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This paper is concerned with the question of ranking a finite collection of objects when a suite of
indicator values is available for each member of the collection. The objects can be represented as a
cloud of points in indicator space, but the different indicators (coordinate axes) typically convey
different comparative messages and there is no unique way to rank the objects while taking all
indicators into account. A conventional solution is to assign a composite numerical score to each
object by combining the indicator information in some fashion. Consciously or otherwise, every such
composite involves judgments (often arbitrary or controversial) about tradeoffs or substitutability
among indicators.

Rather than trying to combine indicators, we take the view that the relative positions in indicator
space determine only a partial ordering and that a given pair of objects may not be inherently
comparable. Working with Hasse diagrams of the partial order, we study the collection of all
rankings that are compatible with the partial order (linear extensions). In this way, an interval of
possible ranks is assigned to each object. The intervals can be very wide, however. Noting that ranks
near the ends of each interval are usually infrequent under linear extensions, a probability
distribution is obtained over the interval of possible ranks. This distribution, called the rank-
frequency distribution, turns out to be unimodal (in fact, log-concave) and represents the degree of
ambiguity involved in attempting to assign a rank to the corresponding object.

Stochastic ordering of probability distributions imposes a partial order on the collection of rank-
frequency distributions. This collection of distributions is in one-to-one correspondence with the
original collection of objects and the induced ordering on these objects is called the cumulative rank-
frequency (CRF) ordering; it extends the original partial order. Although the CRF ordering need not
be linear, it can be iterated to yield a fixed point of the CRF operator. We hypothesize that the fixed
points of the CRF operator are exactly the linear orderings. The CRF operator treats each linear
extension as an equal ‘‘voter’’ in determining the CRF ranking. It is possible to generalize to a
weighted CRF operator by giving linear extensions differential weights either on mathematical
grounds (e.g., number of jumps) or empirical grounds (e.g., indicator concordance). Explicit
enumeration of all possible linear extensions is computationally impractical unless the number of
objects is quite small. In such cases, the rank-frequencies can be estimated using discrete Markov
chain Monte Carlo (MCMC) methods.

Keywords: CRF operator, Hasse diagram, MCMC, partial order, pre-order, poset, rank-interval,
rank-frequency distribution, weighted distributions, zeta matrix

1352-8505 © 2004 “ Kluwer Academic Publishers

1352-8505 © 2004 #@ Kluwer Academic Publishers



200 Patil, Taillie

1. Introduction

This paper is concerned with the question of ranking a finite collection of objects when a
suite of indicator values is available for each member of the collection. The objects can be
represented as a cloud of points in indicator space, but the different indicators (coordinate
axes) typically convey different comparative messages and there is no unique way to rank
the objects while taking all indicators into account. A conventional solution is to assign a
composite numerical score to each object by combining the indicator information in some
fashion. Consciously or otherwise, every such composite involves judgments (often
arbitrary or controversial) about tradeoffs or substitutability among indicators.

Rather than trying to combine indicators, we take the view that the relative positions in
indicator space determine only a partial ordering and that a given pair of objects may not
be inherently comparable. Working with Hasse diagrams of the partial order, we study the
collection of all rankings that are compatible with the partial order (linear extensions). In
this way, an interval of possible ranks is assigned to each object. The intervals can be very
wide, however. Noting that ranks near the ends of each interval are usually infrequent
under linear extensions, a probability distribution is obtained over the interval of possible
ranks. This distribution, called the rank-frequency distribution, turns out to be unimodal
(in fact, log-concave) and represents the degree of ambiguity involved in attempting to
assign a rank to the corresponding object.

Stochastic ordering of probability distributions imposes a partial order on the collection
of rank-frequency distributions. This collection of distributions is in one-to-one
correspondence with the original collection of objects and the induced ordering on
these objects is called the cumulative rank-frequency (CRF) ordering; it extends the
original partial order. Although the CRF ordering need not be linear, it can be iterated to
yield a fixed point of the CRF operator. We hypothesize that the fixed points of the CRF
operator are exactly the linear orderings. The CRF operator treats each linear extension as
an equal ‘‘voter’’ in determining the CRF ranking. It is possible to generalize to a
weighted CRF operator by giving linear extensions differential weights either on
mathematical grounds (e.g., number of jumps) or empirical grounds (e.g., indicator
concordance). Explicit enumeration of all possible linear extensions is computationally
impractical unless the number of objects is quite small. In such cases, the rank-frequencies
can be estimated using discrete Markov chain Monte Carlo (MCMC) methods.

2. Combining multiple indicators

Most scientific concepts are multi-faceted and can be quantified in a variety of ways. Even
such an everyday notion as a person’s ‘‘size’’ can be assessed by ‘‘height,”’ by ‘‘weight,”’
by ‘‘girth,”” by ‘‘arm-length,”’ etc. The different ways of quantifying a single underlying
concept will be referred to as views or indicators. While there is generally a positive
association among different views, the association is not perfect and different indicators
can provide different comparative assessments. Although in many ways these views are
neither comparable nor combinable, it remains a strong and almost irresistible human urge
to combine them into a single view and a corresponding linear ordering of the objects
under consideration.
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In this section, we examine the issues, challenges, and difficulties encountered in trying
to combine multiple indicators into a single index. We consider a collection S of objects
where each object has an associated suite, (I;,1,,...,1,), of real-valued indicators. We
suppose that all indicators are consistently oriented so that small values indicate ‘‘poor’’

conditions and large values indicate ‘‘good’’ conditions.

The elements in S will be denoted by a, b, c, .... We would like to make comparative
statements about two given objects a and ¢’ based on their indicator values (I;,1,, . . . ,[P)

and (11,13, ..., 1,), respectively. If it happens that I} > I; for all j, then we say that a’ is

intrinsically ‘better’” or ‘‘bigger’’ than a (in the loose sense) and we write
d>a or a<d.

When, on the other hand, the indicators are not unanimous in comparing a and @', we have
an ambiguous situation in which different investigators might rank a and &’ differently.
Here there is no consensus ranking. The possibilities are indicated in Fig. 1 in the case of
p = 2 indicators. Object a divides indicator space into four quadrants. Objects a’ falling in
the first quadrant (including its boundary) are intrinsically better than @ and those falling in
the third quadrant are intrinsically worse than a. The second and fourth quadrants
(excluding their boundaries) are regions of ambiguity; objects falling here are not
intrinsically comparable with a. When p > 2, indicator space is divided into 27 ‘‘hyper-
quadrants’’ of which 27 — 2 are regions of ambiguity.

Resolution of ambiguity can be accomplished (mathematically) by combining the
indicators into an index:

index = H(I,,1,,...,1,)

,) =H(a).

