Genetic Algorithms for Complex, Real-Time Scheduling

David Montana, Marshall Brinn, Sean Moore, Garrett Bidwell
BBN Technologies / GTE Internetworking
10 Fawcett Street, Cambridge, MA 02138
{dmontana,mbrinn,smoore,gbidwell } @bbn.com

ABSTRACT

Real-time scheduling of large-scale problems in com-
plex domains presents a number of difficulties for
search and optimization techniques, including: (i)
large and complex search spaces, (ii) dynamically
changing problems, and (iii) a variety of problem-
dependent constraints and preferences. Genetic al-
gorithms are well suited to such problems due to
their adaptability and their effectiveness at search-
ing large spaces. We have used genetic algorithms to
solve real-world problems in areas such as field service
scheduling, air crew scheduling, and transportation
scheduling. In this paper, we discuss key aspects of
our approach including: (i) domain-specific chromo-
some representation and genetic operators, (i) multi-
objective evaluation function, (iii) heuristic initializa-
tion of the population, (iii) dynamic rescheduling, and
(iv) cooperative interaction with human operators.

1. REAL-TIME SCHEDULING ISSUES

Most large-scale, real-time optimal scheduling prob-
lems cannot in practice be solved by traditional oper-
ations research (OR) techniques such as branch-and-
bound and integer programming. Some of the issues
that make real-time scheduling difficult are:

Large and complex search spaces: A generic
scheduling problem involves assigning each of N tasks
to one of M resources with a particular ordering of
tasks at each resource. For this problem, the number

of possible schedules is < NLA_J{l)N!7 which

implies superexponential growth as a function of the
number of tasks and resources. In addition to its large
size, this search space has a more complex topology
than a Euclidean space or, when M > 1, a space of
permutations.

Dynamically changing problems: By real-time
scheduling we mean that the schedule is continually
updated in response to events that change the prob-
lem definition. For example, a new high-priority task
may arrive that needs to be scheduled for immediate
execution and hence throws off much of the current

schedule. Another example is that resources may mal-
function, not only causing delays but also changing
the timing of events, and hence necessitating a large-
scale change to the schedule. We have introduced yet
another source of change by allowing the human op-
erators to override the automatic scheduler; the au-
tomatic scheduler then needs to work around what
the human operator has mandated. Most automatic
schedulers are not designed to react in real time to
changes in the problem.

A variety of constraints: There are two types of
constraints in scheduling problems. Hard constraints
are those which must be satisfied for the schedule to
be considered legal, while soft constraints are essen-
tially preferences. An example of a hard constraint
is when a certain task can only be performed by a
particular resource. An example of a soft constraint
is when it would be best but not essential to perform
a certain task some time within the next two hours.
The hard constraints essentially act to limit the search
space, while the soft constraints help define the evalu-
ation function. These constraints vary greatly across
problem domains, and any approach that is general
enough to handle the full range of different schedul-
ing problems with their different constraints must be
highly adaptable.

2. GENETIC ALGORITHMS

Genetic algorithms are an approach to optimization
and learning based loosely on principles of biological
evolution. Genetic algorithms maintain a population
of possible solutions to a problem, encoded as chro-
mosomes based on a particular representation scheme.
After generating an initial population, new individu-
als for this population are generated via the process of
reproduction. Parents are randomly selected from the
current population for reproduction with the better
ones (according to the evaluation criteria) more likely
to be selected. The genetic operators of mutation and
crossover generate children (i.e., new individuals) by
random changes to a single parent or combining the
information from two parents respectively.

Genetic algorithms have been applied to scheduling

problems in a wide variety of domains including (with
a more complete set of references given in [9])

jobshop/flowshop scheduling [1,2]
urban transit systems

supply chain management

exam timetabling [3]

scheduling computing tasks [5]
scheduling laboratory equipment

crew scheduling

maintenance /rehabilitation scheduling
talent/project scheduling

The reason for genetic algorithms’ success at a wide
and ever growing range of scheduling problems is a
combination of power and flexibility. The power de-
rives from the empirically proven ability of evolution-
ary algorithms to efficiently find globally competetive
optima in large and complex search spaces. The fa-
vorable scaling of evolutionary algorithms as a func-
tion of the dimension of the search space makes them
particularly effective in comparison with other search
algorithms for the large search spaces typical of real-
world scheduling.

