
1Lo
ating Features in Sour
e CodeThomas Eisenbarth, Rainer Kos
hke, and Daniel SimonAbstra
t|Understanding the implementation of a
ertainfeature of a system requires to identify the
omputationalunits of the system that
ontribute to this feature. In many
ases, the mapping of features to the sour
e
ode is poorlydo
umented. In this paper, we present a semi-automati
te
hnique that re
onstru
ts the mapping for features thatare triggered by the user and exhibit an observable behavior.The mapping is in general not inje
tive; that is, a
om-putational unit may
ontribute to several features. Ourte
hnique allows to distinguish between general and spe
i�

omputational units with respe
t to a given set of features.For a set of features, it also identi�es jointly and distin
tlyrequired
omputational units.The presented te
hnique
ombines dynami
 and stati
analyses to rapidly fo
us on the system's parts that re-late to a spe
i�
 set of features. Dynami
 information isgathered based on a set of s
enarios invoking the features.Rather than assuming a one-to-one
orresponden
e betweenfeatures and s
enarios as in earlier work, we
an now handles
enarios that invoke many features.Furthermore, we show how our method allows in
remen-tal exploration of features while preserving the \mentalmap" the analyst has gained through the analysis.Keywords|program
omprehension, formal
on
ept anal-ysis, feature lo
ation, program analysis, software ar
hite
-ture re
overy I. Introdu
tionUNDERSTANDING how a
ertain feature is imple-mented is a major problem of program understand-ing. Before real understanding starts, one has to lo
atethe implementation of the feature in the
ode. Systemsoften appear as a large number of modules ea
h
ontain-ing hundreds of lines of
ode. It is in general not obviouswhi
h parts of the sour
e
ode implement a given feature.Typi
ally existing do
umentation is outdated (if it exists atall), the system's original ar
hite
ts are no longer available,or their view is outdated due to
hanges made by others.So maintenan
e introdu
es in
oherent
hanges whi
h
ausethe system's overall stru
ture to degrade [1℄. Understand-ing the system in turn be
omes harder any time a
hangeis made to it.One option, when trying to es
ape this vi
ious
ir
le,is to
ompletely reverse engineer the system in order toexhaustively identify its
omponents and to assign fea-tures to
omponents. We integrated published automati
te
hniques for
omponent retrieval in an in
remental semi-automati
 pro
ess, in whi
h the results of sele
ted auto-mati
 te
hniques are validated by the user [2℄.However, exhaustive methods are not
ost-e�e
tive. For-tunately, knowledge of
omponents implementing a spe-
i�
 set of features suÆ
es in many
ases. Consequently,T. Eisenbarth, R. Kos
hke, and D. Simon are with the In-stitute of Computer S
ien
e at the University of Stuttgart,Breitwiesenstra�e 20{22, D-70565 Stuttgart, Germany. E-mail:feisenbarth,simon,kos
hkeg�informatik.uni-stuttgart.de.

a feature-oriented sear
h fo
using on the
omponents ofinterest is needed.This arti
le des
ribes a pro
ess and its supporting te
h-niques to identify those parts of the sour
e
ode whi
h im-plement a spe
i�
 set of related features. The pro
ess is au-tomated to a large extent. It
ombines stati
 and dynami
analyses and uses
on
ept analysis|a mathemati
al te
h-nique to investigate binary relations|to derive
orrespon-den
es between features and
omputational units. Con
eptanalysis additionally yields the
omputational units jointlyand distin
tly required for a set of features.An advantage of starting with features is that domainknowledge from the user's perspe
tive may be exploited,whi
h is espe
ially useful for external
hange requests anderror reports expressed in the terminology of a program'sproblem domain.The remainder of this arti
le is organized as follows.Se
t. II gives an overview of our te
hnique and introdu
esthe basi

on
epts. Se
t. III introdu
es
on
ept analysis.Se
t. IV des
ribes the pro
ess for lo
ating and analyzingfeatures in more detail. In Se
t. V, we report on two
asestudies
ondu
ted to validate our approa
h. The relatedresear
h in the area is summarized in Se
t. VI.II. OverviewThe goal of our te
hnique is to identify the
omputa-tional units that spe
i�
ally implement a feature as well asthe set of jointly or distin
tly required
omputational unitsfor a set of features. To this end, the te
hnique
ombinesstati
 and dynami
 analyses.This se
tion gives an overview on our te
hnique, de-s
ribes the relationships among features, s
enarios, and
omputational units (summarized in Fig. 1) and explainswhat kind of dynami
 information is used as input to ourte
hnique. The se
tion also introdu
es a simple examplethat we will use throughout the des
ription of the methodin the following se
tions. The example is inspired by a pre-vious
ase study [3℄ in whi
h we analyzed the drawing toolXFIG [4℄.Computational unit . A
omputational unit is an exe-
utable part of a system. Examples for
omputationalunits are instru
tions (like a

esses to global variables),basi
 blo
ks, routines,
lasses,
ompilation units,
ompo-nents, modules, or subsystems. The exa
t spe
i�
ation ofa
omputational unit is a generi
 parameter of our method.Feature. A feature is a realized fun
tional requirement ofa system (the term feature is intentionally de�ned weaklybe
ause its exa
t meaning depends on the spe
i�

ontext).Generally, the term feature also subsumes non-fun
tionalrequirements. In the
ontext of this paper, only fun
tionalfeatures are relevant; that is, we
onsider a feature an ob-

2
computational unit

routine modulebasic block

featurescenario
implemented by

invokes

* Fig. 1. Con
eptual model in UML notation.servable behavior of the system that
an be triggered bythe user.Example. Our �
titious drawing tool FIG (whi
h re-sembles XFIG [4℄) allows a user to draw, move, and
olordi�erent obje
ts, su
h as re
tangles,
ir
les, ellipses, and soforth. From the viewpoint of an analyst who is interestedin the implementation of
ir
le operations in FIG, the abil-ity to draw, to move, and to
olor a
ir
le are three relevantfeatures. 2Every
omputational unit (ex
luding dead
ode)
on-tributes to the purpose of the system and thus
orrespondsto at least one feature|be it a very basi
 feature, su
has the ability of the system to start or terminate. Yet,only few features may a
tually be of interest to the ana-lyst for her task at hand. In the following, we assume thatonly a subset of features is relevant. Consequently, onlythe
omputational units required for these features are ofinterest, too. The feature-unit map|as one result ofour te
hnique| des
ribes whi
h
omputational units im-plement a given set of relevant features.S
enario. Features are abstra
t des
riptions of a system'sexpe
ted behavior. If a user wants to invoke a feature of asystem, he needs to provide the system with adequate inputto trigger the feature. For instan
e, to draw a
ir
le, theuser of FIG needs to press a
ertain button on the
ontrolpanel for sele
ting the
ir
le drawing operation, then toposition the
ursor on the drawing area for spe
ifying the
enter of the
ir
le, to spe
ify the diameter by moving themouse, and eventually to press the left mouse button for�nalizing the
ir
le. Su
h sequen
es of user inputs thattrigger a
tions of a system with observable result [5℄ are
alled s
enarios.Our te
hnique requires a set of s
enarios that invoke thefeatures the analyst is interested in. A s
enario s invokesa feature f if f 's result
an be observed by the user whenthe system is used as des
ribed by s
enario s. A s
enariomay invoke multiple features and features may be invokedby multiple s
enarios. For instan
e, a s
enario for movinga
ir
le requires to draw the
ir
le �rst, so this s
enarioalso invokes feature \
ir
le drawing". There may be evendi�erent s
enarios all invoking the same set of features.Ea
h s
enario, then, represents an alternative way of in-voking the features. For instan
e, FIG allows a user topush a button or to use a keyboard short
ut to begin a
ir-
le drawing operation. A set of s
enarios ea
h representingoptions and
hoi
es for the same feature resembles a use
ase.S
enarios are used in our te
hnique to gather the
om-putational units for the relevant features through dynami

analysis, similarly to Wilde and S
ully's te
hnique [6℄. Ifthe system is used as des
ribed by the s
enario, the exe-
ution tra
e lists the sequen
e of all performed
alls forthis s
enario. Sin
e our te
hnique aims at only identify-ing the
omputational units rather than at the order of the
omputational units' exe
ution, we need only the exe
utionpro�le. The exe
ution pro�le of a given program run isthe set of
omputational units
alled during the run with-out information about the order of exe
ution. From theexe
ution pro�le, we gather the fa
t that a
omputationalunit has been exe
uted at least on
e. We ignore the dura-tion of the
omputational unit's exe
ution be
ause
ompu-tation time hardly gives hints for feature-spe
i�

ompu-tational units. On
e the spe
i�

omputational units havebeen identi�ed through our te
hnique, other te
hniques,su
h as stati
 or dynami
 sli
ing [7℄, [8℄,
an be used toobtain the order of exe
ution if required. These te
hniques
an then be applied more goal-oriented by fo
using on themost feature-spe
i�

omputational units yielded by ourte
hnique.Feature-unit map. Our te
hnique derives the feature-unitmap through
on
ept analysis, a mathemati
ally soundte
hnique. In our appli
ation of
on
ept analysis,
on
eptanalysis|simply stated|mutually interse
ts the exe
utionpro�les for all s
enarios and all resulting interse
tions toobtain the spe
i�

omputational units for a feature andthe jointly and distin
tly required
omputational units fora set of features.Example. FIG allows to draw a
ir
le either by diameteror by radius. The analyst who is interested in the di�er-en
es of these two
ir
le operations and their di�eren
es toother
ir
le operations, su
h as moving and
oloring, willset up the s
enarios listed in Fig. 2. Figure 3 lists the
omputational units exe
uted for the s
enarios in Fig. 2.Interse
ting the exe
ution pro�les shows that setRadius isspe
i�
 to feature Draw-
ir
le-radius, move toMove-
ir
le,and
olor to Color-
ir
le. 2s
enario name a
tions performedDraw-
ir
le-diameter draw a
ir
le by diameterDraw-
ir
le-radius draw a
ir
le by radiusMove-
ir
le draw a
ir
le by diameterand move itColor-
ir
le draw a
ir
le by diameterand
olor itFig. 2. Example s
enarios for FIG.Beyond simply identifying the
omputational units

3s
enario exe
uted
omputational unitsDraw-
ir
le-diameter draw, setDiameterDraw-
ir
le-radius draw, setRadiusMove-
ir
le draw, setDiameter, moveColor-
ir
le draw, setDiameter,
olorFig. 3. Exe
ution pro�les for Fig. 2.spe
i�
ally required for a feature,
on
ept analysis addi-tionally allows to derive detailed relationships between fea-tures and
omputational units. These relationships iden-tify
omputational units jointly required by any subset offeatures and
lassify
omputational units as low-level orhigh-level with respe
t to the given set of features.Example. Interse
ting the exe
ution pro�les in Fig. 3additionally shows that the
omputational units jointly re-quired for Draw-
ir
le-diameter, Move-
ir
le, and Color-
ir
le are draw and setDiameter, where draw is requiredfor all s
enarios. 2The information gained by
on
ept analysis is used toguide a subsequent stati
 analysis along the stati
 depen-den
y graph in order to narrow the
omputational units tothose that form self-
ontained and understandable feature-spe
i�

omputational units. Computational units thatare only very basi

omputational units used as buildingblo
ks for other
omputational units but not
ontaining anyappli
ation-spe
i�
 logi
 are sorted out. Additional stati
analyses, like strongly
onne
ted
omponent identi�
ation,dominan
e analysis, and program sli
ing [7℄ support thesear
h for the units of interest.For large and
omplex systems, our approa
h
an be ap-plied in
rementally as des
ribed in this paper.Appli
abilityThe retrieval of the feature-unit map is based on dynami
information where all
omputational units that are exe-
uted for a s
enario are
olle
ted. The s
enario des
ribeshow to invoke a feature. This se
tion des
ribes the as-sumptions on features, s
enarios, and
omputational unitswe make.Features . Our te
hnique is primarily suited for fun
tionalfeatures that may be mapped onto
omputational units.In parti
ular, non-fun
tional features, su
h as robustness,reliability, or maintainability, do not easily map to
ompu-tational units.The te
hnique is suited only for features that
an be in-voked from outside; internal implementation features, su
has the use of a garbage
olle
tor, may not ne
essarily bedeterministi
ally and easily triggered from outside.S
enarios . S
enarios are designed (or sele
ted from existingtest
ases) to invoke a known set of relevant features; thatis, we assume that the analyst knows in advan
e whi
hfeatures are invoked by a s
enario.Be
ause suitable s
enarios are essential to our te
hnique,a domain expert is needed to set up s
enarios. In many
ases, the domain expert
an reuse existing test
ases ass
enarios to lo
ate features. However, the purpose of test

ases is to reveal errors, and hen
e test
ases tend to be
omplex and to
over many features. Contrarily, s
enariosfor our feature lo
ation te
hnique should be simpler and in-voke fewer features to di�erentiate the
omputational unitsmore
learly.In order to explore variations of a feature, the domainexpert provides several s
enarios, ea
h triggering a featurevariation with a di�erent set of input. To obtain e�e
-tive and eÆ
ient
overage, he builds equivalen
e
lasses ofrelevant input data. Identifying equivalen
e
lasses mayrequire knowledge on internal details of a system.Computational units . The exa
t notion of
omputationalunit is a generi
 parameter to our te
hnique and dependson the task and system at hand. In prin
iple, there is nolimit to the granularity of
omputational units: One
oulduse basi
 blo
ks, routines,
lasses, modules, or subsystems.Subsystems as
omputational units are suitable to obtainan overview for very large systems. Considering routines,methods, subprograms, et
. as
omputational units givesan overview at the global de
laration level, whereas
lassesand modules lie in between subsystem and global de
lara-tion level. Basi
 blo
ks as
omputational units are onlyadequate for smaller systems or parts of a system wheremore detail is needed due to the likely information over-load to the analyst.For pra
ti
al reasons, for this paper we de
ided to useroutines as the
omputational unit of
hoi
e, where a rou-tine is a fun
tion, pro
edure, subprogram, or method a
-
ording to the programming language. For the
ase studiespresented later on in this paper, routines were appropriate.Stati
 and dynami
 dependen
ies . The results from
on
eptanalysis based on dynami
 information are used to guidethe analyst in her stati
 analysis, that is, her inspe
tion ofthe stati
 dependen
y graph. We use dynami
 informationonly as a guide and not as a de�nite answer be
ause dy-nami
 information depends upon suitable input data andthe test environment in whi
h the s
enarios are exe
uted.The stati
 dependen
y graph
an be extra
ted from pro-
edural, fun
tional, as well as obje
t-oriented programminglanguages. Be
ause exe
ution pro�les
an be re
orded forthese languages, too, our te
hnique is appli
able to all theselanguages. However, the pre
ision of the stati
 extra
-tion in
uen
es the ease of the analyst's inspe
tion of thestati
 dependen
ies, and stati
 analysis is inherently morediÆ
ult for obje
t-oriented languages (and for fun
tionallanguages with higher-order fun
tions) than for pro
edurallanguages.Stati
 analyses need to make
onservative assumptionsin the presen
e of pointers and dynami
 binding, whi
hweaken the pre
ision of the dependen
y graph. Fortu-nately, resear
h in pointer analysis has made
onsiderableprogress. There is a large body of work on pointer anal-ysis for pro
edural languages [9℄, [10℄, [11℄, [12℄, [13℄, [14℄,[15℄, [16℄ and obje
t-oriented languages [17℄, [18℄ that re-solves general pointers, fun
tion pointers, and dynami
binding. These te
hniques vary in pre
ision and
osts.Interestingly enough, Milanova and others have re
ently

4presented empiri
al data indi
ating that less expensiveand|theoreti
ally|less pre
ise te
hniques to resolve fun
-tion pointers rea
h the pre
ision of more expensive and|theoreti
ally|more pre
ise te
hniques [19℄ due to the
om-mon way of using fun
tion pointers (as opposed to pointersto sta
k and heap obje
ts).III. Formal Con
ept AnalysisThis se
tion presents the ne
essary ba
kground informa-tion on formal
on
ept analysis. Readers already familiarwith
on
ept analysis
an skip to the next se
tion.Formal
on
ept analysis is a mathemati
al te
hnique foranalyzing binary relations. The mathemati
al foundationof
on
ept analysis was laid by Birkho� [20℄ in 1940. Formore detailed information on formal
on
ept analysis we re-fer to [21℄, where the mathemati
al foundation is explored.Con
ept analysis deals with a relation I � O�A betweena set of obje
ts O and a set of attributes A. The tuple C =(O;A; I) is
alled a formal
ontext. For a set of obje
tsO � O, the set of
ommon attributes �(O) is de�ned as:�(O) = fa 2 A j (o; a) 2 I for all o 2 Og (1)Analogously, the set of
ommon obje
ts �(A) for a set ofattributes A � A is de�ned as:�(A) = fo 2 O j (o; a) 2 I for all a 2 Ag (2)A formal
ontext
an be represented by a relation table,where the
olumns hold the obje
ts and the rows hold theattributes. An obje
t oi and attribute aj are in the rela-tion I i� the
ell at
olumn i and row j is marked by "�".As an example, a binary relation between arbitrary obje
tsand attributes is shown in Fig. 4(a). For that formal
on-text, we have: �(fo1g) = fa1; a4; a6; a7g�(fa6; a7g) = fo1; o3gA tuple
 = (O;A) is
alled a
on
ept i� A = �(O)and O = �(A), that is, all obje
ts in
 share all attributesin
. For a
on
ept
 = (O;A), O is
alled the extent of
, denoted by extent(
), and A is
alled the intent of
,denoted by intent(
). Informally speaking, a
on
ept
or-responds to a maximal re
tangle of �lled table
ells modulorow and
olumn permutations. In Fig. 4(b), all
on
eptsfor the relation in Fig. 4(a) are listed.The set of all
on
epts of a given formal
ontext forms apartial order via the super
on
ept-sub
on
ept ordering �:(O1; A1) � (O2; A2), O1 � O2 (3)or, dually, with(O1; A1) � (O2; A2), A1 � A2 (4)Note that (3) and (4) imply ea
h other by de�nition. Ifwe have
1 �
2, then
1 is
alled a sub
on
ept of
2 and
2 is
alled super
on
ept of
1. For instan
e, in Fig. 4(b)we have
4 �
2.