We will use letters like H and G to denote such combinations. The simplest combination is
linear,

H:W111+W212+"'+Wp[p.
Each index H defines a linear ordering on the set of objects by the rule:
a<yd, ifandonlyif H(a) <H(d).

The induced linear ordering can be displayed pictorially in terms of the contour of H that

Ambiguous Bigger than a

Indicator 2 (1,)

Smaller than a Ambiguous

_______‘______

Indicator 1 (/)

Figure 1. With two indicators, each object a divides indicator space into four quadrants. Objects in
the second and fourth quadrants are ambiguous in making comparisons with a.
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Figure 2. Contour of index H passing through object a. A linear index is shown on the left and a
non-linear index on the right.

passes through a. The contour divides indicator space into two regions; objects in the
upper right-hand region are intrinsically bigger than a while those in the lower left-hand
region are intrinsically smaller than a. See Fig. 2.

However, for an index H to be considered valid, its induced ordering should be
consistent with the intrinsic ordering, i.e., we need to require that

a<d = H(a) <H(d).

Pictorially, this means that the contour of H that passes through object a must lie entirely
within the ambiguous regions for a. Fig. 3 shows some valid contours and also some
invalid contours.

The mathematical conditions for an index to be valid are very simple:

e Anindex H(/,,...,I,) is valid if and only H is monotone increasing in each variable
separately.
e A differentiable index H(Iy,...,I,) is valid if and only if 8H/dl; > 0 for all j.

e Alinear index H = wyl; +wyl, +--- +w,[, is valid if and only if w; > O for all ;.

Fig. 3 suggests that validity is related to monotonicity of the contours when p = 2.
Regarding /, as a function of /,, we have

dal,  0H/dl,

dal,  0H/dl,’

which implies that valid indexes have contours that are monotone decreasing. The
converse is not quite true since both H and —H have the same contours; one has to choose
the sign so that H is increasing (instead of decreasing) toward the upper right-hand corner
of indicator space.

Validity is thus a mild restriction and still leaves a lot of freedom in choosing an index.
Any proposed choice has to be considered in light of the *‘tradeoffs’” or ‘‘substitutions’’
that are implied by the index’s contours. As an example, suppose we wish to compare
““size’” of people, using height (/) and weight (I,) as indicators. If we adopt a linear
index, H = w,l; + w,I,, then we need to choose numerical values for the coefficients w,
and w,. In part, these numerical values reflect our units of measurement; if we measure
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Figure 3. The top two diagrams depict valid contours while the bottom two diagrams depict invalid
contours.

weight in kilograms instead of pounds, the value of w, must change accordingly. Given the
units of measurement, the ratio w, /w, determines the tradeoff between height and weight
in assessing size (Fig. 4). The situation becomes even more complex with a nonlinear
index or when there are more than two indicators.

If one can argue persuasively for specific tradeoff value(s), then it makes a lot of sense
to use the corresponding index. Typically, though, an index is adopted on grounds of
mathematical convenience or simplicity (e.g., an average) with little effort to justify or
even discuss the implied tradeoffs. For this reason, we spend the rest of this paper
discussing the intrinsic ordering and its properties without combining indicators into an
index.

Slope determines tradeoff Tradeoff varies
between Height and Weight

Weight
Weight

Contour of
/

constant size

Height Height

Figure 4. The tradeoff or substitutability between height and weight in assessing the size of a
person. The tradeoff is constant with a linear index (left) but varies across indicator space with a non-
linear index (right).
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3. Partially ordered sets (posets)

A pre-order on a set S is a binary relation (written as <) on § that satisfies the following
two conditions:

® Reflexivity: a < a for all aeS.
o Transitivity: a < b and b < ¢ implies that a < c.

A pre-order is a partial order if the following holds:
o Antisymmetry: a < b and b < a implies that a = b.

A set S equipped with a partial order is called a partially ordered set or a poset. In the case
of a poset, we write a < b if a < b but a #b. We do not define the relation a < b for a pre-
order since there is ambiguity as to whether it should mean (a < b buta#b) or (a < b is
true but b < qa is false). For additional information on partially ordered sets, see Fishburn
(1985), Neggers and Kim (1998), and Trotter (1992).

Consider the intrinsic ordering on S that was defined in Section 2 (¢ < b means
I(a) <I;(b) for j = 1,2,...,p). Since this relation is clearly reflexive and transitive, the
intrinsic order is a pre-order. Unfortunately, it does not have to be a partial order; in fact,
antisymmetry fails whenever there exists a distinct pair of objects a,beS for which
I;(a) = I;(b) for all j. Such a pair of objects plot to the same point in indicator space and
can therefore be described as tied. The purpose of the antisymmetry condition is to rule out
such ties. Since antisymmetry plays a fundamental role, we assume until further notice that
antisymmetry holds true and that the intrinsic ordering is a partial order. We also assume
that the set S is finite—this is not an issue in most scientific applications.

We need one further relation in a poset. Object b is said to cover object a provided (i)
a < b and (ii) there is no object x for which a < x < b. Note that all the inequalities in this
definition are strict. We write a < b when b covers a.

3.1 Representations of posets
In this section, we describe three ways of portraying partially ordered sets:

e Hasse diagrams;
® zeta matrices; and
® cover matrices.

The Hasse diagram is a planar graph whose vertices are in one-to-one correspondence with
the objects in S and whose pattern of edges determines the order relation. Hasse diagrams
are excellent for visualization purposes—provided S is not unduly large. On the other
hand, the zeta matrix is better for analytic purposes—in fact many of the operations on
posets can be expressed by matrix multiplication. The cover matrix is a variant of the zeta
matrix. One of our goals in this section is to explain how the Hasse diagram can be
obtained formally from the zeta matrix.
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3.1.1 Hasse diagram

We describe how a Hasse diagram might be drawn on a sheet of paper. First, a point (or
vertex) is plotted for each object a€S so that beS is located higher on the paper
whenever a < b. Second, a and b are connected by a straight line segment—an edge—
whenever a is covered by b (notationally, when a < b). There is considerable freedom
in locating the vertices so that the Hasse diagram is far from unique. Considerable
research has gone into finding ‘‘pleasing’’ ways of drawing graphs, including Hasse
diagrams. See Di Battista er al. (1999) and Sugiyama (2002). Below, we give a
systematic way of removing some of the non-uniqueness from the Hasse diagram. Fig.
5 gives Hasse diagrams for four different posets. It is important to note that edges are
drawn to represent cover relationships only. In Poset A, for example, no edge joins d
and a even though d < a; this latter relationship is implied by the two covers d < ¢ and
¢ < a, each of which has an edge in the Hasse diagram. Also, observe that edges are
permitted to cross one another as in the diagram for Poset C. Crossings are usually
necessary if the Hasse diagram is to be drawn in a plane. See Neggers and Kim (1998)
for detailed discussion of Hasse diagrams.

