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ABSTRACTTraditional mix-based systems are 
omposed of a small setof stati
, well known, and highly reliable mixes. To resisttraÆ
 analysis atta
ks at a mix, 
over traÆ
 must be used,whi
h results in signi�
ant bandwidth overhead. End-to-endtraÆ
 analysis atta
ks are even more diÆ
ult to 
ounter be-
ause there are only a few entry- and exit-points in the sys-tem. Stati
 mix networks also su�er from s
alability prob-lems and in several 
ountries, institutions operating a mix
ould be targeted by legal atta
ks. In this paper, we intro-du
e MorphMix, a system for peer-to-peer based anonymousInternet usage. Ea
h MorphMix node is a mix and anyone
an easily join the system. We believe that MorphMix over-
omes or redu
es several drawba
ks of stati
 mix networks.In parti
ular, we argue that our approa
h o�ers good pro-te
tion from traÆ
 analysis atta
ks without employing 
overtraÆ
. But MorphMix also introdu
es new 
hallenges. Oneis that an adversary 
an easily operate several mali
iousnodes in the system and try to break the anonymity of le-gitimate users by getting full 
ontrol over their anonymouspaths. To 
ounter this atta
k, we have developed a 
ollusiondete
tion me
hanism, whi
h allows to identify 
ompromisedpaths with high probability before they are being used.
Categories and Subject DescriptorsC.2.0 [Computer-Communi
ation Networks℄: General|Se
urity and prote
tion; C.2.4 [Computer-Communi
a-tion Networks℄: Distributed Systems|Distributed appli-
ations
General TermsAlgorithms, Design, Measurement, Se
urity
Keywordsanonymity, mix networks, peer-to-peer systems, 
ollusiondete
tion
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1. INTRODUCTIONIn 1981, David Chaum proposed the 
on
ept of a mix net-work [5℄, whi
h is 
onsidered as the most promising approa
hto solve the problem of anonymous 
ommuni
ation in the In-ternet. Sin
e then several systems based on Chaum's idea toprovide anonymous a

ess to Internet servi
es have been op-erational. The mixmaster system [6℄ follows Chaum's orig-inal design 
losely and enables users to send and re
eive(using reply blo
ks) ele
troni
 mail anonymously. Varia-tions to the basi
 mix design to support near-real-time ser-vi
es su
h as web browsing have led to 
ir
uit-based sys-tems: Onion Routing [14℄, Freedom [4℄, Web Mixes [2℄, andthe Anonymity Network [17℄. Most mix-based systems o�ersender and relationship anonymity [13℄. Although there areappli
ations for re
eiver anonymity su
h as anonymous webpublishing [22℄, most Internet a
tivities where anonymity isdesired require only sender and relationship anonymity.Usually, mix networks 
onsist of relatively few and well-known mixes. To 
ommuni
ate anonymously with a serverin the 
ase of a 
ir
uit based mix network, a user establishesan anonymous path via a subset of the mixes. The mixes re-lay all traÆ
 ex
hanged between the user's 
omputer and theserver along this path. To be resistant against traÆ
 anal-ysis atta
ks, a mix network employs �xed-length messagesand layered en
ryption of messages. In addition, mixes de-lay and reorder in
oming messages from di�erent users anduse 
over traÆ
 to hide real messages. Finally, ea
h mixpro
esses ea
h message only on
e to 
ounter replay-atta
ks.Traditional mix networks o�er several bene�ts: the mixes'identities (host names or IP addresses) 
an be made pub-li
 through web sites or the Usenet, whi
h allows a

essingthem easily. Digital 
erti�
ates [12℄ allow to 
ontrol whi
hmixes o�er their servi
es, whi
h makes it diÆ
ult for unau-thorized (and potentially mali
ious) mixes to join. In ad-dition, by 
ontrolling who is allowed to operate a mix, one
an make sure that only highly reliable mixes with lots of
omputing power and good network 
onne
tivity are presentin the system.On the other hand, there are several limitations: the num-ber of mixes is relatively small 
ompared to the potentialnumber of users, whi
h implies the system eventually rea
hesits limits with respe
t to the traÆ
 it 
an handle. Addingmore mixes extends its 
apa
ity, but the drasti
 imbalan
ebetween mixes and system users poses a problem. In ad-dition, traÆ
 analysis atta
ks are diÆ
ult to 
ounter, espe-
ially in systems that aim at providing low laten
y. Likelegitimate users, atta
kers 
an also easily learn about the
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 � �Figure 1: Layers of en
ryption.mixes the system 
onsists of and try to break it by observ-ing the traÆ
 at some or all mixes. It is not 
lear todayif this atta
k 
an be e�e
tively prevented without employ-ing a 
onstant stream of messages between two mixes. Thisresults in vast amounts of dummy traÆ
 overhead, whi
hseems una

eptable in today's Internet. End-to-end traÆ
analysis is even more diÆ
ult to 
ounter. To prote
t usersfrom this atta
k, a 
onstant traÆ
 
ow must be establishedbetween ea
h user's end-system and the �rst mix in theiranonymous paths. Considering the large number of usersone mix handles at the same time, a lot of bandwidth ofa mix is absorbed just by the dummy traÆ
 sent to andre
eived from these end-systems. Finally, legal atta
ks areanother major threat. Several governments do not like theidea of anonymity in the Internet. Law enfor
ement 
ouldhinder institutions from operating a mix. Assume a univer-sity operates a mix: the government just 
onta
ts the keypersons at that university and threatens to stop all 
urrentand future funding of their resear
h if the servi
e o�eredby the mix is not dis
ontinued within one week. Be
ause ofthese limitations, we do not believe that mix networks basedon a relatively small set of stati
 mixes are the best way toa
hieve anonymity in the Internet.In this paper, we introdu
e MorphMix, a peer-to-peerbased system to enable anonymous Internet usage. We dono longer distinguish between users and mixes. Rather, ea
huser is also a mix at the same time { all parti
ipants areequal peers. We believe a peer-to-peer environment elim-inates or redu
es the drawba
ks of the traditional model.However, we also introdu
e many new 
hallenges. We do nolonger have a stable set of highly reliable mixes, but rather adynami
 system of unreliable nodes that may join and leaveat any time. Some nodes have good network 
onne
tivity,while others employ only slow dial-up 
onne
tions. We alsodo not rely on a global publi
 key infrastru
ture (PKI) pro-viding digital 
erti�
ates be
ause this will not be realizedin the near future and be
ause we want ea
h user be easilyable to run a node. This implies that it is not possible tounambiguously authenti
ate other peers. Finally, allowinganyone to parti
ipate makes it is easy for a mali
ious node(and multiple 
olluding nodes) to join the system.With MorphMix, we have several goals in mind: (1) join-ing the system should be easy for anybody having a

ess toa 
omputer with a publi
 IP address that is 
onne
ted tothe Internet. (2) The bandwidth overhead should be keptlow. In parti
ular, we do not want to employ 
over traÆ
.(3) MorphMix should prote
t from an adversary operatingseveral mali
ious nodes to break the anonymity of legitimateusers. (4) The system should make su

essful traÆ
 analysisatta
ks very diÆ
ult. (5) MorphMix should be able to eÆ-
iently 
ope with a large number of parti
ipating nodes. (6)The end-to-end performan
e should be a

eptable despitethe dynami
 environment and unreliable nodes.

