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Abstract— Understanding the implementation of a certain
feature of a system requires to identify the computational
units of the system that contribute to this feature. In many
cases, the mapping of features to the source code is poorly
documented. In this paper, we present a semi-automatic
technique that reconstructs the mapping for features that
are triggered by the user and exhibit an observable behavior.

The mapping is in general not injective; that is, a com-
putational unit may contribute to several features. Our
technique allows to distinguish between general and specific
computational units with respect to a given set of features.
For a set of features, it also identifies jointly and distinctly
required computational units.

The presented technique combines dynamic and static
analyses to rapidly focus on the system’s parts that re-
late to a specific set of features. Dynamic information is
gathered based on a set of scenarios invoking the features.
Rather than assuming a one-to-one correspondence between
features and scenarios as in earlier work, we can now handle
scenarios that invoke many features.

Furthermore, we show how our method allows incremen-
tal exploration of features while preserving the “mental
map” the analyst has gained through the analysis.

Keywords— program comprehension, formal concept anal-
ysis, feature location, program analysis, software architec-
ture recovery

I. INTRODUCTION

NDERSTANDING how a certain feature is imple-

mented is a major problem of program understand-
ing. Before real understanding starts, one has to locate
the implementation of the feature in the code. Systems
often appear as a large number of modules each contain-
ing hundreds of lines of code. It is in general not obvious
which parts of the source code implement a given feature.
Typically existing documentation is outdated (if it exists at
all), the system’s original architects are no longer available,
or their view is outdated due to changes made by others.
So maintenance introduces incoherent changes which cause
the system’s overall structure to degrade [1]. Understand-
ing the system in turn becomes harder any time a change
is made to it.

One option, when trying to escape this vicious circle,
is to completely reverse engineer the system in order to
exhaustively identify its components and to assign fea-
tures to components. We integrated published automatic
techniques for component retrieval in an incremental semi-
automatic process, in which the results of selected auto-
matic techniques are validated by the user [2].

However, exhaustive methods are not cost-effective. For-
tunately, knowledge of components implementing a spe-
cific set of features suffices in many cases. Consequently,
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a feature-oriented search focusing on the components of
interest is needed.

This article describes a process and its supporting tech-
niques to identify those parts of the source code which im-
plement a specific set of related features. The process is au-
tomated to a large extent. It combines static and dynamic
analyses and uses concept analysis—a mathematical tech-
nique to investigate binary relations—to derive correspon-
dences between features and computational units. Concept
analysis additionally yields the computational units jointly
and distinctly required for a set of features.

An advantage of starting with features is that domain
knowledge from the user’s perspective may be exploited,
which is especially useful for external change requests and
error reports expressed in the terminology of a program’s
problem domain.

The remainder of this article is organized as follows.
Sect. II gives an overview of our technique and introduces
the basic concepts. Sect. III introduces concept analysis.
Sect. IV describes the process for locating and analyzing
features in more detail. In Sect. V, we report on two case
studies conducted to validate our approach. The related
research in the area is summarized in Sect. VI.

II. OVERVIEW

The goal of our technique is to identify the computa-
tional units that specifically implement a feature as well as
the set of jointly or distinctly required computational units
for a set of features. To this end, the technique combines
static and dynamic analyses.

This section gives an overview on our technique, de-
scribes the relationships among features, scenarios, and
computational units (summarized in Fig. 1) and explains
what kind of dynamic information is used as input to our
technique. The section also introduces a simple example
that we will use throughout the description of the method
in the following sections. The example is inspired by a pre-
vious case study [3] in which we analyzed the drawing tool
XFIG [4].

Computational unit. A computational unit is an exe-
cutable part of a system. Examples for computational
units are instructions (like accesses to global variables),
basic blocks, routines, classes, compilation units, compo-
nents, modules, or subsystems. The exact specification of
a computational unit is a generic parameter of our method.

Feature. A feature is a realized functional requirement of
a system (the term feature is intentionally defined weakly
because its exact meaning depends on the specific context).
Generally, the term feature also subsumes non-functional
requirements. In the context of this paper, only functional
features are relevant; that is, we consider a feature an ob-
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servable behavior of the system that can be triggered by
the user.

ExAMPLE. Our fictitious drawing tool FIG (which re-
sembles XFIG [4]) allows a user to draw, move, and color
different objects, such as rectangles, circles, ellipses, and so
forth. From the viewpoint of an analyst who is interested
in the implementation of circle operations in FIG, the abil-
ity to draw, to move, and to color a circle are three relevant
features. a

Every computational unit (excluding dead code) con-
tributes to the purpose of the system and thus corresponds
to at least one feature—be it a very basic feature, such
as the ability of the system to start or terminate. Yet,
only few features may actually be of interest to the ana-
lyst for her task at hand. In the following, we assume that
only a subset of features is relevant. Consequently, only
the computational units required for these features are of
interest, too. The feature-unit map—as one result of
our technique— describes which computational units im-
plement a given set of relevant features.

Scenario. Features are abstract descriptions of a system’s
expected behavior. If a user wants to invoke a feature of a
system, he needs to provide the system with adequate input
to trigger the feature. For instance, to draw a circle, the
user of FIG needs to press a certain button on the control
panel for selecting the circle drawing operation, then to
position the cursor on the drawing area for specifying the
center of the circle, to specify the diameter by moving the
mouse, and eventually to press the left mouse button for
finalizing the circle. Such sequences of user inputs that
trigger actions of a system with observable result [5] are
called scenarios.

Our technique requires a set of scenarios that invoke the
features the analyst is interested in. A scenario s invokes
a feature f if f’s result can be observed by the user when
the system is used as described by scenario s. A scenario
may invoke multiple features and features may be invoked
by multiple scenarios. For instance, a scenario for moving
a circle requires to draw the circle first, so this scenario
also invokes feature “circle drawing”. There may be even
different scenarios all invoking the same set of features.
Each scenario, then, represents an alternative way of in-
voking the features. For instance, FIG allows a user to
push a button or to use a keyboard shortcut to begin a cir-
cle drawing operation. A set of scenarios each representing
options and choices for the same feature resembles a use
case.

Scenarios are used in our technique to gather the com-
putational units for the relevant features through dynamic
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analysis, similarly to Wilde and Scully’s technique [6]. If
the system is used as described by the scenario, the exe-
cution trace lists the sequence of all performed calls for
this scenario. Since our technique aims at only identify-
ing the computational units rather than at the order of the
computational units’ execution, we need only the execution
profile. The execution profile of a given program run is
the set of computational units called during the run with-
out information about the order of execution. From the
execution profile, we gather the fact that a computational
unit has been executed at least once. We ignore the dura-
tion of the computational unit’s execution because compu-
tation time hardly gives hints for feature-specific compu-
tational units. Once the specific computational units have
been identified through our technique, other techniques,
such as static or dynamic slicing [7], [8], can be used to
obtain the order of execution if required. These techniques
can then be applied more goal-oriented by focusing on the
most feature-specific computational units yielded by our
technique.