Poset D is of particular interest since its Hasse diagram consists of two disjoint pieces
called connected components. In general, the connected components partition the poset
into disjoint subsets such that if x is an arbitrary member of one component and y is an
arbitrary member of a different component, then x and y are not comparable. Each of the
other three posets in Fig. 5 has only one connected component and is accordingly said to be
connected. We will later see how to determine the connected components of a poset from
its zeta matrix.

The Hasse diagrams of Fig. 5 have been drawn in levels from the top down. The Hasse
diagram of Poset B, for example, has three levels:

e Level I (top level): {a,b}

o Level 2: {c,d}
o Level 3: {e,f}

Poset C

Poset A Poset B Poset D

d

Figure 5. Hasse diagrams for four different posets. Poset D has a disconnected Hasse diagram with
two connected components {a, ¢, e} and {b,d}.
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Similarly, Poset C has four levels:

Level 1 (top level): {a,f}
Level 2: {b,e}

Level 3: {c,g,d}

Level 4: {h}

We can determine these levels very easily. A member x of a poset is maximal if the poset
contains no (strictly) larger elements, i.e., if there is no member y such that x < y. The top
level consists of the maximal elements. Level 2 is obtained by removing the elements in
the top level and determining the maximal elements of the resulting poset. Level 3 consists
of the maximal elements after Levels 1 and 2 have been removed from the poset. This
process is continued until all the levels have been determined. The Hasse diagram can then
be drawn by distributing the members of each level across an invisible horizontal line (in
some arbitrary order). Finally, an edge is drawn for each cover relationship in the poset.

The various levels can be characterized in the following way: if x is in Level £ + 1, then
there is an edge from x up to at least one vertex in Level k. Edges can skip levels (e.g., the
df edge in Poset C) but there is always at least one edge up to the next level (e.g., edge de in
Poset C).

The level in which a given element falls can be characterized directly. Element x is said
to have depth k if k is the largest integer for which there is a sequence,

1>y > > =X

Notice that, when & is maximal, each of the relationships y; > y; , | is a cover. It is now
easy to see that x is in Level £ if and only if x has depth equal to k. This is a useful fact, but
not very practical for actually determining the levels. (Sometimes zero-indexing is used so
that members of level 1 have depth 0.)

We always use the above top-down construction of the levels, but there is also a bottom-
up construction using the notion of minimal elements from a poset. For clarity, we use the
term co-level for each of the bottom-up levels. For example, Poset C has four co-levels:

Co-level 1 (bottom level): {c,h,d}
Co-level 2: {g}

Co-level 3: {b,e}

Co-level 4: {a, f}

Bottom-up versions of the Hasse diagrams for the posets of Fig. 5 are shown in Fig. 6. The
top-down and bottom-up versions are completely equivalent even though they can
sometimes give different visual impressions. In the top-down version, vertices ‘‘bubble
up’’ to the highest possible level, whereas they ‘‘sink’’ to the lowest possible level in the
bottom-up version.

A member of Co-level & is said to have height k. The height of x can be characterized, as
the largest integer k for which there is a sequence,

Y <y <o < pEX

The height of a poset is the number of its levels (or co-levels). The height of a poset also
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Poset C

Poset A Poset B Poset D

Figure 6. Bottom-up Hasse diagrams for the posets of Fig. 5. Hasse diagrams for Posets A and B are
unchanged.

equals the largest height of any of its members as well as the largest depth of any of its
members. If x is any member of poset S then

height(x) + depth(x) < height(S) + 1.
(This relationship is more elegant when zero-indexing is used.) In Poset C, we have
height(d) = 1, depth(d) =3, but height(S) = 4,

so this is an example in which the above inequality is strict. Equality holds in the above
inequality for all x if and only if the top-down and bottom-up diagrams have exactly the
same level sets.

3.1.2 Zeta matrix
The zeta matrix of a poset is a square matrix whose rows and whose columns are labeled
by the members of the poset. The entries of the zeta matrix are either O or 1 as follows:

Cap =1, if a < b; otherwise {,, = 0.

When we read across row a of the zeta matrix, the presence of a 1 means that the column
label is greater than or equal to a. Similarly, reading down column b, each occurrence of a
1 means that the row label is less than or equal to b. We have borrowed the term ‘‘zeta’’
matrix from Budach et al. (1988); other authors use different names for the same matrix.
As illustrations, the zeta matrix of Poset A in Fig. 5 is

a b ¢ d

a 1 000
{a=0b 1 1 0 0,
c 1 01 0

d 1 1 1 1

while that of Poset B is



208 Patil, Taillie

a b c d e f

a 1 00 0 00

b 010000
la=c 1 01 0 0 0.
d 010100

e 1 01 010

f 1 111 01

The entries in these matrices are most easily filled in column by column. For example,
consider column a of {,. A glance at the Hasse diagram (Fig. 5) shows that the list of
elements less than or equal to a is {a,b,c,d} so that column a has a 1 in every entry.
Similarly, the list of elements less than or equal to ¢ is {c,d} so that column ¢ has a | in
row ¢ and row d.

A useful fact to notice is that an element is maximal if and only if its row is zero except
for a single 1 in the diagonal position. Similarly, an element is minimal if and only if its
column is zero except for a single 1 in the diagonal position. Thus, for Poset B, we can see
directly from the zeta matrix that the maximal elements are a and b, while the minimal
elements are e and f.

When a poset is not connected, it is best to group together the members of each
connected component before writing down the row and column labels. With this
convention, the zeta matrix for Poset D assumes a block diagonal form:

{b

QU ' o Q

Suppose we have a square matrix { whose entries are either O or 1. What conditions must {
satisfy in order that it defines a partial order (on its row/column labels). Reflexivity means
that { must have 1s along its diagonal. Antisymmetry means that {,, and {, , cannot both
be 1 when a#b. Transitivity is a little more complicated, but it means that { ap =1
whenever there is an element x such that {, , and {, , are both equal to 1. This is the same as
saying that {,, is nonzero whenever ) (, . {,, is nonzero.

Now, let us digress briefly. If A is a matrix with nonnegative entries, we write #(A) for
the matrix that results when every positive entry of A is replaced with the value 1; £ (A) is
the logical form of A. If A and B are (conformable) matrices with nonnegative entries, we
write A o B for #(AB). Thus, A o B is obtained by computing the ordinary matrix product
and then replacing every entry in the result by its logical equivalent. Finally, we write A*B
for the component-wise product of two matrices of the same size.

With these notations in hand, we can now say that { satisfies the transitivity condition if
and only if { o { < {, where matrix comparisons are component-wise. In summary, an
n x n matrix { whose entries are either 0 or 1 defines a partial order if and only if the
following conditions are all satisfied:
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; and

A computer can check these conditions in a rather mechanical fashion. Note that condition
(2) implies condition (1).

