1

16n

r−1∑
j=0

(8/α)3×2j ≤ (8/α)3×2r−1

16n(1 − (α/8)3)
.

Set r = �log2(c log n)� for c > 0, and note that the upper bound is not more than

n3c log(8/α)−1

16(1 − α/8)
;

this tends to zero if c < 1/3 log(8/α). With that choice of r, we note that

ar ≥ 8n

(8/α)3×2r ≥ 8n

n6c log(8/α)
≥ 8 ,

provided we take c = 1/6 log(8/α). With such a choice, we then have

P{Ar = 0} ≤ P{Ar < ar} ≤ P{Ec
r} ≤ 1

16(1 − (α/8)3)
√
n

.

REFERENCES

O. Amble and D. E. Knuth (1974), Ordered hash tables, Comput. J., 17, pp. 135–142.
Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal (1999), Balanced allocations, SIAM J.

Comput., 29, pp. 180–200.
K. Azuma (1967), Weighted sums of certain dependent random variables, Tohoku Math. J., 37,

pp. 357–367.
A. D. Barbour, L. Holst, and S. Janson (1992), Poisson Approximation, Oxford University Press,

Oxford.
A. Z. Broder and A. R. Karlin (1990), Multilevel adaptive hashing, in Proceedings of the First

Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, pp. 43–53.
A. Brodnik and J. I. Munro (1999), Membership in constant time and almost-minimum space,

SIAM J. Comput., 28, pp. 1627–1640.
P. Celis, P.-Å. Larson, and J. I. Munro (1985), Robin Hood hashing, in Proceedings of the 26th

IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, pp. 281–288.

936 LUC DEVROYE, PAT MORIN, AND ALFREDO VIOLA

P. Celis (1986), Robin Hood Hashing, Technical Report CS-86-14, Computer Science Department,
University of Waterloo, Waterloo, ON, Canada.

H. Chernoff (1952), A measure of asymptotic efficiency of tests of a hypothesis based on the sum
of observations, Ann. Math. Statist., 23, pp. 493–507.

A. Czumaj and V. Stemann (1997), Randomized allocation processes, in Proceedings of the 38th
IEEE Symposium on Foundations of Computer Science, Miami Beach, FL, IEEE Computer
Society Press, Los Alamitos, CA, pp. 194–203.

L. Devroye (1985), The expected length of the longest probe sequence when the distribution is not
uniform, J. Algorithms, 6, pp. 1–9.

M. Dietzfelbinger and F. Meyer auf de Heide (1990), A new universal class of hash func-
tions and dynamic hashing in real time, in Proceedings of the 17th International Colloquium
on Automata, Languages and Programming (ICALP ’90), Lecture Notes in Comput. Sci. 443,
Springer-Verlag, New York, pp. 6–19.

M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger (1992), Polynomial hash functions are
reliable (extended abstract), in Proceedings of the 19th International Colloquium on Automata,
Languages and Programming (ICALP ’92), Lecture Notes in Comput. Sci. 623, Springer-Verlag,
New York, pp. 235–246.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf de Heide, H. Rohnert, and

R. E. Tarjan (1994), Dynamic perfect hashing: Upper and lower bounds, SIAM J. Comput., 23,
pp. 738–761.

B. Efron and C. Stein (1981), The jackknife estimate of variance, Ann. Statist., 9, pp. 586–596.
P. Flajolet, P. V. Poblete, and A. Viola (1998), On the analysis of linear probing hashing,

Algorithmica, 22, pp. 490–515.
M. L. Fredman, J. Komlós, and E. Szemerédi (1984), Storing a sparse table with O(1) worst case

access time, J. ACM, 31, pp. 538–544.
G. H. Gonnet (1981), Expected length of the longest probe sequence in hash code searching, J. ACM,

28, pp. 289–304.
G. H. Gonnet and R. Baeza-Yates (1991), Handbook of Algorithms and Data Structures, 2nd ed.,

Addison-Wesley, Reading, MA.
G. R. Grimmett and D. R. Stirzaker (1992), Probability and Random Processes, Oxford University

Press, Oxford.
W. Hoeffding (1963), Probability inequalities for sums of bounded random variables, J. Amer.

Statist. Assoc., 58, pp. 13–30.
D. E. Knuth (1998), The Art of Computer Programming, Vol. 3: Sorting and Searching, 2nd ed.,

Addison-Wesley, Reading, MA.
C. McDiarmid (1989), On the method of bounded differences, in Surveys in Combinatorics,

J. Siemons, ed., London Math. Soc. Lecture Note Ser. 141, Cambridge University Press, Cam-
bridge, UK, pp. 148–188.

C. McDiarmid (1998), Concentration, in Probabilistic Methods for Algorithmic Discrete Mathe-
matics, M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, eds., Springer-Verlag, New
York, pp. 195–248.

M. Mitzenmacher (1997), Studying Balanced Allocations with Differential Equations, Technical
Note 1997024, Digital Equipment Corporation Systems Research Center, Palo Alto, CA.

M. Mitzenmacher, A. W. Richa, and R. Sitaraman (2000), The Power of Two Random Choices:
A Survey of Techniques and Results, Technical Report.

R. Pagh and F. F. Rodler (2001), Cuckoo Hashing, BRICS Report Series RS-01-32, Department
of Computer Science, University of Aarhus, Aarhus, Denmark.

P. V. Poblete and J. I. Munro (1989), Last-come-first-served hashing, J. Algorithms, 10, pp. 228–
248.

J. M. Steele (1986), An Efron-Stein inequality for nonsymmetric statistics, Ann. Statist., 14,
pp. 753–758.

A. Viola and P. V. Poblete (1998), Analysis of linear probing hashing with buckets, Algorithmica,
21, pp. 37–71.

J. S. Vitter and P. Flajolet (1990), Average-case analysis of algorithms and data structures, in
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, ed. J. van
Leeuwen, ed., MIT Press, Amsterdam, pp. 431–524.