The set L of all
on
epts of a given formal
ontext andthe partial order � form a
omplete latti
e,
alled
on
eptlatti
e:L(C) = f(O;A) 2 2O�2A j A = �(O) and O = �(A)g (5)The in�mum (u) of two
on
epts in this latti
e is
om-puted by interse
ting their extents as follows:(O1; A1)u(O2; A2) = (O1 \ O2; �(O1 \ O2)) (6)The in�mum des
ribes a set of
ommon attributes oftwo sets of obje
ts. Similarly, the supremum (t) is de-termined by interse
ting the intents:(O1; A1)t(O2; A2) = (�(A1 \ A2); A1 \A2) (7)The supremum yields the set of
ommon obje
ts, whi
hshare all attributes in the interse
tion of two sets of at-tributes.The
on
ept latti
e for the formal
ontext in Fig. 4(a)
an be depi
ted as a dire
ted a
y
li
 graph whose nodesrepresent the
on
epts and whose edges denote thesuper
on
ept-sub
on
ept relation � as shown in Fig. 5(a).The most general
on
ept is
alled the top element andis denoted by >. The most spe
ial
on
ept is
alled thebottom element and is denoted by ?.The
on
ept latti
e
an be visualized in a more readableequivalent way by marking only the graph node with anattribute a 2 A whose represented
on
ept is the most gen-eral
on
ept that has a in its intent. Analogously, a nodewill be marked with an obje
t o 2 O i� it represents themost spe
ial
on
ept that has o in its extent. The uniqueelement in the
on
ept latti
e marked with a is therefore:�(a) = tf
 2 L(C) j a 2 intent(
)g (8)The unique element marked with obje
t o is:
(o) = uf
 2 L(C) j o 2 extent(
)g (9)We will
all a graph representing a
on
ept latti
e usingthis marking strategy a sparse representation of the lat-ti
e. The equivalent sparse representation of the latti
e inFig. 5(a) is shown in Fig. 5(b). The
ontent of a node Nin this representation
an be derived as follows:� The obje
ts of N are all obje
ts at and below N .� The attributes of N are all attributes at and above N .For instan
e, the node in Fig. 5(b) marked with o1 and a1is the
on
ept
4 = (fo1g; fa1; a4; a6; a7g).For pra
ti
al reasons, it is sometimes useful to apply onlyone of (8) or (9). For example if we have a large number ofattributes but just a small number of obje
ts, we eliminatethe redundant appearan
e of attributes and keep the fulllist of obje
ts in the
on
epts.IV. Analysis Pro
essOur pro
ess to lo
ate features is depi
ted in Fig. 6 usingthe IDEF0 notation [22℄. It
onsists of �ve major a
tivities:

5a1 a2 a3 a4 a5 a6 a7o1 � � � �o2 � � � �o3 � � � �(a) A formal
ontext.
> (fo1; o2; o3g; fa7g)
1 (fo1; o2g; fa4; a7g)
2 (fo1; o3g; fa6; a7g)
3 (fo2; o3g; fa5; a7g)
4 (fo1g; fa1; a4; a6; a7g)
5 (fo2g; fa2; a4; a5; a7g)
6 (fo3g; fa3; a5; a6; a7g)? (;; fa1; a2; a3; a4; a5; a6; a7g)(b) Con
epts for the formal
on-text.Fig. 4. An example relation between obje
ts and attributes. The
orresponding
on
epts that
an be derived from the formal
ontext arelisted on the right.

(fo2; o3g; fa5; a7g)
(fo2g; fa2; a4; a5; a7g)(fo3g; fa3; a5; a6; a7g)
(fo1; o3g; fa6; a7g)(fo1; o2; o3g; fa7g)

(;; fa1; a2; a3; a4; a5; a6; a7g)(fo1g; fa1; a4; a6; a7g)(fo1; o2g; fa4; a7g)
(a) Full
on
ept latti
e. (fo2g; fa2g)

(;; fa6g)(;; fa5g)(fo3g; fa3g)
(;; fa7g)
(;; ;)(fo1g; fa1g)(;; fa4g)

(b) Sparse representation.Fig. 5. The
on
ept latti
es for the example
ontext in Fig. 4.

code
source

dynamic
analysis

an
al

ys
is

to
ol

co
nc

ep
t

scenario
creation

ex
pe

rt
do

m
ai

n

unit
map

feature−

features
relevant
(initially)

gr
ap

h
ex

tr
ac

to
r

concept
lattice interpretation

of concept
lattice

static
dependency

analysis

filter, granularity

need for additional scenarios (incremental analysis)

pr
of

ile
r

co
m

pi
le

r

validated
statically

unit map

scenarios

1

3 4

2
5

human involvement
(not part of IDEF0 notation)

static dependency
dependency graph

feature−

graph extraction

us
er

an
al

ys
t

an
al

ys
t

de
pe

nd
en

cyFig. 6. Pro
ess for feature lo
ation in IDEF0 notation.

61. S
enario
reation: Based on features (either known ini-tially or dis
overed during in
remental analysis), the do-main expert
reates s
enarios.2. Stati
 dependen
y-graph extra
tion: The stati
 depen-den
y graph of the system under analysis is extra
ted.3. Dynami
 analysis: The system is used a

ording to se-le
ted s
enarios.4. Interpretation of
on
ept latti
e: The data yielded bythe dynami
 analysis is presented to and interpreted by theanalyst. Relevant
omputational units are identi�ed.5. Stati
 dependen
y analysis: The analyst sear
hes thesystem for additional
omputational units that are relevantto sele
ted features.The di�erent roles of human resour
es for these a
tiv-ities are (human resour
es are highlighted in the pro
essdiagrams by a UML a
tor i
on):� The analyst is the person interested in how features maponto sour
e
ode. She interprets the
on
ept latti
e andperforms the stati
 analysis.� The domain expert designs the s
enarios and lists theinvoked features for ea
h s
enario.� The user is the person who uses the system a

ordingto the sele
ted s
enarios.All a
tivities ex
ept the stati
 dependen
y graph extra
-tion (whi
h is done only on
e) bene�t from the knowledgethat is gained in previous iterations and
an be applied re-peatedly until suÆ
ient knowledge about the system hasbeen gained. The order of the a
tivities is spe
i�ed bythe IDEF0 diagram in Fig. 6: An a
tivity may start on
eits input is available. The a
tivities are explained in thefollowing se
tions.A. Stati
 Dependen
y Graph Extra
tionThe stati
 dependen
y graph should subsume all typesof entities and dependen
ies present in the dynami
 depen-den
y graph: It is unne
essary to extra
t dynami
 informa-tion that is not used in the subsequent stati
 analysis. Yet,the stati
 dependen
y graph may provide additional typesof entities and dependen
ies and also more �ne-grained in-formation if a stati
 extra
tion tool is used that ex
eedsthe
apabilities of the available dynami
 extra
tion tool.In this
ase, the stati
 analysis
an leverage less dynami
information but is still
onservative. In our
ase studies,for instan
e, we extra
ted many detailed stati
 dependen-
ies among global de
larations (routines, global variables,and user-de�ned types) but the pro�ler we used let us onlyextra
t the dynami

all relationship among routines. Thisway, we had to analyze stati
 variable a

esses that mighthave never been exe
uted in any of our s
enarios.B. S
enario CreationA domain expert is needed for
reating the s
enarios.Any available information on the system's behavior (e.g.,do
umentation, existing test
ases, domain models, et
.) isuseful as input to him. Existing test
ases may be usefulbut not ne
essarily dire
tly appli
able, be
ause the fo
usduring testing is to
over the
ode
ompletely and to
om-bine features in many ways. S
enarios in our sense are very

distin
tive; that is, they should invoke all relevant featuresbut as few other features as possible to ease the mappingsfrom s
enarios to features and from features to
omputa-tional units (often it is unavoidable to invoke features thatare not of interest for the task at hand).The s
enarios are do
umented for future use similarly totest
ases. Additionally, the do
umentation in
ludes thefeatures invoked by the s
enarios. If the domain expertsalso spe
i�es the expe
ted result of the s
enario, the s
e-nario may also be used as simple test
ase.C. Dynami
 AnalysisThe goal of the dynami
 analysis is to �nd out whi
h
omputational units
ontribute to a given set of features.Ea
h feature is invoked by at least one of the prepareds
enarios.The pro
ess that deals with the dynami
 analysis isshown in more detail in Fig. 8. The inputs to the pro
essare sour
e
ode and a set of s
enarios
reated by pro
essstep 1 in Fig. 6. We pro
eed as follows:3.1 Compile for re
ording: The sour
e
ode is
ompiledwith pro�ling options or is instrumented to obtain the ex-e
ution pro�le.3.2 S
enario exe
ution: The system is exe
uted by auser a

ording to the s
enarios and exe
ution pro�les arere
orded.If suitable tool support is available, a s
enario's exe
u-tion may be re
orded at wish to ex
lude parts of the exe
u-tion that are not relevant, su
h as start-up and shutdown ofthe system [23℄, [24℄, [25℄. Certain debuggers, for instan
e,allow to start and end tra
e re
ording. Instrumenting thesour
e
ode so that only relevant parts are re
orded is gen-erally not an option be
ause this requires that the feature-unit map is at least partially known already.An alternative solution is to spe
ify a spe
ial \start-end"s
enario
ontaining the a
tions to be �ltered out. For in-stan
e, in order to mask out initialization and �nalization
ode, the domain expert may prepare a \start-end" s
e-nario in whi
h the system is started and immediately shutdown.Sin
e ea
h s
enario is a pre
ise des
ription of the se-quen
e of user inputs that trigger a
tions of the system,every exe
ution of a s
enario yields the same exe
utionpro�le unless the system is nondeterministi
. In
ase ofnondeterminism, one
ould either unite the pro�les of allexe
utions of the same s
enario or di�erentiate ea
h s
e-nario exe
ution. The latter is useful to identify di�eren
esdue to nondeterminism.D. Interpretation of Con
ept Latti
eIn this pro
ess step, a
on
ept latti
e for the relationtable
reated by pro
ess step 3 is built. The goals of inter-preting the resulting
on
ept latti
es are:1. Identi�
ation of the relationships between s
enarios and
omputational units (pro
ess steps 4.1{4.3)2. Identi�
ation of the relationships between s
enarios andfeatures and thus between features and
omputationalunits (pro
ess step 4.4)

7Se
t. III main partobje
t o u
omputational unitset of obje
ts O U set of
omputational unitsall obje
ts O U all
omputational unitsattribute a s s
enarioset of attributes A S set of s
enariosall attributes A S all s
enariosin
iden
e relation I I invo
ation tableFig. 7. Translation from the identi�ers of Se
t. III and the identi�ersused from here on, whi
h instantiate formal
on
ept analysis.The following subse
tions des
ribe how to a
hieve thesegoals. The basi
 pro
ess of latti
e interpretation is depi
tedin Fig. 9.D.1 S
enario Sele
tionA number of exe
ution pro�les is sele
ted in order toset up the
ontext. Exe
ution pro�les may be re
ombinedto analyze various aspe
ts of a system, where exe
utionpro�les and s
enarios
an be reused.Example. The analyst of FIG may �rst be interested inthe two di�erent ways to draw a
ir
le. She would thereforesele
t the two s
enarios Draw-
ir
le-diameter and Draw-
ir
le-radius. When she understands the di�eren
es be-tween these two features, she would investigate other
ir
leoperations and additionally sele
t Move-
ir
le and Color-
ir
le. 2D.2 Con
ept AnalysisThis pro
ess embodies a
ompletely automated step that
reates a
on
ept latti
e from the invo
ation table.In order to derive the feature-unit map by means of
on-
ept analysis, we have to de�ne the formal
ontext (i.e., theobje
ts, the attributes, and the relation) and to interpretthe resulting
on
ept latti
e a

ordingly.The formal
ontext for applying
on
ept analysis to de-rive the relationships between s
enarios and
omputationalunits will be laid down as follows:� Computational units will be
onsidered obje
ts.� S
enarios will be
onsidered attributes.� A pair (
omputational unit u, s
enario s) is in relation Iif u is exe
uted when s is performed.Figure 7 shows how to map the identi�ers used in thegeneral des
ription of
on
ept analysis in Se
t. III to theidenti�ers used in the spe
i�
 instantiation of
on
ept anal-ysis within our method.The system is used a

ording to the set of s
enarios, oneat a time, and the exe
ution pro�les are re
orded. Ea
hsystem run yields all exe
uted
omputational units for asingle s
enario; that is, one
olumn of the relation table
an be �lled per system run. Applying all s
enarios thathave been sele
ted during the pro
ess of s
enario sele
tionprovides the relation table for formal
on
ept analysis.Example. Figure 10 shows the
on
ept latti
e for theinvo
ation table in Fig. 3, where all s
enarios have beensele
ted. 2