It is sometimes more convenient to work with the matrix # that is obtained by putting the
diagonal entries of { equal to 0. Thus, { =1,,, +#. We can also characterize the
conditions for a partial order in terms of the matrix #. In fact, { =1, ,, + # defines a partial
order if and only if the following conditions are all satisfied:

1. 5 has all Os along its diagonal;
2. nxn=0,,,; and
3. nmon<n.

Once again, condition (2) implies condition (1).

3.1.3 Cover matrix

Like the zeta matrix, the cover matrix, y, of a poset is a square matrix whose rows and
whose columns are labeled by the members of the poset. The entries of the cover matrix
are either O or 1 as follows:

Vap = 1, if a<b; otherwise 7,, = 0.

Thus, nonzero entries of the cover matrix indicate the existence of a cover relationship. All
the diagonal entries of the cover matrix must vanish. According to the definition, @ < b
means that a < b and there is no x such that @ < x and x < b. But, this is the same as saying
that 7, = L but  n, . n,, = 0. Thus, the cover matrix can be computed from the zeta
matrix by the formula

The converse is also true: the zeta matrix can be computed from the cover matrix. To see
this, we need some more notation. If A is a square matrix with nonnegative entries and m is
a positive integer, we write

A" = P(A")=AoAoc---oA(m factors).
Now, n,, = 1 if and only if a < b if and only if there is a sequence
a:X0<-x1<"'<xm:b7 (2)

where 1 < m < n with n as the number of elements in the poset. The existence of such a
sequence is equivalent to requiring the a, b component of y" to be nonzero. Thus, 1, , = 1
if and only if y°” = 1 for some m with 1 < m < n. We can therefore conclude that

n=LOG+72 477+ ) =20+ +9 + -+,

and
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(= LMy +7+92 497 49707 )
:g(lnxn+’y+'y2+’y3+"'+ynil>'

A simpler expression results by using the relationship a <'b < a <b or a = b. The
indicator matrix for <’ is y =1, ,, + 7. By inserting enough equalities in the sequence
(2), we can say that {,, = 1 if and only if @ < b if and only if there is a sequence

a=xy<'x; <" <'x,, =b,
for some sufficiently large value of m (m > n — 1 is always large enough). But then
(=20("")=2%("), whenever m >n— L.

Notice that the required high power of 7 can be obtained by successively squaring

matrices:
7T

The logical operator £ ( +) can be applied at any point(s) along the way in order to avoid

numerical overflow in computing these matrix powers.

3.2 Obtaining the Hasse diagram from the zeta matrix

Starting from the zeta matrix of a poset, we want to extract the information needed to draw
the Hasse diagram. There are three steps involved in implementing this program:

e Step I: Determine if the poset is connected and, if it is disconnected, identify all the
connected components.

e Step 2: For each connected component, determine the top-down levels for its Hasse
diagram.

® Step 3: For each connected component, determine its cover matrix (which is needed
to know where to insert edges in the Hasse diagram).

Technically, it is not necessary to carry out the first step; but if you do not do so and if the
poset is disconnected, the connected components of the Hasse diagram (as it is drawn) tend
to interweave in such a way that they are not visually obvious.

We take up these three steps in reverse order. Step 3 is solved by Equation (1), which
shows how to calculate the cover matrix from the zeta matrix. The key ideas for Step 2
were summarized in Section 3.2 where we pointed out that the top-down levels are
obtained by successively identifying and removing maximal elements from the poset.
Furthermore, an element is maximal exactly when its row sum in the zeta matrix is unity.
Therefore, we augment the zeta matrix by additional columns on the right that will hold
the row sums. For Poset B, the augmented zeta matrix is
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a b cde f|Ll L2 L3

a |1 000001 0 O
b|lo 100001 0 o0
G=c | 1 01 0002 1 0
d|lo10100[|2 1 o0
el 101 010[3 2 1
flir 11 101(5 3 1

The row sums of (g are stored in the first augmentation column (headed with the label L1
for Level 1). The value 1 in each of the first two rows of augmentation column L1 indicates
that a and b are maximal elements. The next step would be to remove a and b from the
poset. We don’t want to actually effect this removal because it would be very inconvenient
in computer memory. Instead, we will adjust the row sums for the virtual removal of a and
b. This is accomplished by subtracting columns @ and b from column L1 and storing the
results in column L2. The two values of zero in column L2 serve to remind that a and b
have already been removed, and the two values of unity tell us that the next set of maximal
elements consists of ¢ and d. These two elements comprise Level 2. Finally, we subtract
columns ¢ and d from column L2 and store the results in column L3 to discover that Level
3 is the final level and that it consists of elements e and f. This algorithm for finding the
top-down levels is surprisingly simple and can be easily implemented on a computer. The
bottom-up levels can be found in much the same way except that the zeta matrix is
augmented with column sums.

3.2.1 Determining the connected components of a poset from its

zeta matrix

Thinking in terms of the Hasse diagram, two elements a and b are in the same connected
component if there is a path through the diagram from a to b; this path can go up or down
or both. The indicator matrix x for the connected components is defined by x,, = 1 if a
and b are in the same connected component; otherwise, i, , = 0. Note that x is symmetric
and has 1 s along the diagonal. We want to be able to calculate x from the zeta matrix. To
this end, we say that two elements x and y are comparable, written as x = y, if either x < y
or y < x; note that the first possibility corresponds to moving upward from x to y in the
Hasse diagram and the second possibility to moving downward from x to y. Clearly,
K, = 1 if and only if there is a finite sequence

a=xg=x=---=x, =b.
By deleting cycles from and/or inserting equalities into this sequence, we may suppose
that m = n — 1; then by inserting more equalities we can suppose that m takes any given
value bigger than n — 1. The indicator matrix, {, of the (symmetric) relation = is the
symmetrized form of the zeta matrix, namely,

(=2C+) =0+~ T

Examining the above sequence, we see that ,, , = 1 if and only if the a, b component of e
is nonzero whenever m > n — 1. Thus, we obtain that
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K — zom — g(Zm)7

whenever m > n — 1. As before, the needed matrix power {™ can be calculated by iterated
squares. Once «x is calculated, the connected components of the poset are obtained as
follows. Fix any element a of the poset and scan across row a of k. Whenever a value of 1
is encountered, it means that the corresponding column label is in the same connected
component as a; otherwise, the column label is in a different connected component. These
scans also tell us how to group and permute the elements of the poset in order to change the
zeta matrix into block diagonal form. See the discussion of {1, in Section 3.1.2. We can also
conclude that a poset is connected if and only if every entry of x equals unity.

The foregoing method for identifying connected components is easy to implement
(since it involves only matrix multiplication) and reasonably efficient provided there are
no more than a few hundred elements in the poset. More efficient (but more complicated)
methods are available. See Knuth (1973) or Cormen et al. (2001).