In the next se
tion, we look at the basi
 design of Mor-phMix. Se
tion 3 des
ribes how anonymous paths are estab-lished while se
tion 4 dis
usses how the size and dynamismof the system help to prote
t from traÆ
 analysis atta
ks.In se
tion 5, we show how to dete
t atta
ks from 
ooperat-ing mali
ious nodes. Se
tion 6 dis
usses related work andse
tion 7 
on
ludes our work and gives an outlook.
2. BASIC ARCHITECTURE AND DESIGNMorphMix 
onsists of an open-ended set of nodes. A nodei is identi�ed by its IP address ipi. In addition, ea
h nodehas a key-pair 
onsisting of a private key PrKi and a publi
key PuKi. This key-pair is generated lo
ally when a noderuns for the �rst time.MorphMix is a 
ir
uit-based mix network. To a

ess theInternet anonymously, a user sets up an anonymous tunnel,whi
h starts at her own node, via some other nodes. Wename the node that is setting up the anonymous tunnel theinitiator. The last node of the tunnel is 
alled the �nalnode and the nodes in-between are the intermediate nodes.We also distinguish between well-behaving nodes, whi
h arenodes that do not try to break the anonymity of other usersand mali
ious nodes, whi
h 
an 
ollude with other mali
iousnodes. We make use of layered en
ryption similar to theapproa
h proposed by Chaum [5℄. Figure 1 depi
ts a fullyset up anonymous tunnel from n1 via n2, n3, and n4.All messages ex
hanged between two nodes have the samelength. We denote by fmgk the en
ryption of message mwith a key k. When n1 sends a message m through theanonymous tunnel, it en
rypts it repeatedly with the sym-metri
 keys 
orresponding to the nested en
ryptions (NEs),whi
h results in fffmgkN;3gkN;2gkN;1 . A header is pre-pended, whi
h 
ontains an identi�er that has lo
al signif-i
an
e on ea
h link between two nodes to route the mes-sage along its tunnel. The header also 
ontains a sequen
enumber to 
ounter replay-atta
ks and a type to distinguish
ontrol and data messages.Before n1 sends the message to n2, the header is en
rypteda

ording to the link en
ryption (LE) between n1 and n2 us-ing the symmetri
 key kL;1. When n2 re
eives the message,it removes the link en
ryption using kL;1, removes one layerof en
ryption using kN;1, determines the next hop a

ordingto the identi�er in the header, sets the �elds in the headerfor the next link, en
rypts the header a

ording to the linken
ryption between n2 and n3 using kL;2, and sends it ton3. This 
ontinues until the �nal node is rea
hed, whi
hrelays the data to the server n1 wants to 
ommuni
ate with.Messages are sent ba
k to n1 in the same way but in oppo-site order. This time, ea
h node adds a layer of en
ryptioninstead of removing one.An important design de
ision is whether the mix networkoperates on top of the IP layer or on the appli
ation layer.In the �rst 
ase, the system is transparent for end-to-end



transport and appli
ation proto
ols. Data is extra
ted atthe initiator after the IP-layer and transported hop-by-hopthrough the mix network within UDP diagrams. The end-to-end transport or appli
ation proto
ols are responsible toprovide a reliable data stream. In the se
ond 
ase, the user'sappli
ation usually a

esses the mix network in the sameway a web browser a

esses a web proxy: a TCP-
onne
tionis set up to an a

ess program running on the initiator's
omputer, whi
h in turn handles the 
ommuni
ation withthe mix network. The data is sent within TCP-
onne
tionson ea
h link between two mixes. The system is no longertransparent for the appli
ations, and the a

ess programusually needs to understand the proto
ol of ea
h appli
ationit supports.In traditional mix networks where ea
h link between twomixes 
arries the data of several users, UDP is the better
hoi
e be
ause with TCP, one lost pa
ket between two mixesstalls every user on that link. Similarly, when 
over traÆ
is used, it is virtually impossible to employ a 
onstant traf-�
 
ow between two mixes with TCP. Furthermore, UDPmakes sense in an environment where all mixes have similar
omputing power and network 
onne
tivity. Ea
h link be-tween two mixes 
an be tuned to its maximum throughputwithout having too many lost datagrams.In MorphMix, the 
ase is di�erent. We do not employ
over traÆ
 and due to the large number of mixes, no linkis used by very many users at the same time. Furthermore,given the heterogeneity of the nodes, using TCP makes lifemu
h easier. With UDP, two nodes would have to employsome sort of 
ow 
ontrol between them in order not to loseso many pa
kets that the end-to-end performan
e would getuna

eptable. It is questionable if one 
ould do mu
h bet-ter than using TCP dire
tly. A mix network operating ontop of the IP-layer also requires that data 
an be extra
tedfrom the proto
ol sta
k, i.e. from the kernel spa
e. This isusually not possible without spe
ial privileges. Conversely,an appli
ation-level mix network operates 
ompletely in theuser spa
e. We have therefore de
ided to implement Mor-phMix as an appli
ation-level mix network using TCP be-tween mixes. Although this means losing the transparen
yof the system to transport and appli
ation proto
ols, we be-lieve it serves the heterogeneity and dynamism of MorphMixbetter.
3. ANONYMOUS TUNNEL SETUP

3.1 Selecting the Next HopIn MorphMix, the initiator sele
ts only the �rst interme-diate node and ea
h node along the anonymous tunnel thenpi
ks the following node. This has one big advantage: ea
hnode only needs to know about some other nodes. They
an 
ommuni
ate with ea
h other and ex
hange 
ontrol in-formation to learn whi
h of them have spare resour
es toa

ept new anonymous tunnels. Conversely, assume the ini-tiator would sele
t all nodes of an anonymous tunnel. Ex-
ept for the �rst intermediate node, it has no idea about the
urrent status of the other nodes, e.g. if they are a
tuallywilling to a

ept further anonymous tunnels. For su
h a sys-tem to work eÆ
iently, a lookup-servi
e would be required.The lookup-servi
e 
ould be queried to get nodes that are
urrently willing to a

ept anonymous tunnels. There exists
alable peer-to-peer lookup servi
es su
h as Chord [20℄, butthe frequent joins and leaves of nodes and the 
ontinuously


hanging state of ea
h node would generate a lot of traÆ
only to keep the information provided by the lookup-servi
eup-to-date. Letting ea
h node sele
t the next hop makesMorphMix highly s
alable be
ause a node only has to man-age its lo
al environment. Independent of the system size,a node only 
ares about a relatively small number of othernodes at any time.There is one problem with this approa
h: on
e we hit amali
ious node that wants to 
olle
t data about anonymoustunnels, this node 
ould either simulate all remaining hopsby itself or use an a

ompli
e as the next hop. We will showin se
tion 3.3 how to solve this.
3.2 Local Environment and Peer DiscoveryAt any time, a node knows about some other nodes, i.e.their IP addresses and publi
 keys. We say that two nodesare 
onne
ted if they have 
urrently established a link en-
ryption. The set of nodes a node a is 
onne
ted to are a'sneighbors. Two 
onne
ted nodes ex
hange 
ontrol informa-tion, whi
h tells them if the other peer is willing to a

eptfurther anonymous tunnels. They 
an also 
he
k the qualityof the link by using ping-messages to �nd out if it a
tuallymakes sense to use that link to set up anonymous tunnels.So at any time, a node is 
onne
ted to some other nodes andknows whi
h of them would 
urrently a

ept being sele
tedas the next hop in an anonymous tunnel.There are di�erent ways to learn about other nodes: tojoin, one must know at least one 
urrently a
tive node. This
an be done via a lo
al 
a
he where the node tries 
onta
t-ing nodes that have been a
tive previously, by querying somenodes that are known to be always up, or by 
onta
ting someinformation servers that know about \several" 
urrently a
-tive nodes. With several nodes, we mean that su
h a serverknows about a variety of nodes but it does not 
are aboutwhat per
entage of all nodes it a
tually knows. Ea
h par-ti
ipating node 
onta
ts some of these servers from time totime and tells them about the nodes it 
urrently knows andgets some other a
tive nodes in return. The servers qui
klyforget nodes that haven't been advertised in a while and al-ways return a random set of nodes when being queried. Thisguarantees that a node 
an learn about a variety of othernodes in a short time.It is important that di�erent sour
es are 
onta
ted tolearn about other nodes. If a newly joining node 
onta
ts asingle node and that node happens to be part of a large set of
olluding mali
ious nodes, then the joining node would prob-ably only learn from other nodes in that 
ollusion, whi
hagain would tell it about other nodes in the 
ollusion andso on. Learning about nodes via di�erent sour
es shouldsigni�
antly redu
e this problem.
3.3 Setting up the Link and Nested EncryptionWhen node a wants to set up the link en
ryption withanother node b, it �rst establishes a TCP-
onne
tion withb. a then sele
ts a random bit-string that serves as thesymmetri
 key for the link en
ryption. The key is en
ryptedwith b's publi
 key and sent to b.Setting up a nested en
ryption takes pla
e between theinitiator and a node along the anonymous tunnel. The goalis to establish a symmetri
 key known only to the two end-points of the nested en
ryption. Sin
e the initiator doesnot know the nodes and their publi
 keys along its tunnelbeforehand (ex
ept the �rst intermediate node), we use the
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Figure 2: Setting up the nested en
ryptionDiÆe-Hellman (DH) [9℄ key-ex
hange. If the initiator simplysent its half of the DH key-ex
hange to node b responsiblefor sele
ting the next hop 
, b 
ould easily play the role of
 (and other nodes following 
) itself without the initiatornoti
ing this. To 
ounter this atta
k, we must not allow b tosee the initiator's half of the DH key-ex
hange in the 
lear.To solve this problem, we introdu
e the notion of a witness.For ea
h hop, the initiator sele
ts a witness randomly fromthe nodes it 
urrently knows. The witness' task is to a
t asa third party in the pro
ess of sele
ting the next hop of ananonymous tunnel. Figure 2 illustrates the pro
edure to setup the nested en
ryption.Node a is the initiator. We assume the tunnel has alreadybeen set up to node b (via zero or more intermediate nodes).In addition, b has 
urrently three 
onne
tions established tonodes 
, d, and e that are willing to a