Feature-unit map. Our technique derives the feature-unit
map through concept analysis, a mathematically sound
technique. In our application of concept analysis, concept
analysis—simply stated—mutually intersects the execution
profiles for all scenarios and all resulting intersections to
obtain the specific computational units for a feature and
the jointly and distinctly required computational units for
a set of features.

ExamMPLE. FIG allows to draw a circle either by diameter
or by radius. The analyst who is interested in the differ-
ences of these two circle operations and their differences to
other circle operations, such as moving and coloring, will
set up the scenarios listed in Fig. 2. Figure 3 lists the
computational units executed for the scenarios in Fig. 2.
Intersecting the execution profiles shows that setRadius is
specific to feature Draw-circle-radius, move to Mowve-circle,
and color to Color-circle. O

| scenario name | actions performed |

draw a circle by diameter
draw a circle by radius
draw a circle by diameter
and move it

draw a circle by diameter
and color it

Draw-circle-diameter
Draw-circle-radius
Move-circle

Color-circle

Fig. 2. Example scenarios for FIG.

Beyond simply identifying the computational units



scenario executed computational units
Draw-circle-diameter | draw, setDiameter
Draw-circle-radius draw, setRadius

Move-circle draw, setDiameter, move
Color-circle draw, setDiameter, color

Fig. 3. Execution profiles for Fig. 2.

specifically required for a feature, concept analysis addi-
tionally allows to derive detailed relationships between fea-
tures and computational units. These relationships iden-
tify computational units jointly required by any subset of
features and classify computational units as low-level or
high-level with respect to the given set of features.

EXAMPLE. Intersecting the execution profiles in Fig. 3
additionally shows that the computational units jointly re-
quired for Draw-circle-diameter, Move-circle, and Color-
circle are draw and setDiameter, where draw is required
for all scenarios. a

The information gained by concept analysis is used to
guide a subsequent static analysis along the static depen-
dency graph in order to narrow the computational units to
those that form self-contained and understandable feature-
specific computational units. Computational units that
are only very basic computational units used as building
blocks for other computational units but not containing any
application-specific logic are sorted out. Additional static
analyses, like strongly connected component identification,
dominance analysis, and program slicing [7] support the
search for the units of interest.

For large and complex systems, our approach can be ap-
plied incrementally as described in this paper.

Applicability

The retrieval of the feature-unit map is based on dynamic
information where all computational units that are exe-
cuted for a scenario are collected. The scenario describes
how to invoke a feature. This section describes the as-
sumptions on features, scenarios, and computational units
we make.

Features. Our technique is primarily suited for functional
features that may be mapped onto computational units.
In particular, non-functional features, such as robustness,
reliability, or maintainability, do not easily map to compu-
tational units.

The technique is suited only for features that can be in-
voked from outside; internal implementation features, such
as the use of a garbage collector, may not necessarily be
deterministically and easily triggered from outside.

Scenarios. Scenarios are designed (or selected from existing
test cases) to invoke a known set of relevant features; that
is, we assume that the analyst knows in advance which
features are invoked by a scenario.

Because suitable scenarios are essential to our technique,
a domain expert is needed to set up scenarios. In many
cases, the domain expert can reuse existing test cases as
scenarios to locate features. However, the purpose of test

cases is to reveal errors, and hence test cases tend to be
complex and to cover many features. Contrarily, scenarios
for our feature location technique should be simpler and in-
voke fewer features to differentiate the computational units
more clearly.

In order to explore variations of a feature, the domain
expert provides several scenarios, each triggering a feature
variation with a different set of input. To obtain effec-
tive and efficient coverage, he builds equivalence classes of
relevant input data. Identifying equivalence classes may
require knowledge on internal details of a system.

Computational units. The exact notion of computational
unit is a generic parameter to our technique and depends
on the task and system at hand. In principle, there is no
limit to the granularity of computational units: One could
use basic blocks, routines, classes, modules, or subsystems.
Subsystems as computational units are suitable to obtain
an overview for very large systems. Considering routines,
methods, subprograms, etc. as computational units gives
an overview at the global declaration level, whereas classes
and modules lie in between subsystem and global declara-
tion level. Basic blocks as computational units are only
adequate for smaller systems or parts of a system where
more detail is needed due to the likely information over-
load to the analyst.

For practical reasons, for this paper we decided to use
routines as the computational unit of choice, where a rou-
tine is a function, procedure, subprogram, or method ac-
cording to the programming language. For the case studies
presented later on in this paper, routines were appropriate.

Static and dynamic dependencies. The results from concept
analysis based on dynamic information are used to guide
the analyst in her static analysis, that is, her inspection of
the static dependency graph. We use dynamic information
only as a guide and not as a definite answer because dy-
namic information depends upon suitable input data and
the test environment in which the scenarios are executed.

The static dependency graph can be extracted from pro-
cedural, functional, as well as object-oriented programming
languages. Because execution profiles can be recorded for
these languages, too, our technique is applicable to all these
languages. However, the precision of the static extrac-
tion influences the ease of the analyst’s inspection of the
static dependencies, and static analysis is inherently more
difficult for object-oriented languages (and for functional
languages with higher-order functions) than for procedural
languages.

Static analyses need to make conservative assumptions
in the presence of pointers and dynamic binding, which
weaken the precision of the dependency graph. Fortu-
nately, research in pointer analysis has made considerable
progress. There is a large body of work on pointer anal-
ysis for procedural languages [9], [10], [11], [12], [13], [14],
[15], [16] and object-oriented languages [17], [18] that re-
solves general pointers, function pointers, and dynamic
binding. These techniques vary in precision and costs.
Interestingly enough, Milanova and others have recently



presented empirical data indicating that less expensive
and—theoretically—less precise techniques to resolve func-
tion pointers reach the precision of more expensive and—
theoretically—more precise techniques [19] due to the com-
mon way of using function pointers (as opposed to pointers
to stack and heap objects).

III. ForMAL CONCEPT ANALYSIS

This section presents the necessary background informa-
tion on formal concept analysis. Readers already familiar
with concept analysis can skip to the next section.

Formal concept analysis is a mathematical technique for
analyzing binary relations. The mathematical foundation
of concept analysis was laid by Birkhoff [20] in 1940. For
more detailed information on formal concept analysis we re-
fer to [21], where the mathematical foundation is explored.