The flexibility of genetic algorithms has multiple
facets. Even the “standard” genetic algorithm (i.e.,
bit string representation with traditional crossover
and mutation operators) can effectively handle prob-
lems that many traditional optimization algorithms
cannot including: (i) discrete spaces, (ii) nonlinear,
discontinuous evaluation functions, and (iii) nonlin-
ear, discontinuous constraints. The use of “non-
standard” genetic algorithms and the tailoring of rep-
resentation, operators, initialization method, etc. to
fit the problem/domain greatly increases the range of
problems to which genetic algorithms can be effec-
tively applied.

3. OUR APPROACH

We have developed a general approach to scheduling
using genetic algorithms that allows us to relatively
easily and quickly produce solutions for different do-
mains. We now discuss the major components of this
approach.

Domain-Specific Representation and Opera-
tors: Which representation (i.e. encoding of sched-
ules as chromosomes) and genetic operators are best
depends greatly on the requirements and constraints
of the problem to be solved. For example, if all the
tasks are assigned to a single resource and the times
required for each task are known once the order of
the tasks is known, then an order-based chromosome
(i.e., chromosome that is a permutation of the inte-
gers 1 through N) is the natural one [4,6]. However,
if the ordering of the tasks is predetermined and the

data to optimize are the time separations or assign-
ments to resources, then a string-based chromosome
is the natural one. When both the ordering and addi-
tional information, such as the assignments, need to
be optimized, more complicated representations are
required, such as the one described in Section 4. In
addition, genetic operators need to be defined that
operate on the particular representation and, if pos-
sible, are matched to the problem domain.

Multi-Objective Evaluation Function: There
generally are multiple evaluation criteria. We there-
fore utilize an evaluation function that is a linear com-
bination of the different individual criteria, with the
weights on the criteria being adjustable to allow dif-
ferent tradeoffs. The criteria can be of any form and
are often nonlinear and discontinuous.

Heuristic Initialization: Grefenstette [7] has
shown that using domain knowledge to initialize the
population with better than random individuals can
potentially greatly increase the performance of the
genetic algorithm. Burke, Newall and Weare [3] have
shown that key to getting optimal performance from
the genetic algorithm is making the individuals in the
initial population as good as possible while still main-
taining maximal diversity. Since scheduling is a com-
putationally difficult problem, it has been necessary
for us to utilize heuristic initialization that maintains
diversity to get good performance.

Dynamic Rescheduling: Dynamic rescheduling oc-
curs by continuously cycling through two phases. In
the execution phase, the scheduler is working on cre-
ating an optimal schedule for a snapshot of the data
as it appeared at the beginning of the phase. During
this phase, the data can change due to changes in the
environment and due to inputs from the human op-
erators (see below). In the reconciliation phase, the
data is locked to temporarily prevent changes from
the environment or human operators. The scheduler
changes its schedule to reflect the changes to the data
that occurred during the execution phase (using a
heuristic algorithm and possibly a short run of the ge-
netic algorithm to reoptimize) and commits the new
schedule. The transition from the reconciliation phase
to the execution phase includes a reinitialization of
the population keeping only the best individual from
the previous cycle and using heuristic initialization to
generate the rest [5,2]. A big benefit to this process
is that periodically diversity is reintroduced into the
genetic algorithm. As a genetic algorithm runs, diver-
sity decreases and with it the capability of the genetic
algorithm to perform global search. Continually rein-
troducing diversity enables the genetic algorithm to
get beyond any local optima into which it may settle.