3.3 Example: The human-environment interface

UNEP has compiled data to compare and rank the countries of the world according to
environmental quality. Three indicator values are available for each of 106 countries. The
indicators are intended to assess three different components of the human-environment
interface (land, air, and water). Each indicator takes values between 0 and 1 with large
values representing ‘‘better’’ conditions. We refer to the original report (Singh and
Shansieve-Cohen, 2001) for data tabulations and details concerning construction of the
indicators. Patil et al. (2001) gives a statistical analysis and summarization of the data.

Table 1 shows the indicators for four European countries: Norway, Italy, Ireland, and
The Netherlands. We see that Norway has a higher indicator value than Italy for each of the
three indicators so that Norway should be ranked higher than Italy for any reasonable
ranking method (based on these indicators). In other words, Norway is intrinsically better
than Italy according to these data.

A different picture emerges when we compare Italy with Ireland. Italy is better with
respect to the Air and Land indicators but Ireland is better with respect to the Water
indicator. In this case, we would say that Italy and Ireland are not intrinsically comparable
with respect to the HE indicators. This means that different investigators might rank Italy
and Ireland differently, depending upon the relative weight or importance to be attached to
the different indicators. The human-environment index (HEI) proposed by Singh and

Table 1. Human-environment indicator values for four countries. The average of the three
indicators is the HEI. The last column gives the country’s rank when all 106 countries are
ranked according to the HEIL.

Country Air Water Land HEI HEI Rank
Norway 0.43 1.00 1.00 0.81 2
Ttaly 0.37 0.82 0.58 0.59 63
Ireland 0.30 0.99 0.22 0.50 84

The Netherlands 0.22 0.61 0.16 0.33 104
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Norway

Italy Ireland

Netherlands

Figure 7. Hasse diagram for the four countries of Table 1. Note that it has the same structure as
Poset A in Fig. 5.

Figure 9. Hasse diagram for the countries of Western Europe. The diagram is connected.

Shansieve-Cohen (2001) takes the average of the three indicator values and accordingly
gives equal weight to the indicators. According to HEI, Italy ranks higher than Ireland. A
different way of combing the three indicators might have Ireland outranking Italy. Fig. 7
gives the Hasse diagram for the four countries of Table 1. This diagram shows that Italy
and Ireland are not intrinsically comparable, while Norway is intrinsically better than each
of the three other countries. Figs. 8—10 show Hasse diagrams for all 106 countries, for
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ePeru eUruguay eVenezu. Bolivia

Nicarag.

Figure 10. Hasse diagram for Latin America. There are four connected components. Three of these
components are isolates; the remaining component contains 13 countries.

Western Europe, and for Latin America, respectively. The latter is of interest because it is
disconnected.

3.4 Example: Using landscape metrics to prioritize watersheds

The United States Environmental Protection Agency (USEPA, 1997) has developed a suite
of indicators to evaluate and rank environmental impact across 114 watersheds of the Mid-
Atlantic region of the eastern United States. This region runs from Pennsylvania in the
north down to Virginia in the south and from West Virginia eastward to the Atlantic
Ocean. The ‘‘watersheds’’ are actually hydrologic units with eight-digit hydrologic unit
codes (HUCs). The suite includes several dozen indicators, many of which are strongly
correlated. We have selected nine indicators for this Hasse analysis (Table 2). Indicator
directions were adjusted so that large indicator values correspond to heavy environmental
1impact.

Table 2. The nine indicators used in the Hasse diagram analysis. Indicator directions were
adjusted so that large indicator values correspond to heavy environmental impact.

Indicator Description

POPDENS 1990 population density

POPCHG 1970-1990 population change

RDDENS Road density

SO4DEP Sulfate deposition

RIPFOR Proportion forested stream-length

STRD Proportion stream-length with nearby roads
DAMS Impoundments per 1000 km stream-length
CROPSL Proportion of WS with crops on > 3% slope

INTALL Proportion of WS with interior forest habitat
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Figure 11. Hasse diagram for the 52 watersheds in the primary component. Labels are (arbitrary)
row numbers in the data matrix.

The Hasse diagram is highly disconnected with 60 connected components:

e 58 of the components are isolates.
e 1 component (secondary component) contains four watersheds.
e 1 component (primary component) contains 52 watersheds.

Over half of the watersheds are isolates showing the great difficulty of comparing
environmental impact across this region. The nine indicators present such a multi-faceted
view of environmental condition that comparison of the watersheds becomes problematic.
The Hasse diagram for the primary component is shown in Fig. 11. The diagram has four
levels and all but five watersheds fall into the top two levels. There is no logical connection
between connectivity in the Hasse diagram and geographic connectivity, but mapping the
watersheds reveals that the primary component tends to be geographically connected
(Fig. 12).

4. Rank-intervals: Quantifying rank ambiguity

The examples in Sections 3.3 and 3.4 emphasize that considerable ambiguity can occur in
attempting to rank the members of a poset S. We quantify this ambiguity by considering all
the possible rankings of S that are consistent with its partial order. Across all these
rankings, a given member a of S may be assigned several different numerical ranks. The
set of all possible ranks turns out to be an interval (of integers), which we call the rank-
interval of a.

Throughout, we follow the ‘‘man-in-the-street’” convention of assigning small
numerical ranks to top elements and large ranks to bottom elements. This is opposite to
the statistical convention of assigning rank 1 to the smallest value. Our convention has the
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Figure 12. Map of the Mid-Atlantic region showing the primary Hasse component (shaded).
Geographically, there are three connected components of which two are small and located near the
periphery of the region.

L — 1: Norway 1: Norway
2: Italy 2: Ireland
Italy Ireland
3: Ireland 3: Italy
Netherlands 4: Netherlands 4: Netherlands

Figure 13. Hasse diagrams (right) of the two possible rankings for the poset on the left.

consequence that the numerical ranks tend to be negatively correlated with the
indicators—which can lead to confusion if the convention is not kept in mind. We
occasionally use the phrase ‘‘our ranking convention’’ to remind the reader.

We first illustrate with the simple example of the four countries of Table 1, whose Hasse
diagram is repeated in Fig. 13. Any consistent ranking of the four countries must assign
rank 1 to Norway and rank 4 to The Netherlands. Ranks 2 and 3 can be assigned
indifferently to Italy and Ireland. This gives two possible rankings:

e Norway > Italy > Ireland > The Netherlands.
e Norway > Ireland > Italy > The Netherlands.

Hasse diagrams for these rankings appear in Fig. 13. The possible ranks assigned to each
of the four countries are given in the following tabulation:

Country Possible Ranks
Norway 1

Italy 2,3

Ireland 2,3

The Netherlands 4
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Figure 14. Rank-intervals for all 106 countries. The intervals (countries) are labeled by their
midpoints as shown along the horizontal axis. For each interval, the lower endpoint and the upper
endpoint are shown vertically. The length of each interval corresponds to the ambiguity inherent in
attempting to rank that country among all 106 countries.