Concept analysis deals with a relation Z C O x A between
a set of objects O and a set of attributes A. The tuple C =
(O, A,7) is called a formal context. For a set of objects
O C O, the set of common attributes o(O) is defined as:

0(0)={a€c A| (o,a) € for all o € O} (1)

Analogously, the set of common objects 7(A) for a set of
attributes A C A is defined as:

T(A)={o€ O | (0,a) € T for all a € A} (2)

A formal context can be represented by a relation table,
where the columns hold the objects and the rows hold the
attributes. An object o; and attribute a; are in the rela-
tion Z iff the cell at column i and row j is marked by ” x”.
As an example, a binary relation between arbitrary objects
and attributes is shown in Fig. 4(a). For that formal con-
text, we have:

o({or}) =
T({as,ar}) =

A tuple ¢ = (0O, A) is called a concept iff A = ¢(0)
and O = 7(A), that is, all objects in ¢ share all attributes
in ¢. For a concept ¢ = (0, A), O is called the extent of
¢, denoted by extent(c), and A is called the intent of c,
denoted by intent(c). Informally speaking, a concept cor-
responds to a maximal rectangle of filled table cells modulo
row and column permutations. In Fig. 4(b), all concepts
for the relation in Fig. 4(a) are listed.

The set of all concepts of a given formal context forms a
partial order via the superconcept-subconcept ordering <:

{alza4:a’6:a7}

{01703}

(01, 41) <(02,42) & 01 C O (3)
or, dually, with
(O1,A1) < (02,42) & A1 D Ay (4)

Note that (3) and (4) imply each other by definition. If
we have ¢; < ¢g, then ¢ is called a subconcept of ¢; and
¢o 18 called superconcept of ¢;. For instance, in Fig. 4(b)
we have ¢4 < ¢s.

The set £ of all concepts of a given formal context and
the partial order < form a complete lattice, called concept
lattice:

L(C) ={(0,4) € 2°%24 | A = 5(0) and O = 7(A)} (5)

The infimum (M) of two concepts in this lattice is com-
puted by intersecting their extents as follows:

(Ol,Al)ﬂ(OQ,Ag) = (01 n 02,0'(01 n Oz)) (6)

The infimum describes a set of common attributes of
two sets of objects. Similarly, the supremum (L) is de-
termined by intersecting the intents:

(Ol,Al)U(OQ,Ag) = (T(Al n AQ),Al n AQ) (7)

The supremum yields the set of common objects, which
share all attributes in the intersection of two sets of at-
tributes.

The concept lattice for the formal context in Fig. 4(a)
can be depicted as a directed acyclic graph whose nodes
represent the concepts and whose edges denote the
superconcept-subconcept relation < as shown in Fig. 5(a).
The most general concept is called the top element and
is denoted by T. The most special concept is called the
bottom element and is denoted by L.

The concept lattice can be visualized in a more readable
equivalent way by marking only the graph node with an
attribute a € A whose represented concept is the most gen-
eral concept that has a in its intent. Analogously, a node
will be marked with an object o € O iff it represents the
most special concept that has o in its extent. The unique
element in the concept lattice marked with a is therefore:

u(a) =U{c e L(C) | a € intent(c)} (8)
The unique element marked with object o is:
v(o) =M{c € L(C) | o € extent(c)} 9)

We will call a graph representing a concept lattice using
this marking strategy a sparse representation of the lat-
tice. The equivalent sparse representation of the lattice in
Fig. 5(a) is shown in Fig. 5(b). The content of a node N
in this representation can be derived as follows:

o The objects of N are all objects at and below N.

o The attributes of NV are all attributes at and above N.
For instance, the node in Fig. 5(b) marked with 0; and a;
is the concept ¢4 = ({01}, {a1, a4, aq,ar}).

For practical reasons, it is sometimes useful to apply only
one of (8) or (9). For example if we have a large number of
attributes but just a small number of objects, we eliminate
the redundant appearance of attributes and keep the full
list of objects in the concepts.

IV. ANALYSIS PROCESS

Our process to locate features is depicted in Fig. 6 using
the IDEF0 notation [22]. It consists of five major activities:
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(b) Concepts for the formal con-
text.

Fig. 4. An example relation between objects and attributes. The corresponding concepts that can be derived from the formal context are
listed on the right.

({01, 02,03}, {az}) (0, {ar})
({01a03}a{a6aa7}) ((Z)a {aﬁ})

({01,02},{114,(17}) ({02a03}a{a5aa7}) (@,{LM}) ((Z)a {a5})

({o1},{a1, a4, a6, a7}) ({os}, {as, as,a6,ar}) ({ori}, {ar}) ({os};{as})

({02}7{a27a4aa5aa7}) ({02},{(12})
((Z)a {alaa27a37a4aa5aa67a7}) (@,(Z))

(a) Full concept lattice. (b) Sparse representation.

Fig. 5. The concept lattices for the example context in Fig. 4.
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Fig. 6. Process for feature location in IDEF0 notation.



1. Scenario creation: Based on features (either known ini-
tially or discovered during incremental analysis), the do-
main expert creates scenarios.

2. Static dependency-graph extraction: The static depen-
dency graph of the system under analysis is extracted.

3. Dynamic analysis: The system is used according to se-
lected scenarios.

4. Interpretation of concept lattice: The data yielded by
the dynamic analysis is presented to and interpreted by the
analyst. Relevant computational units are identified.

5. Static dependency analysis: The analyst searches the
system for additional computational units that are relevant
to selected features.

The different roles of human resources for these activ-
ities are (human resources are highlighted in the process
diagrams by a UML actor icon):

o The analyst is the person interested in how features map
onto source code. She interprets the concept lattice and
performs the static analysis.

e The domain expert designs the scenarios and lists the
invoked features for each scenario.

o The user is the person who uses the system according
to the selected scenarios.

All activities except the static dependency graph extrac-
tion (which is done only once) benefit from the knowledge
that is gained in previous iterations and can be applied re-
peatedly until sufficient knowledge about the system has
been gained. The order of the activities is specified by
the IDEFO0 diagram in Fig. 6: An activity may start once
its input is available. The activities are explained in the
following sections.

A. Static Dependency Graph Extraction

The static dependency graph should subsume all types
of entities and dependencies present in the dynamic depen-
dency graph: It is unnecessary to extract dynamic informa-
tion that is not used in the subsequent static analysis. Yet,
the static dependency graph may provide additional types
of entities and dependencies and also more fine-grained in-
formation if a static extraction tool is used that exceeds
the capabilities of the available dynamic extraction tool.
In this case, the static analysis can leverage less dynamic
information but is still conservative. In our case studies,
for instance, we extracted many detailed static dependen-
cies among global declarations (routines, global variables,
and user-defined types) but the profiler we used let us only
extract the dynamic call relationship among routines. This
way, we had to analyze static variable accesses that might
have never been executed in any of our scenarios.

B. Scenario Creation

A domain expert is needed for creating the scenarios.
Any available information on the system’s behavior (e.g.,
documentation, existing test cases, domain models, etc.) is
useful as input to him. Existing test cases may be useful
but not necessarily directly applicable, because the focus
during testing is to cover the code completely and to com-
bine features in many ways. Scenarios in our sense are very

distinctive; that is, they should invoke all relevant features
but as few other features as possible to ease the mappings
from scenarios to features and from features to computa-
tional units (often it is unavoidable to invoke features that
are not of interest for the task at hand).