Shared Control: Very few organizations would be

willing to grant full control of their daily operations
to a computer. There need to be humans in the loop,
overriding the computer’s decisions where necessary,
usually due to the computer lacking full information.
This mode of operation where humans and computers
both contribute to decisions is known as shared control
[10]. Shared control raises a variety of issues includ-
ing (i) potential contention between the scheduler and
human operators and (ii) communication between the
scheduler and human operators. Dynamic reschedul-
ing deals with the issue of contention; the human op-
erators have the ability to manipulate the schedule
any time except during the reconciliation procedure,
at which point the automated scheduler considers all
changes made by the operators before writing its lat-
est schedule. Communication from the human to the
scheduler occurs via the process of freezing an assign-
ment; humans have the ability to lock a task to a cer-
tain resource or at a certain time without the sched-
uler being able to override these decisions. Commu-
nication from the scheduler to the human occurs via
alerts; the scheduler generates an alert for each event
causing a sufficiently large penalty in the evaluation
function, and a human operator must examine each
alert and either choose to ignore it or handle it.

We illustrate our approach using two of the prob-
lem domains to which we have applied our genetic
scheduling technology. We concentrate on the field
service domain, which is the only one for which we
have developed an operational system, as opposed to
demonstrations.

4. PROBLEM 1: FIELD SERVICE
SCHEDULING

Field service scheduling is essentially the problem of
assigning service calls (i.e., tasks) to field engineers
(i.e., resources) in a particular order or at particular
times. Traditional approaches to automated field ser-
vice scheduling are based on simple heuristic dispatch
rules [8]. Our approach is superior due to the ability
of the genetic algorithm to find competetive global
optima (rather than the greedy approach of the dis-
patch rules) and due to the use of a more complicated
and representative evaluation function.

The following toy sample problem will serve as the
basis for the examples in this section. The field engi-
neers (i.e., resources) are:

Avaliable Work Hours
FE1 0800-1700
FE2 1300-1700
FE3 0800-1400

The calls (i.e., tasks) to be scheduled are:

Schedule

FE FE FE; Unassigned
Chromosome 1 2 3 Unassigne:

8

Call2
FE Call 2| Calla caz | 2

Decoding 11
)_g} 12| Calls Call6

13
14
15 Calll
16
17

W N W= N =
AN WL —

Figure 1: Decoding a chromosome into a schedule.

Target Time | Duration | Location
Calll 1700 4 Locl
Call2 1700 3 Locl
Call3 1300 3 Locl
Call4 1700 3 Loc2
Callb 0800 2 Loc2
Call6 1700 3 Loc2

The travel time between locations Locl and Loc2 is
one hour, and travel time is zero between calls at the
same location. Unlike in our actual system, the toy
problem ignores issues of parts ordering, skills, lunch,
customer availability, and call urgency.

Representation

We use what we call an “ordered-paired” representa-
tion, which was introduced by Bagchi et al. [1]. As we
will see, it is a natural representation for this problem
because it minimally captures the essential informa-
tion, the assignment of calls to field engineers and
ordering of the calls. Chromosomes are structured as
follows:

Given a list of n field engineers {FFE1,...,FE,}
and m calls {Ci,...,Cy}, a chromosome is an
ordered list of pairs of indices into these lists:
Hfi,at, {fe,caty s {fm,cm}} where 0 < f; < nand
1 < ¢; < m, where 0 indicates an association with no
field engineer (i.e., an unscheduled call), and where
each ¢; is unique (and hence each call is represented
exactly once).

Turning a chromosome into a schedule (i.e., decoding)
is done as follows. For each {f;,¢;} taken in sequence
from the chromosome, assign call C¢, to field engi-
neer F'Ey, at the earliest feasible time. To compute
this time, one must consider the expected duration of
the field engineer’s previous call, the travel time from
the previous call to this call, the availabilities of the
field engineer and the customer, and the need for the
field engineer to eat lunch at some reasonable time. If
no such time exists within a specified scheduling win-
dow, put the call in the unscheduled bin. Figure 1

Parent 1 Parent 2 Child

FE Call FE Call FE Call
1 4 1 1 1 4
2 1 2 3 1 1
1 5 3 5 Crossover 2 3
3 3 2 4 3 5
2 2 1 2 2 2
3 6 3 6 3 6

Figure 2: Two Point Crossover.

illustrates this for the sample problem.

