
Learning Bayesian Networks From Dependency Networks: A
Preliminary Study

Geoff Hulten

University of Washington
Seattle, WA

David Maxwell Chickering

Microsoft Research
Redmond, WA

David Heckerman

Microsoft Research
Redmond, WA

Abstract

In this paper we describe how to learn
Bayesian networks from a summary of com-
plete data in the form of a dependency net-

work rather than from data directly. This
method allows us to gain the advantages
of both representations: scalable algorithms
for learning dependency networks and conve-
nient inference with Bayesian networks. Our
approach is to use a dependency network as
an “oracle” for the statistics needed to learn
a Bayesian network. We show that the gen-
eral problem is NP-hard and develop a greedy
search algorithm. We conduct a prelimi-
nary experimental evaluation and find that
the prediction accuracy of the Bayesian net-
works constructed from our algorithm almost
equals that of Bayesian networks learned di-
rectly from the data.

1 Introduction

In this paper we describe how to learn Bayesian net-
works from a summary of data in the form of a
dependency network rather than from data directly.
The data is assumed to be complete—that is, contain
no missing values. Dependency networks, described
by Heckerman, Chickering, Meek, Rounthwaite and
Kadie (2000), are graphical models that are similar
to Bayesian networks. They differ in that their graph-
ical structures are not required to be acyclic. Each
node in a dependency network contains a conditional
probability given its parents in the network, and a de-
pendency network defines a joint probability distribu-
tion over the corresponding domain by means of Gibbs
sampling (as described by Heckerman et al., 2000).

An advantage of dependency networks is that—using
the approximate method described in Heckerman et

al. (2000)—they are generally easier to learn from com-
plete data than are Bayesian networks. Namely, we
can learn the conditional probability distribution for
each node in isolation, using any standard classifica-
tion or regression algorithm (possibly in conjunction
with explicit feature selection) to select parents for a
node and populate the associated parameter values.
Furthermore, there are many classification/regression
learning algorithms that have been scaled up for large
data sets. These algorithms can easily be applied to
produce scalable algorithms for learning dependency
networks with the associated local models. Notice that
it is usually not obvious how these scalable algorithms
can be modified to respect the graphical constraints
imposed by Bayesian networks. There has been some
work on scaling up learning Bayesian networks for the
case when local models contain complete conditional
probability tables. These include the Sparse Can-
didate Algorithm by Friedman, Nachman, and Peér
(1999) and VFBN by Hulten and Domingos (2002).
The scalability of these algorithms is hampered by the
fact that the size of a conditional probability table
grows exponentially with the number of parents of a
node. The K2 search algorithm for learning a Bayesian
network (Cooper and Herskovits, 1992) is scalable, but
requires a total ordering on variables as input.

Bayesian networks have some advantages over depen-
dency networks: the factored form of their joint distri-
bution leads to efficient inference algorithms, whereas
the Gibbs sampling that is often needed to extract
probabilities of interest from a dependency network is
slow. Sometimes, when the Bayesian network struc-
tures are reasonably simple, algorithms for exact in-
ference can be applied. For more complex structures,
there are many well-established approximate inference
techniques such as loopy propagation (e.g. Murphy,
Weiss, and Jordan, 1999) and variational methods (e.g.
Jordan, Ghahramani, and Jaakola, 1999).

Learning Bayesian networks from dependency net-
works provides the advantages of both representations.

We learn a dependency network from (complete) data
using a well-known and scalable algorithm, and then
construct a Bayesian network for more convenient in-
ference. Once the dependency network is available, the
computational complexity of the algorithm that pro-
duces the Bayesian network is independent of the size
of the original data set.

There are a number of different approaches that can
be used to construct a Bayesian network from a depen-
dency network. The core idea they share is that the
dependency network is used as an “oracle” for the suf-
ficient statistics needed to learn a Bayesian network.
When a needed statistic is explicitly encoded in the
dependency network, it is simply returned. When a
needed statistic is not explicitly encoded in the de-
pendency network it can be generated via Gibbs sam-
pling, approximated, or ignored. In this preliminary
study, we describe an algorithm that considers only
Bayesian network structures whose corresponding suf-
ficient statistics are explicitly encoded in the con-
ditional probability distributions of the dependency
network. This approach produces Bayesian network
structures that are acyclic sub-graphs of the depen-
dency networks.