The scenarios are documented for future use similarly to
test cases. Additionally, the documentation includes the
features invoked by the scenarios. If the domain experts
also specifies the expected result of the scenario, the sce-
nario may also be used as simple test case.

C. Dynamic Analysis

The goal of the dynamic analysis is to find out which
computational units contribute to a given set of features.
Each feature is invoked by at least one of the prepared
scenarios.

The process that deals with the dynamic analysis is
shown in more detail in Fig. 8. The inputs to the process
are source code and a set of scenarios created by process
step 1 in Fig. 6. We proceed as follows:

3.1 Compile for recording: The source code is compiled
with profiling options or is instrumented to obtain the ex-
ecution profile.

3.2 Scenario execution: The system is executed by a
user according to the scenarios and execution profiles are
recorded.

If suitable tool support is available, a scenario’s execu-
tion may be recorded at wish to exclude parts of the execu-
tion that are not relevant, such as start-up and shutdown of
the system [23], [24], [25]. Certain debuggers, for instance,
allow to start and end trace recording. Instrumenting the
source code so that only relevant parts are recorded is gen-
erally not an option because this requires that the feature-
unit map is at least partially known already.

An alternative solution is to specify a special “start-end”
scenario containing the actions to be filtered out. For in-
stance, in order to mask out initialization and finalization
code, the domain expert may prepare a “start-end” sce-
nario in which the system is started and immediately shut
down.

Since each scenario is a precise description of the se-
quence of user inputs that trigger actions of the system,
every execution of a scenario yields the same execution
profile unless the system is nondeterministic. In case of
nondeterminism, one could either unite the profiles of all
executions of the same scenario or differentiate each sce-
nario execution. The latter is useful to identify differences
due to nondeterminism.

D. Interpretation of Concept Lattice

In this process step, a concept lattice for the relation
table created by process step 3 is built. The goals of inter-
preting the resulting concept lattices are:

1. Identification of the relationships between scenarios and
computational units (process steps 4.1-4.3)

2. Identification of the relationships between scenarios and
features and thus between features and computational
units (process step 4.4)
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Fig. 7. Translation from the identifiers of Sect. IIT and the identifiers
used from here on, which instantiate formal concept analysis.

The following subsections describe how to achieve these
goals. The basic process of lattice interpretation is depicted
in Fig. 9.

D.1 Scenario Selection

A number of execution profiles is selected in order to
set up the context. Execution profiles may be recombined
to analyze various aspects of a system, where execution
profiles and scenarios can be reused.

EXAMPLE. The analyst of FIG may first be interested in
the two different ways to draw a circle. She would therefore
select the two scenarios Draw-circle-diameter and Draw-
circle-radius. When she understands the differences be-
tween these two features, she would investigate other circle
operations and additionally select Move-circle and Color-
circle. a

D.2 Concept Analysis

This process embodies a completely automated step that
creates a concept lattice from the invocation table.

In order to derive the feature-unit map by means of con-
cept analysis, we have to define the formal context (i.e., the
objects, the attributes, and the relation) and to interpret
the resulting concept lattice accordingly.

The formal context for applying concept analysis to de-
rive the relationships between scenarios and computational
units will be laid down as follows:

o Computational units will be considered objects.

o Scenarios will be considered attributes.

e A pair (computational unit u, scenario s) is in relation Z
if u is executed when s is performed.

Figure 7 shows how to map the identifiers used in the
general description of concept analysis in Sect. III to the
identifiers used in the specific instantiation of concept anal-
ysis within our method.

The system is used according to the set of scenarios, one
at a time, and the execution profiles are recorded. Each
system run yields all executed computational units for a
single scenario; that is, one column of the relation table
can be filled per system run. Applying all scenarios that
have been selected during the process of scenario selection
provides the relation table for formal concept analysis.

ExaMPLE. Figure 10 shows the concept lattice for the
invocation table in Fig. 3, where all scenarios have been
selected. |

D.3 Basic Interpretation

Concept analysis applied to the formal context described
in the last section yields a lattice from which interesting
relationships can be derived. These relationships can be
fully automatically derived and presented to the analyst.
Thus, the analyst has to know how to interpret the derived
relationships, but does not need to be familiar with the
theoretical background of lattices.

The following base relationships can be derived from the
sparse representation of the lattice (note the duality):

e A computational unit u is required for all scenarios at
and above y(u) in the lattice; for instance, SetDiameter is
required for Draw-circle-diameter, Move-circle, and Color-
circle according to Fig. 10.

o A scenario s requires all computational units at and be-
low p(s) in the lattice; for instance, Color-circle requires
color, setDiameter, and draw according to Fig. 10.

o A computational unit u is specific to exactly one scenario
s if s is the only scenario on all paths from ~y(u) to the
top element; for instance, color is specific to Color-circle
according to Fig. 10.

e Scenarios to which two computational units u; and
us jointly contribute can be identified by the supremum
v(up)Uy(uz). In the lattice, the supremum is the closest
common node toward the top element starting at the nodes
to which u; and uy are attached. All scenarios at and above
this common node are those jointly implemented by u; and
us. For instance, setDiameter and color jointly contribute
to Color-circle according to Fig. 10.

o Computational units jointly required for two scenarios s;
and sy are described by the infimum p(si)Mu(s2). In the
lattice, the infimum is the closest common node toward the
bottom element starting at the nodes to which s; and ss
are attached. All computational units at and below this
common node are those jointly required for s; and s,. For
instance, setDiameter and drew are jointly required for
Mowe-circle and Color-circle according to Fig. 10.

o Computational units required for all scenarios can be
found at the bottom element; for instance, draw is required
for all scenarios according to Fig. 10.

o Scenarios that require all computational units can be
found at the top element. In Fig. 10, there is no such
scenario.

Beyond these relationships between computational units
and scenarios, further useful aspects between scenarios on
one hand and between computational units on the other
hand may be derived:

o If y(u1) < 7(u2) holds for two computational units wuy
and us, then computational unit us is more specific with
respect to the given scenarios than computational unit uy
because u; contributes not just to the features for which us
contributes, but also to other features. For instance, color
is more specific to Color-circle than setDiameter and set-
Diameter is more specific than draw according to Fig. 10.
o If pu(s1) < p(s2) holds for two scenarios s; and s,, then
scenario ss is based on scenario s; because if s5 is executed,
all computational units in the extent of u(s1) need also to
be executed. For instance, Mowve-circle and Color-circle
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Fig. 10. Sparse concept lattice for Fig. 3.

are based on Draw-circle-diameter according to Fig. 10.

Thus the lattice also reflects the level of application
specificity of computational units. The information de-
scribed above can be derived by a tool and fed back to
the analyst. Inspecting the relationships derived from the
concept lattice, a decision may be made to analyze only a
subset of the original features in depth due to the additional
dependencies that concept analysis reveals. All computa-
tional units required for these features (easily derived from
the concept lattice) form a starting point for further static
analyses to validate the identified computational units and
to identify further computational units that were possibly
not executed during dynamic analysis because of limita-
tions in the design of the scenarios.