For each country, the list of possible ranks is a set of consecutive integers, which we are
calling the rank-interval for that country. The length of the rank-interval measures the
ambiguity involved in attempting to rank that country against all other countries in the
poset. We have computed rank-intervals for all 106 countries. Results are shown visually
in Figs 14 and 15. Observe that the rank-intervals are generally quite wide indicating
substantial ambiguity in any attempt to rank the human-environment poset.

In Fig. 14, we have used the rank-interval midpoints to arrange the countries along the
horizontal axis. This suggests using the midpoints themselves as a kind of index to rank the
countries. More generally, for this purpose, we might use the upper endpoints, or the lower
endpoints, or any other ‘‘average’” computed across each rank interval. We will return to
this notion of a rank-index in Section 0 after we prove that each rank-interval is indeed an
interval.

4 1 Rank-intervals are intervals

A (consistent) ranking of poset S is essentially a listing or enumeration, a,,a,, ..., a,, of
its elements with the requirement that
a;>a;=1i<]j. (3)

The inequality sign on the left refers to the partial order in S while that on the right refers to
the ordering of real numbers—integers in this case. If condition (3) appears mysterious,
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Figure 15. Rank-intervals for all 106 countries, plotted against their HEI rank. The HEI rank
appears as the 45-degree line. The HEI tends to be optimistic (closer to the lower endpoint) for
better-ranked countries and pessimistic (closer to the upper endpoint) for poorer-ranked countries.

think of the listing a;,a,,...,a, as an integer-valued function, R, defined on S and
mapping element q; to its subscript i. Condition (3) requires R to be strictly anti-isotonic
(“‘anti’’ because of our ranking convention):

a; > a; = R(i) <R(j).
The listing a;, a,, . . . , a, is best visualized as a linear Hasse diagram with a, at the top and
a, at the bottom (Fig. 16).
In the poset literature, rankings as depicted by the Hasse diagram of Fig. 16 are called

linear extensions of the poset S. In general, if < and <* are partial orders on a set S, then
<* is an extension of < provided

a<b=a<"b, forallabeSs.

The partial order <* is linear if every pair of elements of S is comparable under <*, i.e., if
the Hasse diagram is linear as in Fig. 16.

Rank(a;) =i

Figure 16. A ranking of a poset determines a linear Hasse diagram. The numerical rank assigned to
each element is that element’s depth in the Hasse diagram.
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Each element a € S determines three subsets of S:

e The upper set U, contains all members of S that strictly exceed a
U,={xeS:x>aj}.

This set corresponds to the first quadrant of Fig. 1.
e The lower set L, contains all members of S that are strictly less than a

L,={xeS:x<a}.

This set corresponds to the third quadrant of Fig. 1.
e The ambiguous set A, contains all members of S that are not comparable with a

A, ={xeS :x <aand x > a are both false}.

This set corresponds to the union of the third and fourth quadrants of Fig. 1.

These three sets together with the singleton {a} comprise a partition of S,
S={a}UU, UL, UA,.
Using |A| to stand for the cardinality of set A, the above partitioning implies that
[Agl + Ul + 1 =n— L], (4)
where 7 is the cardinality of S. We are now ready to show that rank-intervals really are

intervals.

Theorem 1 Let a be a given member of a partially ordered set S. If a ranking of S assigns
rank r to a then

U +1<r <A+ U]+ 1. (5)
Equivalently,
‘Ua|+1 Sl’Sfl—lLal. (6)

Conversely, if a positive integer r satisfies condition (5) then there is a ranking of S that
assigns rank r to a. The ambiguity of a (i.e., the length of its rank-interval) equals |A,|.

Proof: Fix aranking of S and think of it as a linear Hasse diagram as in Fig. 16. Since the
ranking is consistent with the partial order on S and since all the members of U, exceed a
in that partial order, these members must all lie (strictly) above a in the linear Hasse
diagram. This implies that the depth of a in the linear Hasse diagram is at least |U,| + 1.
Similarly, all the members of L, must lie below « in the linear Hasse diagram implying that
the depth of a in that diagram cannot exceed n — |L,|. To prove the converse, we describe a
universal technique for constructing linear extensions of a (finite) poset. Select an arbitrary
maximal element of the poset, remove that element, and enter it as the first member of the
list. Continue by selecting an arbitrary maximal element from the remaining poset, remove
that element, and enter it as the second member of the list. Continue in this manner until
the poset is exhausted. The resulting list forms a linear extension of the original poset. Use
this technique to construct a linear extension x of U,, a linear extension y of A,, and a
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linear extension z of L,. Form a linear Hasse diagram by stacking x above y above z. We
claim that this gives a linear extension of S — {a}. To see this, note that y > x can never be
true if xe U, and y € A;; otherwise, we would have y > a (because x > a by the definition
of U, ), which would contradict the definition of A,. Thus, our linear Hasse diagram is
consistent with the order relations (in S) between members of U, and members of A,,.
Similarly, there is cross-consistency for (A,, L,) and for (U,,L,). Now we ask: Where can
the element a be inserted into the linear Hasse diagram to obtain a linear extension of S ?
Clearly, x must lie above and z must lie below that location. But the insertion can occur
anywhere within y, immediately above y, or immediately below y without violating any of
the order relationships in S. These choices cover the interval described by condition (6).
This completes the proof. O

One might think that it is necessary to examine all the linear extensions of S in order to
determine the rank-intervals. Fortunately, this is not the case since the bounds in (6) can be
calculated directly from the zeta matrix.

Theorem 2 Let a be a member of a poset S. The sum of the entries in row a of the zeta
matrix is |U,| + 1 and the sum of the entries in column a is |L,| + 1.

Proof: This follows directly from the definition of the zeta matrix. The extra summand
of 1 in these expressions is due to diagonal entries in the zeta matrix. O

4.2 Rank-indexes

By a rank-index, we mean a function, R(a, S), defined for every (finite) poset S and every
element @ in S and which is anti-isotonic with respect to 4, i.e.,

a>b=R(a,S)<R(b,S), whenevera,beS. (7)

The “‘anti’’ is unnatural and results from our ranking convention. The dependence on S
emphasizes that a rank-index is a general procedure that is available for all finite posets
and not just some particular poset. More importantly, if S is expanded to a larger poset S,
there is no requirement that R(a, S) and R(a, ") be the same. This permits the index value
assigned to element a to reflect the structure of the containing poset and not be an inherent
property of a by itself. The composite indexes discussed in Section 2 depend only on the
indicator values and do not change their values if more elements are added to the poset. In
this sense, rank-indexes are more general than composite indexes. In Section 4, we
suggested that rank-indexes could be constructed by calculating a generalized mean across
each rank interval. We want to show that the resulting indexes are indeed anti-isotonic as
specified by condition (7).

