
gSpan: Graph-Based Substructure Pattern Mining

Xifeng Yan Jiawei Han
Department of Computer Science

University of Illinois at Urbana-Champaign�
xyan, hanj � @uiuc.edu

Abstract

We investigate new approaches for frequent graph-based
pattern mining in graph datasets and propose a novel algo-
rithm called gSpan (graph-based Substructure pattern min-
ing), which discovers frequent substructures without can-
didate generation. gSpan builds a new lexicographic or-
der among graphs, and maps each graph to a unique mini-
mum DFS code as its canonical label. Based on this lexico-
graphic order, gSpan adopts the depth-first search strategy
to mine frequent connected subgraphs efficiently. Our per-
formance study shows that gSpan substantially outperforms
previous algorithms, sometimes by an order of magnitude.

1. Introduction

Frequent substructure pattern mining has been an emerg-
ing data mining problem with many scientific and com-
mercial applications. As a general data structure, la-
beled graph can be used to model much complicated sub-
structure patterns among data. Given a graph dataset,�������
	��������������������

, ��������� � !#"%$'& denotes the number
of graphs (in

�
) in which $ is a subgraph. The problem

of frequent subgraph mining is to find any subgraph $ s.t.���(�)�*� � !#"%$'&,+.-0/21435��� (a minimum support threshold). To
reduce the complexity of the problem (meanwhile consid-
ering the connectivity property of hidden structures in most
situations), only frequent connected subgraphs are studied
in this paper.

The kernel of frequent subgraph mining is subgraph iso-
morphism test. Lots of well-known pair-wise isomorphism
testing algorithms were developed. However, the frequent
subgraph mining problem was not explored well. Recently,
Inokuchi et al. [4] proposed an Apriori-based algorithm,
called AGM, to discover all frequent (both connected and
disconnected) substructures. Kuramochi and Karypis [5]
further developed the idea using adjacent representation of
graph and an edge-growing strategy. Their algorithm, called
FSG, is able to find all frequent connected subgraphs from a

chemical compound dataset in 10 minutes with 6.5% min-
imum support. For the same dataset, our novel algorithm
can complete the same task in 10 seconds.

AGM and FSG both take advantage of the Apriori level-
wise approach [1]. In the context of frequent subgraph min-
ing, the Apriori-like algorithms meet two challenges: (1)
candidate generation: the generation of size "7698;: & sub-
graph candidates from size 6 frequent subgraphs is more
complicated and costly than that of itemsets; and (2) prun-
ing false positives: subgraph isomorphism test is an NP-
complete problem, thus pruning false positives is costly.

Contribution. In this paper, we develop gSpan, which
targets to reduce or avoid the significant costs mentioned
above. If the entire graph dataset can fit in main memory,
gSpan can be applied directly; otherwise, one can first per-
form graph-based data projection as in [6], and then apply
gSpan. To the best of our knowledge, gSpan is the first algo-
rithm that explores depth-first search (DFS) in frequent sub-
graph mining. Two techniques, DFS lexicographic order
and minimum DFS code, are introduced here, which form
a novel canonical labeling system to support DFS search.
gSpan discovers all the frequent subgraphs without candi-
date generation and false positives pruning. It combines the
growing and checking of frequent subgraphs into one pro-
cedure, thus accelerates the mining process.

2. DFS Lexicographic Order

This section introduces several techniques developed in
gSpan, including mapping each graph to a DFS code (a
sequence), building a novel lexicographic ordering among
these codes, and constructing a search tree based on this
lexicographic order.
DFS Subscripting. When performing a depth-first search
[3] in a graph, we construct a DFS tree. One graph can have
several different DFS trees. For example, graphs in Fig.
1(b)-(d) are isomorphic to that in Fig. 1(a). The thickened
edges in Fig. 1(b)-(d) represent three different DFS trees for
the graph in Fig. 1(a). The depth-first discovery of the ver-
tices forms a linear order. We use subscripts to label this