D.4 Scenario Feature Mapping

The interpretation of the concept lattice as described
above gives insights into the relationship between scenarios
S and computational units U. However, the analyst is
primarily interested in the relationship between features F'
and computational units U. This section describes how to
identify this relationship in the concept lattice if there is no
one-to-one correspondence between scenarios and features.

Because one feature can be invoked by many scenarios
and one scenario can invoke several features, there is not
always a strict correspondence between features and sce-
narios. For instance, as discussed above, the scenarios
Move-circle and Color-circle of FIG are based on Draw-
circle-diameter according to Fig. 10 because in order to
move or color a shape, one has to draw it first. The sce-
nario for moving or coloring a shape will thus necessarily
invoke the feature which draws a shape. Fortunately, there
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is still a simple way to identify computational units rele-
vant to the actual features in the concept lattice, although
an unambiguous identification may require additional dis-
criminating scenarios. The basic idea is to isolate features
in the concept lattice through combinations of overlapping
scenarios.

If a scenario invokes several features, one can formally
model a scenario as a set of features s = {f1, fa,..., fm },
where f, € F for 1 < n < m (F is the set of all relevant
features). This modeling is simplifying because it abstracts
from the exact order and frequency of feature invocations
in a scenario. On the other hand, if the order or frequency
of feature invocations do count, the scenarios may indeed
be considered complex features in their own right. If these
scenarios yield different execution profiles, they will appear
in different concepts in the lattice and their commonalities
and differences are revealed and may be analyzed.

With the domain expert’s additional knowledge of which
features are invoked by a scenario we can identify the com-
putational units relevant to a certain feature. Let us con-
sider the invocation relation 7 in Fig. 11(a) (for better leg-
ibility, scenarios are listed as rows and computational units
as listed as columns). The table contains the called compu-
tational units uq,...,u7 per scenario, and furthermore the
invoked features per scenario: s1 = {f1, fa}, s2 = {f1, f2},
and s3 = {f2, f3}. The corresponding concept lattice for
the invocation relation in Fig. 11(a) is shown in Fig. 11(b).
The feature part of the table is ignored while constructing
this lattice.

Computational units specific to feature f; can be found
in the intersection of the executed computational units of

({us, us, ue, ur}, {s3})

ur |
X X X
X X X
X X X X
({uz}, {s2})
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({ui}; {s1}) ({us}, {ss})

SHRD
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({ur}, {s1,s2, s3})

SPEC

({ua}, {s1,82})

RivT

(c) Sparse concept lattice of Fig. 11(b) categorized with re-
spect to feature f; that has been exposed in scenarios s
and s9.

Categorizing concept lattices.

the two scenarios s; and sy because f; is invoked for s; and
so. The intersection of the computational units executed
for s; and ss can be identified as the extent of the infimum
of the concepts associated with s; and sa: u(s1)Mu(s2)
({s1,s2},{u4, ur}). Since s; and sy do not share any other
feature, the computational units particularly relevant to f;
are uyg and uy.

We notice that uy is also used in all other scenarios, so
that one cannot consider u; a specific computational unit
for any of fi, fa, or f3. Computational unit u4, in con-
trast, is only used in scenarios executing f;. We therefore
state the hypothesis that u, is specific to f; whereas ur
is not. Because there is no other scenario containing f;
other than s; and sy, computational unit w4 is the only
computational unit specific to fi.

Note that this is just a hypothesis because other features
might be involved to which w4 is truly specific and that are
not explicitly listed in the scenarios. Another explanation
could be that, by accident, uy is executed both for fo (in
s2) and f3 (1n s1); then, it appears in both scenarios but
nevertheless is not spe01ﬁc to fi. However, chances are high
that uy4 is specific to fi; because u4 is not executed when f,
and fs are jointly invoked in s3, which suggests that w4 at
least comes into play only when f; interacts with f5 or fs.
At any rate, the categorization is hypothetic and needs to
be validated by the analyst.

Computational units that are somehow related to but
not specific for f; are such computational units that are
executed for scenarios invoking f; amongst other features.
In our example, both s; and ss invoke f;. Computational
units in extents of concepts which contain sy or s, are there-
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fore potentially relevant to fi. In our example, uy,us, us,
and ug are potentially relevant in addition to us and uz.
Computational unit ug is only executed for scenario sz,
which does not contain f.

Altogether, we can identify five categories for computa-
tional units with regard to feature f; (see Fig. 11(c)):
SPEC: uy is specific to f; because it is used in all scenarios
invoking fi but not in other scenarios.

RLVT: uy is relevant to f; because uy is used in all sce-
narios invoking f1; but it is also more general than uy be-
cause uy is also used in scenarios not invoking f; at all.
Cspc: u; and uy are only executed in scenarios invoking
fi. They are less specific than u4 because they are not used
in all scenarios that invoke f;; that is, these computational
units are only conditionally specific. Whether u; and uy are
more or less specific than w7 is not decidable based on the
concept lattice. On one hand, they are used in all scenarios
invoking fi and other scenarios, whereas uy is also executed
in scenarios that do not require f;. On the other hand, uy
is executed whenever f; is required, whereas v, and us are
not executed in some scenarios that do require f;.

SHRD: us and ug are executed in scenarios invoking f, but
they are also executed in scenarios not invoking fi; that is,
they are shared with other features. These computational
units are presumably less relevant than u; and us, which
are executed only when f; is invoked, and also less relevant
than w7, which is executed in all scenarios invoking f.
TRLVT: ug is irrelevant to fi because ug is only executed
in scenarios not containing fi.

These facts are more obvious in the sparse representation
of the lattice. Using this representation, given a feature
f, one identifies the concept, cf, for which the following
condition holds:

¢y =(U,8) and [ 55 ={f}

s; €S

(10)

Concept cy is called a feature-specific concept for f.
Based on the feature-specific concept, one can categorize
the computational units as follows:

SpEC: all computational units u for which v(u) = ¢ holds.
RLvT: all computational units u for which y(u) = ¢" and
¢’ < ¢ holds.

Cspc: all computational units u for which y(u) = ¢ and
¢ < ¢ holds.

SHRD: all computational units u for which u is in the in-
tent of concept ¢’ where ¢ < ¢ holds and ¢ and y(u) are
incomparable.

IRLVT: all other computational units not categorized by
other categories.

When the distance between ¢ and ¢’ is considered, there
are additional nuances within categories RivT, Cspc,
and SHRD possible. The distance measures the size of the
set of features a computational unit is potentially relevant
for. The larger the set, the less specific the computational
unit is.