D.3 Basi
 InterpretationCon
ept analysis applied to the formal
ontext des
ribedin the last se
tion yields a latti
e from whi
h interestingrelationships
an be derived. These relationships
an befully automati
ally derived and presented to the analyst.Thus, the analyst has to know how to interpret the derivedrelationships, but does not need to be familiar with thetheoreti
al ba
kground of latti
es.The following base relationships
an be derived from thesparse representation of the latti
e (note the duality):� A
omputational unit u is required for all s
enarios atand above
(u) in the latti
e; for instan
e, SetDiameter isrequired for Draw-
ir
le-diameter, Move-
ir
le, and Color-
ir
le a

ording to Fig. 10.� A s
enario s requires all
omputational units at and be-low �(s) in the latti
e; for instan
e, Color-
ir
le requires
olor, setDiameter, and draw a

ording to Fig. 10.� A
omputational unit u is spe
i�
 to exa
tly one s
enarios if s is the only s
enario on all paths from
(u) to thetop element; for instan
e,
olor is spe
i�
 to Color-
ir
lea

ording to Fig. 10.� S
enarios to whi
h two
omputational units u1 andu2 jointly
ontribute
an be identi�ed by the supremum
(u1)t
(u2). In the latti
e, the supremum is the
losest
ommon node toward the top element starting at the nodesto whi
h u1 and u2 are atta
hed. All s
enarios at and abovethis
ommon node are those jointly implemented by u1 andu2. For instan
e, setDiameter and
olor jointly
ontributeto Color-
ir
le a

ording to Fig. 10.� Computational units jointly required for two s
enarios s1and s2 are des
ribed by the in�mum �(s1)u�(s2). In thelatti
e, the in�mum is the
losest
ommon node toward thebottom element starting at the nodes to whi
h s1 and s2are atta
hed. All
omputational units at and below this
ommon node are those jointly required for s1 and s2. Forinstan
e, setDiameter and draw are jointly required forMove-
ir
le and Color-
ir
le a

ording to Fig. 10.� Computational units required for all s
enarios
an befound at the bottom element; for instan
e, draw is requiredfor all s
enarios a

ording to Fig. 10.� S
enarios that require all
omputational units
an befound at the top element. In Fig. 10, there is no su
hs
enario.Beyond these relationships between
omputational unitsand s
enarios, further useful aspe
ts between s
enarios onone hand and between
omputational units on the otherhand may be derived:� If
(u1) <
(u2) holds for two
omputational units u1and u2, then
omputational unit u2 is more spe
i�
 withrespe
t to the given s
enarios than
omputational unit u1be
ause u1
ontributes not just to the features for whi
h u2
ontributes, but also to other features. For instan
e,
oloris more spe
i�
 to Color-
ir
le than setDiameter and set-Diameter is more spe
i�
 than draw a

ording to Fig. 10.� If �(s1) < �(s2) holds for two s
enarios s1 and s2, thens
enario s2 is based on s
enario s1 be
ause if s2 is exe
uted,all
omputational units in the extent of �(s1) need also tobe exe
uted. For instan
e, Move-
ir
le and Color-
ir
le

8
scenario

execution
compile for

recording

profiles
execution

co
m

pi
le

r

code
source

3.1 3.2executable

scenarios

pr
of

ile
r

us
erFig. 8. The pro
ess for the dynami
 analysis in Fig. 6.

scenario
selection

an
al

ys
is

in
cr

em
en

ta
l

an
al

ys
is

to
ol

co
nc

ep
t

table
invocation

concept
analysis

senario
feature

mapping feature−
unit map

an
al

ys
t

an
al

ys
t

concept

an
al

ys
t

4.1 4.2 4.4

execution
profiles

4.3

basic
interpretation

lattice

Fig. 9. The pro
ess for interpretation of
on
ept latti
e in Fig. 6.
draw

setDiameter

color setRadiusmove Draw−circle−radiusColor−circle

Draw−circle−diameter

Move−circle

Fig. 10. Sparse
on
ept latti
e for Fig. 3.are based on Draw-
ir
le-diameter a

ording to Fig. 10.Thus the latti
e also re
e
ts the level of appli
ationspe
i�
ity of
omputational units. The information de-s
ribed above
an be derived by a tool and fed ba
k tothe analyst. Inspe
ting the relationships derived from the
on
ept latti
e, a de
ision may be made to analyze only asubset of the original features in depth due to the additionaldependen
ies that
on
ept analysis reveals. All
omputa-tional units required for these features (easily derived fromthe
on
ept latti
e) form a starting point for further stati
analyses to validate the identi�ed
omputational units andto identify further
omputational units that were possiblynot exe
uted during dynami
 analysis be
ause of limita-tions in the design of the s
enarios.

D.4 S
enario Feature MappingThe interpretation of the
on
ept latti
e as des
ribedabove gives insights into the relationship between s
enariosS and
omputational units U . However, the analyst isprimarily interested in the relationship between features Fand
omputational units U . This se
tion des
ribes how toidentify this relationship in the
on
ept latti
e if there is noone-to-one
orresponden
e between s
enarios and features.Be
ause one feature
an be invoked by many s
enariosand one s
enario
an invoke several features, there is notalways a stri
t
orresponden
e between features and s
e-narios. For instan
e, as dis
ussed above, the s
enariosMove-
ir
le and Color-
ir
le of FIG are based on Draw-
ir
le-diameter a

ording to Fig. 10 be
ause in order tomove or
olor a shape, one has to draw it �rst. The s
e-nario for moving or
oloring a shape will thus ne
essarilyinvoke the feature whi
h draws a shape. Fortunately, there

9f1 f2 f3 u1 u2 u3 u4 u5 u6 u7s1 � � � � � �s2 � � � � � �s3 � � � � � �(a) Invo
ation relation I.
(fu6; u7g; fs1; s3gg)

(fu3; u5; u6; u7g; fs3g)(fu2; u4; u5; u7g; fs2g)
(fu5; u7g; fs2; s3g)

(fu1; u2; u3; u4; u5; u6; u7g; ;)
(fu7g; fs1; s2; s3g)(fu4; u7g; fs1; s2g)(fu1; u4; u6; u7g; fs1g)

(b) Con
ept latti
e for
ontext in Fig. 11(a) (fu6g; fs1; s3gg)(fu5g; fs2; s3g)(fu3g; fs3g)Spe
 Rlvt(fu7g; fs1; s2; s3g)
(;; ;)

(fu4g; fs1; s2g)(fu1g; fs1g)Csp
 ShrdIrlvt(fu2g; fs2g)
(
) Sparse
on
ept latti
e of Fig. 11(b)
ategorized with re-spe
t to feature f1 that has been exposed in s
enarios s1and s2.Fig. 11. Categorizing
on
ept latti
es.is still a simple way to identify
omputational units rele-vant to the a
tual features in the
on
ept latti
e, althoughan unambiguous identi�
ation may require additional dis-
riminating s
enarios. The basi
 idea is to isolate featuresin the
on
ept latti
e through
ombinations of overlappings
enarios.If a s
enario invokes several features, one
an formallymodel a s
enario as a set of features s = ff1; f2; : : : ; fmg,where fn 2 F for 1 � n � m (F is the set of all relevantfeatures). This modeling is simplifying be
ause it abstra
tsfrom the exa
t order and frequen
y of feature invo
ationsin a s
enario. On the other hand, if the order or frequen
yof feature invo
ations do
ount, the s
enarios may indeedbe
onsidered
omplex features in their own right. If theses
enarios yield di�erent exe
ution pro�les, they will appearin di�erent
on
epts in the latti
e and their
ommonalitiesand di�eren
es are revealed and may be analyzed.With the domain expert's additional knowledge of whi
hfeatures are invoked by a s
enario we
an identify the
om-putational units relevant to a
ertain feature. Let us
on-sider the invo
ation relation I in Fig. 11(a) (for better leg-ibility, s
enarios are listed as rows and
omputational unitsas listed as
olumns). The table
ontains the
alled
ompu-tational units u1; : : : ; u7 per s
enario, and furthermore theinvoked features per s
enario: s1 = ff1; f3g, s2 = ff1; f2g,and s3 = ff2; f3g. The
orresponding
on
ept latti
e forthe invo
ation relation in Fig. 11(a) is shown in Fig. 11(b).The feature part of the table is ignored while
onstru
tingthis latti
e.Computational units spe
i�
 to feature f1
an be foundin the interse
tion of the exe
uted
omputational units of

the two s
enarios s1 and s2 be
ause f1 is invoked for s1 ands2. The interse
tion of the
omputational units exe
utedfor s1 and s2
an be identi�ed as the extent of the in�mumof the
on
epts asso
iated with s1 and s2: �(s1)u�(s2) =(fs1; s2g; fu4; u7g). Sin
e s1 and s2 do not share any otherfeature, the
omputational units parti
ularly relevant to f1are u4 and u7.We noti
e that u7 is also used in all other s
enarios, sothat one
annot
onsider u7 a spe
i�

omputational unitfor any of f1, f2, or f3. Computational unit u4, in
on-trast, is only used in s
enarios exe
uting f1. We thereforestate the hypothesis that u4 is spe
i�
 to f1 whereas u7is not. Be
ause there is no other s
enario
ontaining f1other than s1 and s2,
omputational unit u4 is the only
omputational unit spe
i�
 to f1.Note that this is just a hypothesis be
ause other featuresmight be involved to whi
h u4 is truly spe
i�
 and that arenot expli
itly listed in the s
enarios. Another explanation
ould be that, by a

ident, u4 is exe
uted both for f2 (ins2) and f3 (in s1); then, it appears in both s
enarios butnevertheless is not spe
i�
 to f1. However,
han
es are highthat u4 is spe
i�
 to f1 be
ause u4 is not exe
uted when f2and f3 are jointly invoked in s3, whi
h suggests that u4 atleast
omes into play only when f1 intera
ts with f2 or f3.At any rate, the
ategorization is hypotheti
 and needs tobe validated by the analyst.Computational units that are somehow related to butnot spe
i�
 for f1 are su
h
omputational units that areexe
uted for s
enarios invoking f1 amongst other features.In our example, both s1 and s2 invoke f1. Computationalunits in extents of
on
epts whi
h
ontain s1 or s2 are there-

10fore potentially relevant to f1. In our example, u1; u2; u5,and u6 are potentially relevant in addition to u4 and u7.Computational unit u3 is only exe
uted for s
enario s3,whi
h does not
ontain f1.Altogether, we
an identify �ve
ategories for
omputa-tional units with regard to feature f1 (see Fig. 11(
)):Spe
: u4 is spe
i�
 to f1 be
ause it is used in all s
enariosinvoking f1 but not in other s
enarios.Rlvt: u7 is relevant to f1 be
ause u7 is used in all s
e-narios invoking f1; but it is also more general than u4 be-
ause u7 is also used in s
enarios not invoking f1 at all.Csp
: u1 and u2 are only exe
uted in s
enarios invokingf1. They are less spe
i�
 than u4 be
ause they are not usedin all s
enarios that invoke f1; that is, these
omputationalunits are only
onditionally spe
i�
. Whether u1 and u2 aremore or less spe
i�
 than u7 is not de
idable based on the
on
ept latti
e. On one hand, they are used in all s
enariosinvoking f1 and other s
enarios, whereas u7 is also exe
utedin s
enarios that do not require f1. On the other hand, u7is exe
uted whenever f1 is required, whereas u1 and u2 arenot exe
uted in some s
enarios that do require f1.Shrd: u5 and u6 are exe
uted in s
enarios invoking f1 butthey are also exe
uted in s
enarios not invoking f1; that is,they are shared with other features. These
omputationalunits are presumably less relevant than u1 and u2, whi
hare exe
uted only when f1 is invoked, and also less relevantthan u7, whi
h is exe
uted in all s
enarios invoking f1.Irlvt: u3 is irrelevant to f1 be
ause u3 is only exe
utedin s
enarios not
ontaining f1.These fa
ts are more obvious in the sparse representationof the latti
e. Using this representation, given a featuref , one identi�es the
on
ept,
f , for whi
h the following
ondition holds:
f = (U; S) and \sj2S sj = ffg (10)Con
ept
f is
alled a feature-spe
i�

on
ept for f .Based on the feature-spe
i�

on
ept, one
an
ategorizethe
omputational units as follows:Spe
: all
omputational units u for whi
h
(u) =
 holds.Rlvt: all
omputational units u for whi
h
(u) =
0 and
0 <
 holds.Csp
: all
omputational units u for whi
h
(u) =
0 and
 <
0 holds.Shrd: all
omputational units u for whi
h u is in the in-tent of
on
ept
0 where
 <
0 holds and
 and
(u) arein
omparable.Irlvt: all other
omputational units not
ategorized byother
ategories.When the distan
e between
 and
0 is
onsidered, thereare additional nuan
es within
ategories Rlvt, Csp
,and Shrd possible. The distan
e measures the size of theset of features a
omputational unit is potentially relevantfor. The larger the set, the less spe
i�
 the
omputationalunit is.Example. The s
enario Move-
ir
le in Fig. 2 invokestwo features: the ability of FIG to draw a
ir
le by di-ameter and the ability to move this
ir
le. The s
enario

Color-
ir
le also uses the ability to draw a
ir
le; yet, it
olors the
ir
le instead of moving it. Hen
e, the
ompu-tational units responsible for drawing a
ir
le are atta
hedto the
on
ept in Fig. 10 that represents the interse
tion ofthe features invoked by Move-
ir
le and Color-
ir
le. Thes
enario Draw-
ir
le-diameter would not ne
essarily havebeen required to identify the
omputational units for draw-ing a
ir
le by diameter: The sparse latti
e reveals these
omputational units as the dire
t in�mum of Move-
ir
leand
olor-
ir
le even if Draw-
ir
le-diameter is not
onsid-ered. However, Draw-
ir
le-diameter is useful to separatedraw from setDiameter. 2As a matter of fa
t, there
ould be several
on
epts forwhi
h
ondition (10) holds when di�erent
omputationalunits are exe
uted for the given feature, depending on thes
enario
ontexts in whi
h the feature is embedded. Forinstan
e, let us assume we are analyzing FIG's undo
a-pabilities. Three s
enarios
an be provided to explore thisfeature:� Draw a
ir
le: fdraw-
ir
leg� Undo
ir
le drawing: fdraw-
ir
le, undog� Undo without pre
eding drawing operation: fundogFor the overlapping s
enarios fdraw-
ir
le, undog andfundog, we may assume that di�erent
omputational unitswill be exe
uted beyond those that are spe
i�
 to
om-mand draw-
ir
le: Quite likely, additional
omputationalunits will be exe
uted to handle the erroneous attempt to
all undo without previous operation. Consequently, thelatti
e will
ontain an own
on
ept for fdraw-
ir
le, undogand another one for fundog, where the latter is not a sub-
on
ept of the former. The in�mum of these two s
enarioswill
ontain the
omputational units of the undo opera-tion exe
uted for normal as well as ex
eptional exe
ution,whereas the
on
ept representing fundog
ontains the
om-putational units for error handling.In
ase of multiple
on
epts for whi
h
ondition (10)holds, we
an unite the
omputational units that are inSpe
 with respe
t to these
on
epts. If the identi�ed
on-
epts are in a sub
on
ept relation to ea
h other, the su-per
on
ept represents a stri
t extension of the behavior ofthe feature. If the
on
epts are in
omparable, these
on-
epts represent varying
ontext-dependent behavior of thefeature.If there is no
on
ept for whi
h
ondition (10) holds,one needs additional s
enarios that fa
tor out feature f .For instan
e, in order to isolate feature f1 in s
enarios1 = ff1; f3g, one
an simply add a new s
enario s2 =ff1; f2g. The
omputational units spe
i�
 to f1 will be in�(s1)u�(s2).It is not ne
essary to
onsider all possible feature
om-binations in order to isolate features in the latti
e. Inter-se
ting all
urrently available s
enarios exa
tly tells whi
hfeatures are not yet isolated (the interse
tion
ould be doneby
on
ept analysis applied to the formal
ontext
onsist-ing of s
enarios and features, where the in
iden
e rela-tion des
ribes whi
h feature is invoked by whi
h s
enario).Slightly modi�ed variants of s
enarios invoking the feature
an be added to isolate the feature spe
i�
ally.