ept further anony-mous tunnels. To set up the nested en
ryption to the nextnode, the following steps are 
arried out:1. a pi
ks a witness w randomly from the set of nodesit 
urrently knows. It generates its half of a DH key-ex
hange (DHa) and non
e1 to prevent replay atta
ks.non
e1 and DHa are en
rypted using w's publi
 keyPuKw, resulting in fnon
e1,DHagPuKw . a also spe
i-�es s, whi
h is the number of nodes b has to o�er to win message 2. Here, we assume s = 3. a then sends amessage to b 
onsisting of w's IP address ipw, PuKw,s, and the en
rypted non
e and DH parameters. Themessage tells b to append a node to the tunnel usingwitness w.2. b re
eives the message and sets up a link en
ryption tow, using ipw and PuKw. It generates non
e2, whi
his used to re
ognize message 6. b generates a message
ontaining the en
rypted non
e and DH parametersfrom a, non
e2, the IP addresses of 3 potential nexthop nodes (ip
, ipd, and ipe) and their publi
 keys(PuK
, PuKd, and PuKe) and sends it to w. We namethe list of IP addresses o�ered by b the sele
tion of b.3. w re
eives the message and randomly pi
ks one nodefrom the sele
tion of b as the next hop. In �gure 2, wpi
ks node 
 and establishes a link en
ryption with 
using PuK
. w also de
rypts non
e1 and DHa usingits private key PrKw, generates a message 
onsistingof non
e2, ipb, and DHa, and sends it to 
.4. 
 gets the message and 
he
ks if it is indeed willing toa

ept an anonymous tunnel from b. If yes, 
 generates

an ok-message and sends it ba
k to w.5. w re
eives the ok-message and generates a re
eipt for a.The re
eipt 
ontains the IP addresses o�ered by b andis signed by w using PrKw. The �rst IP address in there
eipt is the one w has pi
ked as the next hop. There
eipt also 
ontains non
e1 to guarantee its freshnessand is sent to b.6. b re
eives the message from w and learns that w hassele
ted 
 as the next hop. It generates a message 
on-taining non
e2 and the identi�er id to be used to iden-tify data belonging to this anonymous tunnel on thelink between b and 
. After having sent this message,w's task is 
ompleted and the 
onne
tion between band w 
an be torn down again.7. 
 gets the message and sends its part of the DH key-ex
hange (DH
) ba
k to b via a message identi�ed withid.8. b generates a message 
onsisting of DH
 and the re
eiptfrom w and sends it to a.If anything fails, a nok-message is sent ba
k to a and a
an either de
ide to tear down the tunnel 
ompletely or tryagain. Note that the same pro
edure as above is used toadd the hop dire
tly following the initiator. Of 
ourse, a
ould simply pi
k that node by itself and dire
tly establishthe nested en
ryption. However, this would tell the nodefollowing a that a is the initiator of the anonymous tunnel.Before analyzing the atta
ks, we identify the two mainfeatures of the nested en
ryption setup. The �rst is makingsure that b does not learn a's half of the DH key-ex
hangeas this would easily enable b to simulate all remaining hopsby itself. This is a
hieved by en
rypting DHa for w and onlysending it in the 
lear from w to 
. b never sees DHa in non-en
rypted form. The se
ond is preventing b from sele
tingthe next hop purely by itself. This is a
hieved by having bo�ering a sele
tion of possible next hops to w and w sele
tingone of them. This guarantees that b 
annot predi
t whi
h ofthe nodes in the sele
tion is going to be pi
ked as the nexthop and makes it mu
h more 
ompli
ated for b to determinethe next hop. In parti
ular, if b wants to make sure that 
is in the same set of 
olluding nodes as itself, then all nodesin the sele
tion of b must be in that 
ollusion.
3.4 Analysis of the Nested Encryption SetupWe only brie
y dis
uss the most important atta
ks. Fora more detailed analysis, refer to the te
hni
al report [16℄.



If b wants to simulate the next hop 
, it 
an provide w inmessage 2 with fake publi
 keys it knows the private keysof, inter
ept message 3 and a
t as 
 itself. To do so, b needsa
tive 
ontrol over the link between w and 
 to inter
eptand inje
t data pa
kets. However, b 
annot predi
t whi
hwitness a is going to 
hoose, so b 
annot prepare itself inadvan
e and it is diÆ
ult to inter
ept pa
kets 
lose to w.It seems more realisti
 for b to inter
ept pa
kets 
lose to 
,espe
ially as it is b that sele
ts the list of nodes in message 2.To make this atta
k as diÆ
ult as possible, we require thatall IP addresses o�ered by b in its sele
tion and b's own IPaddress must not have similar IP pre�xes. We will dis
ussthe number of IP addresses b has to o�er 
 in se
tion 5.If b and w are in the same set of 
olluding nodes, it istrivial for b to simulate the next hop 
 be
ause w 
an pro-vide DHa. Additionally, w 
an generate a re
eipt at will inmessage 5. However, sin
e a 
hooses randomly a di�erentwitness for ea
h hop, the probability that all witnesses are
ooperating with b is quite small if we assume that only arelatively small portion of all nodes is mali
ious. As soon asthe witness for a link is not 
ooperating with b, it gets mu
hmore diÆ
ult again for b to simulate the next hop.If we assume b is part of a larger set of 
ooperating mali-
ious nodes, then b simply lists a subset of these mali
iousnodes in message 2 and it is guaranteed that the next hop isalso part of the 
ooperating set. As we require that the IPaddresses must not have similar IP pre�xes, the mali
iousnodes must reside in di�erent subnets, whi
h 
ompli
ates theatta
k. Nevertheless, if an adversary manages to a

umu-late several nodes lo
ated in di�erent areas of the Internet,then this atta
k is quite easy to 
arry out.We 
on
lude that the most realisti
 atta
k is the one wherea set of 
ooperating mali
ious nodes tries to 
ontrol as manynodes along an anonymous tunnel as possible by o�eringmany or ex
lusively nodes from their 
ollusion in their se-le
tions. All other atta
ks require a
tive 
ontrol over severalnetwork links and are therefore mu
h harder to 
arry out. Inaddition, if something like a world-wide PKI got deployed,the use of digital 
erti�
ates would defeat those atta
ks im-personating another party would no longer be possible if 
signed message 7.One �nal note regarding the sele
tion of a witness to adda hop to an anonymous tunnel. Sin
e the witness knowsits neighbors, the initiator should sele
t a witness from theset of nodes it knows but never from those it is 
urrently
onne
ted to. This is also true when setting up the nesteden
ryption with the �rst intermediate node, where the ini-tiator a 
onta
ts the witness dire
tly: if the witness werealways 
hosen from the 
urrent neighbors, the witness 
ould
on
lude with high probability that a is indeed the initiatorof the anonymous tunnel.
4. TRAFFIC ANALYSIS ATTACKSIn this se
tion, we look at how the large number of mixesand the dynamism of MorphMix helps to prote
t from pas-sive traÆ
 analysis atta
ks.If a global eavesdropper 
an observe every single Mor-phMix node, we are doomed. Due to the limited mix fun
-tionality of the nodes { in parti
ular be
ause we 
hoose notto employ 
over traÆ
 { su
h an adversary should be ableto break the anonymity of all MorphMix users by meansof timing atta
ks at the nodes along anonymous tunnels orend-to-end timing atta
ks at the �rst and �nal nodes. The