ExXAMPLE. The scenario Move-circle in Fig. 2 invokes
two features: the ability of FIG to draw a circle by di-
ameter and the ability to move this circle. The scenario

Color-circle also uses the ability to draw a circle; yet, it
colors the circle instead of moving it. Hence, the compu-
tational units responsible for drawing a circle are attached
to the concept in Fig. 10 that represents the intersection of
the features invoked by Mowe-circle and Color-circle. The
scenario Draw-circle-diameter would not necessarily have
been required to identify the computational units for draw-
ing a circle by diameter: The sparse lattice reveals these
computational units as the direct infimum of Move-circle
and color-circle even if Draw-circle-diameter is not, consid-
ered. However, Draw-circle-diameter is useful to separate
draw from setDiameter. |

As a matter of fact, there could be several concepts for
which condition (10) holds when different computational
units are executed for the given feature, depending on the
scenario contexts in which the feature is embedded. For
instance, let us assume we are analyzing FIG’s undo ca-
pabilities. Three scenarios can be provided to explore this
feature:

e Draw a circle: {draw-circle}
e Undo circle drawing: {draw-circle, undo}
o Undo without preceding drawing operation: {undo}

For the overlapping scenarios {draw-circle, undo} and
{undo}, we may assume that different computational units
will be executed beyond those that are specific to com-
mand draw-circle: Quite likely, additional computational
units will be executed to handle the erroneous attempt to
call undo without previous operation. Consequently, the
lattice will contain an own concept for {draw-circle, undo}
and another one for {undo}, where the latter is not a sub-
concept of the former. The infimum of these two scenarios
will contain the computational units of the undo opera-
tion executed for normal as well as exceptional execution,
whereas the concept representing {undo} contains the com-
putational units for error handling.

In case of multiple concepts for which condition (10)
holds, we can unite the computational units that are in
SPEC with respect to these concepts. If the identified con-
cepts are in a subconcept relation to each other, the su-
perconcept represents a strict extension of the behavior of
the feature. If the concepts are incomparable, these con-
cepts represent varying context-dependent behavior of the
feature.

If there is no concept for which condition (10) holds,
one needs additional scenarios that factor out feature f.
For instance, in order to isolate feature f; in scenario
s1 = {f1, fs}, one can simply add a new scenario sy =
{f1, f2}. The computational units specific to f; will be in
p(s1)Mp(s2).

It is not necessary to consider all possible feature com-
binations in order to isolate features in the lattice. Inter-
secting all currently available scenarios exactly tells which
features are not yet isolated (the intersection could be done
by concept analysis applied to the formal context consist-
ing of scenarios and features, where the incidence rela-
tion describes which feature is invoked by which scenario).
Slightly modified variants of scenarios invoking the feature
can be added to isolate the feature specifically.



The addition of new scenarios in order to discriminate
features in the lattice will lead us to an incremental con-
struction of the concept lattice described in Sect. IV-F.
Before we come to that, we describe the static dependency
analysis.

E. Static Dependency Analysis

From the concept lattice, we can easily derive all com-
putational units executed for any set of relevant features.
However, this gives us only a set of computational units,
but it is not clear which of these computational units are
truly feature-specific and which of them are rather general-
purpose computational units used as building blocks for
other computational units. Given a feature f of interest,
this question can be answered as follows:

o As a first approximation, all computational units in the
extents of all feature-specific concepts for f jointly con-
tribute to f.

o The analyst refines this approximation by adding and re-
moving computational units: By inspecting the static de-
pendency graph and the source code of the computational
units, she sorts out irrelevant computational units; she may
also add feature-relevant computational units that were not
executed due to an incomplete input coverage of the sce-
narios. The concept lattice is an important guidance for
the analyst’s inspection of the dependency graph.

ExampLE. For FIG’s ability to color a circle, the ana-
lyst will need to validate the set of computational units
{color, set Diameter, draw} according to the concept lat-
tice in Fig. 10. The lattice shows that the analyst should
start with inspecting color because this appears as the most
specific computational unit for coloring a circle. O

E.1 Building the Starting Set

All computational units in the extent of a concept jointly
contribute to all features in the intent of the concept, which
immediately follows from the definition of a concept. How-
ever, there may also be computational units in the extent
that contribute to other features as well, so that they are
not specific to the given feature. There may be computa-
tional units in the extent that do not contain any feature-
specific code at all. Thus, computational units in the ex-
tent of the concept need to be inspected manually. Because
there are no reliable criteria known that automatically dis-
tinguish feature-specific code from general-purpose code,
this analysis cannot be automated and human expertise is
necessary. However, the concept lattice may narrow the
candidates for manual inspection.

The concept lattice and the dependency graph can help
to decide in which order the computational units are to be
inspected such that the effort for manual inspection can be
reduced to a minimum. Since we are interested in com-
putational units most specific to a feature f, we start at
those computational units u; that are attached to a feature-
specific concept of f, that is, for which ¢; = 7(u;) holds,
where ¢ is a feature-specific concept for f. If there are
no such computational units, we collect all computational
units below any of the feature-specific concepts cy of f with
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minimal distance to ¢y in the sparse representation. There
can be more than one concept c¢, so we unite all computa-
tional units that are attached to one of these concepts. The
subset of computational units identified in this step that is
accepted after manual inspection is called the starting set

Sstm‘t(f)'
ExAMPLE. The starting set for FIG’s ability to color a
circle, Sgtart (color-circle), is {color}. ]

E.2 Inspection of the Static Dependency Graph

Next, we inspect the executable static dependency graph
(as one specific subset of the static dependency graph) that
contains all transitive control-flow successors and predeces-
sors of computational units in Sz (f). We concentrate on
computational units here because they are the active con-
stituents and because they were subject to the dynamic
analysis. The executable static dependency graph can be
annotated with the features and scenarios for which the
computational units were executed. If a computational
unit is not annotated with any scenario, the computational
unit was not executed. Non-executable parts of the system,
namely, declarative parts, may be added once all relevant
computational units have been identified. A static points-
to analysis is needed to resolve dynamic binding and calls
via routine pointers if present. The static points-to anal-
ysis may take advantage of the knowledge about actually
executed computational units yielded by the dynamic anal-
ysis.

We primarily consider only those computational units u;
for which u; € extent(cs) holds because only those com-
putational units are actually executed when f is invoked
according to the dynamic analysis. Hence, we combine
static and dynamic information to eliminate conditional
static computational units executions in order to reduce
the search space. Nevertheless, one should check for the
reasons why certain computational units have not been ex-
ecuted.

Any kind of traversal of the executable static dependency
graph is possible, but a depth-first search along the control-
flow is most suited because a computational unit can only
be understood if all its executed computational units are
understood. In a breadth-first search, a human would have
to cope with continuous context switches. The goal of the
ingpection is to sort out computational units that do not
belong to the feature in a narrow sense because they do
not contain feature-specific code.

The executable static dependency graph rather than the
concept lattice is traversed for inspection because the lat-
tice does not really reflect the control-flow dependencies:
~v(u1) > v(u2) does not imply that u; is a control-flow pre-
decessor of us. However, the concept lattice may still pro-
vide useful information for the inspection. In Section IV-D,
we made the observation that the lower a concept y(u) is
in the lattice, the more general computational unit u is be-
cause it serves more features—and vice versa. Thus, the
concept lattice gives us insight into the level of abstrac-
tion of a computational unit and, therefore, contributes to
the degree of confidence that a specific computational unit
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contains feature-specific code.