Turning a schedule into a chromosome (i.e., encoding)
is performed as follows. Generate a FE/Call index
pair for each assigned call. For each unassigned call
generate a {0, Call} entry. Sort all entries by actual
scheduled time with unscheduled calls sorting to the
end.

With this representation there are generally mul-
tiple chromosome representations for each “tightly
packed” schedule. For example, the chromo-

some {{1,4},{2,1},{1,5},{3,3},{2,2},{3,6}}
represents the same schedule as
{{2,1},{1,4},{3,3},{1,5},{3,6},{2,2}}. Every
time we generate a new chromosome, before inserting
it into the population we decode it into a schedule
and then encode back into a potentially different
chromosome. This process allows us to check the
uniqueness of the chromosomes and not allow mul-
tiple representations of the same schedule in the
population. It also enables better performance by
the operators with the tasks always ordered by time.

Operators
We use the following mix of genetic operators:

Two Point Crossover (40%) picks two random
points from the ordering of the first parent. All tasks
between these two points are reordered according to
the order of the second parent and receive their re-
source assignments from the second parent. This is
illustrated in Figure 2.

Even Crossover (20%) is a special case of Two
Point Crossover, with the constraint that exactly half
the chromosome is taken from each parent.

Assignment Mutation (20%) takes a random task
and assigns it to a new resource selected randomly
from those capable of performing the task.

Reverse Order Mutation (20%) takes two ran-
dom points on a chromosome and reverses the order-
ing of all tasks between the two positions that are
assigned to the same resource as the task in the first

E
e

Cost
|—penalty —|

™y i
Time

I
t safe ttarget

t

received

Figure 3: Cost for a call as a function of time.

position. (The purpose is to “uncross” routes.)
Evaluation Function

Field service providers want to give good service to
their customers while minimizing their costs. We re-
flect these competing concerns in the following crite-
ria, which are the individual components of our eval-
uation criterion:

e Missed Target Cost is the sum over all calls of
the cost of scheduling a call after its target time
or dangerously close to its target time. Figure 3
shows this cost as a function of time.

e Travel Cost is the sum over all field engineers of
the time they spend traveling.

e Slack Cost is the sum over all field engineers of
the time spent idle within a certain window of time.
Outside of this window, slack time is not penalized
because of the high probability that new calls will
arrive to fill this void.

e Return Home Cost is the sum over all field en-
gineers of their travel costs from their last job to
their “home” location. This is penalized separately
from other travel costs as it is not on company time
but is rather a job satisfaction issue.

e Parts Order Cost is the sum of the extra cost of
ordering parts for a call when parts are available in
a different field engineer’s on-hand inventory.

e Unscheduled Cost is a sum of a fixed penalty for
each call that is not scheduled.

e Skills Mismatch Cost is the sum over calls of
the penalty of assigning a field engineer with an
adequate but not perfect skills match.

Initialization

As discussed in Section 3, we initialize the population
with the outputs of a greedy optimization algorithm
to improve performance. To maintain the diversity of
the initial population, we have used a set of different
greedy optimization algorithms.

Task Greedy Seeding - This algorithm orders all
calls (tasks) by target time and allocates a resource
to each task in order according to minimal cost. This
algorithm is used to produce a single chromosome in

the initial population.

Fair Resource Greedy Seeding - Given an order-
ing of the resources, this algorithm sequences through
the resources and allows each to pick its lowest cost
next task, proceeding in a round-robin fashion. This
algorithm is used to produce m chromosomes, where
m is the number of resources, generated by m differ-
ent orderings of the resources.

