
The Generic Haskell User’s Guide

Version 1.23 — Beryl release

Dave Clarke

Johan Jeuring

Andres Löh

institute of information and computing sciences, utrecht university

technical report UU-CS-2002-047

www.cs.uu.nl

Institute of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands
http://www.generic-haskell.org

The Generic H

A

SKELL User’s Guide
Version 1.23 — Beryl release

The Generic H

A

SKELL Team

Dæv Clarke
Johan Jeuring
Andres Löh

info@generic-haskell.org

Contents

1 What is Generic H

A

SKELL? 4
1.1 Generic programming . 4
1.2 Generic H

A

SKELL overview . 4

2 Installation 6
2.1 System requirements . 6
2.2 Installing the binary distribution . 6
2.3 Building from source . 7
2.4 Running gh . 7
2.5 General overview of compilation . 8
2.6 Compiling and running the generated code 8

3 Generic H

A

SKELL: The Language 9
3.1 Special Parentheses . 9
3.2 Kind-indexed types . 9
3.3 Type-indexed values . 10
3.4 Generic application . 13
3.5 Generic abstraction . 14
3.6 Type-indexed types . 14
3.7 Specialisation . 15
3.8 Generated function naming . 15
3.9 Module system . 16
3.10 Haskell compatibility . 16

4 Library 17
4.1 Introduction . 17
4.2 Module Bounds . 17
4.3 Module Collect . 17
4.4 Module Compare . 18
4.5 Module Eq . 18
4.6 Module Map . 18
4.7 Module MapM . 18
4.8 Module ReadShow . 19
4.9 Module Reduce . 19
4.10 Module Table . 20

2

4.11 Module ZipWith . 20

5 Future Work 21

6 Meta-information 22
6.1 Contact . 22
6.2 Caveats . 22
6.3 Known bugs and limitations . 22
6.4 Change log . 23
6.5 Contributors . 23
6.6 Acknowledgements . 23
6.7 Copyright information . 23

3

1 What is Generic H

A

SKELL?

1.1 Generic programming

Software development often consists of designing datatypes around which functionality
is added. Some functionality is datatype specific, whereas other functionality is defined
on almost all datatypes in a way that depends only on the structure of the datatype. A
function that works on many datatypes in this manner is called a generic (or polytypic)
function. Examples of generic functionality include editing, pretty-printing or storing a
value in a database, and comparing two values for equality.
Since datatypes often change and new datatypes are introduced, we have developed
Generic H

A

SKELL which supports generic definitions to save the programmer from
(re)writing the instances of generic functions that would otherwise be requried. Generic
H

A

SKELL is based on recent work by Hinze [3], and extends the functional programming
language Haskell [6] with, among other things, a construct for defining type-indexed
values with kind-indexed types. These values can be specialised to all Haskell datatypes,
facilitating wider application of generic programming than provided by earlier systems
such as PolyP [5].

1.2 Generic H

A

SKELL overview

Generic H

A

SKELL extends Haskell with a number of features.
• type-indexed values are defined as a value indexed over the various Haskell type

constructors (unit, primitive types, sums, products, and user-defined type con-
structors). In addition, we can also specify the behaviour of a type-indexed values
for a specific constructor using constructor cases, and reuse one generic definition
in another using default cases.
The resulting type-indexed value can be specialised to any type.

• kind-indexed types are types indexed over kinds, defined by giving a case for both
∗ and κ→ κ′. Instances are obtained by applying the kind-indexed type to a kind.

• generic definitions can be used by applying them to a type or kind. This is called
generic application. The result is a type or value, depending on which sort of
generic definition is applied.

• generic abstraction enables generic definitions be defined by abstracting a type
parameter (of a given kind).

4

• type-indexed types are types which are indexed over the type constructors. These
can be used to give types to more involved generic values. The resulting type-
indexed types can be specialised to any type.