11The addition of new s
enarios in order to dis
riminatefeatures in the latti
e will lead us to an in
remental
on-stru
tion of the
on
ept latti
e des
ribed in Se
t. IV-F.Before we
ome to that, we des
ribe the stati
 dependen
yanalysis.E. Stati
 Dependen
y AnalysisFrom the
on
ept latti
e, we
an easily derive all
om-putational units exe
uted for any set of relevant features.However, this gives us only a set of
omputational units,but it is not
lear whi
h of these
omputational units aretruly feature-spe
i�
 and whi
h of them are rather general-purpose
omputational units used as building blo
ks forother
omputational units. Given a feature f of interest,this question
an be answered as follows:� As a �rst approximation, all
omputational units in theextents of all feature-spe
i�

on
epts for f jointly
on-tribute to f .� The analyst re�nes this approximation by adding and re-moving
omputational units: By inspe
ting the stati
 de-penden
y graph and the sour
e
ode of the
omputationalunits, she sorts out irrelevant
omputational units; she mayalso add feature-relevant
omputational units that were notexe
uted due to an in
omplete input
overage of the s
e-narios. The
on
ept latti
e is an important guidan
e forthe analyst's inspe
tion of the dependen
y graph.Example. For FIG's ability to
olor a
ir
le, the ana-lyst will need to validate the set of
omputational unitsf
olor; setDiameter; drawg a

ording to the
on
ept lat-ti
e in Fig. 10. The latti
e shows that the analyst shouldstart with inspe
ting
olor be
ause this appears as the mostspe
i�

omputational unit for
oloring a
ir
le. 2E.1 Building the Starting SetAll
omputational units in the extent of a
on
ept jointly
ontribute to all features in the intent of the
on
ept, whi
himmediately follows from the de�nition of a
on
ept. How-ever, there may also be
omputational units in the extentthat
ontribute to other features as well, so that they arenot spe
i�
 to the given feature. There may be
omputa-tional units in the extent that do not
ontain any feature-spe
i�

ode at all. Thus,
omputational units in the ex-tent of the
on
ept need to be inspe
ted manually. Be
ausethere are no reliable
riteria known that automati
ally dis-tinguish feature-spe
i�

ode from general-purpose
ode,this analysis
annot be automated and human expertise isne
essary. However, the
on
ept latti
e may narrow the
andidates for manual inspe
tion.The
on
ept latti
e and the dependen
y graph
an helpto de
ide in whi
h order the
omputational units are to beinspe
ted su
h that the e�ort for manual inspe
tion
an beredu
ed to a minimum. Sin
e we are interested in
om-putational units most spe
i�
 to a feature f , we start atthose
omputational units ui that are atta
hed to a feature-spe
i�

on
ept of f , that is, for whi
h
f =
(ui) holds,where
f is a feature-spe
i�

on
ept for f . If there areno su
h
omputational units, we
olle
t all
omputationalunits below any of the feature-spe
i�

on
epts
f of f with

minimal distan
e to
f in the sparse representation. There
an be more than one
on
ept
f , so we unite all
omputa-tional units that are atta
hed to one of these
on
epts. Thesubset of
omputational units identi�ed in this step that isa

epted after manual inspe
tion is
alled the starting setSstart (f).Example. The starting set for FIG's ability to
olor a
ir
le, Sstart (
olor-
ir
le), is f
olorg. 2E.2 Inspe
tion of the Stati
 Dependen
y GraphNext, we inspe
t the exe
utable stati
 dependen
y graph(as one spe
i�
 subset of the stati
 dependen
y graph) that
ontains all transitive
ontrol-
ow su

essors and prede
es-sors of
omputational units in Sstart (f). We
on
entrate on
omputational units here be
ause they are the a
tive
on-stituents and be
ause they were subje
t to the dynami
analysis. The exe
utable stati
 dependen
y graph
an beannotated with the features and s
enarios for whi
h the
omputational units were exe
uted. If a
omputationalunit is not annotated with any s
enario, the
omputationalunit was not exe
uted. Non-exe
utable parts of the system,namely, de
larative parts, may be added on
e all relevant
omputational units have been identi�ed. A stati
 points-to analysis is needed to resolve dynami
 binding and
allsvia routine pointers if present. The stati
 points-to anal-ysis may take advantage of the knowledge about a
tuallyexe
uted
omputational units yielded by the dynami
 anal-ysis.We primarily
onsider only those
omputational units uifor whi
h ui 2 extent(
f) holds be
ause only those
om-putational units are a
tually exe
uted when f is invokeda

ording to the dynami
 analysis. Hen
e, we
ombinestati
 and dynami
 information to eliminate
onditionalstati

omputational units exe
utions in order to redu
ethe sear
h spa
e. Nevertheless, one should
he
k for thereasons why
ertain
omputational units have not been ex-e
uted.Any kind of traversal of the exe
utable stati
 dependen
ygraph is possible, but a depth-�rst sear
h along the
ontrol-
ow is most suited be
ause a
omputational unit
an onlybe understood if all its exe
uted
omputational units areunderstood. In a breadth-�rst sear
h, a human would haveto
ope with
ontinuous
ontext swit
hes. The goal of theinspe
tion is to sort out
omputational units that do notbelong to the feature in a narrow sense be
ause they donot
ontain feature-spe
i�

ode.The exe
utable stati
 dependen
y graph rather than the
on
ept latti
e is traversed for inspe
tion be
ause the lat-ti
e does not really re
e
t the
ontrol-
ow dependen
ies:
(u1) >
(u2) does not imply that u1 is a
ontrol-
ow pre-de
essor of u2. However, the
on
ept latti
e may still pro-vide useful information for the inspe
tion. In Se
tion IV-D,we made the observation that the lower a
on
ept
(u) isin the latti
e, the more general
omputational unit u is be-
ause it serves more features|and vi
e versa. Thus, the
on
ept latti
e gives us insight into the level of abstra
-tion of a
omputational unit and, therefore,
ontributes tothe degree of
on�den
e that a spe
i�

omputational unit

12
ontains feature-spe
i�

ode.Example. The analyst would �rst validate the startingset for FIG's ability to
olor a
ir
le Sstart (
olor-
ir
le) =f
olorg. Then she would inspe
t the
ontrol-
ow prede
es-sors and su

essors of
olor. Some of them might not beexe
uted, yet a brief
he
k is still ne
essary to make surethat they are indeed irrelevant. Then, she would
ontinuewith setDiameter and eventually inspe
t draw. 2Two additional analyses gather further information use-ful while navigating on the dependen
y graph:� Strongly
onne
ted
omponent analysis is used to iden-tify
y
les in the dependen
y graph: If there is one
ompu-tational unit in a
y
le that
ontains feature-spe
i�

ode,all
omputational units of the
y
le are related to the fea-ture be
ause of the
y
li
 dependen
y.� Dominan
e analysis is used to identify
omputationalunits that are lo
al to other
omputational units. A
om-putational unit u1 dominates another
omputational unitu2 if every path in the dependen
y graph from its root tou2
ontains u1. In other words, u2
an only be rea
hedby way of u1. If a
omputational unit u is found to befeature-spe
i�
, then all its dominators are also relevantto the feature, be
ause they need to be exe
uted in orderfor u to be exe
uted. If none of a dominator's dominatees
ontains feature-spe
i�

ode and the dominator itself isnot feature-spe
i�
, then the dominator is a
lear
uttingpoint as all its dominatees are lo
al to it. Consequently,the dominator and all its dominatees
an be omitted whileunderstanding the system.If more than one feature is relevant, one simply unitesthe starting sets for ea
h feature and then follows the sameapproa
h. For more than one feature, the
on
ept latti
eidenti�es
omputational units jointly and distin
tly usedby those features.On
e all relevant
omputational units have been identi-�ed, other stati
 (e.g., program sli
ing) as well as dynami
analyses (e.g., tra
e re
ording to obtain the order of exe
u-tion)
an be applied to obtain further information. Theseanalyses
an be performed more goal-oriented by leveragingthe retrieved feature-unit map.F. In
remental AnalysisThere are at least two reasons why an in
remental
on-sideration of s
enarios is desirable. First, one might notget the suite of s
enarios suÆ
iently dis
riminating the �rsttime. New s
enarios be
ome ne
essary to further di�erenti-ate s
enarios into features. Se
ond, new s
enarios are usefulwhen trying to understand an unfamiliar system in
remen-tally. One starts with a small set of relevant s
enarios tolo
ate and understand a fundamental set of features byproviding a small and manageable overview latti
e. Then,one su

essively in
rements the set of
onsidered s
enariosto widen the understanding.Adding s
enarios means adding attributes to the formal
ontext; but there are also situations in whi
h obje
ts areadded in
rementally: in
ases where
omputational unitsneed to be re�ned. For instan
e,
omputational units withlow
ohesion|that is,
omputational units with multiple,

yet di�erent fun
tions|will \sink" in the
on
ept latti
e ifthey
ontribute to many features. A routine
ontaining avery large swit
h statement where only one bran
h is a
tu-ally exe
uted for ea
h feature is a typi
al example. If theanalyst en
ounters su
h a routine during stati
 analysis,she
ould lower the level of granularity for
omputationalunits spe
i�
ally for this routine to basi
 blo
ks. Basi
blo
ks as
omputational units disentangle the interleaved
ode: For the example routine with the large swit
h state-ment, the individual swit
h bran
hes would be more
learlyassigned to the respe
tive feature in the
on
ept latti
e.In this se
tion, we des
ribe an in
remental
onsiderationof attributes, namely, s
enarios. In
remental
onsiderationof obje
ts|that is, re�nement of
omputational units|isanalogous.As soon as one understands the basi
s of a system, oneadds new s
enarios for further detailed investigation andexploration of the unknown portions of the system. If onetries to
apture all features of a software at on
e, the re-sulting latti
e may be
ome too large, too detailed, and thusunmanageable. If one starts with a smaller set of s
enariosand further in
reases this set, all a

umulated knowledgean analyst gained while working with the smaller latti
ehas to be preserved. The latti
e|the mental map for theanalyst's understanding|
hanges when new s
enarios areadded. Fortunately, the smaller latti
e
an be mapped tothe larger one (the smaller latti
e is the result of a so-
alledsub
ontext).Definition. Let C = (O;A; I) a
ontext, O0 � O, andA0 � A. Then C 0 = (O0; A0; I \ (O0 �A0)) is
alled a sub-
ontext of C and C is
alled a super
ontext of C 0. 2In our appli
ation of
on
ept analysis, we only add newrows (one for ea
h new s
enario, assuming that s
enarioso

ur in rows of the relation table) but never new
olumnsto the relation table (be
ause we stati
ally know all
om-putational units in advan
e). Adding new rows leads to anew formal
ontext (U; S0; I 0) in whi
h relation I 0 extendsrelation I.Proposition. Let C = (O;A; I) and C 0 = (O;A0; I 0),where A0 � A and I 0 = (I \ (O �A0)). Then every extentof C 0 is an extent of C. 2Proof. See [21℄. 2A

ording to this proposition, ea
h extent within thesub
ontext will show up in the super
ontext. This
anbe made plausible with the relation table: Added rowswill never
hange existing rows, so the maximal re
tan-gles forming
on
epts will only extend in verti
al dire
tion(if s
enarios are listed in rows).This proposition on the invariability of extents of sub-
ontexts that only di�er in the set of obje
ts results ina simple mapping of
on
epts from the sub
ontext to thesuper
ontext (for a formal proof see [21℄):(U; S) 7! (U; �(U))The mapping is a u-preserving embedding, meaning that

13the partial order relationship is
ompletely preserved. Con-sequently, the super
ontext is basi
ally a re�nement of thesub
ontext. By this mapping all
on
epts of the sub
ontext
an be found in the super
ontext.The super
ontext may in
lude new
on
epts not foundin the sub
ontext. The
onsequen
e for the visualizationof the super
ontext is that the newly introdu
ed
on
epts
an be highlighted easily in the visualized latti
e of thesuper
ontext and that
on
epts in the sub
ontext
an bemapped onto
on
epts in the super
on
ept along with pos-sible user annotations. Additionally, an in
remental auto-mati
 graph layout
an be
hosen: Only additional nodesand edges may be introdu
ed in the super
ontext, nodesand edges of the sub
ontext are kept. Thus, the positionof
on
epts relatively to ea
h other will be preserved.Example. Let us assume the analyst of FIG is nowinterested whether invoking the feature \
ir
le drawing"twi
e makes a di�eren
e and what the di�eren
es betweendrawing a
ir
le and drawing a dot (\Draw-dot") on onehand and between moving a
ir
le and undoing a
ir
lemove operation (\Move-
ir
le-undo") on the other handare. The domain expert will design the appropriate s
e-narios. The resulting invo
ation table for these and allprevious s
enarios may be as in Fig. 12(a). The latti
efor this new super
ontext is shown in Fig. 12(b). Thenew s
enario Draw-
ir
le-diameter-twi
e is subsumed bythe existing s
enario Draw-
ir
le-diameter, showing thatusing the feature twi
e does not lead to additional rele-vant
omputational units. The new s
enario Draw-dot issubsumed by the bottom
on
ept; thus, Draw-dot sharesonly the
omputational unit draw with the feature \
ir-
le drawing". Both s
enarios Draw-
ir
le-diameter-twi
eand Draw-dot do not
hange the general stru
ture of thelatti
e. Only the
on
ept highlighted in Fig. 12(b) is new.This
on
ept shows the di�eren
e betweenMove-
ir
le andMove-
ir
le-undo, whi
h is the additionally exe
uted
om-putational unit undo. 2V. Case StudiesThis se
tion des
ribes two
ase studies evaluating ourmethod. The �rst
ase study on web browsers shows thebene�t from
ombining stati
 and dynami
 information.The se
ond
ase study fo
uses on dynami
 information andexempli�es the in
remental analysis for a very large
om-mer
ial system.In both
ase studies, the
omputational units of
hoi
eare routines. The Bauhaus [26℄ tools were used to ex-tra
t the stati
 dependen
y graph. The extra
ted stati
dependen
y graph
ontains all global de
larations (rou-tines, global variables, and user-de�ned types) and manydependen
ies su
h as
alls between routines, referen
es ofglobal variables by routines, type information for variables,dependen
ies between user-de�ned types, o

urren
es oftypes in routine signatures, and so on [27℄.For the dynami
 analysis, we used a standard pro�ler togather exe
ution pro�les. The pro�ler has the limitationthat it does not re
ord a

esses to variables. We thereforeanalyzed variable a

esses stati
ally.

system version KLOC(w
) #subprogramsMosai
 2.6 51,440 701Chimera 2.0a19 38,208 928Fig. 13. Analyzed web browsers.A. Web BrowsersIn this se
tion, we dis
uss the usefulness of stati
 anddynami
 informations as introdu
ed in Se
t. IV-E.We analyzed two web browsers (both written in C; seeFig. 13) using the same set of relevant related features.The
on
ept latti
e for ea
h of these systems was derived asdes
ribed in Se
t. IV. The required routines as identi�ed bydynami
 analysis and the relationships derived by
on
eptanalysis formed a starting point for the stati
 dependen
yanalysis.A.1 Case Study SetupIn two experiments, we tried to understand how twospe
i�
 sets of related features are implemented in bothbrowsers using the pro
ess des
ribed above. The goal ofthis analysis was to re
over the feature-spe
i�

omputa-tional units and the way they intera
t|that is, to reverseengineer a partial des
ription of the software ar
hite
ture.The partial software ar
hite
ture, for instan
e, allows oneto de
ide whether feature-spe
i�

omputational units
anbe extra
ted from one system and integrated into anothersystem with only minor
hanges. Chimera does not imple-ment all features that Mosai
 provides and we wanted to�nd out whether the respe
tive feature-spe
i�

omputa-tional units of Mosai

an be reused for Chimera.� Experiment \History" (H): Chimera allows going ba
kin the history of already visited URLs, but Chimera doesnot have a forward button that allows a user to move for-ward in the history again after the ba
k button was used.Mosai
 has both a ba
k and a forward button. In this ex-periment, going ba
k and going forward were
onsideredrelated features.� Experiment \Bookmark" (B): Both Mosai
 and Chimerao�er bookmarks for visited URLs. URLs may be book-marked, and bookmarked URLs may be loaded and re-moved. We
onsidered the following related features: ad-dition of a new bookmark for a
urrently viewed URL,removal of a bookmark, and navigation to a bookmarkedURL.A.2 Obje
tivesThe questions we wanted to answer in our
ase study areas follows:� Identi�
ation and extra
tion: How are the history andthe bookmark features implemented in Mosai
 (Chimera)?What are the interfa
es between the spe
i�

omputationalunits that implement these features and the rest of Mosai
(Chimera)? In both
ases, a partial des
ription of the soft-ware ar
hite
ture was re
overed.� Integration: How
an the identi�ed portion of the
odeof one browser be integrated into the other browser?