One drawback of any approach that constructs a
Bayesian network from a dependency network is that
any relation in the data that is not represented in the
dependency network has little chance of being present
in the Bayesian network learned from it. An alternate
approach is to learn a model from sufficient statistics
encoded in a Dynamic AD-tree (Komarek and Moore,
2000). This representation contains enough informa-
tion to calculate exact values for all of the joint statis-
tics, and it has been used to learn Bayesian networks.
Nonetheless, AD-trees typically use substantially more
memory than dependency networks and AD-trees are
often forced to perform extra data scans at query time
to save memory.

This paper is organized as follows. In Section 2, we de-
scribe our notation and present relevant background
material. In Section 3, we argue that our learning
problem is NP-hard, present a greedy approach—the
DN2BN algorithm–and provide a detailed description
of DN2BN for the special case when all conditional
probability distributions are decision trees. In Section
4, we provide experimental results showing that the
Bayesian networks learned using DN2BN are compet-
itive (in terms of prediction accuracy) with Bayesian
networks learned directly from data. Finally, in Sec-
tion 5, we conclude with a summary and discussion of
future work.

2 Background

Throughout the paper, we use the following syntacti-
cal conventions. We denote a variable by an upper-
case token (e.g. A, Bi, Y, Θ) and a state or value of
that variable by the same token in lower case (e.g.
a, bi, y, θ). We denote sets with bold-face capitalized
tokens (e.g. A,Pai) and corresponding sets of values
by bold-face lower case tokens (e.g. a,pai). Finally,
we use calligraphic tokens (e.g. G,B) to denote statis-
tical models and graphs.

Consider a domain of n variables X = {X1, . . . , Xn}.
Dependency networks and Bayesian networks both (1)
encode assertions about the dependencies and inde-
pendencies that hold among the variables in X and
(2) contain local probability distributions that char-
acterize a joint probability distribution over X. More
specifically, both are directed graphical models (S,Θ)
where S is the structure of the model and Θ its corre-
sponding set of parameters. The structure S contains
both (1) a directed graph, whose nodes are in one-
to-one correspondence with the variables in X, and
whose (lack of) edges represent the global (indepen-
dence) constraints among those variables and (2) any
local constraints that exist in the conditional distri-
butions corresponding to each variable (e.g. the con-
straints imposed by the structure of a decision-tree).
The parameters Θ, combined with the global and lo-
cal constraints, define a joint probability distribution
p(X). We use Xi to denote both the variable and the
corresponding node in a graphical model. We use Pai

to denote the parents of Xi in a graphical model.

A Bayesian network B = (SB,ΘB) is a directed graph-
ical model for which the associated directed graph is
acyclic. The model encodes the conditional indepen-
dence constraints that each node is independent of its
non-descendants given its parents. The result of these
constraints is that the joint distribution over X can be
factored as follows:

p(x1, ..., xn|SB) =

n∏

i=1

p(xi|pai,ΘB) (1)

where pai is the set of values for Pai within x1, ..., xn.

A dependency network D = (SD,ΘD) is similar to
a Bayesian network, except that the associated di-
rected graph is not necessarily acyclic. The model
encodes the conditional independence constraints that
each node is independent of all other nodes in X given
its parents. The model stores, for each node Xi, the
probability distribution

p(Xi|Pai,ΘB) = p(Xi|X \ Xi,ΘB) (2)

As shown by Heckerman et al. (2000), the set of all
conditional probability distributions defined by Equa-

tion 2 collectively define a joint probability distribu-
tion p(X|SD,ΘD) by means of Gibbs sampling.