5

2 Installation

2.1 System requirements

Generic H

A

SKELL is written in Haskell 98. Minor parts require rank-2-polymorphism,
as implemented, for example, by both GHC and Hugs. The package has been tested with
GHC and comes with a Makefile suitable to build it using GHC. Although parts of the
system are written using Utrecht University’s attribute grammar system ag and Ralf
Hinze’s frown :-(parser generator, these tools are not required to build the compiler.
The code generated by Generic H

A

SKELL is Haskell 98 compliant, except that functions
generated for higher kinded types require rank-n-polymorphism. (Fortunately higher-
kinded types are not particularly common for most applications.)
Two kinds of distribution are available.
The binary distribution includes a gh compiler binary and can be used together with
any Haskell system, as it translates Generic H

A

SKELL input files into ordinary Haskell
files. We currently provide binaries for Linux, Solaris, and Windows. In principle, we
can provide binaries for any platform supported by GHC.
The source distribution includes the Haskell code for the gh compiler which has been
generated from our compiler source using both ag and frown :-(. GHC is required to
compile this distribution. Configuration files are provided.
At present, the compiler source (including both ag and frown :-(sources) may only be
obtained by emailing info@generic-haskell.org.

2.2 Installing the binary distribution

Installation is simple. Instructions for Unix users are as follows. Other users must
consult the appropriate INSTALL file.

./configure --prefix=install_path

--prefix=install_path is optional and defaults to /usr/local/.
Next run (GNU make is required):

make install

This will install the binary gh in the directory ${prefix}/bin.

6

2.3 Building from source

Building from source requires exactly the same command sequence as for installing the
binary distribution. The difference of course is the amount of work which is subsequently
done.
Note that for the source distribution, the install path prefix defaults to the directory you
unpacked the distribution to. To get the same behaviour as in the binary distribution,
explicitly call configure as:

./configure -prefix=/usr/local

2.4 Running gh

The Generic H

A

SKELL compiler is called gh. It has essentially two modes of operation.
• If you call gh without supplying a file to process, you will be asked for a file

name. Specify an input file relative to your working directory, and the compiler
will process the file and generate an output file with the same basename as the
input file, but the extension .hs.

• Alternatively, input files can be specified on the command line.
A typical invocation is:

path_to_gh/bin/gh your_file.ghs

Options A number of command line options are also available:

Usage: gh [options...] files...
-v --verbose (number of v’s controls the verbosity)
-m --make follow dependencies
-V --version, --release show version info
-h, -? --help show help

--cut=N cut computations after N iterations
-C --continue continue after errors
-L DIR --library=DIR add DIR to search path

The first level of verbosity (no -v flag) produces only error messages. The second level
(-v) in addition provides some diagnostic information and warnings. The third level
(-vv) in addition provides debugging information.
The -m (or --make) option attempts to chase dependencies and compile those which
require compilation. There are unfortunately cases where this fails. This feature will be
improved for future releases.
The option --cut=N stops the compilation after N iterators of the specialisation mecha-
nism. If this limit is reached, compilation fails. The first level of verbosity (-v) can be
used to report the number of iterations used.

7

The -C (or --continue) option forces the compiler to continue compilation even when
an error is encountered. This can be used to generate more than one error message or
to see the resulting generated code, but unfortunately results in the compiler running
until it crashes.

Search path The Generic H

A

SKELL compiler needs to find a number of files, in partic-
ular the Generic H

A

SKELL prelude. There are three possibilities to make the location
of the standard libraries known to the compiler:
• Set the environment variable GH_HOME to the directory you unpacked the Generic

H

A

SKELL distribution to.

• Set the environment variable GH_LIBRARY_PATH to the directory where the libraries
are located (usually GH_HOME/lib).

• Pass the path where the libraries are located as an argument to the compiler, using
the -L option. This option can also be used to add other directories to the search
path.

2.5 General overview of compilation

The Generic H

A

SKELL compiler compiles .ghs files and produces .hs files which can
subsequently be compiled using a Haskell compiler. In addition, the compiler also pro-
duces .ghi interface files for compiled modules, which will be used in subsequent com-
pilations to to avoid unnecessary recompilation.

2.6 Compiling and running the generated code

The Generic H

A

SKELL compiler generates ordinary Haskell code which can be run or
compiled using GHC, Hugs, or any other Haskell compiler. Ensure that you include the
path to GHPrelude.hs (and other library files you might be using), which can be found
in the lib subdirectory, in your compiler’s search path.