14 draw setDiameter setRadius move
olor undoDraw-
ir
le-diameter � �Draw-
ir
le-radius � �Move-
ir
le � � �Color-
ir
le � � �Draw-
ir
le-diameter-twi
e � �Move-
ir
le-undo � � � �Draw-dot �(a) Super
ontext of Fig.3.
draw

setDiameter

color setRadiusmove

undoMove−circle−undo

Draw−circle−diameter

Draw−circle−radiusColor−circleMove−circle

Draw−circle−diameter−twice

Draw−dot(b) Latti
e for the (super)
ontext in Fig. 12(a)Fig. 12. The latti
e for the super
ontext of Fig. 10.The whole experiment (from initial setup of s
enariosand
ompiling with pro�ler options up to the ar
hite
turalsket
hes) took two people half a day of work altogether forMosai
 and Chimera.A.3 S
enarios for Dynami
 AnalysisFor ea
h experiment and ea
h browser, we ran thebrowser in a start-end s
enario in whi
h the browser wasstarted and immediately quit in order to separate start-up and shutdown
ode. The following additional s
enarioswere de�ned spe
i�
ally to the two experiments. Experi-ment \History" was
overed by the following three s
enar-ios:(H1) Basi
 s
enario doing nothing but browsing(H2) S
enario using the ba
k button(H3) S
enario using the ba
k and forward buttonsFor Chimera, the last s
enario was not performed (be-
ause Chimera possesses no forward button).Experiment \Bookmark" was
overed by the followingfour s
enarios:(B1) Basi
 s
enario: simply opening and
losing the book-mark window(B2) S
enario: adding a new bookmark for the
urrentlydisplayed URL(B3) S
enario: removing a bookmark(B4) S
enario: sele
ting a bookmark and visiting the as-so
iated URLEa
h s
enario was immediately ended by quitting therespe
tive system. We provided s
enarios that invoke onefeature only ex
ept for one s
enario: One
annot use theforward button without using the ba
k button. Conse-

(1) (2) (3) (2) \ (3) relevantMosai
/(B) 701 359 99 74 16Mosai
/(H) 348 74 65 6Chimera/(B) 928 431 89 55 3Chimera/(H) 419 123 55 24Fig. 14. Subprogram
ounts for Mosai
 and Chimera.quently, the
on
ept
ontaining routines exe
uted for s
e-nario (H2) is a sub
on
ept of the
on
ept related to (H3).Likewise, a bookmark
an only be deleted when a URL hasbeen added before. To
ir
umvent this problem, we startedthe browser with a non-empty bookmark �le in all s
enar-ios. Thus, we did not
onsider the
ase of insertion into anempty bookmark list.A.4 Stati
 Dependen
y AnalysisIn the dependen
y graph for the browsers, visualizedusing the Bauhaus extension to Rigi [28℄, we derived allstati
ally transitively
alled routines (using Rigi's basi
 se-le
tion fa
ilities [28℄) and interse
ted the stati
 informa-tion with the a
tually exe
uted routines manually. We ad-ditionally �ltered out all routines spe
i�
 to HTML andthe X-window-based graphi
al user interfa
e guided by thebrowser's proper naming
onventions. These routines wereall in the bottom element of the
on
ept latti
e.A.5 ResultsFigure 14 provides a summary of the numbers of rou-tines that needed to be further
onsidered in ea
h step andshows how the sear
h spa
e
ould be redu
ed in ea
h step.

15
(3)

(2)

(1)
browser

GUI
history

(a) Mosai
's history. inner
state

location
of history

dispatch

browser

GUI

(b) Chimera's history.
component data storage routine callFig. 16. Mosai
's and Chimera's history ar
hite
ture.

routine calls routine

less specific routines and general purpose functions

very specific routines

cutting level

lower region

upper region

Fig. 15. Relevant parts of Chimera for history.The history experiment is denoted by (H) and the book-mark experiment is denoted by (B). The total number ofall routines of the kernels (not in
luding libraries su
h ashtml, jpeg, zlib) is in
olumn (1), the number of a
tuallyexe
uted routines for any of the s
enarios is shown in
ol-umn (2). All routines stati
ally
alled by routines sele
tedfrom the set of dynami
ally exe
uted routines in upper
on-
epts of the latti
e (i.e.,
alled from routines in the start-ing set) are in
olumn (3). The interse
tion of
olumn (2)and (3)
ontains all routines dynami
ally
alled by routinessele
ted from the set of dynami
ally exe
uted routines inupper
on
epts of the latti
e; their number is reported in
olumn \(2) \ (3)". Column relevant reports all routinesin
olumn (2)\ (3) that are spe
i�
 to the sele
ted featuresa

ording to our manual inspe
tion. All other routines areused for other purposes than bookmarks and histories.Eventually, only a small number of routines needed to

be inspe
ted more thoroughly due to the top-down inspe
-tion pro
ess. As an example, Fig. 15 shows the remainingroutines of Chimera (omitting their names) relevant to thehistory experiment. This pi
ture
learly shows the possible
utting points in the dependen
y graph (
onsisting of rou-tines, global variables, and user-de�ned types and their de-penden
ies) of routines spe
i�
 to the history features (up-per region) and non-spe
i�
 routines (lower region): Onlytwo entities need to be removed to isolate feature-spe
i�
from non-spe
i�
 entities.We re
overed the parts of the ar
hite
ture of Mosai
 andChimera relevant to the two experiments.A.6 Results for HistoryThe interfa
e between Mosai
's browser kernel and thehistory
omponent (see Fig. 16(a)) is formed by three rou-tines to (1) get the
urrent URL, (2) set the
urrent URL,and (3)
ommuni
ate the a
tion and event (
hanged URL).The history
omponent
an be easily extra
ted from Mo-sai
's sour
e
ode be
ause it is a separate
omponent|whereas the history is an integral part of Chimera's kernel(
f. Fig. 16(b)). There is no set of routines of Chimerathat
ould be reasonably addressed as "history manager
omponent" as in Mosai
. Chimera uses a layer of wrap-pers
alling a dispat
hing routine around a list of a
tionswhere the displayed URLs are part of that list.The re
overed partial ar
hite
ture shows that Chimera'sbrowser kernel is built around a list of visited URLswhereas Mosai
's browser kernel does not know the his-tory of visited URLs at all. As the analysis of the partialar
hite
tural ar
hite
tures reveals, re-using Mosai
's his-tory
omponents in Chimera would be very diÆ
ult due tothe ar
hite
tural mismat
h [29℄.

16
(2)

(1)

(3)

(4)

browser

GUI

bookmarks

(a) Mosai
's bookmarks. inner
state

(2)

(1)

(3)

(4)

dispatch

GUI

browser

bookmarks

(b) Chimera's bookmarks.Fig. 17. Mosai
's and Chimera's bookmark ar
hite
ture.A.7 Results for BookmarksThe partial ar
hite
tures of the two systems are similarto ea
h other with respe
t to bookmarks. Both ar
hite
-tures in
lude an en
apsulated bookmark
omponent, whi
h
ommuni
ates via a narrow interfa
e with the basi
 browserkernel (see Fig. 17).The basi
 a
tions that have to be performed are: (1) get
urrently shown URL, (2) set
urrently shown URL, (3) dis-play the bookmarks, and (4)
ommuni
ate the bookmarksele
tion ba
k.Ex
hanging the two implementations between Mosai
and Chimera would be reasonably easy.B. Case Study AgilentThis se
tion reports on a
ase study
ondu
ted to inves-tigate the usefulness of the approa
h in a realisti
 full-s
aleindustrial setting. The
ase study stresses the importan
eof in
remental understanding of very large
on
ept latti
esas des
ribed in Se
tion IV-F and the modeling of s
enariosas set of features as explained in Se
tion IV-D.4.The system analyzed is part of the software of the Ag-ilent 93000 SOC Series, a semi-
ondu
tor test equipmentprodu
ed by Agilent Te
hnologies.B.1 Agilent 93000 SOC SeriesThe Agilent 93000 SOC Series is a single s
alable testerplatform used in the manufa
turing pro
ess of integrated
ir
uits. It provides test
apabilities for digital, analog, andradio frequen
y
ir
uits as well as for embedded memories.The SmarTest software
ontrols the
omplex tester hard-ware. It is an intera
tive environment for developing andrunning test programs.SmarTest
onsists of numerous tools supporting test en-gineering tasks. At the
enter of the software lies the�rmware, an interpreter for IEEE-488-like
ommands. The�rmware is responsible for programming the hardware.The input to the �rmware are the test
ases, whi
h are se-quen
es of �rmware
ommands. The �rmware parses andinterprets ea
h
ommand, drives the Agilent 93000 devi
e,

and returns the result. It is the �rmware that was analyzedin our
ase study.The software of the Agilent 93000 SOC series is main-tained by several geographi
ally distributed groups. Twoof them are situated in the USA, one in Japan, and onein Germany. The group in whi
h the
ase study was
on-du
ted is the SOC Test Platform Division at B�oblingen,Germany.The �rmware of the Agilent 93000 has evolved over 15years. Today, it
onsists of 1.2 million
ommented linesof C
ode|
ounted with the Unix program w
|or about500.000 non-empty lines of de
larative or exe
utable C
ode, respe
tively. The stati

all graph of the part of the�rmware that was analyzed for this
ase study had 9.988routines and 17.353
all edges ex
luding standard C rou-tines and operating system routines.Figure 18 depi
ts the software ar
hite
ture of the�rmware as des
ribed by one of the software ar
hite
ts atAgilent. The �rmware is used simultaneously by di�erenttools running as separate pro
esses. Intera
tion betweenthese tools and the �rmware is through shared memoryand message queues as part of the �rmware. A semaphoreis used to syn
hronize intera
tion between �rmware andother tools.The �rmware is basi
ally an interpreter for test pro-grams. When a test program is �led into the shared mem-ory, the �rmware parses and runs ea
h
ommand. In orderto run a
ommand, the �rmware dispat
hes the
orrespond-ing C routine that a
ts as an entry point to the implemen-tation of the
ommand. There is one su
h C routine|alsoreferred to as exe
utor|for ea
h
ommand. When the ex-e
utor has �nished, its result is written ba
k to the sharedmemory and the waiting pro
ess is informed through themessage queue. As Fig. 18 suggests, the exe
utors sharea set of re-usable utility routines|routines o�ering moregeneral servi
es. Whi
h utility routines are a
tually sharedby whi
h exe
utors is, however, not shown in the ar
hite
-tural sket
h. As a matter of fa
t, the software ar
hite
t
urrently does not exa
tly know what the pre
ise relation

17between exe
utors and utility routines is due to the size ofthe system and the la
k of do
umentation.Many
ommands interpreted by the �rmware
ome inpairs: the a
tual
ommand and an additional
ommand tofet
h the result of its exe
ution. The latter is
alled thequery
ommand. The
ommands are named by four-lettera
ronyms. Query
ommands are additionally annotatedwith a question mark. For instan
e, CNTR? is the query
ommand of CNTR.The �rmware understands about 250 di�erent a
tual
ommands; most of them have a
orresponding query
om-mand. Altogether, there are about 450 di�erent
om-mands.For this
ase study, we fo
used on the digital part ofthe �rmware, namely on Con�guration Setup, Relay Con-trol, Level Setup, Timing Setup, and Ve
tor Setup
om-mands (other
lasses of
ommands are Analog Setup, ACTest Fun
tion, DC Measurement, Test Result, Utility Line,and Calibration and Attributes
ommands):Con�guration Setup Commands: Con�guring pins is the�rst step one must take when preparing a test. Commandsof this
lass allow assigning pin names to a test or powersupply
hannel,
on�guring pin type and operation modes,spe
ifying the series resistor, and other things.Routing Setup Commands: The Routing Setup
ommandsspe
ify the signal mode and
onne
tion for ea
h pin, andthe order of
onne
tions.Level Setup Commands: The Level Setup
ommands spe
-ify the required driver ampli�er and re
eiver
omparatorvoltage levels, as well as set termination via the a
tive loador set the
lamp voltage.Timing Setup Commands: The Timing Setup
ommandsde�ne the length of the devi
e
y
le, the shape of the wave-forms making up a devi
e
y
le, and the position of thetiming edges in a tester
y
le for all
on�gured pins.Ve
tor Setup Commands: The Ve
tor Setup
ommandsare required to set up and sequen
e test ve
tors.Relays Control Commands: The Relay Control
ommandsare used to set relay positions and the tester state.B.2 Obje
tivesThis
ase study had three goals:1. The ar
hite
tural sket
h in Fig. 18 had to be mappedto the sour
e
ode so that the parts of the system that
ontribute to the blo
ks \exe
utors" and \utility fun
tions"are identi�ed. It had to be
lari�ed whi
h routines areexe
utors.2. The utility routines were to be assigned to the exe
utorsthey support. This mapping
lari�es the �ne stru
ture ofthe \utility fun
tions" blo
k in Fig. 18.3. Some
ommands of the Agilent 93000 �rmware we in-vestigated were not assigned to one of the
lasses of Con�g-uration Setup, Relay Control, Level Setup, Timing Setup,or Ve
tor Setup
ommands, neither by the ar
hite
t norby the user manual. These were to be
lassi�ed a

ordingto the resulting
on
ept latti
e to see whether the latti
eprovides useful information to
lassify features.

The overall goal of our
ase study was to map the ar
hi-te
ture sket
h in Fig. 18 to the sour
e and to show whi
hutility routines are really shared. Given the above men-tioned
lasses of
ommands, our hypothesis was that theexe
utors for
ommands of the same
lass share many util-ity routines. On the other hand, for
ommands of di�erent
lasses, we expe
ted less
ommonalities, in other words,one would expe
t that only more general utility routinesare shared.B.3 S
enarios for the �rmware of Agilent 93000The software ar
hite
t at Agilent sele
ted the
ommandsfor digital tests that were to be investigated. Three stu-dents of the University of Stuttgart
reated the test
ases|advised by the expert. For ea
h relevant �rmware
om-mand, a test
ase was provided that exe
utes the
ommand.The exe
ution of some
ommands is bound to
ertainpre
onditions that need to be ful�lled by
alling other
om-mands �rst, whi
h requires to add these
ommands to thetest
ases. Hen
e, a test
ase is generally not a single
ommand but a sequen
e of �rmware
ommands, of whi
hone is the relevant
ommand and the others are requiredpreparing steps. The order of preparing
ommands was thesame for all test
ases that had these
ommands as pre
on-ditions, and there were no two test
ases exe
uting the sameset of routines. As already des
ribed in Se
tion IV-D.4, we
an thus model a test
ase (s
enario) as set of
ommands(features) s = f
ommand1;
ommand2; : : : ;
ommandmg.In order to identify the routines spe
i�
 to the relevant
ommand only, one
an fa
tor out preparing steps by ad-ditional test
ases, whi
h exe
ute the preparing
ommandsbut not the relevant
ommand. For instan
e, in order to
all
ommand UDPS, one needs to exe
ute DFPS �rst. Thus,the test
ase for UDPS is fDFPS, UDPSg where only UDPS isrelevant. In order to identify the routines for UDPS spe
i�-
ally, one
an simply add another test
ase exe
uting DFPSonly. The routines spe
i�
 to UDPS
an then be identi�edin the
on
ept latti
e as des
ribed in Se
tion IV-D.4.If a
ommand has a query
ommand, two test
ases were
reated: one for the a
tual
ommand and one for the query
ommand. The former
ontains only the a
tual
ommandbut not the query
ommand and the latter only the query
ommand but not the a
tual
ommand (in all
ases wherethe query
ommand
an be
alled without
alling the a
tual
ommand before).If a
ommand has di�erent options, the test
ase exe-
utes the
ommand with several di�erent
ombinations ofoptions. The
ombination is aimed at
overing equivalen
e
lasses of option settings.For one pair of an a
tual and a query
ommand, namely,the
ommand SDSC, four s
enarios were
reated: two forthe a
tual and two for the query
ommand. The di�eren
eof the two s
enarios for both the a
tual and the query
om-mand is the setting of the spe
i�
ation parameter, that ei-ther relates to Timing or Level Setup. The distin
tion wasmade to see whether the
ommand requires routines fromdi�erent parts of the system, that is, the timing setup andlevel setup parts.