X

Y

Z

X Z

a
a

b

b

d

c

X

Y

Z

X Z

a a

b
b

d

c

X

Y

Z

X

Za

a
b

b

d

c

v0

v1

v2

v3

v4

(a) (b) (c)

v0

v1

v2

v3

v4

X

X

Z

Y

Z

a b

ac

d
b

v1

v2

v3

v4

(d)

v0

Figure 1. Depth-First Search Tree

edge (Fig 1b) < (Fig 1c) = (Fig 1d) >
0 "@? � : �AB�C*�ED & "@? � : �EDF�EC��A & "@? � : �AB�C*�GA &
1 "H: �EIJ�EDF�LK �GA & "H: �LIJ�AB�C*�GA & "H: �LIJ�AB�C*�D &
2 " I'� ? �AB�C*�A & " IJ� ? �AB�EK �ED & " IJ� ? �EDF�LK �GA &
3 " I'�M'�AB�NO�LP & " IJ�EM'�AB�N��QP & " IJ�EM'�EDF�LK �LP &
4 " MR� : �QPS�LK �D & " M'� ? �QPS�LK �D & " M'� ? �QPS�EN��GA &
5 "H: �GTR�EDF�EUR�QP & "@? �TR�EDF�EUR�QP & " IJ�TR�EDF�EUR�QP &

Table 1. DFS codes for Fig. 1(b)-(d)

order according to their discovery time [3]. /WVYX means Z([
is discovered before Z \ . We call Z 	 the root and Z � the right-
most vertex. The straight path from Z 	 to Z � is named the
rightmost path. In Fig. 1(b)-(d), three different subscript-
ings are generated for the graph in Fig. 1(a). The right most
path is "@Z 	 � Z � � Z�]�& in Fig. 1(b), "^Z 	 � Z�]�& in Fig. 1(c), and"^Z)� Z ��� ZO_ � Z] & in Fig. 1(d). We denote such subscripted

�
as

�a`
.

Forward Edge and Backward Edge. Given
�a`

, the for-
ward edge (tree edge [3]) set contains all the edges in the
DFS tree, and the backward edge (back edge [3]) set con-
tains all the edges which are not in the DFS tree. For sim-
plicity, "@/ � Xb& is an ordered pair to represent an edge. If/cVdX , it is a forward edge; otherwise, a backward edge.
A linear order, e `

is built among all the edges in
�

by the
following rules (assume f � � "^/ � � X � & � f _ � "^/ _ � X _ &): (i) if/ � � / _ and X � V.X _ , f � e ` f _ ; (ii) if / � VgX � and X � � / _ ,f � e ` f _ ; and (iii) if f � e ` f _ and f _ e ` f h , f � e ` f h .
Definition 1 (DFS Code) Given a DFS tree i for a graph�

, an edge sequence "@f�[j& can be constructed based on e `
,

such that f [e ` f [�k �O�mlon f���fp/ � ? �������#� q r9q(s : . "@f [& is
called a DFS code, denoted as

N � U f(" �t� io& .
For simplicity, an edge can be presented by a 5-tuple,"^/ � X �u [�u2v [@w \x �Eu \ & , where

u [and
u \ are the labels of Z [andZ \ respectively and

ujv [@w \x is the label of the edge between
them. For example, "@Z 	�� Z � & in Fig. 1(b) is represented by"@? � : �AB�C*�D & . Table 1 shows the corresponding DFS codes
for Fig. 1(b), 1(c), and 1(d).

Definition 2 (DFS Lexicographic Order) Suppose
P ���N � U fb" �t� im& q i is a DFS tree of

�y�
, i.e.,

P
is a set con-

taining all DFS codes for all the connected labeled graphs.
Suppose there is a linear order (eoz) in the label set ({),
then the lexicographic combination of e `

and e z is a lin-
ear order (e}|) on the set

r}`�~ { ~ { ~ { . For further
details see [7]. DFS Lexicographic Order is a linear order
defined as follows. If < ��N � U fb" ���4� i � & � " C()�EC'� ���������EC(� &
and = ��N � U fb" �
��� i � & � " KL)�LK�� ���������LKQ� & � < � =�� P

, then<���= iff either of the following is true.

"@/H&��b! � ?y��!���-c/j1�"^- � 14& �CJ�
��K#�
� � ��69Vg! �C(� e | KL�
"^/j/H& C � ��K � � � �m?y��6c�g- �5C 1 U 1�+�- �

For the graph in Fig. 1 (a), there exist tens of different
DFS codes. Three of them, which are based on the DFS
trees in Fig. 1(b)-(d) are listed in Table 1. According to
DFS lexicographic order, >Be�<�e�= .

Definition 3 (Minimum DFS Code) Given a graph
�

,P " � & ����N � U fb" �t� io& q
T is a DFS tree of G

�
, based on

DFS lexicographic order, the minimum one, -0/j1�" P " � && ,
is called Minimum DFS Code of G. It is also a canonical
label of G.

Theorem 1 Given two graphs
�

and
���

,
�

is isomorphic
to

���
if and only if -0/j1�" � & � -c/j1�" ��� & . (proof omitted)

Thus the problem of mining frequent connected sub-
graphs is equivalent to mining their corresponding mini-
mum DFS codes. This problem turns to be a sequential pat-
tern mining problem with slight difference, which concep-
tually can be solved by existing sequential pattern mining
algorithms.