8

3 Generic H

A

SKELL: The Language

The Generic H

A

SKELL compiler implements a number of extensions to Haskell. These
are described briefly here. Further information can also be found by consulting the liter-
ature [1, 2, 3, for example] and in the library included in the distribution (in lib/*.ghs).

3.1 Special Parentheses

Kind-indexed and type-indexed definitions take a (single) kind or type argument which
is surrounded by special parentheses. The parentheses {[]} (i.e., {[]}) wrap a kind
argument, whereas {| |} (i.e., {| |}) wraps a type argument.

3.2 Kind-indexed types

Type-indexed values (may) possess kind-indexed types. Kind-indexed types are defined
in Generic H

A

SKELL using a new top-level declaration which has the following syntax:

type 〈Conid〉{[∗]} t1 . . . tn = 〈type〉
type 〈Conid〉{[k → l]} t1 . . . tn = 〈type〉

A case is defined for both kind ∗ and for higher kinds k → l . To a certain degree
the k → l case is predetermined, depending on the number of arguments [3]. This is
exemplified by the k → l case in the following example.

Example The kind-indexed type for the generic map function is defined as:

type Map{[∗]} t1 t2 = t1 → t2
type Map{[k → l]} t1 t2 =

forall u v .Map{[k]} u v → Map{[l]} (t1 u) (t2 v)

Note that both cases have the same number of arguments and an equal number of type
variables introduced by the forall.
Sometimes we wish to thread a particular type variable through such a definition, for
example, when using a monadic type.

type MapM {[∗]} t1 t2 m = t1 → m t2
type MapM {[k → l]} t1 t2 m =

forall u v .MapM {[k]} u v m → MapM {[l]} (t1 u) (t2 v) m

9

3.3 Type-indexed values

Generic H

A

SKELL introduces a new top-level declaration for type-indexed values. A
type-indexed value is defined using the following syntax:

〈Varid〉 {| t :: k |} :: 〈type〉
〈Varid〉 {| 〈stype〉 |} . . . = . . .
〈Varid〉 {| 〈stype〉 |} . . . = . . .

...

where

〈stype〉 ::= Unit | :+: | :*: | Fun | Con 〈var〉 | Label 〈var〉 | 〈tycon〉 | case 〈qcon〉

Firstly, we must declare the type of the type-indexed value. This is generally an expres-
sion involving a kind- or type-indexed type. Then we provide its definition as a collection
of cases indexed over the constructors (〈stype〉).
Corresponding to each 〈stype〉 is a regular Haskell data or type declaration. It is
important to know these so that the appropriate pattern can be employed when coding
each case of a generic definition.

data Unit = Unit
data Sum a b = Inl a | Inr b

-- Sum corresponds to :+: in type indices
data Prod a b = a:*:b

-- Prod corresponds to :*: in type indices
type Fun = (→)
data Con a = Con a
data Label a = Label a

These are defined in the file GHPrelude.hs which is automatically imported by the
generated code.
If used as a type argument, type constructors Con and Label get an extra argument
which can be bound to a variable and is of type ConDescr or LabelDescr , respectively.
Note: The types Con and Label do no longer contain the descriptors themselves. This
was a redundancy in the Amber release that has lead to confusion and has therefore
been changed. Old programs have to be adapted to the change.

10

The datatypes ConDescr and LabelDescr are given here. These can be used for manip-
ulating constructors and labels.

data ConDescr = ConDescr{conName :: String ,
conType :: String ,
conArity :: Int ,
conLabels :: Bool ,
conFixity :: Fixity }

data Fixity = Nonfix
| Infix{prec :: Int }
| Infixl{prec :: Int }
| Infixr{prec :: Int }

data LabelDescr = LabelDescr{ labelName :: String ,
labelType :: String ,
labelStrict :: Bool }

Consult GHPrelude.hs for details of other auxiliary functions.
Naturally, none of these special identifiers should be used in the remainder of a program
in a way that clashes with their use in generic definitions, following the usual scoping
rules of Haskell.