18

utility functions

ex
ec

tu
or

ex
ec

tu
or

ex
ec

tu
or

constructor

command

YACC parser

response

semaphor queue
messageshared

memory

control flow

data flow

applications

firmware

firmware

hardwareFig. 18. Software ar
hite
ture of Agilent 93000 �rmwarereal 76 s
enarios for relevant
ommands1 s
enario for NOP
ommandadditional 2 additional parameter
ombinationsfa
toring 1 start-end13 s
enarios for preparing stepstotal 93 s
enariosFig. 19. Test
ases / s
enarios.Ea
h test
ase represents a s
enario. In total, 93 s
e-narios were provided (
f. Fig. 19). Among these, 76 s
e-narios
orrespond to one relevant �rmware
ommand fordigital tests. One additional s
enario
ontained just theno-operation (NOP)
ommand, whi
h has no e�e
t on thetester. Two additional s
enarios were added to
all
om-mand SDCS and its query
ommand with the alternativeparameter setting. The remaining s
enarios were used torefa
tor s
enarios: The start-end s
enario was used to re-move start-up and shutdown
ode by simply starting thesystem, exe
uting a reset
ommand, and shutting down thesystem, and 13 fa
toring s
enarios were provided to fa
torout preparing steps in real s
enarios.Agilent's own large test suite for testing the �rmware
ould not be used sin
e we needed s
enarios that explorepreferably one
ommand (or feature, respe
tively) at atime. Agilent's test
ases use
ombinations of
ommands.Moreover, the existing test driver of the test suite exe
utesall tests in one run so that the result would have been a sin-gle pro�le for all test
ases instead of an individual pro�lefor ea
h test
ase.

B.4 Resulting Con
ept Latti
eThe resulting
on
ept latti
e is shown in Fig. 20. It
on-sists of 165
on
epts and 326 non-transitive sub
on
ept re-lations. Out of the 9.988 stati
ally de
lared routines, only1.463 were a
tually exe
uted by at least one of the 92
on-sidered s
enarios (the start-end s
enario is used to removethose routines from the pro�les of the other s
enarios thatare exe
uted for initialization, reset, and shutdown of thesystem only).Although, the worst
ase exe
ution time to
ompute a
on
ept latti
e is exponential in the number of obje
ts andattributes, our
omputation of the
on
ept latti
e for the�rmware took less than 2 minutes on an Intel Pentium III800 MHz ma
hine running Linux.Another developer at Agilent (di�erent from the soft-ware ar
hite
t who sket
hed the �rmware ar
hite
ture) wasasked to validate the resulting
on
ept latti
e. To make a
lear distin
tion between this validating expert and the ex-pert who sket
hed the �rmware ar
hite
ture, the formerwill be
alled developer and the latter software ar
hi-te
t in the following.The developer was familiar with the �rmware but wasnot involved in the preparation of the test
ases. We ex-plained the test
ases that were sele
ted and the interpre-tation of the
on
ept latti
e as des
ribed in this paper.We did not show the ar
hite
ture sket
h from the soft-ware ar
hite
t. We asked the developer to explain the gen-eral stru
ture of the system with the
on
ept latti
e andwhether there are any surprises in the latti
e.The developer immediately spotted in the 65 dire
t sub-
on
epts of the top element|that is,
on
epts in the �rstrow below the top element of the latti
e|the individual ex-e
utors for 65
ommands (in
luding the exe
utor for NOP).

19

Fig. 20. The latti
e for all
ommands. The boxes' height
orresponds to the number of routines in the
on
epts.(The top element itself does not
ontain any s
enario.)Among these 65
on
epts, 63
ontain a single s
enario andtwo
ontain two s
enarios. The ones with two s
enarios arethe two di�erent parameter settings for the SDSC
ommandand the
orresponding query
ommand (
f. Se
t. V-B.3).Consequently, the implementation of the SDSC
ommandexe
utes the same routines independently from the param-eter that refers to timing or level setup, respe
tively. Thus,65 exe
utors
ould immediately be dete
ted in the latti
e.Based on these observations, we
ould easily map the
on-
ept latti
e in Fig. 24 to the ar
hite
ture sket
h of Fig. 18.The other 12 real s
enarios
an be found in sub
on
eptsof the above mentioned 65
on
epts. The reason why theses
enarios
annot be found dire
tly below the top elementis that they represent
ommands that are also needed aspreparing steps for other
ommands. For instan
e, beforethe
ommands PSLV and UDPS
an be
alled, one must
allDFPS. The s
enarios for PLSV and UDPS are
onsequentlyfDFPS, PLSVg and fDFPS,UDPSg, respe
tively. The s
enariothat
ontains DFPS only will therefore be part of the
on
eptthat is the
ommon in�mum of the s
enarios for PLSV andUDPS sin
e fDFPSg = fDFPS,PLSVg\ fDFPS,UDPSg. By rep-resenting test
ases (s
enarios) as sets of
ommands (fea-tures) and isolating
ommands through interse
ting test
ases as des
ribed in Se
tion IV-D.4, we
ould easily iden-tify the exe
utors for the remaining 12
ommands whosetest
ase is not dire
tly lo
ated below the top element.As des
ribed above, the �rmware
ommands
an be
at-egorized in di�erent
lasses (Con�guration Setup, RelayControl, Level Setup, Timing Setup, and Ve
tor Setup
ommand). In order to visualize the jointly used routinesby exe
utors for
ommands of the same
lass, we
oloredthe
on
ept latti
e as follows:1. Ea
h
on
ept representing an exe
utor in the latti
e getsthe
olor of the exe
utor's
lass; the
olored
on
ept is thestarting node for the traversal in the next step.2. By top-down traversal starting at the
olored
on
ept,the
olor of the respe
tive exe
utor is propagated to allsub
on
epts of the exe
utor's
on
ept (until a di�erent ex-

e
utor is rea
hed).The
olored
on
ept latti
e for Agilent's �rmware givesinteresting insights. All
on
epts dire
tly below the top el-ement in Fig. 24 have just one
olor be
ause these
on
eptsa
tually represent just one exe
utor of a given
ommand. Ifa
on
ept,
, has more than one
olor, the routines, ui, forwhi
h
(ui) =
 holds
ontribute to
ommands of di�erent
lasses. As a matter of fa
t, there were only few
on
eptsabove the bottom element with di�erent
olors showingthat there is substantial sharing of routines among exe
u-tors of the same
lass of
ommands. The utility routinesin
on
epts having only one
olor seem to be spe
i�
 tojust a single
lass of
ommands. In other words, either aroutine is spe
i�
 to a
lass of
ommands or it is used forall
ommand
lasses in general.The dynami
 analysis in
onjun
tion with
on
ept analy-sis thus has given important insight into the internal stru
-ture of the bla
k box labeled "utility routines" in Fig. 18:534 routines (out of 1.463 routines exe
uted for at leastone test
ase and 9.988 stati
ally de
lared routines, respe
-tively)
ould be related to the exe
utors, that is, are notspe
i�
ally atta
hed to the bottom element.There are also exe
utors for
ommands of the same
lassthat share only the most general routines in the bottomelement, that is, those routines exe
uted for all exe
utors.The most remarkable example are the exe
utors for the
on�guration setup of single pins on one hand and those forthe
on�guration setup of whole pin groups. While the ex-e
utors for single pins share many routines spe
i�
 to their
lass, the exe
utors for pin groups (whi
h also belong to thesame
lass Con�guration Setup) do not share any routinebeyond those in the bottom element, neither with exe
utorsfor single pins nor with other exe
utors for pin groups. Ourhypothesis was that there are many routines jointly usedby
on�guration setup
ommands for pin groups similarlyto
ommands for single pins. The developer reviewing the
on
ept latti
e explained that ma
ros are heavily used forroutine inlining in the subsystem implementing pin group
on�guration. A

ording to the developer, this subsystem

20is an older part of the system. Apparently, at its initialdevelopment, no
ompiler with automati
 routine inliningwas available. The use of ma
ros undermines our way to
olle
t dynami
 information. The pro�ler we used re
ordsonly routine
alls and, hen
e,
annot reveal
ode sharingamong these pin group
ommands.Generally, the
on
epts just below the top element
on-tain only one routine. Some
ontain more than one rou-tines but less than �ve. In these
ases, a programmer ap-parently has split a large exe
utor into smaller pie
es forbetter modularization. There is one
on
ept just belowthe top element that
ontains a very large number of rou-tines. This
on
ept represents the test exe
ution. Thedeveloper explained that the routines spe
i�
ally atta
hedto this
on
ept are strongly related but
ould have beenfurther grouped if more s
enarios for test exe
ution wouldhave been provided.The developer also looked at another very large
on
eptlo
ated in the middle of the
on
ept latti
e. By looking atthe routines spe
i�
ally atta
hed to this
on
ept, he told usthat about 70% of these routines deal with memory man-agement. Hen
e, this
on
ept
olle
ted a large number ofsemanti
ally related routines.There are 929 routines spe
i�
ally atta
hed to the bot-tom element, that is, routines that are used for all s
enar-ios. For these routines, either the sele
tion of test
asesfailed to further stru
ture this set of routines or the rou-tines are ne
essarily required for all possible usage s
enar-ios, in whi
h
ase other te
hniques are needed to groupthese routines semanti
ally. Sin
e our goal was to identifythe exe
utors and the routines shared by the exe
utors,we did not further investigate the routines in the bottomelement.B.5 Inferring Categorization from Con
ept Latti
ePrior to our analysis, the software ar
hite
t sele
ted�rmware
ommands that were to be investigated. He also
ategorized the
ommands as des
ribed in Se
tion V-B.3.As it turned out during our analysis of the
on
ept latti
e,the
ategorization was in
omplete. The software ar
hite
t
ategorized only the
ommands listed in Fig. 21. Addi-tionally, he prepared s
enarios that explored the
ommandslisted in Fig. 22. The in
omplete
ategorization gave us theopportunity to
he
k whether it would be possible to
at-egorize
ommands into the above
lasses just on the basisof the
on
ept latti
e without any knowledge of the systemand the appli
ation domain.One of the authors of this arti
le guessed the
ategoriesbased on the
on
ept latti
e only|more pre
isely, based onthe sharing of utility routines with other already
lassi�ed
ommands. The assumption was that a
ommand belongsto the
lass of
ommands with whi
h it shares most utilityroutines. Altogether 7 out of 12
ommands were a
tuallyassigned to one of these
lasses based on this assumption.For the remaining
ommands, the latti
e did not provideunambiguous information.We used two ora
les to validate these guesses. Firstlywe asked the developer to
lassify these
ommands and

Con�guration SetupCNTR, CNTR?, CONF, CONF?UDEF, UDPS, UDGPDPFN, DFPN?, DFPS, DFPS?DFGP, DFGP?, DFGE, DFGE?PALS, PALS?, PSTE, PSTE?PSFC, PSFC?, PQFC, PQFC?PACT, PACT?Relay Control (Test Exe
ution)RLYC, RLYC?Level Setup CommandsLSUS, LSUS?, DRLV, DRLV?RCLV, RCLV?, TERM, TERM?Timing Setup CommandsPCLK, PCLK?, DCDF, DCDF?WFDF, WFDF?, WAVE, WAVE?ETIM, ETIM?, BWDF, BWDF?Ve
tor Setup CommandsSQLA, SQLB, SQLB?, SQPG, SQPG?SPRM, SPRM?, SQSL, SQSL?Fig. 21. Categorization of
ommands as found by the software ar-
hite
t. Un
ategorizedFTST, VBMP, PSLV, CLMPWSDM, DCDT, CLKR, VECCSDSC, SREC, DMAS, STMLFig. 22. Commands not
ategorized by the software ar
hite
t.Guess Developer ManualRelay Control (Test Exe
ution)FTSTLevel Setup CommandsPSLV PSLV PSLVCLMP CLMPFTST VBMP VBMPTiming Setup CommandsDCDT DCDTCLKR CLKR CLKRWSDMVe
tor Setup CommandsVECC VECC VECCDMAS DMASSRECOthers/MultipleSDSC SDSC SDSCDMASSTML STML STMLSREC SRECVBMP DCDTWSDM WSDMFTSTCLMPFig. 23. Comparison with ora
les.

21se
ondly we
he
ked the user manual for the �rmware. The
omparison of the guesses with the two ora
les is shown inFig. 23.Interestingly enough, the
lassi�
ation given in the man-ual is also in
omplete. Two of the used
ommands, namely,CLMP and STML, are not des
ribed in the manual. Moreover,the
ommand FTST does not really belong to the targeted
lasses of
ommands a

ording to the manual; it was addedby the software ar
hite
t be
ause it is the starting
om-mand for the a
tual test exe
ution. SDSC and WSDM are
ommands that
annot be assigned to one
lass of
om-mand only but rather
ontain aspe
ts of di�erent
lasses.As
an be seen in Fig. 23, the
lassi�
ation of the devel-oper is also in
omplete sin
e he did not know all �rmware
ommands. There are more than 250
ommands, not
ounting the
orresponding query
ommands. The
las-si�
ation of the developer is in a

ordan
e with the usermanual ex
ept for CLMP, whi
h is not des
ribed in the man-ual.If we
ompare the latti
e-based guesses with the ora
le,we �nd that the author was truly wrong only on
e, namely,for
ommand FTST. In
ase of
ommand WSDM, he assigneda
ommand to one
lass of two equally possible
lasses.It was interesting to see that many
ommands
ould beassigned
orre
tly simply based on the latti
e without anyknowledge of the appli
ation domain and implementationof the system.B.6 Lessons LearntIn the beginning of our
ase study, we explained the ba-si
 interpretation of the
on
ept latti
e to the developerwithout going into the formal mathemati
al details. Thedeveloper learnt how to read the
on
ept latti
e surpris-ingly qui
kly in less than 10 minutes, whi
h suggests thatthe te
hnique
an easily be adopted by pra
titioners.The developer
on�rmed that the te
hnique
ould be use-ful for maintenan
e programmers who are less familiar withthe system in order to qui
kly identify the exe
utors. Sin
ethere was a naming
onvention for exe
utors in pla
e, lo
at-ing the exe
utors
ould have been done with textual sear
htools, su
h as grep, more easily, he noted. The developeralso
on�rmed the general approa
h for the stati
 analysison
e the exe
utors have been lo
ated: If he is to modifya
ommand, he also traverses the dependen
y graph. Forla
k of more sophisti
ated tools, he is using simple tools,su
h as the Unix tool
tags, to get the ne
essary
ross-referen
e information. However, the developer agreed thatit would have been very diÆ
ult for him|using su
h sim-ple tools|to identify the �rmware
ommands to whi
h agiven routine
ontributes. Su
h kind of information wouldhelp him in the impa
t analysis of
hanges. Moreover, itwould also have been very diÆ
ult for him to identify thesharing of utility routines among exe
utors.This
ase study also revealed some diÆ
ulties with theproposed te
hnique. For instan
e, due to the use of inliningof routines by way of ma
ros, the pro�ler
ould not identifythe
ode sharing of
ommands for pin groups. For su
hinlining, a stati
 analysis is ne
essary. In order to identify

this kind of
ode sharing, one
ould try to identify jointuses of ma
ros in the non-prepro
essed
ode or dupli
ated
ode in the prepro
essed
ode by way of
lone dete
tionte
hniques.Another diÆ
ulty that had to be ta
kled in this
asestudy is the problem of handling parameterized s
enarios,that is, s
enarios that are alike ex
ept for values of
ertainparameters. For instan
e, most
ommands of the �rmwarehave options. The options, of
ourse, in
uen
e the behaviorof the system. The same
ommand may exe
ute di�erentroutines for di�erent options. This problem is equivalent tothe input
overage problem of testing software in general.Analogously, the test
ases for the Agilent
ase study werede�ned so as to
over equivalen
e
lasses of possible param-eter values. The �rmware
ommands were then
alled withdi�erent
ombinations of representative values of equiva-lent parameter settings. However, full
overage of all possi-ble
ombinations would ex
eed all available resour
es, andthere is no guarantee that the software a
tually behavesequivalently for all apparently equivalent input values.Due to the dynami
 analysis, only about 15% of the al-most 10,000 routines were present in the formal
ontext for
on
ept latti
e. Likewise, the number of s
enarios was re-alisti
, yet trimmed to only the digital part of the system.Nevertheless, the
on
ept latti
e for the �rmware of theAgilent 93000
hip tester|
ontaining 165
on
epts|wasrelatively large and
omplex. Su
h large
on
ept latti
esare a
hallenge for visualization. Not so mu
h with re-gard to the time to produ
e a visualization but with thereading and understanding of su
h a large graph. We usedGraphViz by AT&T [30℄ to layout the graph automati-
ally in virtually no time. Also, the resulting layout wasa

eptable|at any rate, mu
h better than we
ould havedrawn the graph. However, we would have liked to groupthe nodes of the graph semanti
ally in terms of the
lassesto whi
h the asso
iated
ommands belong beyond the aes-theti

riterion of minimizing edge
rossings. Moreover,the latti
e was too large to be presented on a 21" s
reen.For this reason, we used a print-out of the latti
e with 19pages (DIN A4 format) for the dis
ussion with the devel-oper, and even on this print-out, the names of routines ands
enarios were hard to read.The experien
es with size and
omplexity of the �nal lat-ti
e in the Agilent
ase study lead us to develop supportfor in
remental
onstru
tion and understanding of the
on-
ept latti
e as des
ribed in Se
tion IV-F. The visual di�er-en
e for
onsidering s
enarios in
rementally is illustratedby Fig. 24. Figure 24(a)
ontains the
on
ept latti
e forall Timing Setup
ommands. For the latti
e in Fig. 24(b),all s
enarios for Ve
tor Setup have been added. When alls
enarios for all
lasses of
ommands are added, the latti
ein Fig. 20 is obtained.VI. Related Resear
hThis se
tion dis
usses resear
h related to our work. Wedis
uss work on several aspe
ts that are of interest. First,we take a look at papers most
losely related to our own ap-proa
h. Next, we summarize work that visualizes dynami