ExamPLE. The analyst would first validate the starting
set for FIG’s ability to color a circle Sgta,t(color-circle) =
{color}. Then she would inspect the control-flow predeces-
sors and successors of color. Some of them might not be
executed, yet a brief check is still necessary to make sure
that they are indeed irrelevant. Then, she would continue
with setDiameter and eventually inspect draw. O

Two additional analyses gather further information use-
ful while navigating on the dependency graph:

o Strongly connected component analysis is used to iden-
tify cycles in the dependency graph: If there is one compu-
tational unit in a cycle that contains feature-specific code,
all computational units of the cycle are related to the fea-
ture because of the cyclic dependency.

o Dominance analysis is used to identify computational
units that are local to other computational units. A com-
putational unit vy dominates another computational unit
uo if every path in the dependency graph from its root to
us contains uy. In other words, us can only be reached
by way of u;. If a computational unit u is found to be
feature-specific, then all its dominators are also relevant
to the feature, because they need to be executed in order
for u to be executed. If none of a dominator’s dominatees
contains feature-specific code and the dominator itself is
not feature-specific, then the dominator is a clear cutting
point as all its dominatees are local to it. Consequently,
the dominator and all its dominatees can be omitted while
understanding the system.

If more than one feature is relevant, one simply unites
the starting sets for each feature and then follows the same
approach. For more than one feature, the concept lattice
identifies computational units jointly and distinctly used
by those features.

Once all relevant computational units have been identi-
fied, other static (e.g., program slicing) as well as dynamic
analyses (e.g., trace recording to obtain the order of execu-
tion) can be applied to obtain further information. These
analyses can be performed more goal-oriented by leveraging
the retrieved feature-unit map.

F. Incremental Analysis

There are at least two reasons why an incremental con-
sideration of scenarios is desirable. First, one might not
get the suite of scenarios sufficiently discriminating the first
time. New scenarios become necessary to further differenti-
ate scenarios into features. Second, new scenarios are useful
when trying to understand an unfamiliar system incremen-
tally. One starts with a small set of relevant scenarios to
locate and understand a fundamental set of features by
providing a small and manageable overview lattice. Then,
one successively increments the set of considered scenarios
to widen the understanding.

Adding scenarios means adding attributes to the formal
context; but there are also situations in which objects are
added incrementally: in cases where computational units
need to be refined. For instance, computational units with
low cohesion—that is, computational units with multiple,

yet different functions—will “sink” in the concept lattice if
they contribute to many features. A routine containing a
very large switch statement where only one branch is actu-
ally executed for each feature is a typical example. If the
analyst encounters such a routine during static analysis,
she could lower the level of granularity for computational
units specifically for this routine to basic blocks. Basic
blocks as computational units disentangle the interleaved
code: For the example routine with the large switch state-
ment, the individual switch branches would be more clearly
assigned to the respective feature in the concept lattice.

In this section, we describe an incremental consideration
of attributes, namely, scenarios. Incremental consideration
of objects—that is, refinement of computational units—is
analogous.

As soon as one understands the basics of a system, one
adds new scenarios for further detailed investigation and
exploration of the unknown portions of the system. If one
tries to capture all features of a software at once, the re-
sulting lattice may become too large, too detailed, and thus
unmanageable. If one starts with a smaller set of scenarios
and further increases this set, all accumulated knowledge
an analyst gained while working with the smaller lattice
has to be preserved. The lattice—the mental map for the
analyst’s understanding—changes when new scenarios are
added. Fortunately, the smaller lattice can be mapped to
the larger one (the smaller lattice is the result of a so-called
subcontext).

DEFINITION. Let C' = (0O, A,7) a context, O' C O, and
A" C A Then C' = (0',A", TN (0" x A")) is called a sub-
context of C' and C is called a supercontext of C'. O

In our application of concept analysis, we only add new
rows (one for each new scenario, assuming that scenarios
occur in rows of the relation table) but never new columns
to the relation table (because we statically know all com-
putational units in advance). Adding new rows leads to a
new formal context (U, S',Z') in which relation Z' extends
relation Z.

PropoSITION. Let C = (0,A,7) and C' = (0,A",1"),
where A’ C Aand 7' = (ZN (O x A’)). Then every extent
of C" is an extent of C. a
PROOF. See [21]. O

According to this proposition, each extent within the
subcontext will show up in the supercontext. This can
be made plausible with the relation table: Added rows
will never change existing rows, so the maximal rectan-
gles forming concepts will only extend in vertical direction
(if scenarios are listed in rows).

This proposition on the invariability of extents of sub-
contexts that only differ in the set of objects results in
a simple mapping of concepts from the subcontext to the
supercontext (for a formal proof see [21]):

U,S) = (U,a(U))

The mapping is a M-preserving embedding, meaning that



the partial order relationship is completely preserved. Con-
sequently, the supercontext is basically a refinement of the
subcontext. By this mapping all concepts of the subcontext
can be found in the supercontext.

The supercontext may include new concepts not found
in the subcontext. The consequence for the visualization
of the supercontext is that the newly introduced concepts
can be highlighted easily in the visualized lattice of the
supercontext and that concepts in the subcontext can be
mapped onto concepts in the superconcept along with pos-
sible user annotations. Additionally, an incremental auto-
matic graph layout can be chosen: Only additional nodes
and edges may be introduced in the supercontext, nodes
and edges of the subcontext are kept. Thus, the position
of concepts relatively to each other will be preserved.

ExXAMPLE. Let us assume the analyst of FIG is now
interested whether invoking the feature “circle drawing”
twice makes a difference and what the differences between
drawing a circle and drawing a dot (“Draw-dot”) on one
hand and between moving a circle and undoing a circle
move operation (“Move-circle-undo”) on the other hand
are. The domain expert will design the appropriate sce-
narios. The resulting invocation table for these and all
previous scenarios may be as in Fig. 12(a). The lattice
for this new supercontext is shown in Fig. 12(b). The
new scenario Draw-circle-diameter-twice is subsumed by
the existing scenario Draw-circle-diameter, showing that
using the feature twice does not lead to additional rele-
vant computational units. The new scenario Draw-dot is
subsumed by the bottom concept; thus, Draw-dot shares
only the computational unit draw with the feature “cir-
cle drawing”. Both scenarios Draw-circle-diameter-twice
and Draw-dot do not change the general structure of the
lattice. Only the concept highlighted in Fig. 12(b) is new.
This concept shows the difference between Move-circle and
Move-circle-undo, which is the additionally executed com-
putational unit undo. O

V. CASE STUDIES

This section describes two case studies evaluating our
method. The first case study on web browsers shows the
benefit from combining static and dynamic information.
The second case study focuses on dynamic information and
exemplifies the incremental analysis for a very large com-
mercial system.