question is if su
h an atta
ker is a reasonable assumption. Asmentioned in se
tion 1, traditional, stati
 mix networks are
omposed of a small number of well-known mixes. This im-plies that only a few Internet servi
e providers (ISPs) haveto 
ombine data to get a 
omplete log of all data 
owingthrough the mix network. Although the 
ommunity hasbeen arguing for years if the threat model with a globaleavesdropper is realisti
, a lot of e�ort has been spent toharden mix-based systems (forward-only and 
ir
uit based)and to �nd atta
ks on them [1, 3, 7, 8, 11, 18, 19, 21, 23℄.The 
on
lusion is that { at least for 
ir
uit-based systems{ a high level of anonymity against a global observer 
anprobably not be a
hieved without employing vast amountsof dummy traÆ
. Even that may not be enough to stopa global a
tive atta
ker 
apable of randomly blo
king linksin the system. To su

essfully resist su
h an atta
ker, thewhole system needs to be stalled in 
ase the data 
ow alongany link between two mixes stops, whi
h probably renderssu
h a system not very useful in pra
ti
e. Designing a sys-tem that provides perfe
t anonymity against a global a
tiveatta
ker while giving its user's satisfa
tory end-to-end per-forman
e for near-real-time appli
ations is very diÆ
ult andmaybe not possible.The di�eren
e in MorphMix is that be
ause of the largenumber of mixes, a global observer seems extremely unlikely.The data of very many ISPs around the world have to be
ombined to get the whole pi
ture. In addition, due to thelarge number of a
tive nodes in the system, there exists ahuge number of potential paths a message 
an take as ittravels through the network. Nodes appear and disappearand the whole system is dynami
 and 
hanges 
ontinuously,whi
h makes it virtually impossible for anyone to get knowl-edge of the whole network at any time.To take full advantage of the large number of nodes, it isnot enough for a node to dis
over some peers on
e it has be-
ome a
tive and to 
ommuni
ate with them for hours. Thereason is that this would greatly limit the possible previousand next hops of anonymous tunnels through a node duringthe time it is a
tive. Rather, ea
h node should 
onstantlytry to learn about other peers that 
an be used as possi-ble next hop nodes in anonymous tunnels and forget aboutthose it has been using for a while. As a result, ea
h node
an potentially be 
onne
ted to any other node at a time,whi
h implies that anonymous tunnels 
an follow any possi-ble path through the network. Similarly, when a
ting as theinitiator of anonymous tunnels, a node does not establishone tunnel and use it for a while, but keeps setting themup in the ba
kground. The goal is to have some anony-mous tunnels established at any time. Ea
h tunnel is onlyused for a relatively short time and several 
an be used inparallel, if the appli
ation makes use of multiple end-to-end
onne
tions at a time (think of 
ommuni
ating with a webserver and re
eiving the embedded obje
ts within a pagethrough various TCP-
onne
tions). Changing anonymoustunnels frequently is also bene�
ial for the 
ollusion dete
-tion me
hanism (see se
tion 5), and having more than oneanonymous tunnel available at any time helps 
oping withunreliable nodes or nodes that o�er poor performan
e attimes: if the throughput of an anonymous tunnel is verybad or it has stopped working 
ompletely be
ause an inter-mediate node has gone down, the tunnel is simply droppedand another one is used.



Be
ause of the size and dynamism of MorphMix, it is un-likely an atta
ker 
an systemati
ally observe a parti
ularuser by monitoring all mixes along his anonymous tunnels.Similarly, end-to-end traÆ
 analysis atta
ks are diÆ
ult to
arry out, �rst of all be
ause there are so many possible exitsfor ea
h anonymous tunnel and se
ond be
ause there are nolonger so easily identi�able entry-points (the link betweenthe user's 
omputer and the �rst mix) into the system as inthe traditional model. We also argue that using 
over traÆ
would not add mu
h more to the resistan
e of MorphMix. Inparti
ular, keeping up 
onstant traÆ
 
ows between nodesin a way that really prote
ts from traÆ
 analysis atta
kswithout signi�
antly degrading the end-to-end performan
ewould be very diÆ
ult in a highly dynami
 environment withunreliable nodes.We 
on
lude that a limited eavesdropper that is able tomonitor several nodes but not a signi�
ant portion of thesystem may o

asionally break the anonymity of a user ifhe manages to observe at least the traÆ
 at the initiatorand �nal node of an anonymous tunnel. As soon as theuser swit
hes to another tunnel, her identity is prote
tedagain. This implies that MorphMix is well suited to prote
tits users from long-term pro�ling without guaranteeing theanonymity of every single transa
tion.
5. DETECTING COLLUSION ATTACKSIt is a hard problem to dete
t nodes that are just 
olle
tingdata but otherwise o�er good servi
e. However, there is onekey di�eren
e between an anonymous tunnel that was set upvia well-behaving nodes and one that is partly 
omposed of
ooperating mali
ious nodes: in the �rst 
ase, ea
h node issele
ted more or less randomly among all a
tive nodes in thesystem, while in the se
ond 
ase, nodes from the mali
iousset appear with higher probability. Dete
ting nodes that ap-pear more often together in anonymous tunnels than others
an only work when a user has set up and used a variety ofdi�erent anonymous tunnels, whi
h is another argument tosupport frequently 
hanging the tunnels one is using.In this paper, we des
ribe the basi
 
ollusion dete
tionme
hanism. It does not yet take pre�xes of IP addresses intoa

ount: two IP addresses are equal if they mat
h in everybit, otherwise they are 
ompletely di�erent. The 
ollusiondete
tion is based on the re
eipts a user gets from di�erentwitnesses during the setup of anonymous tunnels (�gure 2messages 5 and 8). A re
eipt 
ontains the possible next hopso�ered to the witness (�gure 2 message 2). The �rst nodein a re
eipt is the one sele
ted by the witness, whi
h impliesthe initiator knows whi
h node has o�ered whi
h sele
tionfor ea
h intermediate node in an anonymous tunnel.Ea
h node maintains an internal table that 
ontains a rowfor ea
h sele
tion it has re
eived during the setup of anony-mous tunnels. Ea
h row is a 
ombination of a sele
tion andthe node that o�ered the sele
tion, whi
h we name extendedsele
tion. If node b has o�ered the sele
tion fip
, ipd, ipeg,the resulting extended sele
tion is fipb, ip
, ipd, ipeg,We now des
ribe the 
omputations a node performs todetermine if an anonymous tunnel is 
omposed of 
ollud-ing nodes or not. For ea
h new extended sele
tion, a node
omputes the 
orrelation a

ording to algorithm 1:Algorithm 1. Computing the 
orrelation of an extendedsele
tion1. Build a set ESN 
onsisting of the nodes of the new

extended sele
tion.2. De�ne a result set ESR whi
h is empty at �rst.3. Compare ea
h extended sele
tion EST in the internaltable with ESN . If ESN and EST have at least oneelement in 
ommon, add the elements of EST to ESR.4. Count ea
h o

urren
e of elements in ESR that appearmore than on
e and store the result in m.5. Count the number of elements that appear only on
ein ESR and store the result in u.6. Compute the 
orrelation 
 whi
h is de�ned as 
 = m=uif u > 0, or 1 otherwise.We argue that the 
orrelation is in general relatively bigif the new extended sele
tion 
ontains many or only 
ollud-ing nodes. Colluding nodes (1) sele
t other 
olluding nodeswith high probability and (2) are sele
ted by other 
olludingnodes with high probability. This follows from our assump-tion we stated in se
tion 3.4 where we said that atta
ks bya 
ooperating mali
ious set of nodes are most likely. Simi-larly, well-behaving nodes (3) pi
k nodes for the sele
tionsthey o�er from the set of all other nodes and (4) are pi
kedby all other well-behaving nodes. In step 3 of algorithm 1,we want to �nd out what the nodes in the new extendedsele
tion have done before, i.e. in what extended sele
tionsthey have appeared before and 
olle
t all extended sele
-tions in the internal table that 
ontain elements of the newextended sele
tion in a set ESR. For reasons (1{4), we 
anstate the following properties about the set ESR:1. If ESN mainly 
onsists of 
olluding nodes, ESR will
ontain relatively few di�erent nodes and many o