Example The type-indexed value for the generic map function is defined as:

map{|t :: k |} :: Map{[k]} t t
map{|Unit |} Unit = Unit
map{|:+:|} mA mB (Inl a) = Inl (mA a)
map{|:+:|} mA mB (Inr b) = Inr (mB b)
map{|:*:|} mA mB (a:*:b) = mA a:*:mB b
map{|Con c|} m (Con b) = Con (m b)
map{|Label l |} m (Label b) = Label (m b)
map{|(→)|} =

error "cannot map over function type"
map{|Int |} i = i
map{|Char |} c = c

This function can also be implemented in a point-free style (see [2]).

Generics defined over 〈tycon〉 Type-indexed values (and later types) can be defined
over (possibly user-defined) type constructors. This covers the case for Int and Char ,
as illustrated above. Additional cases such as the following are also possible (though in
this case superfluous):

map{|List |} m Nil = Nil
map{|List |} m (Cons a as) = Cons (m a) (map{|List |} m as)

11

for the user defined type

data List a = Nil | Cons a (List a)

Notice the call map{|List |} m as on the right-hand side of this definition. This is required
since List is a recursive type.

Constructor cases Often datatypes which have a large number of constructors require
functions that behave in some uniform manner for most constructors, but in some specific
way for certain other constructors. To write such functions Generic H

A

SKELL allows
cases for specific constructors to be written. Using these constructor cases a generic
function can have special cases to deal with the constructors requiring special treatment.
The syntax of the case is given by

case 〈qcon〉

as illustrated in the following

freecollect{| case Lambda|} (Lambda (v , t) e)
= filter (6≡ v) (freecollect{|Expr |} e)

The case freecollect{| case Lambda|} will be applied only when the value of type Expr
(from which Lambda is a constructor) encountered has the form Lambda (v , t) e. The
case should be written to exploit this knowledge. Interestingly, when a constructor case
produces a value, it need not produce a value with the same constructor, but only of the
correct type.
The type of a constructor case is the same as the type from which the constructor comes.
Thus, since Lambda is a constructor for the Expr datatype, the type of the right-hand
side is what it would be for the Expr case.
Specific constructor cases of a generic function can be called, though we do not expect
that this is particularly useful.

Default cases Default cases allow one generic definition to be defined by implicitly
copying the lines from another, updating and adding cases where appropriate. This is
particularly useful for defining functions which follow a specific traversal pattern.
Suppose we have a crush-like function which collects a list of values of type a from some
datatype.

type Collect{[∗]} t = t → [a]
type Collect{[κ→ ν]} t = forall u .Collect{[κ]} u

→ Collect{[ν]} (t u)
collect{|t :: κ|} :: Collect{[κ]} t
. . .

12

We can adapt this function to collect values of type Var , to produced a function of the
following more specific type

type VarCollect{[∗]} t = t → [Var]
type VarCollect{[κ→ ν]} t = forall u .VarCollect{[κ]} u

→ VarCollect{[ν]} (t u),

by writing but a few lines:

varcollect{|t :: κ|} :: VarCollect{[κ]} t
varcollect{|Var |} v = [v]
varcollect{|:*:|} mA mB (a:*:b) = mA a ∪mB b
varcollect{|c|} = collect{|c|} .

The line “varcollect{|c|} = collect{|c|}” is the default case, which has the effect of copying
the code from collect into the new generic function varcollect . The line for varcollect{|Var |}
specifies the desired additional functionality for type Var . The line for varcollect{|:*:|}
overrides the functionality for :*:, using union instead of concatenation to accumulate
the results.

Both constructor and default cases are described elsewhere in more detail [1].

3.4 Generic application

A type-indexed value can be specialised to a value by applying it to a type. Generic
application extends the syntax of expressions (〈aexp〉) as follows:

〈aexp〉 ::= . . .
| 〈Varid〉{|〈type〉|}

Similarly, a kind-indexed type can be specialised to a type by supplying the kind at
which the definition is to be applied. The syntax of type expressions (〈gtycon〉) is thus
extended as follows:

〈gtycon〉 ::= . . .
| 〈Conid〉{[〈kind〉]}

Example Given the datatype:

data BinTree a = Empty | Node a (BinTree a) (BinTree a)

The map function for BinTree is map{|BinTree|}. The type of map{|BinTree|} is
Map{[∗ → ∗]} BinTree BinTree, which is (a → b)→ (BinTree a → BinTree b).