22

(a) Timing
ommands. (b) Timing and ve
tor
ommands.Fig. 24. Con
ept latti
e for digital part of Agilent 93000 �rmware.and stati
 information in di�erent ways.Feature Lo
ationWilde et al. [6℄, [31℄ pioneered in lo
ating features takinga fully dynami
 approa
h. The goal of their Software Re-
onnaissan
e is the support of maintenan
e programmerswhen they modify or extend the fun
tionality of a lega
ysystem.Based on the exe
ution of test
ases for a parti
ular fea-ture f , several sets of
omputational units are identi�ed:�
omputational units
ommonly involved (
ode exe
utedin all test
ases, regardless of f),�
omputational units potentially involved in f (
ode exe-
uted in at least one test
ase that invokes f),�
omputational units indispensably involved in f (
odethat is exe
uted in all test
ases that invoke f , and�
omputational units uniquely involved in f (
ode exe-
uted exa
tly in
ases where f is invoked)Sin
e the primary goal is the lo
ation of starting pointsfor further investigations, Wilde and S
ully fo
us on lo
at-ing spe
i�

omputational units rather than all required
omputational units. The approa
h deals with one featureat a time and gives little insight into
onne
tions betweensets of related features. If a set of related features is tobe
onsidered rather than a single feature, one
ould re-peat the analysis invoking ea
h feature separately and thenunite the spe
i�
ally required
omputational units. Eventhen the relationships among groups of features
annot bere
ognized.Another approa
h based on dynami
 information istaken by Wong and
olleagues [32℄. They analyze exe
u-tion sli
es (
orresponds to our exe
ution pro�les) of test
ases implementing a parti
ular fun
tionality. The pro
essis as follows:

1. The invoking input set I (i.e., a set of test
ases or|inour terminology|a set of s
enarios) is identi�ed that willinvoke a feature.2. The ex
luding input set E is identi�ed that will not in-voke a feature.3. The program is exe
uted twi
e using I and E separately.4. By
omparison of the two resulting exe
ution sli
es, the
omputational units
an be identi�ed that implement thefeature.For deriving all required
omputational units, the exe-
ution sli
e for the in
luding input set is suÆ
ient. Bysubtra
ting all
omputational units in the exe
ution sli
efor the ex
luding input set from those in the exe
ution sli
efor the invoking input set, only those
omputational unitsremain that spe
i�
ally deal with the feature. This infor-mation alone is not suÆ
ient to identify the interfa
e andthe
onstituents of a
omponent in the sour
e
ode, butthose
omputational units are at least a starting point fora more detailed stati
 analysis. Again, interdependen
iesbetween features are not revealed easily.In [33℄, Wong et al. present a way for quanti�
ation offeatures. Metri
s are provided to
ompute the dedi
ationof
omputational units to features, the
on
entration offeatures in
omputational units, and the disparity betweenfeatures. This work
omplements their earlier resear
h and
an be used as a re�nement for Wilde's te
hnique.Chen and Rajli
h [34℄ propose a semi-automati
 methodfor feature lo
ation, in whi
h the programmer browsesthe stati
ally derived abstra
t system dependen
y graph(ASDG). The ASDG des
ribes detailed dependen
iesamong routines, types, and variables at the level of globalde
larations. The navigation on the ASDG is
omputer-aided and the programmer takes on all the sear
h for afeature's implementation. The method takes advantage of

23the programmer's experien
e with the analyzed software.It is less suited to lo
ate features if programmers withoutany pre-knowledge do not know where to start the sear
h.The ASDG's quality is essential for the method. Ifthe ASDG in
ludes overoptimisti
 assumptions on fun
-tion pointers, the programmer may miss routines
alled viafun
tion pointers. If it re
e
ts too
onservative assump-tions, the sear
h spa
e in
reases drasti
ally. It is stati
allyunde
idable whi
h
ontrol
ow paths are taken at runtime,so that every
onservative stati
 analysis will yield an over-estimated sear
h spa
e. In
ontrast, dynami
 analyses ex-a
tly reveal whi
h parts are a
tually used at runtime|although only for a parti
ular run. Insights from dynami
analyses are only valid for the input data used and theenvironment in whi
h the system was run.Re
ently, Wilde and Rajli
h
ompared their ap-proa
hes [35℄. In the presented
ase study, both te
hniqueswere e�e
tive in lo
ating features. The Software Re
on-naissan
e showed to be more suited to large infrequently
hanged programs, whereas Rajli
h's method is more ef-fe
tive if further
hanges are likely and require deep andmore
omplete understanding.Visualization of Obje
t-Oriented SystemsDe Pauw and
olleagues [36℄, [37℄, [38℄ provide a gen-eral model for the visualization of the exe
ution of obje
t-oriented systems. Their language and platform indepen-dent approa
h visualizes dynami
 information about theruntime behavior by means of message sequen
e
harts and
hart-like views for summary information.Program Explorer [24℄, [25℄ by Lange and Nakamura isa tool for understanding C++ programs by means of vi-sualization. Both stati
 and dynami
 information is ex-tra
ted and
ombined for the presentation of an obje
t-oriented system. The stati
 information derived from thesour
e (like
lass hierar
hy and stru
tural data) is stored ina program database. The dynami
 information
omprisesmethod invo
ation, obje
t longevity, and variable a

essesand is gained o�-line from exe
ution tra
es. Program Ex-plorer o�ers sele
tive instrumentation of the sour
e, requir-ing the user to have a
ertain knowledge about the sys-tem. To
ope with the amount of information, the user
an further merge, prune, or sli
e results of analyses to re-move undesired information. The dynami
 information is
oupled with the stati
 information yielding
lass-to-obje
tand obje
t-to-
lass
lari�
ation. Program Explorer is notuseful for global understanding, the user must have knowl-edge about the system and then fo
us on relevant parts.The approa
h is
lass and obje
t
entered and does noto�er other levels of abstra
tion.Koskimies and M�ossenb�o
k developed S
ene [23℄, a toolfor visualizing obje
t-oriented systems written in the pro-gramming language Oberon. S
ene uses s
enario diagramsfor visualizing the message
ow between obje
ts in terms ofmethod invo
ations. The s
enario diagrams are generatedfrom event tra
es and linked to other sour
es of informa-tion.Jerding and
olleagues [39℄, [40℄ fo
us on the intera
tions

between program
omponents at runtime. They observedthat re
urring intera
tion pattern
an be used in the ab-stra
tion pro
ess for program understanding. The authorsdeveloped a pattern identi�
ation algorithm and stru
turethe dynami
 information by using identi�ed patterns. Thework primarily aims at obje
t-oriented systems but alsoseems appli
able for pro
edural programming paradigms.Jerding and Rugaber present the tool ISVis [40℄ to supportar
hite
tural lo
alization and extra
tion. They use bothstati
 and dynami
 information to extra
t
omponents and
onne
tors. The
omponents are spe
i�ed by the analyst(using traditional stati
 analyses) whereas the
onne
torsare re
ognized from a
tual exe
ution tra
es. These exe-
ution tra
es are then analyzed with the aforementionedmethods. The dynami
 information is visualized as a vari-ant of message sequen
e
harts; the user has the ability torestri
t the instrumentation to spe
i�
 �les of the system.Syst�a [41℄ fo
uses on reverse engineering Java lega
y sys-tems. She dis
usses the
ombination of stati
 and dy-nami
 information when reengineering a Java environment.Rigi [28℄ is used to extra
t the stati
 information from
lass�les and to
onne
t the dynami
 information (representedas state diagrams) gained through program runs.Visualization and Abstra
tionAnother e�ort to
ombine dynami
 and stati
 informa-tion about obje
t-oriented systems is taken by Ri
hner andDu
asse [42℄. They o�er a query-based approa
h where thefa
ts about the lega
y system are modeled in terms of log-i
al fa
ts. The queries produ
e di�erent views of the soft-ware (at di�erent levels of abstra
tion) and help to restri
tthe amount of data generated. There is no informationex
hange between the views.Se�ka and
olleagues [43℄ visualize stati
s and dynami
sof an obje
t-oriented system in terms of its ar
hite
turalabstra
tions. The
ode instrumentation is light-weight andar
hite
ture-aware. It provides eÆ
ient on-line instrumen-tation to support ar
hite
ture-guided queries. The ar
hi-te
tural abstra
tion are taken as a basis for the visualiza-tion. Similarly, Walker and
olleagues [44℄ aim at visual-ization of dynami
 information on a higher level of abstra
-tion. They use program animation te
hniques for programunderstanding.Most re
ently, Robbillard and Murphy [45℄ address theproblem of
ross
utting
on
erns in obje
t-oriented sys-tems. They propose the usage of Con
ern Graphs thatabstra
t implementation details of
on
erns and expli
itlyshow relationships between parts of the
on
erns. The ex-tra
tion of
on
ern graphs from a given lega
y system
ouldbene�t from dynami
 feature-lo
ation te
hniques.Con
ept AnalysisPrimarily Snelting has re
ently introdu
ed
on
ept anal-ysis to software engineering. Sin
e then it has been usedto evaluate
lass hierar
hies [46℄, explore
on�gurationstru
tures of prepro
essor statements [47℄, [48℄, for re-do
umentation [49℄, and to re
over
omponents [50℄{[56℄.

24All of that resear
h utilizes stati
 information derived fromsour
e
ode.A te
hnique similar to ours is taken by Ball [57℄. He de-s
ribes how to use
on
ept analysis for the dynami
 analysisof test sets. The sour
e
ode is instrumented and pro�leinformation is gathered. The results of
on
ept analysis onthe data are used to provide an intermediate point betweenentity-based and path-based
overage
riteria.SummaryAll the resear
hers using program tra
es fa
e the sameproblem: the huge amount of data that is produ
ed bythe exe
ution. The problem is ta
kled by removing unde-sired information|either by instrumenting only parts ofthe system or by providing �ltering me
hanisms (patternsor stati
 information) on the stored tra
es.The amount of information gained by pro�ling ratherthan tra
ing is mu
h smaller (and less pre
ise), and
antherefore be handled more eÆ
iently. Even pro�ling on amore �ne grained level than routines or methods (e.g., basi
blo
ks) leads to
omprehensible results. For our primarygoals, the sequen
es of operations was not
ru
ial and
anat least in parts be regained from stati
 information. Thefrequen
y of invo
ations does not play a major role by now,but we believe that su
h information
ould be exploited infuture resear
h. VII. Con
lusionsThe te
hnique presented in this paper identi�es
ompu-tational units spe
i�
 to a set of related features using ex-e
ution pro�les for di�erent usage s
enarios. At �rst,
on-
ept analysis|a mathemati
ally sound te
hnique to an-alyze binary relations|allows lo
ating the most feature-spe
i�

omputational units among all exe
uted
omputa-tional units. Then, a stati
 analysis uses these feature-spe
i�

omputational units to identify additional feature-spe
i�

omputational units along the dependen
y graph.The
ombination of dynami
 and stati
 information re-du
es the sear
h spa
e drasti
ally.The value of our te
hnique has been demonstrated byseveral
ase studies. In one
ase study, analyzing twoweb browsers, we
ould re
over a partial des
ription of thesoftware ar
hite
ture with respe
t to a spe
i�
 set of re-lated features. Commonalities and variabilities betweenthese partial ar
hite
tures
ould be re
overed qui
kly. Al-together, we found in two experiments with two systems 16and 6, respe
tively, feature-spe
i�
 routines out of 701 rou-tines for Mosai
 and 3 and 24, respe
tively, out of 928 forChimera. Only very few routines needed to be inspe
tedmanually.The se
ond
ase study was performed on a 1.2 millionLOC produ
tion system. The experien
es we made duringthat
ase study showed two problems of our approa
h: thegrowing
omplexity of
on
ept latti
es for large systemswith many features and the need for handling
ompositionsof features.In this paper, we extended our te
hnique to solve theseproblems. We showed how the method allows in
remen-

tally exploring features while preserving the \mental map"the analyst has gained through the analysis.The se
ond improvement des
ribed in this paper is a de-tailed look at
omposing features into more
omplex s
e-narios. Rather than assuming a one-to-one
orresponden
ebetween features and s
enarios as in earlier work, we
annow handle s
enarios that invoke many features.Further, the implementation of our approa
h is simple.For
on
ept analysis we used the tool
on
epts [58℄. Forvisualization we used our graphi
al Bauhaus front end [26℄.Layouts are generated by GraphViz [30℄. The glue
ode iswritten in Perl, for
ompiling and pro�ling we used g

 andgprof. A
knowledgmentsWe would like to thank Gerd Bleher and Jens Elmen-thaler (both at Agilent Te
hnologies) for their support inthe Agilent
ase study. We also like to thank Tahir Kara
a,Markus Knauss, and Stefan Opferku
h (all students at theUniversity of Stuttgart) for preparing the test
ases in theAgilent
ase study. Referen
es[1℄ Meir M. Lehman, \Programs, Life Cy
les and the Laws of Soft-ware Evolution," Pro
eedings of the IEEE, Spe
ial Issue onSoftware Evolution, vol. 68, no. 9, pp. 1060{1076, Sept. 1980.[2℄ Rainer Kos
hke, Atomi
 Ar
hite
tural Component Re
overy forProgram Understanding and Evolution, Dissertation, Univer-sit�at Stuttgart, Germany, 2000.[3℄ Thomas Eisenbarth, Rainer Kos
hke, and Daniel Simon,\Derivation of Feature-Component Maps by Means of Con-
ept Analysis," in Pro
eedings of the 5th European Conferen
eon Software Maintenan
e and Reengineering, Lisbon, Portugal,Mar. 2001, pp. 176{179, IEEE Computer So
iety Press.[4℄ \The XFIG drawing tool, Version 3.2.3d," Available at http://www.xfig.org/, 2001.[5℄ James Rumbaugh, Ivar Ja
obson, and Grady Boo
h, The Uni-�ed Modeling Language Referen
e Manual, Addison-Wesley,1999.[6℄ Norman Wilde and Mi
hael C. S
ully, \Software Re
onnais-san
e: Mapping Program Features to Code," Journal of Soft-ware Maintenan
e: Resear
h and Pra
ti
e, vol. 7, pp. 49{62,Jan. 1995.[7℄ Susan Horwitz, Thomas Reps, and David Binkley, \Interpro
e-dural Sli
ing Using Dependen
e Graphs," ACM Transa
tions onProgramming Languages and Systems, vol. 12, no. 1, pp. 26{60,Jan. 1990.[8℄ �Arp�ad Besz�edes, Tam�as Gergely, Zsolt Mih�aly Szab�o, J�anosCsirik, and Tibor Gyim�othy, \Dynami
 sli
ing method for main-tenan
e of large C programs," in Pro
eedings of the 5th EuropeanConferen
e on Software Maintenan
e and Reengineering. Mar.2001, pp. 105{113, IEEE Computer So
iety Press.[9℄ Lars Ole Andersen, Program Analysis and Spe
ialization for theC Programming Language, Ph.D. thesis, DIKU, University ofCopenhagen, Danmark, 1994.[10℄ Guiliano Antoniol, F. Calzolari, and Paolo Tonella, \Impa
t ofFun
tion Pointers on the Call Graph," in Pro
eedings of the Eu-ropean Conferen
e on Software Maintenan
e and Reengineering,Amsterdam, Netherlands, Mar. 1999, pp. 51{59.[11℄ Ben-Chung Cheng and Wen-Mei W. Hwu, \Modular interpro
e-dural pointer analysis using a

ess paths," in Pro
eedings of theConferen
e on Programming Language Design and Implemen-tation, Van
ouver, BC, Canada, 2000, pp. 57{69.[12℄ Manuvir Das, \Uni�
ation-based Pointer Analysis with Dire
-tional Assignments," in Pro
eedings of the Conferen
e on Pro-gramming Language Design and Implementation, Van
ouver,BC, Canada, 2000, pp. 35{46.[13℄ Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren,\Context-Sensitive Interpro
edural Points-to Analysis in the