ur-ren
es of several 
olluding nodes. This implies a bigm and a small u, resulting in a big 
.2. If ESN mainly 
onsists of well-behaving nodes, ESRwill 
ontain relatively many di�erent nodes with onlya few of them o

urring several times. This implies asmall m and a big u, resulting in a small 
.Why do we not simply 
ount how many times the elementsin ESN show up in the internal table? This would work ifwe assumed that every node in the system was sele
ted bywell-behaving nodes with the same probability. In this 
ase,
olluding nodes would stand out sin
e overall, they would besele
ted more often than the well-behaving ones due to theirpreferen
e in the sele
tions of 
olluding nodes. However, ina real-world s
enario, some nodes will be mu
h more popularthan others be
ause of their spare bandwidth and 
omputingpower. Counting only the number of o

urren
es of nodesin the internal table, one 
ould wrongly suspe
t the verypopular nodes to build a 
olluding set, whi
h would greatlyhurt the performan
e of the whole system. What distin-guishes well-behaving popular nodes from 
olluding nodesis that although the popular nodes appear frequently in se-le
tions of well-behaving nodes, less popular nodes appear inthe same sele
tions, too. Consequently, the variety of nodesbeing sele
ted by well-behaving nodes is always bigger thanthe one sele
ted by mali
ious nodes, even if there are somevery popular nodes. Similarly, it would not be suÆ
ient tolook only at m instead of the ratio m=u. With several pop-ular well-behaving nodes in an extended sele
tion, m 
anget quite big and the nodes in the extended sele
tion 
ouldagain be suspe
ted to build a 
olluding set. This is whywe take u into a

ount: u tends to get relatively big 
om-pared tom when the new extended sele
tion 
ontains mainly



well-behaving nodes { independently of the popularities ofthe nodes, but is relatively small 
ompared to m when theextended sele
tion 
onsists of several mali
ious nodes.
5.1 Detecting Malicious TunnelsWe have argued that high 
orrelations are an indi
ationfor 
olluding nodes. However, we have not given a limitabove whi
h extended sele
tions get suspi
ious. The prob-lem is that there is no su
h �xed limit. The 
orrelationsdepend on the number of nodes in the system, their popu-larities, the number of nodes in a sele
tion, and the size ofthe internal table.A node remembers the 
orrelations it has 
omputed overtime and represents them as a distribution fun
tion. It isimplemented as an array, whereas ea
h slot of the array
orresponds to a parti
ular dis
rete 
orrelation. If a new
orrelation 
 is 
omputed, it basi
ally a�e
ts the slot 
losestto 
 by in
rementing its value by 1. However, in order notto let grow the values in the array inde�nitely, they followan exponential weighted moving average (EWMA) with pa-rameter �. � is slightly smaller than 1 and depends on thenumber of extended sele
tions in the internal table. After anew 
orrelation has been 
omputed, the value in ea
h slotis multiplied with �, and (1 � �) is added to the slot that
orresponds to the new 
orrelation.We analyze how the 
orrelation distribution looks. We as-sume a system with 10'000 nodes, where some of them aremali
ious and in the same 
olluding set. Ea
h node is equallypopular. We set up 5'000 anonymous tunnels, whereas ea
htunnel 
onsists of 5 nodes in total. This means that theinitiator gets 3 di�erent sele
tions during the setup of ea
htunnel, one from ea
h of the intermediate nodes. Ea
h sele
-tion 
ontains 10 nodes, whi
h is a reasonable sele
tion sizein a system with 10'000 nodes (see se
tion 5.3). For now,we assume that mali
ious nodes o�er only other mali
iousnodes from their 
ollusion in their sele
tions, i.e. sele
tionsfrom mali
ious nodes 
ontain 10 mali
ious nodes. Figure 3shows the 
orrelation distribution when 5, 10, 20, or 30% ofall nodes are mali
ious.
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) 2'000 mali
ious nodes d) 3'000 mali
ious nodesFigure 3: Correlation distribution with 10'000 nodesWe 
an see the 
ontributions of well-behaving and mali-


ious nodes to the 
orrelation distribution. In general, itresults in two peaks, one on the left from the well-behavingnodes and one on the right from the mali
ious nodes. Themore mali
ious nodes there are in the system, the bigger theright peak gets and the 
loser the two peaks move together.The strategy a node follows when trying to dete
t mali-
ious anonymous tunnels is as follows: At any time, the nodeknows the 
orrelation distribution it has generated based onsele
tions it re
eived previously. Based on this distribution,the node determines a 
orrelation limit. This limit shouldhave the property that if the 
orrelation of a new extendedsele
tion is smaller than this limit, then the node that of-fered the 
orresponding sele
tion is well-behaving with ahigh probability. Similarly, the extended sele
tion 
orre-sponding to the sele
tion of a mali
ious node should yield a
orrelation that is above the limit with high probability. Ifthe 
orrelations of all extended sele
tions of an anonymoustunnel are below that limit, then the anonymous tunnel is
onsidered good. Note that if only the �nal node in the tun-nel is mali
ious, then this is diÆ
ult to dete
t be
ause itdoes not o�er a sele
tion. However, this �nal node 
annotlearn anything about the anonymous tunnel by itself. Onthe other hand, if the 
orrelation of at least one extended se-le
tion is above the limit, the tunnel is 
onsidered mali
iousand will not be used. The diÆ
ulty of determining this limitis that the node only knows the 
orrelation distribution ofall nodes, i.e. the sum of the 
ontributions of well-behavingand mali
ious nodes in �gure 3.The steps the initiator 
arries out during the setup ofan anonymous tunnel to determine whether it is 
onsideredgood or mali
ious are listed in algorithm 2:Algorithm 2. Determining if an anonymous tunnel isgood or mali
ious1. Initialize a variable reje
tTunnel to false.2. Get the next extended sele
tion ESN of the anonymoustunnel.3. Compute the 
orrelation 
 of ESN .4. Determine the limit 
orrelation 
l from the 
orrelationdistribution.5. If 
 is greater than 
l, set reje
tTunnel to true.6. Add 
 to the 
orrelation distribution and add ESN tothe internal table.7. If there are more intermediate nodes following in thetunnel, go to step 2.8. If reje
tTunnel is true, reje
t the tunnel. Otherwiseit is 
onsidered good.We now analyze how well our algorithm performs. Thereare two �gures we are evaluating: false positives, i.e. thenumber of good anonymous tunnels that were wrongly 
las-si�ed as mali
ious, and the false negatives, whi
h are thoseanonymous tunnels that have been 
lassi�ed as good buta
tually 
ontain more than one mali
ious node. A

ordingto our assumption that mali
ious nodes present only othermali
ious nodes in their sele
tions, it is guaranteed that them mali
ious nodes in a tunnel are always the last m hopsof that tunnel. A tunnel 
onsisting of n nodes may 
on-tain 1 : : : (n � 1) mali
ious nodes. Tunnels where only the�nal node is mali
ious 
annot be dete
ted but do not pose aproblem, as mentioned above. Consequently, we try to de-te
t tunnels 
onsisting of 2 : : : (n � 1) 
olluding nodes. Wetherefore split the false negatives further depending on thenumber of mali
ious nodes anonymous tunnels 
ontain. If a