Lemma Let [A,B] and [A',B'] be non-degenerate intervals of real numbers such that
A < A" and B < B'. Then, the uniform distribution on [A, B] is stochastically smaller than
the uniform distribution on [A’, B']. The same conclusion holds for the discrete uniform
distribution provided A,B,A’,B' are integers.
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Proof: The result can be proved algebraically but we give a simple geometric argument.
Let F(x) and F’(x) be the cumulative distribution functions for the uniform distribution on
the intervals [A, B] and [A’, B], respectively. We need to show that F(x) > F’(x) for all x.
But, this is trivially true for x < A, so we restrict attention to A < x. The graph of F(x)
consists of a linear segment rising from (A, 0) to (B, 1) followed by a horizontal straight
line at height 1. The region below this graph and to the right of x = A is convex. Consider
the rising linear segment portion of the graph of F’(x). Its endpoints, (A’,0) and (B', 1), lie
within the above-mentioned convex region and so also for the straight line joining these
points. |

Corollary Let S be a poset and write A(a) and B(a) for the respective upper and lower
endpoints of the rank-interval of a€S. If a,d’ €S with d’ < a, then A(a) < A(d") and
B(a) < B(d'). In particular, a < a implies that the uniform distribution (discrete or
continuous) on the rank-interval of a is stochastically smaller than that of @ . (The order-
reversal is due to our ranking convention.)

Proof: This is obvious from the explicit expressions given in Equation (6) for the rank-
interval end-points. O

Let G(x) be areal-valued function defined over the positive real axis and suppose that G(x)
is either strictly increasing or strictly decreasing. The class of functions we particularly
have in mind is G(x) =" if p#0 and G(x) = In(x) if p = 0. Let u be a probability
measure defined across a bounded subinterval of the positive real-axis. The generalized
mean of u induced by G(x) is

Hg =G~ (E,[G())).

From well-known results on stochastic ordering (Lehmann, 1986), it follows that p; < ,u’G
whenever p is stochastically smaller than p'. Taking p as uniform across rank-intervals, we
can conclude that the rank-index induced by G(x) is anti-isotonic.

5. Rank-frequency distributions

In Section 4.2, we considered the uniform distribution across each rank-interval. This
ignores the fact that ranks near the ends of the interval are usually less frequent than ranks
near the middle of the interval. We can get a better assessment of rank-ambiguity if we
regard each linear extension as a ‘‘voter’’ or ‘‘judge’’ and count the number of times a
given rank is assigned to a given element a of the poset. This gives a unimodal (discrete)
frequency distribution across the rank-interval of a, which we call the rank-frequency
distribution of a.

We need some notation before proceeding. Throughout, S is a given poset and we let
Q = Qg stand for the collection of all linear extensions of S; the set Q is finite but generally
very large. Members of Q are denoted generically by the symbol w, and the rank which o
assigns to a€S is written as w(a). With these notations, the (unnormalized) rank-
frequency distribution of a €S is given by

fu(r) =#{weQ:w(a) =r}, r in the rank-interval of a, (8)
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and the corresponding cumulative rank-frequency distribution becomes

Fo(r) =fa(1) +£,(2) + -+ fu(r)
=#{weQ:w(a) <r}. 9)

From (8), it is clear that > f,(r) = |Q| is the same for every a €S. Thus, it matters little
whether one uses normalized or unnormalized rank-frequency distributions.

Theorem 3 [fa,d'eSanda > d, thenF,(r) > F,(r) for all positive integers r. In other
words, the rank-frequency distribution of a is stochastically smaller than that of ' . Again,
the order reversal is a result of our ranking convention.

Proof: Think of linear extensions @ as linear Hasse diagrams. The condition a > a’
implies that ¢’ appears lower in the diagram than does a. Recall that o (+) is the depth in the
linear Hasse diagram. The result is then clear from (9) since

{weQ:w(a) <r}2{weQ:w(d)<r}

We illustrate these ideas with Poset B in Fig. 5. We need to enumerate all the linear
extensions of the poset. The proof of Theorem 1 described an algorithm for doing this by
successively removing maximal elements from the poset. The algorithm can be laid out in
the form of a decision tree whose branches correspond to the choices of maximal elements
available at each stage. The decision tree for Poset B is shown in Fig. 17. In all, there are 16
possible linear extensions compared with the 6! = 720 permutations of the six objects in
the poset. Fix attention on element a. Examining the tree, we find that nine linear
extensions assign rank 1 to a. Therefore, f,(1) = 9. Similarly, f,(2) =5 and f,(3) =

Poset B

Linear extension decision tree
0.
(Hasse Diagram)

!
ded + e cI + X N X
1 I I ]
1o Lo
f8 phy bekye phuty
Figure 17. Hasse diagram of Poset B (left) and a decision tree enumerating all possible linear
extensions of the poset (right). Every downward path through the decision tree determines a linear
extension. Dashed links in the decision tree are not implied by the partial order and are called jumps.
If one tried to trace the linear extension in the original Hasse diagram, a ‘‘jump’’ would be required

at each dashed link. Note that there is a pure-jump linear extension (path a, b, ¢, d, e, f) in which
every link is a jump.
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Table 3. Rank-frequency table for the poset of Fig. 17. Each row gives the rank-frequency
distribution for the corresponding element of the poset.

Rank
Element 1 2 3 4 5 6 Totals
a 9 5 2 0 0 0 16
b 7 5 3 1 0 0 16
c 0 4 6 6 0 0 16
d 0 2 4 6 4 0 16
e 0 0 1 3 6 6 16
f 0 0 0 0 6 10 16
Totals 16 16 16 16 16 16
0.8 0.8
06 Element & 0.6 Element b
0.4 04
0.2 0.2
0 0
0.8 0.8
0.6 Element ¢ 0.6 Element d
0.4 0.4
0 0
0.8 0.8
0.6 Element e 0.6 Element {
0.4 0.4
0 0
1 2 3 4 5 6 1 . 3 4 5 6
Rank Rank

Figure 18. Histograms of the rank-frequency distributions for Poset B.

The rank-frequency distributions for the other members of the poset are given in
Table 3.

Note that each of the row sums is equal to 16—the total number of linear extensions.
Histograms of the rank-frequency distributions appear in Fig. 18. Notice that these
histograms are all unimodal and are often markedly non-uniform. It is part of the folklore
of poset theory that rank-frequency distributions are always unimodal—in fact log-
concave. We do not have a ready reference for this result, however. O
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6. Linearizing a poset: Cumulative rank-frequency
operator

This section explores the question of whether there is some canonical procedure for
ranking a poset without combining indicators. A hint in this direction is provided by
Theorem 3, which suggests that we use stochastic ordering of the rank frequency
distributions to define a new partial order on S. We call this new partial order as the CRF
ordering and symbolize it by >cgp. Specifically, if a, d’€S, then

a>cgpd & F,(r) > F,(r), forallr.