Given a DFS code < � " C 	 �EC � ���������C � & , any valid DFS
code = � " C 	 �EC � ���������C � �EK & , is called < ’s child, and < is
called = ’s parent. In fact, to construct a valid DFS code,K

must be an edge which only grows from the vertices on
the rightmost path. In Fig. 2, the graph shown in 2(a) has
several potential children with one edge growth, which are
shown in 2(b)-(f) (assume the darkened vertices constitute
the rightmost path). Among them, 2(b), 2(c), and 2(d) grow
from the rightmost vertex while 2(e) and 2(f) grow from
other vertices on the rightmost path. 2(b.0)-(b.3) are chil-
dren of 2(b), and 2(e.0)-(e.2) are children of 2(e). Back-
ward edges can only grow from the rightmost vertex while
forward edges can grow from vertices on the rightmost path.
This restriction is similar to TreeMinerV’s equivalence class
extension [8] and FREQT’s rightmost expansion [2] in fre-
quent tree discovery. The enumeration order of these chil-
dren is enhanced by the DFS lexicographic order, i.e., it
should be in the order of 2(b), 2(c), 2(d), 2(e), and 2(f).

Definition 4 (DFS Code Tree) In a DFS Code Tree, each
node represents a DFS code, the relation between parent
and child node complies with the parent-child relation de-
scribed above. The relation among siblings is consistent

(a) (b) (c) (d) (e) (f)

(b.0) (b.1) (b.2) (b.3) (e.0) (e.1) (e.2)

Figure 2. DFS Code/Graph Growth

with the DFS lexicographic order. That is, the pre-order
search of DFS Code Tree follows the DFS lexicographic or-
der.

Given a label set { , a DFS Code Tree should contain an
infinite number of graphs. Since we only consider frequent
subgraphs in a finite dataset, the size of a DFS Code Tree is
finite. Fig. 3 shows a DFS Code Tree, the 1 �@� level nodes
contain DFS codes of "^1 s :�& -edge graphs. Through depth-
first search of the code tree, all the minimum DFS codes of
frequent subgraphs can be discovered. That is, all the fre-
quent subgraphs can be discovered in this way. We should
mention that if in Fig. 3 the darken nodes contain the same
graph but different DFS codes, then � � is not the minimum
code (proved in [7]). Therefore, the whole sub-branch of � �
can be pruned since it will not contain any minimum DFS
code.

3. The gSpan Algorithm

We formulate the gSpan algorithm in this section. gSpan
uses a sparse adjacency list representation to store graphs.
Algorithm 1 outlines the pseudo-code of the framework,
which is self-explanatory (Note that � represents the graph
dataset, � contains the mining result).

Assume we have a label set
��������L�m���������

for vertices,
and

��C*�LK �N�������� �
for edges. In Algorithm 1 line 7-12, the

first round will discover all the frequent subgraphs con-
taining an edge

�¢¡ �
. The second round will discover

all the frequent subgraphs containing
��¡ �

, but not any� ¡ �
. This procedure repeats until all the frequent sub-

graphs are discovered. The database is shrunk when this
procedure continues (Algorithm 1-line 10) and when the
subgraph turns to be larger (Subprocedure 1-line 8, only
graphs which contains this subgraph are considered.

�9£
means the set of graphs in which � is a subgraph). Sub-
graph Mining is recursively called to grow the graphs and
find all their frequent descendants. Subgraph Mining stops
searching either when the support of a graph is less than-c/j143¤�(� , or its code is not a minimum code, which means

0-edge

...

s s'2-edge

1-edge

Pruned

n-edge

...

Figure 3. A Search Space: DFS Code Tree

this graph and all its descendants have been generated and
discovered before (see [7]).

Algorithm 1 GraphSet Projection(� , �).
1: sort the labels in � by their frequency;
2: remove infrequent vertices and edges;
3: relabel the remaining vertices and edges;
4: � �5¥ all frequent 1-edge graphs in � ;
5: sort � � in DFS lexicographic order;
6: � ¥ � � ;
7: for each edge f��¦� � do
8: initialize � with f , set � � � by graphs which contains f ;
9: Subgraph Mining(� , � , �);
10: � ¥ � s f ;
11: if

q � q V.-0/21435��� ;
12: break;

Subprocedure 1 Subgraph Mining(� , � , �).
1: if �t§� -c/j1�"2��&
2: return;
3: � ¥ �a¨ � � � ;
4: enumerate � in each graph in � and count its children;
5: for each