There are many well-known algorithms for learning
Bayesian networks from data. Buntine (1996) provides
a good review of the literature, Heckerman (1995)
presents a tutorial on the topic, and Jordan (1998)
contains some introductory articles and more recent
advances. In one popular class of algorithms, the so
called search-and-score algorithms, a search algorithm
is used in conjunction with a scoring criterion to eval-
uate the fit of candidate models to the data. Once a
good structure is identified, the corresponding param-
eters are estimated in a straightforward manner. The
methods described in this paper are related to this
class of algorithms.

The scoring criterion and parameter estimates of
search-and-score algorithms are based on sufficient
statistics of the data. The sufficient statistics of the

data for a given model are a summary of the data that
is sufficient to both compute the score and estimate
the parameters of a model. For example, if all vari-
ables in X are discrete and the graph is empty, then
the sufficient statistics for the model are the marginal
counts of each variable of Xi.

An assumption made by many Bayesian network learn-
ing algorithms is that the parameters associated with
each variable are mutually independent. Given this as-
sumption and a complete data set, the parameters re-
main mutually independent a posteriori, and the struc-
ture score can be written as the sum of independent
sub-scores, one for each conditional distribution in the
model. In addition, the sufficient statistics can be de-
composed into sufficient statistics for individual con-
ditional probability distributions. For example, when
learning a Bayesian network for discrete variables, the
counts needed to evaluate the entire network can be
written as the union of the counts needed to estimate
each conditional distribution. In general, when these
properties hold, the scoring criterion is said to be de-

composable.

Heckerman et al. (2000) describe an approach for
learning dependency networks from complete data.
The basic idea behind their approach is to learn each
conditional distribution associated with the depen-
dency network separately. That is, p(Xi|X \ Xi) for
each Xi is learned independently using some prob-
abilistic classification/regression model. An impor-
tant issue with this approach is the consistency of the
learned distributions. The set of conditional distribu-
tions associated with a dependency network is said to
be consistent if there exists a joint distribution for X

from which each conditional can be obtained via the
rules of probability. It is not difficult to see that the

independent learning of conditional distributions may
lead to an inconsistent dependency network. For ex-
ample, a learned decision tree that predicts Y may
not split on X , whereas a learned decision tree for X

may split on Y . (These inconsistencies result for sev-
eral reasons including small data effects and the fact
that the independent learning of conditional distribu-
tions includes the inconsistent assumption that the pa-
rameters of each local distribution are mutually inde-
pendent.) Nonetheless, Heckerman et al. (2000) argue
that, for reasonably large data sets, the local distribu-
tions will be “almost consistent” (described formally
in their paper), because each is learned from the same
set of joint data.

This heuristic method for learning dependency net-
works is the key to our approach for constructing a
Bayesian network from a dependency network. Be-
cause each conditional distribution in the dependency
network is learned separately, we can associate with
each distribution a set of sufficient statistics that may
then be applied to the construction of the Bayesian
network using a decomposable scoring criterion. Note
that the space needed to store sufficient statistics for
each conditional distribution is typically on the same
order as the space needed to store the parameter values
themselves.

In the next section, we will present the details of
a learning algorithm under the assumption that the
conditional distributions in both dependency networks
and Bayesian networks are represented with decision
trees. A decision tree T i is a tree-structured local
model that represents the conditional probability for
a singleton target variable Xi given its parents Pai.
Each internal node in the tree contains a test on one
of the parent variables and has one child for each possi-
ble outcome of the test. Corresponding to each leaf is a
probability distribution over Xi that is specified by the
parameters Θ of the Bayesian network or dependency
network. Every path from the root of a decision tree to
a leaf passes through some number of internal nodes.
Combining these node tests selects a subspace of the
space defined by the values of Pai, and each leaf mod-
els the distribution for Xi in one of these subspaces.
Notice that these subspaces are non-overlapping and
that their union is the space spanned by the values of
Pai.

Throughout our remaining discussion, we assume that
the parameters associated with each leaf of a decision
tree are mutually independent. This assumption will
be self inconsistent for dependency networks (as dis-
cussed), but will produce additional decomposition of
the model scores.