Unfair Resource Greedy Seeding - Given an or-
dering of the resources, this algorithms allows each
resource to completely fill its schedule (up to a cer-
tain limit of tasks per resource) before allowing the
next resource to grab tasks. This algorithm is used
to produce m chromosomes.

Shuffled Task Greedy Seeding - This algorithm
takes the seed produced by Task Greedy Seeding and
randomly takes some number of tasks from the chro-
mosome and places them back in random positions in
the chromosome. This algorithm is used to generate
all remaining required chromosomes left to fill out the
initial population.

Dynamic Rescheduling

In addition to the new calls that continuously ar-
rive, feedback from the field engineers on the progress
of their calls causes a constant reassessment of the
expected duration of these calls. The dynamic
rescheduling cycle described in Section 3 is executed
every ten minutes and adjusts the schedule based on
the changes to the environment.

Shared Control

The different types of alerts that the scheduler gener-
ates are:

e Unscheduled: A call has been left unscheduled by
the scheduler.

e Missed Target: A call has been scheduled so as to
miss its contractual target time.

e Inadequate Parts : A call has been scheduled at a
time when parts will not be available (usually due
to a delayed shipment)

e Inadequate Data : A call record has come in with
inadequate information to allow for scheduling.

5. PROBLEM 2: MILITARY LAND MOVE
SCHEDULING

A second scheduling problem that we have solved us-
ing our approach is that of scheduling a military land
move from a fort to a seaport. Items are loaded onto
trucks to be driven to the port. (Some items are also
transported by trains, but we have concentrated pri-
marily on trucks.) The trucks are formed into convoys
and travel together via civilian roads.

Hard constraints include not only weight and volume
capacities for the trucks but also minimum and max-
imum sizes for the convoys. The time that each item
is scheduled by the port to be loaded onto the ship is
provided, and each item must be at the port by that
time. The goals, or soft constraints, are (i) to min-
imize the amount of time that items sit at the port
waiting to be loaded (i.e., minimize staging) and (ii)
to minimize the disturbance to civilian traffic on the
roads by not sending too many military vehicles on a
given road within a given time span.

The four basic pieces of information we need to deter-
mine are: (i) how trucks are packed, (ii) how trucks
are formed into convoys, (iii) what time each convoy
leaves the fort, and (iv) what route each convoy trav-
els. The packing of the trucks is done by a heuristic
that knows that an item should be packed with other
items that need to arrive at around the same time.
The departure time of each convoy, once the convoy
is formed, is determined by a simple heuristic that
selects the latest possible time that still ensures that
all items transported by the convoy arrive on time.
Hence, only the grouping of trucks into convoys and
the selection of routes is done by the genetic algo-
rithm.

For convoy formation there is a natural time order-
ing of the trucks based on the earliest required arrival
time of the items in that truck. Convoys should con-
sist of trucks that are consecutive in this ordering,
with the key information being where to draw the
boundaries between convoys in this ordering.

For route selection, we have a set of predetermined
routes cooptimize offline by a genetic algorithm at-
tempting to maximize joint capacity. The genetic al-
gorithm needs only select one of these routes for each
convoy.

Representation

We use a string-based chromosome consisting of two
portions. The first part encodes the mapping of
trucks to convoys and is of length numitrucks. Each
slot has an integer between 1 and mazconvoys in-
dicating in which convoy that truck is. The second
part encodes the mapping of convoys to routes and is
of length maxconvoys. Each slot has a number be-
tween 1 and numroutes indicating which route that
convoy travels.

For example, if there are nine trucks, three the max-
imum number of convoys, and four possible routes,
then (1,1,1,1,1,2,2,2,2,2,4,1) would indicate two
convoys with five trucks in the first convoy, four trucks
in the second convoy, the first convoy traveling route
2, and the second convoy traveling route 4 (and the
route for the third potential convoy ignored because

only two convoys are created).
Operators

We use the following set of operators which respect
the structure of the chromosome:

e Convoy-Route Crossover (30%) takes the con-
voys from the first parent and the routes from the
second parent.

e Convoy Mutation (30%) loops over the bound-
aries between convoys and with a certain mutation
probability moves the boundary a random amount
in one direction or the other.

e Route Mutation (20%): loops over the route as-
signments and with a certain mutation probability
chooses a new random route number.

e Combined Mutation (20%): performs both a
convoy mutation and a route mutation.