13

3.5 Generic abstraction

A type variable (of fixed kind) can be abstracted generically from an expression using a
kind of generic abstraction. Declarations take the following form:

〈Varid〉 {| t :: 〈kind〉 |} :: 〈type〉
〈Varid〉 {| t |} . . . = 〈exp〉

Here t is a type variable of the given kind, where 〈kind〉 ranges over grounded kinds
(i.e., those without kind variables).
An example is the so-called categorical strength:

strength{|t :: ∗ → ∗|} :: t a → b → t (a, b)
strength{|t |} ta b = map{|t |} (λx → (x , b)) ta

3.6 Type-indexed types

Type-indexed types [4] can be defined just as type-indexed values, except that the right-
hand side of a definition is a constructor followed by a type. Thus the syntax consists
of a collection of definitions, indexed over the type constructors, of the form:

type 〈Conid〉{|〈stype〉|} tv1 . . . tvn = 〈con〉 〈type〉

New constructors (〈con〉) must be introduced for each case of such a definition — each
case will be compiled into a newtype declaration.
A type-indexed type can be specialised to a type by supplying its type argument.

〈gtycon〉 ::= . . .
| 〈Conid〉{|〈type〉|}

Example The type-indexed type FMap is defined as follows:

type FMap{[Unit]} v = FMU (Maybe v)
type FMap{[:+:]} fma fmb v = FMP (fma v , fmb v)
type FMap{[:*:]} fma fmb v = FMT (fma (fmb v))
type FMap{[Con]} fm v = FMC (fm v)
type FMap{[Label]} fm v = FML (fm v)

FMap can be used anywhere a type can by supplying FMap with its type parameter,
for example in the following:

type Lookup{[∗]} t = forall v .FMap{[t]} v → t → Maybe v
type Lookup{[k → l]} t = forall a .Lookup{[k]} a → Lookup{[l]} (t a)

14

The constructors introduced in the definition of FMap can be used in pattern matching:

lookup{|t :: k |} :: Lookup{[k]} t
lookup{|Unit |} (FMU fm) Unit = fm
lookup{|:+:|} lA lB (FMP (fma, fmb)) (Inl a) = lA fma a
lookup{|:+:|} lA lB (FMP (fma, fmb)) (Inr b) = lB fmb b
lookup{|:*:|} lA lB (FMT fma) (a:*:b) = do fmb ← lA fma a

lB fmb b
lookup{|Con d |} l (FMC fm) (Con b) = l fm b
lookup{|Label d |} l (FML fm) (Label b) = l fm b

Note: This feature is experimental and subject to revision.

3.7 Specialisation

Generic functions are specialised at compile time, thus no run-time representation of
types is required. (There is however the cost of encoding and decoding types.) The com-
piler determines which specific types a generic function is used with, and then generates
the set of specialised versions for that function in the output file.
Specialisations are always generated locally per module. Thus, a generic function which
is defined in one module but used in many, results in some work being duplicated.
The compiler proceeds by collecting specialisation requests and implications from the
source. The implications are then applied to the requests repeatedly, yielding new re-
quests, until a fixpoint is reached.
In the presence of generic abstractions, where other generic functions may be called with
an arbitrarily complex type argument, the specialisation process may fail to terminate.
The compiler can be forced to quit after a certain number of iterations with the --cut
command line option.

3.8 Generated function naming

The Generic H

A

SKELL programmer must be aware that the generated Haskell code is
poluted with additional names corresponding to instances of generic functions. These
may clash with a programmer’s own function names. Fortuately, this is highly unlikely
as the generated names are rather complicated, encoding details such as module and type
names. Unfortunately, this obfuscation makes it difficult to directly interface ordinary
Haskell code with the code generated by the Generic H

A

SKELL compiler. We offer a
tip to the adventurous who wish to do such a thing. If you wish to use a generic function
such as map{|List |} in ordinary haskell code, add a line such as

mapList = map{|List |}
to the appropriate Generic H

A

SKELL file, and then use the function mapList in your
Haskell code.