tunnel 
ontains 5 nodes, then there are false negatives with2, 3, or 4 mali
ious nodes.Figure 4 shows the false positives and negatives for thesetting in �gure 3. The graphs show the 
umulated per-
entages of false positives and negatives after n anonymoustunnels have been set up. For instan
e, in �gure 3a, theline with the false positives shows about 20% false positivesafter 2'000 anonymous tunnels. This means that 20% ofall good anonymous tunnels were wrongly 
lassi�ed as mali-
ious during the setup of the �rst 2'000 anonymous tunnels.The table lists the absolute �gures of false positives andnegatives after all 5'000 anonymous tunnels have been setup.
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) 2'000 mali
ious nodes d) 3'000 mali
ious nodes5% mali
ious 10% mali
iousf. pos. 505 of 4291 ! 11.77% 450 of 3637 ! 12.62%f. neg. (2) 1 of 224 ! 0.45% 3 of 411 ! 0.73%f. neg. (3) 0 of 244 ! 0.00% 0 of 449 ! 0.00%f. neg. (4) 0 of 241 ! 0.00% 0 of 503 ! 0.00%20% mali
ious 30% mali
iousf. pos. 292 of 2566 ! 11.38% 244 of 1733 ! 14.08%f. neg. (2) 13 of 681 ! 1.91% 52 of 736 ! 7.07%f. neg. (3) 3 of 789 ! 0.38% 33 of 1100 ! 3.00%f. neg. (4) 4 of 964 ! 0.41% 11 of 1431 ! 0.77%Figure 4: False negatives and positives with 10'000nodesWe see that false negatives mainly o

ur when only a fewtunnels have been set up. The reason is that in the begin-ning, it is diÆ
ult to determine if a new extended sele
tionis good or mali
ious be
ause the internal table of the initia-tor does not yet 
ontain enough extended sele
tions. Afterthis initial phase, however, only very few mali
ious tunnelsremained undete
ted. False positives happen from time totime, whi
h is 
aused by the fa
t that the 
orrelation limitis always 
hosen to minimize the false negatives at the 
ostof a few false positives. We 
an also see that with moremali
ious nodes, it takes longer until we 
an dete
t falsenegatives with high probability, whi
h makes sense be
ausemore anonymous tunnels are needed to learn enough aboutthe adversary. This is 
on�rmed by looking at the number of
ompletely 
ompromised tunnels (those 
onsisting of 4 mali-


ious nodes) in the table in �gure 4: with 5 or 10% mali
iousnodes, we missed none of them, with 20% we missed 4, andwith 30% mali
ious nodes we missed 11 fully 
ompromisedtunnels until the initiator had 
olle
ted enough information.The 
ollusion dete
tion me
hanism has its limit. If theamount of mali
ious nodes is in
reased to 50% and beyond,dete
ting mali
ious tunnels is no longer possible be
ause thetwo peaks in the 
orrelation distribution merge into one.Nevertheless, we 
on
lude our me
hanism to dete
t mali-
ious tunnels basi
ally works very well. Of 
ourse, thereis a learning phase, but on
e the initiator has a

umulatedenough information, virtually all mali
ious tunnels are de-te
ted. However, it should be noted that our measurementsare based on the assumption that well-behaving and mali-
ious nodes are equally popular and that mali
ious nodeso�er only other mali
ious nodes from the same 
ollusion intheir sele
tions. We will examine di�erent adversarial gamesin se
tion 5.2.The fa
t that it takes setting up some anonymous tunnelsuntil a node 
an make reasonable judgments about whethera tunnel is good or mali
ious has some impli
ations. Firstof all, to not lose the knowledge about previously estab-lished tunnels in 
ase a node has been ina
tive for a while,its full internal table is periodi
ally stored on disk. But be-sides that, MorphMix provides in
entive for a user to keepher node a
tive even when she does not need to a

ess theInternet anonymously: the node 
ontinues to set up anony-mous tunnels to 
olle
t information about the system, whi
hin
reases the user's prote
tion from 
ollusion atta
ks, and atthe same time this adds to the system's size and dynamismto in
rease its resistan
e to traÆ
 analysis atta
ks.
5.2 A More Clever AdversaryWe have seen in the previous se
tion that life gets diÆ-
ult for the adversary if the nodes he 
ontrols o�er othermali
ious nodes from the same 
ollusion too aggressively.A di�erent adversarial game is to o�er not only mali
iousnodes but also well-behaving nodes in their sele
tions. A
-
ording to algorithm 1, this should bring the peaks result-ing from the sele
tions of well-behaving and mali
ious nodes
loser together and make it more diÆ
ult for the initiatorto dete
t 
ompromised tunnels.We use the same basi
 setting as in se
tion 5.1 and varythe number of mali
ious nodes in sele
tions of mali
iousnodes from 0 : : : 10. In 
ontrast to se
tion 5.1, it is nowno longer the 
ase that all remaining nodes of a tunnel aremali
ious on
e a mali
ious node has been hit be
ause a wit-ness 
an 
hoose a well-behaving node from the sele
tion ofa mali
ious node. Consequently, it is now possible that theadversary 
ontrols the �rst intermediate and the �nal nodeof an anonymous tunnel, but not ne
essarily all others in-between. As we do not employ 
over traÆ
, it 
ould be the
ase that an advan
ed adversary makes use of timing atta
ksto learn these two nodes belong to the same tunnel, whi
hmeans he would have fully 
ompromised the tunnel. Wetherefore look more 
losely at two 
ases: (1) the adversary
ontrols all nodes following the initiator along an anony-mous tunnel and (2) the adversary 
ontrols at least the �rstintermediate and the �nal node. Figure 5 shows the per-
entage of all anonymous tunnels the adversary is expe
tedto 
ompromise a

ording to the two 
ases des
ribed above.We see that the adversary's 
han
es to fully 
ompromiseanonymous tunnels in
reases 
ompared to �gure 4. For in-
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ontrols all b) adversary 
ontrols �rstnodes following the initiator intermediate and �nal nodeFigure 5: Expe
ted per
entage of 
ompromised tun-nels with a less aggressive adversarystan
e, �gure 5a shows that an adversary 
ontrolling 1'000nodes is likely to fully 
ompromise nearly 1% of the anony-mous tunnels if the nodes he 
ontrols o�er 5 mali
ious nodesin their sele
tions. However, this is still signi�
antly betterthan the expe
ted 10% fully 
ompromised tunnels withoutusing the 
ollusion dete
tion me
hanism. Figure 5a alsoshows that if the number of nodes in the 
ollusion in
reases,then mali
ious nodes 
an o�er more mali
ious nodes in theirsele
tions without being dete
ted by the initiator. Control-ling 3'000 nodes and o�ering 8 mali
ious nodes in the sele
-tions allows the adversary to fully 
ompromise nearly 9% ofall tunnels. Without employing a 
ollusion dete
tion me
h-anism, his probability of su

ess would be 30%. Note thatit is possible to further redu
e the per
entages in �gure 5aby using more intermediate nodes in an anonymous tunnel,but at the pri
e of an in
reased end-to-end delay. For in-stan
e, using 7 instead of 5 nodes redu
es the maximumexpe
ted per
entage of fully 
ompromised tunnels to about0.15% with 1'000 and below 1% with 2'000 mali
ious nodes.Figure 5b shows that an adversary 
ontrolling 1'000 nodes
an expe
t to 
ontrol the �rst intermediate and �nal nodein 1.7% of all anonymous tunnels if mali
ious nodes o�er5 other mali
ious nodes in their sele
tions. This is slightlyabove the 1% he would 
ontrol if he played fair, i.e. if heo�ered well-behaving and mali
ious nodes in the same wayas well-behaving nodes did. With 3'000 mali
ious nodes,this goes up to about 13% 
ompared to 9% if the mali
iousnodes played fair. Using more nodes in an anonymous tunnelagain brings down the per
entages.Although the adversary is able to fully 
ompromise a fewanonymous tunnels using the less aggressive strategy dis-
ussed above (either trivially by 
ontrolling all nodes follow-ing the initiator or by 
ontrolling at least the �rst intermedi-ate and the �nal node and making use of timing atta
ks), hisabilities are still very limited. First of all, he does not knowif the �rst node he 
ontrols is really the �rst intermediatenode, whi
h implies he 
annot know for sure who the initia-tor is. Se
ond, although he 
an expe
t to 
ompromise someanonymous tunnels, he 
annot mount a targeted atta
k ona node to 
ompromise all its tunnels where he 
ontrols the�rst intermediate node during the next hour or so. He 
an
ontinuously try, but only o

asionally he will manage to
ontrol enough nodes along a tunnel to fully 
ompromise itwithout being dete
ted by the initiator.Another strategy of the adversary 
ould be to make surethe nodes he 
ontrols are not very popular. This 
ould bea
hieved by telling their neighbors that they are not willingto a