3 Learning Bayesian Networks From

Dependency Networks

There are many ways to use the information in a de-
pendency network to learn a Bayesian network. In
this section, we will restrict ourselves to ones that con-
sider only Bayesian networks whose sufficient statistics
are explicitly represented in the dependency network.
This restriction limits the Bayesian network structures
that we can score, and thus limits the search space
used for learning. The set of Bayesian networks that
can be scored can be determined by examining the
conditional probability distributions used by the de-
pendency network. For example, when all variables in
the domain are discrete and the conditional distribu-
tions are unconstrained multinomials, we can evalu-
ate any Bayesian network that is an acyclic sub-graph
of the dependency network. (The sufficient statistics
for p(Xi|Pai) can be derived easily from the sufficient
statistics for p(Xi|Pa′

i) if Pai ⊆ Pa′

i). When the con-
ditional distribution has local structure (e.g., a deci-
sion tree), additional restrictions apply.

The resulting set of scored Bayesian networks can be
explored in many ways. In Section 3.1, we argue that
finding the optimal one is NP-hard, and consequently
it is appropriate to apply heuristic search techniques.
Two obvious search strategies are to start from an
empty Bayesian network and add edges from the de-
pendency network until further additions create cycles,
and to start from the dependency network and remove
edges until there are no cycles. In this paper, as de-
scribed in Section 3.2, we take the latter approach.

3.1 Complexity Result

In this section, we provide a simple reduction from a
known NP-hard problem to the decision problem cor-
responding to learning a Bayesian network from a de-
pendency network. Following is the decision problem
corresponding to our learning task:

DNET-TO-BNET

INSTANCE: Dependency network D = (SD , ΘD) and
scoring criterion S(SB,D) that evaluates Bayesian-
network structures.
QUESTION: Does there exist a Bayesian network
structure SB such that S(SB,D) ≥ s?

The reduction is from the following decision problem
that was proved to be NP-hard by Karp (1972):

FEEDBACK ARC SET

INSTANCE: Directed graph G = (V,A), positive in-
teger k ≤ |A|.
QUESTION: Does there exist a subset A′ ⊆ A with
|A′| ≤ k such that A′ contains at least one arc from

every directed cycle in G?

Lemma 1 DNET-TO-BNET is NP-Hard.

Proof: We prove the result by providing a polynomial
reduction from FEEDBACK ARC SET. The depen-
dency network D is defined such that (1) the directed
graph is precisely G in the instance of FEEDBACK
ARC SET, and (2) the set of parameters and suffi-
cient statistics are empty. The scoring criterion for
the instance of DNET-TO-BNET returns zero if SB

contains any edges not in G, and otherwise simply re-
turns the number of edges in SB. s is set to the number
of edges in G minus the value k from the instance of
FEEDBACK ARC SET.

Clearly the reduction is polynomial. We now show
that there exists a Bayesian network structure with
score ≥ s if and only if there is arc set of size ≤ k.
Given a valid solution A′ from FEEDBACK ARC
SET, we create a (necessarily acyclic) Bayesian net-
work structure S by removing all of these edges from
G. Clearly S is a subgraph of G with at least s edges,
resulting in a score greater than or equal to s. Given
a Bayesian network structure S with score ≥ s, we de-
fine A′ to be the set of arcs in the dependency-network
graph that are not in S. By definition of the scoring
function, we know that there are at most k edges in
A′; furthermore, because S is acyclic, every directed
cycle in the dependency-network graph G must contain
at least one edge in A′. 2

For the proof of Lemma 1, we took advantage of the
somewhat arbitrary definition of the scoring criterion
S. In practice, the values that most real-world crite-
ria assign to network structures are going to be con-
strained by the sufficient statistics in the dependency
network, which in turn are determined by some data
set. Although we have no proof, we conjecture that
when DNET-TO-BNET is restricted to such real-word
criteria, the problem remains hard.