Theorem 3 now tells us that the CRF ordering is an extension of the original partial
ordering on S, i.e., that a > @’ = a >cgg @'. This procedure for transforming the original
partial order into the CRF order is called the CRF operator.

The CRF distributions for Poset B are plotted in Fig. 19. The curves are stacked one
above the other, giving a linear ordering of §:

a >cgp b >crr ¢ >crr d >crr € >cref-

It would be very exciting if the CRF ordering were always a linear extension of the original
partial order on S. Unfortunately, this is not the case—Poset B is quite unusual in this
respect. Fig. 20 displays a poset for which two iterations of the CRF operator are required
to produce a linear ordering. We conjecture that repeated application of the CRF operator
eventually terminates in a linear ordering. The process must eventually terminate and the
terminal ordering must be a fixed point of the CRF operator. Thus, our conjecture is that
linear orders are the only fixed points of the CRF operator. The CRF operator can also
produce ties, which reflect symmetries in the structure of the original poset (Fig. 20).

6.1 Non-uniform (weighed) distributions
The approach described above treats each linear extension as an equal ‘‘voter’’ in arriving
at a final ranking. It may sometimes be preferable to give more weight to certain linear

extensions. A simple example might weight each linear extension according to its number
of jumps (see Fig. 17). At first, it might seem more natural to weight according to the
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Figure 19. CREF distributions for Poset B.
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5

CRF”
Original Poset CRF{ i Original Poset
(Hasse Diagram) (Hasse Diagram) CRF
f F a a
e e
c b, ¢ (tied)
b b
d d d d
C g
h c

h

Figure 20. (Left) Two iterations of the CRF operator are required to transform this poset into a
linear ordering. (Right) A poset for which the CRF operator produces ties in the final linear ordering.

number of non-jumps since linear extensions with few jumps replicate large portions of the
original poset. However, this also has the result that maximal elements from the original
poset can appear rather low in the linear extension—consider element b in the first linear
extension of the decision tree in Fig. 17. Thus, weighting according to the number of
jumps gives preference to linear extensions for which elements that are high in the original
Hasse diagram also tend to be high in the linear extension. Interesting weights can also be
constructed using the original suite of indicators. For example, we might scan a linear
extension and weight in proportion to the number of links that are consistent with an
indicator that is deemed to be particularly important.

In general, suppose we have a nonnegative weight w(w) defined for each linear
extension o € Q. This determines a probability distribution,

w(®)
Zw’ eQ W(CO/) ,

over the set Q of linear extensions. From this we obtain a (normalized) rank frequency
distribution for each element a€S as follows:

fu(r) =Pr{weQ|w(a) =r}

Pr(w) = (10)

We can compute these weighted rank-frequency distributions in much the same way as was
done for the unweighted case in the Table 3. We do need an enumeration of the linear exten-
sions. Then, for each linear extension w, we add the weight w(w) to each cell (g, r) in the
table for which w(a) = r. Note that w(w) will be added to exactly one cell in each row of the
table and to exactly on cell in each column of the table. Just as in Table 3, then, the row sums
and the column sums are all equal to one another and their common value is the total weight

> w(w). (11)

weQ

6.2 Markov chain Monte Carlo (MCMC) sampling

Except for very small posets, it is computationally impossible to enumerate all possible
linear extensions. Their number is simply too large. For instance, an earlier UNEP human
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environment poset had 141 members but the number of linear extensions exceeded
8 x 10'%5_ As an alternative to full enumeration, one can use MCMC methods to estimate
the (row-normalized) rank-frequency table. This will entail sampling from the uniform
distribution on the set Q of all linear extensions of a given poset. If weQ is the current
linear extension, then transition to the next ( proposed) linear extension is accomplished by
randomly selecting a jump (see Fig. 17) from w and interchanging its two endpoints.
Computer implementation of this procedure is planned for the near future. See Aldous
(1987), Brightwell and Winkler (1991), and Haggstrom (2002) for elaboration of MCMC
methods applied to discrete data structures.

MCMC methods can also be used to estimate rank-frequency distributions when non-
uniform weights are employed. We need to sample from Q according to the probability
distribution given in Equation (10). An advantage of MCMC in this context is that it not
necessary to know the normalizer (11); MCMC only requires efficient computation of
w(w) for any given .

6.3 Handling ties

If two (or more) members of S have exactly the same set of indicator values, then they are
represented by the same point in indicator space and are said to be tied. In case of ties, the
anti-symmetry condition fails and the intrinsic ordering of hotspots is a pre-order instead
of a partial order. This is a common occurrence in the mathematical poset literature, and
the standard solution is to identify all members of a tied set, which produces a partial order
on the quotient space. However, in applications, each member of S has its own unique
identity and it is unacceptable to identify different objects simply because they have the
same set of indicator values. Our solution starts with the quotient space and its Hasse
diagram, just as in the mathematical literature. But, we also attach to each node in the
Hasse diagram the integer count of the number of hotspots represented by that node. The
count is called the node’s ramification index. When there are no ties, each ramification
index equals unity. It is essential that the ramification index values be taken into account in
doing the MCMC sampling and in compiling the rank-frequency table. Drawing an
analogy with football rankings, if two teams are tied for number one then they collectively
consume two ranks and the next team receives rank 3. Note that the CRF operator can
produce ties even when there are no ties according to the original suite of indicators (Fig.
20). Accordingly, the CRF methodology must address the tie-handling issue.

6.4 Measurement and estimation error

To put this issue into perspective, suppose there are two indicators and we wish to compare
elements a and b. Also, suppose [;(a) =10 and I,(b) = 18, while I,(a) =5 and
I,(b) = 4.99. Then, b is better according to /;, whereas a is better according to /,. Strict
application of the intrinsic ordering says that @ and b are not comparable. Nonetheless,
their 7,-values are so close (possibly differing only by measurement error) that one might
be inclined to order the hotspots according to just /;. A similar issue arises in applying the
CRF operator where the columns of CRF are the effective indicators. When MCMC is
used, the rank-frequencies must be estimated and are therefore subject to estimation error.
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In making comparisons, should raw estimates be used or should one use only statistically
significant differences? At this stage, we have no prescription for settling these issues but
we plan to explore the multiple comparison and fuzzy comparison literature to develop
appropriate procedures. The methods of data envelopment analysis and stochastic frontier
analysis may also be helpful in this regard; see Charnes et al. (1994), Filar and Ross
(2001), and Kumbhakar and Knox Lovell (2002).
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