N
,
N

is � ’ child do
6: if ���(�)�*� � !#" N &,©�-c/j143¤�(�
7: � ¥ N

;
8: Subgraph Mining(� £ , � , �);

4. Experiments and Performance Study

A comprehensive performance study has been con-
ducted in our experiments on both synthetic and real world
datasets. We use a synthetic data generator provided by Ku-
ramochi and Karypis [5]. The real data set we tested is a
chemical compound dataset. All the experiments of gSpan
are done on a 500MHZ Intel Pentium III PC with 448 MB
main memory, running Red Hat Linux 6.2. We also imple-
mented our version of FSG which achieves similar perfor-

Figure 4. Runtime: Synthetic data

mance as that reported in [5]. As shown in Figures 4 and 5,
we compare the performance of gSpan with FSG [5] if the
result is available; otherwise we show our own implemen-
tation result based on the same dataset. [5] did the test on a
Linux machine with similar configuration.

Synthetic Datasets. The synthetic datasets are gen-
erated using a similar procedure described in [1]. Ku-
ramochi et al. [5] applied a simplified procedure in their
graph data synthesis. We use their data generator. gSpan
was tested in various synthetic datasets with different pa-
rameters,

q ª.q
(the number of possible labels),

q «�q
(the av-

erage size of potential frequent subgraphs-kernels),
q i q

(the
average size of graphs in terms of edges) and fixed param-
eters,

q �¬q¤� :�?) (the total number of graphs generated),q { qO�®I ?)? (the number of potentially frequent kernels), and-c/j143¤�(� � ? � ?': ~¦q ��q
. As shown in Fig. 4, the speed-up is

between 6 and 30.

Chemical Compound Dataset. The chemical com-
pound dataset can be retrieved through this URL 1. The
dataset contains 340 chemical compounds, 24 different
atoms, 66 atom types, and 4 types of bonds. The dataset
is sparse, containing on average 27 vertices per graph and
28 edges per graph. The largest one contains 214 edges and
214 vertices. So the discovered patterns are much like tree,
though they do contains some cycles. We use the type of
atoms and bonds as labels. The goal is to find the com-
mon chemical compound substructures. Fig. 5 illustrates
the runtime of gSpan and FSG as -0/j143¤��� varies from 2%
to 30%. The total memory consumption is less than 100M
for any point of gSpan plotted in the figure. For FSG, when
the -0/21435��� is less than ¯(° , the process is aborted either
because the main memory is exhausted or the runtime is too
long. Fig. 5 shows gSpan achieves better performance by
15-100 times in comparison with FSG.

1http://oldwww.comlab.ox.ac.uk/oucl/groups/machlearn/PTE.

0 5 10 15 20 25 30

1

10

100

1000

Support threashold (%)

R
un

tim
e

(s
ec

)

FSG
gSpan

Figure 5. Runtime: Chemical data

5. Conclusions

In this paper, we introduced a new lexicographic order-
ing system and developed a depth-first search-based mining
algorithm gSpan for efficient mining of frequent subgraphs
in large graph database. Our performance study shows that
gSpan outperforms FSG by an order of magnitude and is
capable to mine large frequent subgraphs in a bigger graph
set with lower minimum supports than previous studies.

Acknowledgements. The synthetic data generator is
kindly provided by Mr. Michihiro Kuramochi and Professor
George Karypis in University of Minnesota. Dr. Pasquale
Forggia, at Dipartimento di Informatica e Sistemistica Uni-
versità di Napoli “ Federico II ”, provided helpful sugges-
tions about the usage of VFlib graph matching library. We
also thank Yanli Tong for her comments.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In VLDB’94, pages 487–499, Sept. 1994.

[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and
S. Arikawa. Efficient substructure discovery from large semi-
structured data. In SIAM SDM’02, April 2002.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001, Second Edition.

[4] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based
algorithm for mining frequent substructures from graph data.
In PKDD’00, pages 13–23, 2000.

[5] M. Kuramochi and G. Karypis. Frequent subgraph discovery.
In ICDM’01, pages 313–320, Nov. 2001.

[6] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu. PrefixSpan: Mining sequential patterns effi-
ciently by prefix-projected pattern growth. In ICDE’01, pages
215–224, April 2001.

[7] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. Technical Report UIUCDCS-R-2002-2296, Depart-
ment of Computer Science, University of Illinois at Urbana-
Champaign, 2002.

[8] M. J. Zaki. Efficiently mining frequent trees in a forest. In
KDD’02, July 2002.