3.2 The DN2BN Algorithm

Given the result from the previous section, it is appro-
priate to apply a heuristic search algorithm to identify
a high-scoring Bayesian network structure from the
dependency network. In this section, we describe a
greedy implementation of the learning algorithm for
the special case when the conditional distributions are
decision trees.

Although there are numerous greedy approaches that
could be applied to our problem, in this preliminary
study we consider a simple algorithm that repeatedly
removes edges from the dependency network (along
with the associated splits from the decision trees) until
the resulting graph is acyclic. That is, our approach

Table 1: Pseudo-code for DN2BN.

Input: A dependency network D = (SD, ΘD)
Output: A Bayesian-network structure SB

Let SB = SD

(Let T i denote the decision tree corresponding to
node Xi in SB)

While there are cycles in SB

Let Ecycle be the set of edges in cycles in SB

Find the cost of removing each edge in Ecycle

Let Xi → Xj have lowest removal cost in Ecycle

Remove Xi → Xj from SB

Update T j by pruning splits on Xi

Let Par′(j) be the set of parents of Xj

that do not have splits in the new T j

For every Xk ∈ Par′(j)
remove Xk → Xj from SB

Return SB

simplifies the dependency network until the first valid
Bayesian network structure is encountered, and that
first structure is returned by the algorithm.

We call our algorithm DN2BN. DN2BN takes as input
a dependency network D and outputs a Bayesian net-
work. In order to remove the edge Xi → Xj , the deci-
sion tree T j must be modified so that none of its inter-
nal nodes test Xi. This modification will presumably
reduce the quality of T j—measured by the component
of the decomposable scoring function local to Xj—by
forcing it to take advantage of less information. The
goal of DN2BN is to remove the minimum-cost set of
edges from SD so that it no longer contains cycles.

Table 1 contains pseudo-code for DN2BN. Note that
the structures of the input dependency network and
the output Bayesian network specify the graphical
structure and the structure of the decision trees (but
not their parameters). The algorithm identifies all
edges that are involved in cycles in SB. Removing
edges that are not involved in cycles makes no sense.
There is a cost (it reduces the quality of a node’s de-
cision tree) but there is no benefit (it does not make
progress towards removing cycles from SB).

The cost of removing each cycle edge is calculated in
the following manner. When Xi → Xj is removed from
SB, T j must be modified so that none of its internal
nodes test the value of Xi. DN2BN accomplishes this
by identifying subtrees of T j that are rooted by nodes
splitting on Xi, and replacing all such subtrees with
leaves. The sufficient statistics for the new leaves are

computed by combining the sufficient statistics corre-
sponding to the leaves of their deleted subtrees. Given
the decomposable scoring criterion used in Heckerman
et al.’s (2000) heuristic learning method, we can evalu-
ate each edge deletion by taking the difference in local
score between the new and old trees.

After scoring all of the edges, DN2BN selects the edge
with lowest cost, removes it from SB, and updates the
appropriate decision tree. Notice that the new tree
may be substantially smaller than the old one. In the
worst case, when the edge Xi → Xj is removed and the
root node of the original T j tests Xi, the resulting tree
will be a single leaf. In this and many other cases, some
variables from Paj—other than the explicitly deleted
Xi—may no longer participate in splits in T j . The
edges associated with these pruned parents are also
removed from SB.

A simple extension to this basic algorithm takes ad-
vantage of an easily computed property. When Xi

is in Paj and Xj is in Pai, these two nodes form a
cycle of length two, and either Xi → Xj or Xj → Xi

must be removed in order to make SB acyclic. DN2BN
greedily breaks all of these length-two cycles before re-
moving any other edges. This heuristic simplifies the
search problem and often prevents DN2BN from re-
moving spurious edges. (Consider that when the cost
of breaking a length-two cycle is high, many other
edges may be removed before the length two cycle is
broken.) In fact, in our experiments we found that
breaking the length-two cycles (and removing pruned
parents) sometimes removed all cycles from the depen-
dency network.