15

3.9 Module system

The module system of Generic H

A

SKELL mirrors the behaviour of Haskell’s module sys-
tem, as far as the Haskell language is concerned. Additionally, generic entities (i.e. kind-
indexed types, type-indexed values, and type-indexed types) may appear in export and
import lists. If no export or import list is given, then all generic entities are exported
or imported, respectively. If a generic entity appears in a list, then all of its cases are
exported or imported. It is not possible to export only some cases of a type-indexed
value, or to limit the constructors visible for a type-indexed type.
It is recommended that the kind-indexed type of a type-indexed value is also exported.
Forgetting to do so may result in unexpected behaviour.
In contrast to the previous (Amber) release, qualified names work everywhere. It is
possible to import and use generic entities qualified. Defining a type-indexed value or
type-indexed type across modules is not possible. However, you can achieve a similar
effect by importing a generic function qualified and redefining a new function with the
same name by means of a default case.

3.10 Haskell compatibility

Generic H

A

SKELL parses all Haskell programs, except in the following instances:
• The token forall is an additional keyword in Generic H

A

SKELL. As this is already
the case in the extensions provided by many Haskell implementations, it should
hopefully not cause too much trouble.

• The special parentheses for type and kind arguments, i.e. {|, |}, {[,]}, are all handled
as a single token. Unfortunately, some pieces of regular Haskell code can trick the
lexer and result in parse errors. For example, in

do {[x]← action; return x }

the initial {[is treated as a single token {[rather than the two tokens { and [which
an Haskell programmer would expect. In other instances, sequences such as +|}
are considered as the operator +| followed by a }, since | may occur in operators,
whereas {|+ is considered as the token {| followed by +.
The required fix in both cases is to insert a space in the appropriate place, for
example, by writing instead do { [x]← action; return x }.

16

4 Library

4.1 Introduction

Provided with the Generic H

A

SKELL system is a library of useful generic functions.
These are summarised below; for the details, consult the library itself (in subdirectory
lib). We give the types of the generic functions for kind ∗ and ∗ → ∗, and usually a
short description.

Naming conventions When generic functions defined in the Generic H

A

SKELL library
have an equivalent in the Haskell Prelude or libraries, the name of the generic function
is prefixed with a ‘g’.

4.2 Module Bounds

gminBound , gmaxBound{|t :: ∗|} :: t
gminBound , gmaxBound{|t :: ∗ → ∗|} :: a → t a

These are slight generalisations of the minBound and maxBound members of the Bounded
class. They have the property that for all types t of kind ∗:

∀ a :: t . gminBound{|t |} 6 a 6 gmaxBound{|t |}

However, these functions are also defined for types for which Bounded is not derivable;
i.e. types which are not enumerations or simple product types (see [6, Appendix D]).

4.3 Module Collect

The functions in this module collect information about types and values of these types.

constructorOf {|t :: ∗|} :: t → ConDescr
constructorOf {|t :: ∗ → ∗|} :: (a → ConDescr)→ t a → ConDescr

constructorOf returns a description of the topmost constructor in a value.

constructors{|t :: ∗|} :: [ConDescr]
constructors{|t :: ∗ → ∗|} :: [ConDescr]→ [ConDescr]

17

constructors returns a list of descriptions of all topmost constructors used in a datatype.

labelsOf {|t :: ∗|} :: t → [LabelDescr]
labelsOf {|t :: ∗ → ∗|} :: (a → LabelDescr)→ t a → LabelDescr

labelsOf returns a list of descriptions of labels in a value, or the empty list when the
current type constructor has no labels.

constructorsAndLabels{|t :: ∗|} :: [(ConDescr , [LabelDescr])]
constructorsAndLabels{|t :: ∗ → ∗|} :: [(ConDescr , [LabelDescr])]

→ [(ConDescr , [LabelDescr])]

constructorsAndLabels combines the above information: it returns a list of all construc-
tors, paired with the labels present in the given type constructor.
Again, consult GHPrelude.hs for details of ConDescr and LabelDescr .

4.4 Module Compare

gcompare{|t :: ∗|} :: t → t → Ordering
gcompare{|t :: ∗ → ∗|} :: (a → b → Ordering)→ t a → t b → Ordering

gcompare is the generic version of compare in the Ord class.

4.5 Module Eq

eq{|t :: ∗|} :: t → t → Bool
eq{|t :: ∗ → ∗|} :: (a → b → Bool)→ t a → t b → Bool

eq is the generic version of (==) in the Eq class.