ept further anonymous tunnels. The main idea behind

this strategy is to have only a few extended sele
tions frommali
ious nodes in the internal tables of the initiators tokeep their 
orrelations small, whi
h should bring the peaksresulting from the sele
tions of well-behaving and mali
iousnodes 
loser together.Figure 6 shows the adversary's expe
ted per
entage of
ompromised tunnels if he varies the relative popularitiesof the mali
ious nodes from 0:05 : : : 1:0 of the well-behavingnodes.
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Figure 6: Expe
ted per
entage of 
ompromised tun-nels with less popular mali
ious nodesHere again, the adversary's 
hanges in
rease 
omparedto �gure 4. When 
ontrolling 1'000 nodes, he manages to
ompromise nearly 1% of all tunnels when keeping the ma-li
ious nodes' relative popularities at 10{15%. With 3'000mali
ious nodes, it in
reases to 7% when keeping the mali-
ious nodes' relative popularity at 20%. It is again possibleto further redu
e the per
entages in �gure 6 by using moreintermediate nodes in an anonymous tunnel, but at the pri
eof an in
reased end-to-end delay. Using 7 instead of 5 nodesredu
es the maximum expe
ted per
entage of fully 
ompro-mised tunnels to about 0.3% with 1'000 and 0.55% with2'000 mali
ious nodes. We 
on
lude the 
ollusion dete
-tion me
hanism still works well also against this adversarialgame. In parti
ular, an adversary 
ontrolling not more thanabout 10{20% of all nodes will not be able to fully 
ompro-mise more than very few anonymous tunnels.In general, the adversary remains undete
ted as long ashe makes sure the density of extended sele
tions 
ontain-ing many mali
ious nodes does not grow beyond a 
ertainthreshold an initiator's internal table. This means he 
ansend some mali
ious external sele
tions to an initiator dur-ing the setup of anonymous tunnels until this threshold isrea
hed without attra
ting attention. Extended sele
tionsdo not remain in the internal table forever (see se
tion 5.3),so on
e the threshold is rea
hed, the adversary has to waituntil the initiator has forgotten about some of these mali-
ious extended sele
tions before he 
an su

essfully atta
kagain. If we assume a user has a \
lean" internal table in thesense that it does not 
ontain mali
ious extended sele
tions,the adversary 
an either atta
k her aggressively for a shorttime to 
ompromise relatively many tunnels and then waita long time until the initiator has forgotten the mali
iousextensions, or he 
an 
hoose to \spend his 
redit" over alonger time to o

asionally break an anonymous tunnel.Note we have deliberately not in
luded the per
entagesof false positives in �gures 5 and 6. For the sake of 
om-pleteness, there are always about 10% false positives. Ad-ditionally, it is always possible to further redu
e the rateof false negatives by determining the 
orrelation limit more
onservatively, but at the 
ost of more false positives.



We 
on
lude that MorphMix is well suited to prote
t itsusers from long-term pro�ling atta
ks 
arried out by an ad-versary 
ontrolling a limited number of nodes. This resultis very similar to our dis
ussion about the possibilities of alimited eavesdropper (see se
tion 4).
5.3 ScalabilityWe have analyzed the in
uen
e of several parameters inour system on its behavior and performan
e [16℄ and brie
ysummarize the most important results.Most parameters depend of the number of nodes in thesystem. A node remembers all other nodes it has seen aspart of sele
tions in a least re
ently seen nodes list. Ea
hentry also 
ontains a timestamp that spe
i�es when the nodehas been seen for the last time. Nodes that have not shownup for a while are removed from the list. Upon joining thesystem for the �rst time, a node has no idea how many othernodes there are and only learns about this after having setup several anonymous tunnels. However, observing how fastthe 
orrelation distribution starts getting its typi
al shapeallows the initiator to guess the number of nodes in thesystem.The �rst parameter we look at in more detail is the sizeof the sele
tion. In general, larger sele
tions yield betterseparations of the two peaks in the 
orrelation distribution.However, very large sele
tions require ea
h node to be 
on-ne
ted to very many other nodes at one time. We have 
ar-ried out several measurements and derived a formula thatprovides a good 
ompromise. If n is the number of di�er-ent nodes in the system, then the sele
tion size s should be
hosen as s = max(d5 � log10 n� 10e; 1) [16℄. This means thesele
tion size grows logarithmi
ally with the system size. Asan example, with 10'000 nodes in the system, s should beset to 10, as we have done in the examples in se
tions 5.1and 5.2.Another issue is the size of the internal table. The 
om-plexity to 
ompute the 
orrelation of a new extended sele
-tion is proportional to the number of extended sele
tions inthe internal table. We should therefore try to keep its sizeas small as possible to minimize the overhead. The ideais to \forget" old extended sele
tions and to keep only thek least re
ently re
eived extended sele
tions in the internaltable. This is not only reasonable to keep the 
omplexitylow, but also makes sense be
ause new extended sele
tionsgive the most a

urate pi
ture of the 
urrent situation ofthe system. Like above, we have derived a formula that pro-vides good results. If s is the average number of elementsin a sele
tion and n the number of nodes in the system, thenumber of extended sele
tions k in the internal table shouldbe k = 2 � n=s [16℄, whi
h means the internal table growslinearly with the size of the system. Following the exampleabove with 10'000 nodes and a sele
tion size of 10, k wouldbe 2'000.This linear dependen
y of the 
omplexity to pro
ess a newextended sele
tion poses a problem if the system gets verylarge. We have performed our measurements on a systemwith a 1 GHz AMD Athlon CPU and 256 MB RAM, runningLinux with a 2.4.17 kernel. The software is written in Javaand we use Sun's Java 2 SDK 1.4. With n nodes in thesystem, it takes about n=20500 ms to 
ompletely pro
ess anew extended sele
tion. With 100'000 nodes, this results in40 ms, whi
h is a

eptable, but with 1'000'000 nodes, thisgrows to 400 ms, whi
h is no longer insigni�
ant.

5.4 A Realistic ScenarioWe look at a what we believe is a realisti
 s
enario. Thereare 100'000 nodes in the system. The popularities of thewell-behaving nodes follow a negative exponential distribu-tion where the most popular nodes are 50 times as popularas the least popular ones. We also take into a

ount thatnodes enter and leave the system, so at any time not allof the well-behaving nodes are a
tive. In general, we 
anassume that the popularity and availability of a node arenot independent be
ause nodes that are available most ofthe time often have better network 
onne
tivity than thosewith slow dial-up 
onne
tions that are online for only anhour or so every day. Nevertheless, it may also happen thatsome popular nodes are only available every now and thenand that some unpopular nodes are nearly always a
tive. Wemodel this by assigning ea
h node an availability between 0and 1. Popular nodes have generally a higher availability,but there are ex
eptions. We 
hoose an average availabilityof 0.25 for the well-behaving nodes, whi
h implies there areabout 25% of them a
tive at any time.To be most e�e
tive, the adversary makes sure that asmany of the nodes he 
ontrols are a
tive. We model thisby assigning ea
h mali
ious node an availability of 0.8. Inaddition, we use another result from our experiments [16℄:the adversary's 
han
es to 
ompromise anonymous tunnelswithout being dete
ted in
rease if he manages to keep thepopularities of the nodes he 
ontrols more or less equal.Therefore, we model the popularities of the mali
ious nodesalso with a negative exponential distribution, but here themost popular nodes are only 5 times as popular as the leastpopular ones. We also take mali
ious witnesses into a

ount:if it happens that the witness and the node setting up thenext hop are in the same 
ollusion, then the witness gener-ates a fake sele
tion that does not 
ontain any node fromthe 
ollusion to 
onfuse the initiator.The initiator sets up 20'000 tunnels. After every 100anonymous tunnels, the set of a
tive nodes is determineda

ording to their availabilities: a node with availability 0.5has a 50% probability of being a
tive during the time thenext 100 anonymous tunnels are set up. The adversary 
on-trols 2'500 nodes. We 
arry out the same measurements asin se
tion 5.2. Figure 7 depi
ts the results.
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ious nodesFigure 7: A realisti
 s
enarioWe see that the me
hanism to dete
t mali
ious tunnels
opes very well with this dynami
 s
enario. The resultsare 
omparable with the measurements with 10% mali
iousnodes in �gures 5 and 6. This is not surprising be
ause inthe dynami
 s
enario evaluated in �gure 7, approximately25% of the well-behaving nodes and 80% of the mali
iousnodes are a
tive at any time, whi
h means there are also