DN2BN repeats these steps until SB is acyclic and then
terminates. Notice that DN2BN removes one edge in
each iteration and will require O(c) removals to break
all cycles, where c is the number of edges involved in
cycles in the input graph. We will now examine the
complexity of the operations required in each of these
iterations. The first operation in each iteration finds
the set of edges involved in cycles in SB. This oper-
ation can be done by finding the strongly connected
components (SCCs) of the graph. It is well known
(see Cormen, Leiserson, and Rivest, 1990) that this
can be accomplished in O(n + e) time. Notice, how-
ever, that this can be accelerated in iterations after
the first by maintaining an auxiliary graph contain-
ing just the cycle-edges and information about each
node’s SCC membership. Then, when an edge is re-
moved, the SCC algorithm need only be run on the
SCC that contains the removed edge. Thus, maintain-
ing Ecycle takes O(nmax +cmax) time, where nmax and
cmax are the number of nodes and cycle edges (respec-
tively) in the largest SCC. The second operation in
each iteration scores the cost of removing each cycle

edge. Scoring an edge removal requires time propor-
tional to the number of leaves in the subtrees it prunes.
This scoring can be accelerated using the decompos-
ability of our scoring metric. In particular, only the
scores of edges pointing to Xj must be updated af-
ter removing edge Xi → Xj. The number of such af-
fected edges is bounded by the number of nodes in Xj ’s
SCC. Therefore, the time for this step is bounded by
O(nmax ∗ lmax), where lmax is the number of leaves in
the largest decision tree. These two operations dom-
inate the time of the remainder of DN2BN’s opera-
tions; and the total time complexity is bounded by
O(c ∗ (cmax + nmax ∗ lmax)). Notice that this is inde-
pendent of the size of available training data. Exist-
ing scalable decision tree induction algorithms, such at
VFDT by Domingos and Hulten (2000), can be used
to learn dependency networks in time that is inde-
pendent of the size of available training data. Thus,
Bayesian networks with decision trees for conditional
distributions can be learned in a scalable manner.

4 Experimental Evaluation

In this section, we compare the predictive accuracy
and learning times of Bayesian networks built with
DN2BN with those learned directly from data. The
following describes the four (real) data sets used in our
comparison. Table 2 provides additional properties of
these data sets.

1. Media Metrix

The Media Metrix data set contains demographic
and internet-use data for individuals during the
month of January 1997.

2. Nielsen

The Nielsen data set contains demographic data
and data about television-watching behavior dur-
ing a two-week period in 1995. The data was
made available courtesy of Nielsen Media Re-
search. The television-watching data records
whether or not each user watched five or more
minutes of network TV shows aired during the
given time period.

3. EachMovie

The EachMovie data set consists of viewer ratings
on movies and was collected by the collaborative
filtering site deployed by Digital Equipment Re-
search Center during an 18-month period begin-
ning in 1995. The rating is a discrete variable
that is either missing or is provided as an inte-
ger from one to five. (For more information see
http://www.research.digital.com/SRC/EachMovie/.)

Table 2: Number of variables (n) and number of sam-
ples for the evaluation data sets.

Data Set n # Samples
Media Metrix 37 4808
Nielsen 407 3550
EachMovie 1625 72916
Census 37 299285

Table 3: The log-score of the produced model on the
test set. Empty is the score of the marginal model.

Data Set BNET DN2BN Empty
Media Metrix -0.7620 -0.7934 -1.1894
Nielsen -0.1038 -0.1055 -0.1265
EachMovie -0.0862 -0.0906 -0.1216
Census -1.3355 -1.4471 -1.8633

4. Census

The Census data set, available from the UC Irvine
KDD Archive, is a one percent sample of the per-
son records from the Public Use Microdata Sam-
ples of the 1990 US Census.

Note that the EachMovie and Census data sets contain
missing entries. The data was completed by making
“missing” an explicit state for each variable. In addi-
tion, all of the data sets except for EachMovie contain
both discrete and continuous variables.