4.6 Module Map

gmap{|t :: ∗|} :: t → t
gmap{|t :: ∗ → ∗|} :: (a → b)→ t a → t b

gmap is the generic version of fmap in Functor class.

4.7 Module MapM

mapMl ,mapMr{|t :: ∗|} :: (Functor m,Monad m)⇒ t → m t
mapMl ,mapMr{|t :: ∗ → ∗|} :: (Functor m,Monad m)⇒ (a → m b)→ t a → m (t b)
These are the generic versions of the monadic map mapM in the Prelude. mapMl
traverses a data structure from left to right (just like mapM) while mapMr traverses
from right to left. The Monad in the context should also be an instance of class Functor ,
but that is usually not problematic.

18

4.8 Module ReadShow

gshowsPrec{|t :: ∗|} :: Bool → Int → t → ShowS
gshowsPrec{|t :: ∗ → ∗|} :: (Bool → Int → a → ShowS)→

Bool → Int → t a → ShowS

greadsPrec{|t :: ∗|} :: Bool → Int → ReadS t
greadsPrec{|t :: ∗ → ∗|} :: (Bool → Int → ReadS a)→

Bool → Int → ReadS (t a)

The generic versions of show and read (in classes Show and Read).
The extra argument of type Bool is used internally to specify whether field labels are to
be printed (and separated by commas). It should usually be False.
Since calling these functions is a bit cumbersome, the following specialisations are pro-
vided:

gshow{|t :: ∗|} :: t → String
gshow1{|t :: ∗ → ∗|} :: Show a ⇒ t a → String
gread{|t :: ∗|} :: String → t
gread1{|t :: ∗ → ∗|} :: Read a ⇒ String → t a

4.9 Module Reduce

rreduce{|t :: ∗|} :: t → b → b
rreduce{|t :: ∗ → ∗|} :: (a → b → b)→ t a → b → b
lreduce{|t :: ∗|} :: b → t → b
lreduce{|t :: ∗ → ∗|} :: (b → a → b)→ b → t a → b

rreduce is a generic version of foldr (note the reversed order of the last two arguments!),
while lreduce is a generic foldl . See [2, section 5.4].

crush{|t :: ∗ → ∗|} :: (a → a → a)→ a → t a → a

crush is an instance of lreduce with a slightly more familiar type.
The following functions are all defined in terms of the above functions, and most have
counterparts in the Haskell Prelude:

gsum, gproduct{|t :: ∗ → ∗|} :: Num a ⇒ t a → a
gand , gor{|t :: ∗ → ∗|} :: t Bool → a
flatten{|t :: ∗ → ∗|} :: t a → [a]
count{|t :: ∗ → ∗|} :: t a → Int
comp{|t :: ∗ → ∗|} :: t (a → a)→ (a → a)
gconcat{|t :: ∗ → ∗|} :: t [a]→ [a]
gall , gany{|t :: ∗ → ∗|} :: (a → Bool)→ t a → Bool
gelem{|t :: ∗ → ∗|} :: Eq a ⇒ a → t a → Bool

flatten collects all values of type a in a list, and comp composes all functions contained
in a datatype.

19

4.10 Module Table

The module Table provides a type-indexed type and functions for building memo tables
of functions. See [2, section 5.6] and the code in lib/Table.ghs.

4.11 Module ZipWith

gzipWith{|t :: ∗|} :: (t , t)→ Maybe t
gzipWith{|t :: ∗ → ∗|} :: ((a, b)→ Maybe c)→ (t a, t b)→ Maybe (t c)

A generic version of zipWith, except that it returns Nothing when the two data structures
do not have the same shape.

gunzipWith{|t :: ∗|} :: t → (t , t)
gunzipWith{|t :: ∗ → ∗|} :: (a → (b, c))→ t a → (t b, t c)

gunzipWith is a generic version of unzip.

gzip{|t :: ∗ → ∗|} :: t a → t b → Maybe (t (a, b))
gunzip{|t :: ∗ → ∗|} :: t (a, b)→ (t a, t b)

These functions are more or less direct generalisations of zip and unzip respectively,
defined as instances of gzipWith and gunzipWith.