25Presen
e of Fun
tion Pointers," in Pro
eedings of the Confer-en
e on Programming Language Design and Implementation,Orlando, FL, USA, 1994, pp. 242{257.[14℄ Robert P. Wilson and Moni
a S. Lam, \EÆ
ient
ontext-sensitive pointer analysis for
 programs," in Pro
eedings ofthe Conferen
e on Programming Language Design and Imple-mentation, La Jolla, CA, USA, 1995, pp. 1{12.[15℄ Sean Zhang, Barbara G. Ryder, and William Landi, \Programde
ompositon for pointer aliasing: A step towards prati
al analy-ses," in Symposium on the Foundations of Software Engineering,1996, pp. 81{92.[16℄ Bjarne Steensgaard, \Points-To Analysis in almost linear time,"in Symposium on Prin
iples of Programming Languages, St. Pe-tersburg Bea
h, FL, USA, Jan. 1996, pp. 32{41.[17℄ Amer Diwan, Kathryn M
Kinley, and Eliot Moss, \Using typesto analyze and optimize obje
t-oriented programs," Program-ming Languages and Systems, vol. 23, no. 1, pp. 30{72, 2001.[18℄ Atanas Rountev, Ana Milanova, and Barbara G. Ryder, \Points-To Analysis for Java using Annotated Constraints," in Pro-
eedings of the Conferen
e on Obje
t Oriented ProgrammingSystems, Languages, and Appli
ations, Tampa, FL, USA, O
t.2001, pp. 43{55.[19℄ Ana Milanova, Atanas Rountev, and Barbara G. Ryder, \Pre
iseCall Graph Constru
tion in the Presen
e of Fun
tion Pointers,"in Pro
eedings of the 2nd International Workshop on Sour
eCode Analysis and Manipulation, Montreal, Canada, O
t. 2002,IEEE Computer So
iety Press.[20℄ Garret Birkho�, Latti
e Theory, Ameri
an Mathemati
al So-
iety Colloquium Publi
ations 25, Providen
e, RI, USA, �rstedition, 1940.[21℄ Bernhard Ganter and Rudolf Wille, Formal Con
ept Analysis|Mathemati
al Foundations, Springer, 1999.[22℄ \IDEF0," Available at http://www.idef.
om/idef0.html, De
.1993.[23℄ Kai Koskimies and Hanspeter M�ossenb�o
k, \S
enario-BasedBrowsing of Obje
t-Oriented Systems with S
ene," Report 4,Johannes Kepler Universit�at Linz, Austria, Aug. 1995.[24℄ Danny B. Lange and Yui
hi Nakamura, \Program Explorer: AProgram Visualizer for C++," in Pro
eedings of the USENIXConferen
e on Obje
t-Oriented Te
hnologies, Monterey, CA,USA, June 1995.[25℄ Danny B. Lange and Yui
hi Nakamura, \Obje
t-Oriented Pro-gram Tra
ing and Visualization," Computer, vol. 30, no. 5, pp.63{70, May 1997.[26℄ \The New Bauhaus Stuttgart," Available at http://www.bauhaus-stuttgart.de/, 2002.[27℄ Rainer Kos
hke, Jean-Fran�
ois Girard, and Martin W�urthner,\An Intermediate Representation for Reverse Engineering Anal-yses," in Pro
eedings of the 5th Working Conferen
e on ReverseEngineering, Honolulu, HI, USA, O
t. 1998, pp. 241{250, IEEEComputer So
iety Press.[28℄ \Rigi|a visual tool for understanding lega
y systems," Avail-able at http://www.rigi.
s
.uvi
.
a/, 2002.[29℄ David Garlan, Robert Allen, and John O
kerbloom, \Ar
hi-te
tural Mismat
h or Why It's Hard to Build Systems Out OfExisting Parts," in Pro
eedings of the 17th International Con-feren
e on Software Engineering, Seattle, WA, USA, Apr. 1995,pp. 179{185, ACM Press.[30℄ AT&T Labs-Resear
h, \GraphViz | Open Sour
e Graph Draw-ing Software," Available at http://www.resear
h.att.
om/sw/tools/graphviz/, 2002.[31℄ Norman Wilde, Juan A. Gomez, Thomas Gust, and DouglasStrasburg, \Lo
ating User Fun
tionality in Old Code," in Pro-
eedings of the International Conferen
e on Software Mainte-nan
e, Orlando, FL, USA, Nov. 1992, pp. 200{205, IEEE Com-puter So
iety Press.[32℄ W. Eri
 Wong, Swapna S. Gokhale, Joseph R. Horgan, andKishor S. Trivedi, \Lo
ating Program Features using Exe-
ution Sli
es," in Pro
eedings of the IEEE Symposium onAppli
ation-Spe
i�
 Systems and Software Engineering & Te
h-nology, Ri
hardson, TX, USA, Mar. 1999, pp. 194{203, IEEEComputer So
iety Press.[33℄ W. Eri
 Wong, Swapna S. Gokhale, and Joseph R. Hogan,\Quantifying the Closeness between Program Components andFeatures," The Journal of Systems and Software, vol. 54, no. 2,pp. 87{98, O
t. 2000.[34℄ Kunrong Chen and V�a
lav Rajli
h, \Case Study of FeatureLo
ation Using Dependen
e Graph," in Pro
eedings of the 8th

International Workshop on Program Comprehension, Limeri
k,Ireland, June 2000, pp. 241{249, IEEE Computer So
iety Press.[35℄ NormanWilde, Mi
helle Bu
kellew, Henry Page, and V�a
lav Ra-jli
h, \A Case Study of Feature Lo
ation in Unstru
tured Lega
yFortran Code," in Pro
eedings of the 5th European Conferen
eon Software Maintenan
e and Reengineering, Lisbon, Portugal,Mar. 2001, pp. 68{75, IEEE Computer So
iety Press.[36℄ Wim de Pauw, Ri
hard Helm, Doug Kimelman, and John Vlis-sisdes, \Visualizing the Behavior of Obje
t-Orient Systems," inPro
eedings of the Conferen
e on Obje
t Oriented ProgrammingSystems, Languages, and Appli
ations, Washington, DC, USA,Sept. 1993, pp. 326{337, ACM Press.[37℄ Wim de Pauw, Doug Kimelman, and John Vlissides, \Mod-eling Obje
t-Oriented Program Exe
ution," in Pro
eedings ofthe 8th European Conferen
e on Obje
t-Oriented Programming,Bologna, Italy, July 1994, vol. 821 of Le
ture Notes in ComputerS
ien
e, pp. 163{182, Springer.[38℄ Wim de Pauw, David Lorenz, John Vlissides, and Mark Weg-man, \Exe
ution Patterns in Obje
t-Oriented Visualization," inPro
eedings of the 4th USENIX Conferen
e on Obje
t-OrientedTe
hnology and Systems, Santa Fe, NM, USA, 1998, pp. 219{234.[39℄ Dean F. Jerding, John T. Stasko, and Thomas Ball, \VisualizingIntera
tions in Program Exe
utions," in Pro
eedings of the 19thInternational Conferen
e on Software Engineering, Boston, MA,USA, May 1997, pp. 360{370, ACM Press.[40℄ Dean F. Jerding and Spen
er Rugaber, \Using Visualization forAr
hite
tural Lo
alization and Extra
tion," S
ien
e of Com-puter Programming, vol. 36, no. 2{3, pp. 267{284, Mar. 2000.[41℄ Tarja Syst�a, \On the Relationships between Stati
 and Dynami
Models in Reverse Engineering Java Software," in Pro
eedings ofthe 6th Working Conferen
e on Reverse Engineering, Atlanta,GA, USA, O
t. 1999, pp. 304{313.[42℄ Tamar Ri
hner and St�ephane Du
asse, \Re
overing High-LevelViews of Obje
t-Oriented Appli
ations from Stati
 and Dynami
Information," in Pro
eedings of the International Conferen
e onSoftware Maintenan
e, Oxford, England, UK, Aug. 1999, pp.13{22, IEEE Computer So
iety Press.[43℄ Hohlale� Se�ka, Aamod Sane, and Roy Campbell,\Ar
hite
ture-Oriented Visualization," in Pro
eedings ofthe Conferen
e on Obje
t Oriented Programming Systems,Languages, and Appli
ations, San Jose, CA, USA, O
t. 1995,pp. 389{405, ACM Press.[44℄ Robert J. Walker, Gail C. Murphy, Bj�rn N. Freeman-Benson,Darin Wright, Darin Swanson, and Jeremy Isaak, \Visualiz-ing Dynami
 Software System Information Through High-LevelModels," in Pro
eedings of the Conferen
e on Obje
t OrientedProgramming Systems, Languages, and Appli
ations, Van
ou-ver, BC, Canada, 1998, pp. 271{283.[45℄ Martin P. Robillard and Gail C. Murphy, \Con
ern Graphs:Finding and Des
ribing Con
erns Using Stru
tural Program De-penden
ies," in Pro
eedings of the 24th International Confer-en
e on Software Engineering, Orlando, FL, USA, May 2002.[46℄ Gregor Snelting and Frank Tip, \Reengineering Class Hierar-
hies using Con
ept Analysis," in Pro
eedings of the 6th SIG-SOFT Symposium on Foundations of Software Engineering, Or-lando, FL, USA, Nov. 1998, pp. 99{110, ACM Press.[47℄ Maren Krone and Gregor Snelting, \On The Inferen
e of Con-�guration Stru
tures from Sour
e Code," in Pro
eedings of the16th International Conferen
e on Software Engineering, Sor-rento, Italy, May 1994, pp. 49{58, IEEE Computer So
iety Press.[48℄ Gregor Snelting, \Reengineering of Con�gurations Based onMathemati
al Con
ept Analysis," ACM Transa
tions on Soft-ware Engineering and Methodology, vol. 5, no. 2, pp. 146{189,Apr. 1996.[49℄ Tobias Kuipers and Leon Moonen, \Types and Con
ept Analysisfor Lega
y Systems," in Pro
eedings of the 8th InternationalWorkshop on Program Comprehension. June 2000, pp. 221{230,IEEE Computer So
iety Press.[50℄ Gerardo Canfora, Aniello Cimitile, Andrea De Lu
ia, andGuiseppe A. Di Lu

a, \A Case Study of Applying an E
le
ti
Approa
h to Identify Obje
ts in Code," in Pro
eedings of the7th International Workshop on Program Comprehension, Pitts-burgh, PA, USA, May 1999, pp. 136{143, IEEE Computer So-
iety Press.[51℄ Holger Graudejus, \Implementing a Con
ept Analysis Tool forIdentifying Abstra
t Data Types in C Code," Diplomarbeit,Universit�at Kaiserslautern, Germany, 1998.

26[52℄ Christian Lindig and Gregor Snelting, \Assessing ModularStru
ture of Lega
y Code Based on Mathemati
al Con
ept Anal-ysis," in Pro
eedings of the 19th International Conferen
e onSoftware Engineering, Boston, MA, USA, May 1997, pp. 349{359, IEEE Computer So
iety Press and ACM Press.[53℄ Hourai Sahraoui, Wal
�elio Melo, Hakim Lounis, and Fran�
oisDumont, \Applying Con
ept Formation Methods to Obje
tIdenti�
ation in Pro
edural Code," in Pro
eedings of the Inter-national Conferen
e on Automated Software Engineering, LakeTahoe, CA, USA, Nov. 1997, pp. 210{218, IEEE Computer So-
iety Press.[54℄ Mi
hael Si� and Thomas Reps, \Identifying Modules via Con-
ept Analysis," in Pro
eedings of the International Conferen
eon Software Maintenan
e, Bari, Italy, O
t. 1997, pp. 170{179,IEEE Computer So
iety Press.[55℄ Arie van Deursen and Tobias Kuipers, \Identifying Obje
ts us-ing Cluster and Con
ept Analysis," in Pro
eedings of the 21stInternational Conferen
e on Software Engineering, Los Angeles,CA, USA, 1999, pp. 246{255, IEEE Computer So
iety Press.[56℄ Paolo Tonella, \Con
ept Analysis for Module Restru
turing,"IEEE Computer So
iety Transa
tions on Software Engineering,vol. 27, no. 4, pp. 351{363, Apr. 2001.[57℄ Thomas Ball, \The Con
ept of Dynami
 Analysis," ACM SIG-SOFT Software Engineering Notes, vol. 24, no. 6, pp. 216{234,Nov. 1999.[58℄ Christian Lindig, \Con
epts 0.3e," Available at http://www.gaertner.de/~lindig/software/, 1999.Thomas Eisenbarth re
eived his Diplomain
omputer s
ien
e from the University ofStuttgart, Germany in 1998. Sin
e then, he isworking for his dissertation at the University ofStuttgart in the �eld of reverse engineering asa member of the Bauhaus [26℄ proje
t. His re-sear
h interest is in reengineering, reverse engi-neering, program understanding, and softwarear
hite
ture. He fo
uses re
overy methods for
onne
tors from the sour
e
ode.Rainer Kos
hke is a post-do
toral resear
herat the
omputer s
ien
e department at the Uni-versity of Stuttgart. His resear
h interests areprimarily in the �elds of software engineeringand program analyses. His
urrent resear
h in-
ludes ar
hite
ture re
overy, feature lo
ation,program analyses, and reverse engineering. Hetea
hes reengineering,
ompilers, and program-ming language
on
epts. He holds a do
toraldegree in
omputer s
ien
e from the Universityof Stuttgart, Germany.Daniel Simon re
eived his Diploma in
om-puter s
ien
e from the Saarland University atSaarbr�u
ken, Germany in 2000. Sin
e then, heis working for his dissertation at the Universityof Stuttgart in the �eld of reverse engineeringas a member of the Bauhaus [26℄ proje
t. Hisresear
h interest are in the �eld of reverse en-gineering, program analysis, and program un-derstanding. He
o-authored several paperson feature lo
ation and software produ
t lines,whi
h is his
urrent resear
h fo
us.