Thirty percent of each data set was randomly re-
served for testing. We learned a dependency network
and a Bayesian network from the remaining data—
where the learned conditional distributions in both
models were decision trees—using the algorithms de-
scribed in Heckerman et al. (2000). In particular, we
used a Bayesian scoring criterion in conjunction with
a forward greedy search. The leaves of the decision
trees contained either multinomial distributions (for
discrete target variables) or univariate-Gaussian dis-
tributions (for continuous targets). We refer to the
dependency-network algorithm as DNET and to the
Bayesian-network algorithm as BNET below. We then
converted the dependency network into a Bayesian
network using DN2BN. The quality of the resulting
models were measured on the reserved test data by
calculating the average over cases of

log p(test case)

n

(recall that n is the number of variables in the domain).

The same Bayesian criterion was used for DNET,
BNET, and DN2BN. We used a structure prior of

Table 5: Details collected from the run of DN2BN. l2 edges remvd is the number of edges removed to break
length two cycles. other edges remvd is the number of edges removed after breaking length two cycles. parents

pruned is the number of edges removed because some other removal pruned their effect from a decision tree. trees

pruned is the number of decision trees that were pruned down to a single leaf. leaves remvd is the difference in
the number of leaves between input dependency network and output Bayesian network.

Data Set l2 edges remvd other edges remvd pruned parents trees pruned leaves remvd
Media Metrix 43 7 14 7 131
Nielsen 260 0 58 95 355
EachMovie 1345 9 716 102 3261
Census 325 14 104 156 1806

Table 6: Run times of the algorithms in minutes. DNET+DN2BN is the sum of the time needed by DNET and
DN2BN.

Data Set BNET DNET DN2BN DNET+DN2BN
Media Metrix < 1 < 1 < 1 < 1
Nielsen < 1 < 1 < 1 < 1
EachMovie 97 48 2 50
Census 10 3 1 4

Table 4: Number of edges in the graphical structure.

Data Set BNET DNET DN2BN
Media Metrix 85 124 61
Nielsen 626 784 466
EachMovie 6959 7437 5367
Census 306 402 77

0.001f , where f is the number of free parameters
in the structure. This prior favors simpler models,
and the value 0.001 has proven effective over a wide
range of situations. We used a diffuse parameter prior.
Namely, for multinomial distributions, we used a uni-
form Dirichlet parameter prior (also commonly re-
ferred to as the “K2 prior”), and for the Gaussian
distributions, we used a Normal-Wishart parameter
prior having a prior mean of zero (equivalent sample
size one) and a prior precision of one (equivalent sam-
ple size two).1

The predictive accuracy of learned models are shown
in Table 3. Empty is a Bayesian network with no edges.
Overall, the Bayesian networks produced by DN2BN
were almost as accurate as those produced by BNET.
Quantitatively, the gains of the models produced by
DN2BN over Empty were 79% to 93% of those pro-
duced by BNET over Empty.

1Before learning a decision tree for a continuous target
variable, we first standardized the data so that the target
had mean zero and variance one; thus the Normal-Wishart
parameter prior is an empirical prior.

Table 4 describes statistics of the structures produced.
The models produced by DNET always had the most
edges, and those produced by DN2BN always had the
fewest. The edge counts of DN2BN’s models were 25%
to 77% of those of BNET’s models. (Excluding Cen-
sus the range was 72% to 77%.) Notice that DN2BN
achieved nearly the same scores as BNET while pro-
ducing networks with many fewer edges.

We instrumented DN2BN to keep a detailed record of
the operations it performed during its runs. Table 5
contains this information. Notice that the majority of
the edge removals were performed to break length two
cycles. In fact, breaking length two cycles and remov-
ing pruned parents nearly completed the conversion
on all four data sets. There were a large number of
pruned parents, suggesting that DN2BN would be im-
proved by recovering some of this pruned structure—
that is, by replacing pruned subtrees with structures
more complex than leaves.