about 10% mali
ious nodes among the a
tive nodes at anytime. The per
entage of false positives is again about 10%.
6. RELATED WORKIn se
tion 1, we have already mentioned some systems fol-lowing Chaum's traditional approa
h. Here we have a lookat two systems based on peer-to-peer te
hnology, Crowdsand Tarzan.Crowds [15℄ 
olle
ts users in a group (the \
rowd") tobrowse the Web anonymously. To join, a user 
onta
ts a
entral server and learns about the other members. A userthat wants to request a web page forwards the request ran-domly to another member in the 
rowd. When a 
rowdmember re
eives a request from another member, it makesa random 
hoi
e to either forward the request to another
rowd member or submit it to the server the request is in-tended for. The reply from the server uses the same pathba
k. To the outside, the system provides anonymity in thesense that any 
rowd member 
ould have requested the webpage. Crowds does not make use of layered en
ryption butuses a shared key that is known to all members in a 
rowd tolink-en
rypt the messages. Crowds is similar to our systemin the sense that it also implements a \every node is a mix"poli
y, but does not employ a 
ollusion dete
tion me
hanismto prote
t from 
ollaborating members.Tarzan [11℄ is a re
ent e�ort to provide a peer-to-peeranonymizing network layer. Tarzan provides anonymousbest-e�ort IP servi
e and is transparent to appli
ations. Thesystem makes use of layered en
ryption, �xed-length mes-sages, and 
over traÆ
 to guarantee high prote
tion againsttraÆ
 analysis atta
ks. The 
over traÆ
 me
hanism is espe-
ially worth mentioning: ea
h node maintains a bidire
tionalpa
ket stream with a �xed number of other nodes (its mim-i
s). Anonymous tunnels through a node are only relayedvia the node's mimi
s, whi
h implies that real data are al-ways hidden in the pa
ket streams between the node andits mimi
s. While this approa
h limits the possible pathsthat 
an be sele
ted for a tunnel, it has the advantage that
over traÆ
 is ex
hanged only between a few of all poten-tial pairs of nodes. In general, Tarzan has strong anonymityproperties. To a
hieve them, a node 
annot simply sele
tits mimi
s as it likes. Rather, they are sele
ted in a pseudo-random, but universally veri�able way from the pool of allpresent nodes. Consequently, the probability that a mali-
ious node has only other mali
ious nodes as its mimi
s isvery small, whi
h implies it is diÆ
ult for an adversary to
ontrol all nodes in a tunnel. To sele
t the own and ver-ify another node's mimi
s, a node needs to know about allnodes in the system. Additionally, a node validates ea
hother node upon learning from its presen
e by 
onta
tingit. It is reasonable to assume that Tarzan works quite welleven with very many nodes in the system if the parti
ipat-ing nodes do not 
hange too frequently. On the other hand,espe
ially the requirement to know about all other nodesleaves open the question how well Tarzan 
an 
ope with adynami
 environment where nodes 
ome and go.Although not dire
tly 
omparable with our work, therehas been another proposal to use witnesses in mix networks[10℄. In 
ontrast to our system where witnesses are used tosele
t the next hop randomly, their witnesses are used todis
over bad nodes that fail to forward messages to in
reasethe reliability of a mix network.

7. CONCLUSIONS AND FUTURE WORKWe have presented MorphMix, a system that enables peer-to-peer based anonymous Internet usage. Re
alling the goalswe stated in se
tion 1, we argue that we have a
hieved them.Joining the system is easy be
ause all a node needs is learn-ing about some other a
tive nodes in the system. The band-width overhead is reasonably low, in parti
ular be
ause wedo not employ 
over traÆ
. A

eptable end-to-end perfor-man
e is a
hieved by qui
kly swit
hing to another tunnelwhen one o�ers very poor performan
e or has stopped work-ing 
ompletely.Based on the assumption that it is extremely unlikely thatan adversary is able to monitor the whole system, we haveargued that it is only possible for him to o

asionally breakthe anonymity of a user if he manages to observe at leastthe traÆ
 at the initiator and �nal node of an anonymoustunnel. As soon as the user swit
hes to another tunnel, heridentity is prote
ted again. We have also shown that Mor-phMix is reasonably resistant to 
ollusion atta
ks as long asthe adversary does not 
ontrol signi�
antly more than about20{30% of all parti
ipating nodes. Here again, the adver-sary may fully 
ompromise a few anonymous tunnels, butin most 
ases, he will fail. Consequently, MorphMix is wellsuited to prote
t its users from long-term pro�ling withoutguaranteeing the anonymity of every single transa
tion.Ea
h node has only to handle its lo
al environment 
on-sisting of the peers it is 
onne
ted to, whi
h is virtually inde-pendent of the number of a
tive nodes. S
alability is mainlyan issue when determining whether an anonymous tunnel isgood or bad. As the time to pro
ess a newly arriving se-le
tion in
reases linearly with the system size, MorphMixeventually rea
hes its limits when the number of nodes ap-proa
hes 1'000'000.Compared with stati
 mix networks, MorphMix s
alesbetter and is mu
h less vulnerable to legal atta
ks due toits de
entralized nature. The most signi�
ant di�eren
e isthat be
ause of its size and dynamism, MorphMix does notneed to employ 
over traÆ
 to reasonably prote
t from traf-�
 analysis atta
ks, whi
h results in mu
h less overhead.Our 
ollusion dete
tion me
hanism is based on ea
h user'sown experien
e she has 
olle
ted during the setup of heranonymous tunnels. This is not a problem if the numberof parti
ipating nodes in the system is relatively small. A
-
ording to �gure 4, it takes about 100 anonymous tunnels oflength 5 until reasonable judgments about whether a tun-nel is good or mali
ious 
an be made, whi
h is an a

eptableburden. But with 100'000 nodes, this in
reases to about 750and with 1'000'000 nodes to about 8'000 tunnels [16℄, whi
his no longer insigni�
ant. Upon joining the system for the�rst time, the user 
ould either not use anonymous tunnelsuntil she has a
quired enough knowledge or always a

epttunnels in the beginning and risk frequent observation by apossible adversary. One 
ould also imagine to use the expe-rien
e of many or all users together that share their extendedsele
tions to learn about the system mu
h more qui
kly. But
arelessly giving away the information about extended sele
-tion 
olle
ted during the setup of the own anonymous tun-nels 
ould allow others to learn more about these tunnels.In addition, mali
ious nodes 
ould distribute fake extendedsele
tion to 
onfuse well-behaving users. To solve this, one
ould de�ne a set of trusted witnesses [10℄ to improve thetrust in extended sele
tions re
eived from other nodes.



MorphMix is still very mu
h work in progress and hassome limitations in its 
urrent state. As anonymous tunnels
an fail at any time, the system is best suited for appli-
ations making use of several short-lived end-to-end 
on-ne
tions su
h as web browsing. Maintaining longstandingremote login sessions is a problem without being able toreroute anonymous tunnels when a node fails or withoutmaking sure that an anonymous tunnel 
ontains only nodesthat remain a
tive with high probability. We also do notyet take pre�xes of IP addresses into a

ount be
ause up tonow, two IP addresses were either the same or 
ompletelydi�erent, independent of the number of bits their pre�xesmat
h. Taking IP pre�xes into a

ount should prevent anatta
ker from simply operating 1'000 nodes in only a few dif-ferent subnets or from regularly 
hanging the IP address ofa node within its subnet to give it a new identity from timeto time. We also have to study peer dis
overy in more detailto avoid a node mainly learns about mali
ious nodes form-ing a 
ollusion, how denial of servi
e atta
ks 
an a�e
t thesystem, and if there are adversarial games that signi�
antlyin
rease the probability to break anonymous tunnels.Our next steps are to solve these problems to in
rease therobustness and resistan
e to atta
ks, �nalize the design ofthe proto
ol, and 
ompletely implement the system.
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