Evaluation Function
There are two criteria in our evaluation function:

e Staging Cost is the sum over each item of the
square of how long before its loading time the item
arrives.

e Link Overuse Cost is the sum over each hour of
each link in the routes of the square of the excess
capacity utilized.

Initialization

While our initialization procedure does respect the
structure of the chromosome, it does not currently
utilize greedy heuristics to select initial members. In-
stead, for each new chromosome, the initialization
procedure selects random sizes for the convoys be-
tween the minimum and maximum sizes and selects
random routes for each convoy.

We have not yet done any work on dynamic reschedul-
ing or shared control in this domain.

6. CONCLUSION

Our approach uses the flexibility and power of genetic
algorithms to produce practical solutions to complex
scheduling problems in a generally applicable manner.
Our field service scheduler is currently operational at
a commercial company scheduling field engineers, and
we are working on incorporating dynamic reschedul-
ing and shared control into the land move scheduler
to move it from a demonstration to a prototype sys-
tem. We are also building a prototype system for a
new domain of military air crew scheduling.

We are currently doing experiments to document the
performance of the genetic algorithm scheduling in a
controlled setting. So far, the success of the system

has been primarily documented in the field service
domain by the large reduction in calls serviced late
and the large increase in the number of calls closed
per day by a field engineer, the two main metrics of
the industry.

7. REFERENCES

[1] Bagchi, S., Uckun, S., Miyabe, Y., & Kawamura,
K. (1991). Exploring Problem-Specific Recombina-
tion Operators for Job-Shop Scheduling. Proc. of the
Fourth Intl. Conf. on Genetic Algorithms, pp. 10-17.
[2] Bierwirth, C., Kropfer, H., Mattfeld, D. & Rixen,
I. (1995). Genetic Algorithm Based Scheduling in a
Dynamic Manufacturing Environment. [IEEE Conf.
on Evolutionary Computation, pp. 439-443.

[3] Burke, E., Newall, J. & Weare, R. (1998). Ini-
tialisation Strategies and Diversity in Evolutionary
Timetabling. To appear in Fvolutionary Computa-
tion, 6(2).

[4] Goldberg, D. E. & Lingle, Jr., R. (1985). Alleles,
Loci, and the Traveling Salesman Problem. Proc. of
the First Intl. Conf. on Genetic Algorithms, pp. 154—
159.

[5] Gonzalez, C., & Wainwright, R. (1994). Dynamic
Scheduling of Computer Tasks Using Genetic Algo-
rithms, Proc. of the First Intl. Conf. on Evolutionary
Computation, pp. 829-833.

[6] Grefenstette, J. J., Gopal, R., Rosmaita, B. J. &
van Gucht, D. (1985). Genetic Algorithms for the
Traveling Salesman Problem. Proc. of the First Intl.
Conf. on Genetic Algorithms, pp. 160-165.

[7] Grefenstette, J. J. (1987). Incorporating Prob-
lem Specific Knowledge in Genetic Algorithms. In L.
Davis (Ed.), Genetic Algorithms and Simulated An-
nealing, pp. 42-60. Los Altos, CA: Morgan Kauf-
mann.

[8] Hill, A. (1993). An Experimental Comparison of
Dispatching Rule for Field Service Support. Decision
Sciences, 23(1), 235-249.

[9] Montana, D. J. (1998). Introduction to the Spe-
cial Issue: Evolutionary Algorithms for Scheduling.
To appear in Evolutionary Computation, 6(2).

[10] Sheridan, T. (1992). Telerobotics, Automation,
and Human Supervisory Control. Cambridge, MA:
MIT Press.