Finally, we compared the run times of the algo-
rithms. Table 6 contains the results of this comparison.
DN2BN’s run times were quite short, two minutes or
less on every data set. In fact, learning a dependency
network and then running DN2BN has a speed advan-
tage over BNET even on these relatively small data
sets (that fit in RAM) and without the use of a scal-
able decision tree learning algorithm.

5 Summary

Algorithms that can convert models of one type into
models of another type without accessing data allow
us to do more with existing models and learning algo-
rithms. We developed an algorithm, DN2BN, capable
of converting dependency networks into Bayesian net-
works. We showed experimentally that our algorithm
produced Bayesian networks with prediction accuracy
almost equaling that of Bayesian networks learned
from data directly. The advantages of our algorithm
are that (1) it can create Bayesian networks with-
out accessing data, (2) it is often faster than learning
Bayesian networks directly, and (3) it can exploit ma-
ture and scalable decision tree induction algorithms.

We plan to improve DN2BN by allowing it to replace
the subtrees it prunes with structure more complex
than single leaves. In general, this requires access to
sufficient statistics that are not explicitly encoded in
the dependency network. We will explore a range of al-
ternatives including approximating the needed statis-
tics, inferring them from the complete dependency net-
work using Gibbs sampling, and estimating them from
training data. We plan to evaluate other search strate-
gies including look-ahead and forward search (adding
edges from the dependency network to an empty net-
work until further additions introduce cycles). More
generally, we plan to explore the use of dependency
networks and Bayesian networks as alternatives for
existing cached sufficient statistics structures in other
settings.

References

[1] W. L. Buntine. A guide to the literature on
learning probabilistic networks from data. IEEE

Transactions on Knowledge and Data Engineer-

ing, 8:195–210, 1996.

[2] G. Cooper and E. Herskovitz. A Bayesian Method
for the Induction of Probabilistic Networks from
Data. Machine Learning, 9:309–347, 1992.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. The MIT press, 1990.

[4] P. Domingos and G. Hulten. Mining high-speed
data streams. In Proceedings of the Sixth ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 71–80, Boston,
MA, 2000. ACM Press.

[5] N. Friedman, I. Nachman, and D. Peér. Learn-
ing Bayesian network structure from massive
datasets: the “sparse candidate” algorithm. In

Proceedings of the Fifteenth Conference on Un-

certainty in Artificial Intelligence, pages 206–215.
Morgan Kaufmann, 1999.

[6] D. Heckerman, D. M. Chickering, C. Meek,
R. Rounthwaite, and C. Kadie. Dependency net-
works for inference, collaborative filtering, and
data visualization. Journal of Machine Learning

Research, 1:49–75, October 2000.

[7] D. Heckerman. A tutorial on learning Bayesian
networks. Technical Report MSR-TR-95-06, Mi-
crosoft Research, 1996.

[8] G. Hulten and P. Domingos. Mining complex
models from arbitrarily large databases in con-
stant time. In Proceedings of the Eighth ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 525–531, Ed-
monton, Alberta, Canada, 2002. ACM Press.

[9] M. Jordan, editor. Learning in Graphical Models,
volume 89. Kluwer, Boston, MA, NATO ASI,
Series D: Behavioural and Social Sciences edition,
1998.

[10] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and
L. K. Saul. An introduction to variational meth-
ods for graphical models. In M. I. Jordan, editor,
Learning in Graphical Models. MIT Press, Cam-
bridge, MA, 1999.

[11] R. M. Karp. Reducibility among combinatorial
problems. In Complexity of Computer Communi-

cations, pages 85–103. Plenum Press, 1972.

[12] P. Komarek and A. Moore. A dynamic adaptation
of AD-trees for efficient machine learning on large
data sets. In Proceedings of the Seventeenth Inter-

national Conference on Machine Learning, pages
495–502. Morgan Kaufmann, 2000.

[13] K. P. Murphy, Y. Weiss, and M. Jordan. Loopy
belief propagation for approximate inference: an
empirical study. In In Proceedings of the Fifteenth

Annual Conference on Uncertainty in Artificial

Intelligence. Morgan Kaufmann, 1999.