20

5 Future Work

In the future, we plan to continue our work on the compiler. Among the many possible
extensions and improvements, we are initially considering:
• support for POPL-style definitions

• adding a type checker

• a view mechanism (i.e. implicit maps between data types); better support for
fixpoints

• improved support for type-indexed data types

• . . .
As we have not yet decided how the next major release of the Generic H

A

SKELL
compiler will look, these topics are subject to change. Any input and feedback is most
welcome!

21

6 Meta-information

6.1 Contact

The Generic H

A

SKELL Project For information regarding the Generic H

A

SKELL
project send email to info@generic-haskell.org.

Mailing List A low volume mailing list exists. Currently it serves as a place for dis-
tributing information relevant to Generic H

A

SKELL and for announcing our project
meetings. This is the appropriate forum for general language discussions and whatnot.
The address is generic-haskell@generic-haskell.org. To subscribe to the mailing
list send an email to listadm@generic-haskell.org.

Bug Reports Bugs can be reported to bugs@generic-haskell.org.

6.2 Caveats

The Generic H

A

SKELL compiler is a research prototype. Many of its features, especially
the more experimental ones, may change as we gain more experience and understanding.
It should be noted that the compiler does not perform type checking of the Generic
H

A

SKELL source language. Thus type errors in Generic H

A

SKELL source will often
be discovered only when the generated Haskell source is compiled.

6.3 Known bugs and limitations

1. The constructor descriptors for user-defined data types that have infix constructors
with non-default fixity will be generated incorrectly with the default fixity.

2. Usage of the keyword forall in types is a bit tricky. There are places where it is
needed, and others where it may cause strange errors. This will be clarified in the
future. Let the examples guide you for now.

3. A type-indexed data type which is specialised to the same type in two separate
modules results in types which should be the same, but are treated differently by
Haskell.

22

4. A datatype (or newtype) which has a parameter of higher kinded type that does
not appear in the right hand side of the definition produces a bug in the Haskell
code generated by gh. The datatype Y below exhibits the behaviour.

data X a = X a
data Y b = Y (X (Y X))

Parameter b has kind ∗ → ∗, but it does not occur in Y (X (Y X)). We do not
imagine that such types are very common, so the bug will remain for now.

5. This list is incomplete.

6.4 Change log

Beryl (1.23) Syntax for using Con and Label in generic functions has slightly changed
(see p. 10 for details). Added constructor and default cases. Improved support
for the module system. Revamped specialisation mechanism — it is now demand
driven and generates less code. Numerous bug fixes.

Amber (0.99) The first release.

6.5 Contributors

Ralf Hinze and Jan de Wit contributed significantly to earlier versions of Generic
H

A
SKELL.

6.6 Acknowledgements

Thanks to Ralf Hinze for frown :-(, to Arthur Baars and Doaitse Swiestra for ag, and
to Simon Marlow and Sven Panne for the original Happy Haskell grammar.

6.7 Copyright information

gh – a compiler for Generic H

A

SKELL.
Copyright c© 2001, 2002 The Generic H

A

SKELL Team. Utrecht University
This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
for more details.

23

You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

24

Bibliography

[1] Dave Clarke and Andres Löh. Generic Haskell, Specifically. In IFIP 2.1 Working
Conference on Generic Programming, July 2002.

[2] Ralf Hinze. Generic Programs and Proofs. 2000. Habilitationsschrift, Bonn Univer-
sity. Available from http://www.informatik.uni-bonn.de/~ralf/.

[3] Ralf Hinze. Polytypic values possess polykinded types. In Roland Backhouse and
José Nuno Oliveira, editors, Mathematics of Program Construction, volume 1837 of
LNCS, pages 2–27. Springer-Verlag, 2000.

[4] Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. In Proceed-
ings of the 6th Conference on Mathematics of Program Construction (MPC 2002).
Springer Verlag, July 2002.

[5] P. Jansson and J. Jeuring. PolyP — a polytypic programming language extension.
In Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 470–482. ACM Press, 1997.

[6] Simon Peyton Jones, John Hughes (editors), et al. Haskell 98 — A non-strict, purely
functional language. Available from http://haskell.org, February 1999.

25