In both case studies, the computational units of choice
are routines. The Bauhaus [26] tools were used to ex-
tract the static dependency graph. The extracted static
dependency graph contains all global declarations (rou-
tines, global variables, and user-defined types) and many
dependencies such as calls between routines, references of
global variables by routines, type information for variables,
dependencies between user-defined types, occurrences of
types in routine signatures, and so on [27].

For the dynamic analysis, we used a standard profiler to
gather execution profiles. The profiler has the limitation
that it does not record accesses to variables. We therefore
analyzed variable accesses statically.
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| system | version | KLOC(wc) | #subprograms |
Mosaic 2.6 51,440 701
Chimera | 2.0a19 38,208 928

Fig. 13. Analyzed web browsers.

A. Web Browsers

In this section, we discuss the usefulness of static and
dynamic informations as introduced in Sect. IV-E.

We analyzed two web browsers (both written in C; see
Fig. 13) using the same set of relevant related features.
The concept lattice for each of these systems was derived as
described in Sect. IV. The required routines as identified by
dynamic analysis and the relationships derived by concept
analysis formed a starting point for the static dependency
analysis.

A.1 Case Study Setup

In two experiments, we tried to understand how two
specific sets of related features are implemented in both
browsers using the process described above. The goal of
this analysis was to recover the feature-specific computa-
tional units and the way they interact—that is, to reverse
engineer a partial description of the software architecture.
The partial software architecture, for instance, allows one
to decide whether feature-specific computational units can
be extracted from one system and integrated into another
system with only minor changes. Chimera does not imple-
ment all features that Mosaic provides and we wanted to
find out whether the respective feature-specific computa-
tional units of Mosaic can be reused for Chimera.

o Experiment “History” (H): Chimera allows going back
in the history of already visited URLs, but Chimera does
not have a forward button that allows a user to move for-
ward in the history again after the back button was used.
Mosaic has both a back and a forward button. In this ex-
periment, going back and going forward were considered
related features.

o Experiment “Bookmark” (B): Both Mosaic and Chimera
offer bookmarks for visited URLs. URLs may be book-
marked, and bookmarked URLs may be loaded and re-
moved. We considered the following related features: ad-
dition of a new bookmark for a currently viewed URL,
removal of a bookmark, and navigation to a bookmarked
URL.

A.2 Objectives

The questions we wanted to answer in our case study are
as follows:
o Identification and extraction: How are the history and
the bookmark features implemented in Mosaic (Chimera)?
What are the interfaces between the specific computational
units that implement these features and the rest of Mosaic
(Chimera)? In both cases, a partial description of the soft-
ware architecture was recovered.
o Integration: How can the identified portion of the code
of one browser be integrated into the other browser?
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Fig. 12. The lattice for the supercontext of Fig. 10.

The whole experiment (from initial setup of scenarios
and compiling with profiler options up to the architectural
sketches) took two people half a day of work altogether for
Mosaic and Chimera.

A.3 Scenarios for Dynamic Analysis

For each experiment and each browser, we ran the
browser in a start-end scenario in which the browser was
started and immediately quit in order to separate start-
up and shutdown code. The following additional scenarios
were defined specifically to the two experiments. Experi-
ment “History” was covered by the following three scenar-
ios:

(H1) Basic scenario doing nothing but browsing
(H2) Scenario using the back button
(H3) Scenario using the back and forward buttons

For Chimera, the last scenario was not performed (be-
cause Chimera possesses no forward button).

Experiment “Bookmark” was covered by the following
four scenarios:

(B1) Basic scenario: simply opening and closing the book-
mark window

(B2) Scenario: adding a new bookmark for the currently
displayed URL

(B3) Scenario: removing a bookmark

(B4) Scenario: selecting a bookmark and visiting the as-
sociated URL

Each scenario was immediately ended by quitting the
respective system. We provided scenarios that invoke one
feature only except for one scenario: One cannot use the
forward button without using the back button. Conse-

(M) | (2) ] 3) ] (2)N(3) | relevant
Mosaic/(B) 701 | 359 | 99 74 16
Mosaic/(H) 348 | 74 65 6
Chimera/(B) | 928 | 431 | 89 55 3
Chimera,/ () 419 | 123 55 24

Fig. 14. Subprogram counts for Mosaic and Chimera.

quently, the concept containing routines executed for sce-
nario (H2) is a subconcept of the concept related to (H3).
Likewise, a bookmark can only be deleted when a URL has
been added before. To circumvent this problem, we started
the browser with a non-empty bookmark file in all scenar-
ios. Thus, we did not consider the case of insertion into an
empty bookmark list.

A.4 Static Dependency Analysis

In the dependency graph for the browsers, visualized
using the Bauhaus extension to Rigi [28], we derived all
statically transitively called routines (using Rigi’s basic se-
lection facilities [28]) and intersected the static informa-
tion with the actually executed routines manually. We ad-
ditionally filtered out all routines specific to HTML and
the X-window-based graphical user interface guided by the
browser’s proper naming conventions. These routines were
all in the bottom element of the concept lattice.

A.5 Results

Figure 14 provides a summary of the numbers of rou-
tines that needed to be further considered in each step and
shows how the search space could be reduced in each step.
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Fig. 15. Relevant parts of Chimera for history.

The history experiment is denoted by (H) and the book-
mark experiment is denoted by (B). The total number of
all routines of the kernels (not including libraries such as
html, jpeg, zlib) is in column (1), the number of actually
executed routines for any of the scenarios is shown in col-
umn (2). All routines statically called by routines selected
from the set of dynamically executed routines in upper con-
cepts of the lattice (i.e., called from routines in the start-
ing set) are in column (3). The intersection of column (2)
and (3) contains all routines dynamically called by routines
selected from the set of dynamically executed routines in
upper concepts of the lattice; their number is reported in
column “(2) N (3)”. Column relevant reports all routines
in column (2)N(3) that are specific to the selected features
according to our manual inspection. All other routines are
used for other purposes than bookmarks and histories.

Eventually, only a small number of routines needed to

@ data storage

Mosaic’s and Chimera’s history architecture.
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be inspected more thoroughly due to the top-down inspec-
tion process. As an example, Fig. 15 shows the remaining
routines of Chimera (omitting their names) relevant to the
history experiment. This picture clearly shows the possible
cutting points in the dependency graph (consisting of rou-
tines, global variables, and user-defined types and their de-
pendencies) of routines specific to the history features (up-
per region) and non-specific routines (lower region): Only
two entities need to be removed to isolate feature-specific
from non-specific entities.

We recovered the parts of the architecture of Mosaic and
Chimera relevant to the two experiments.

A.6 Results for History

The interface between Mosaic’s browser kernel and the
history component (see Fig. 16(a)) is formed by three rou-
tines to (1) get the current URL, (2) set the current URL,
and (3) communicate the action and event (changed URL).

The history component can be easily extracted from Mo-
saic’s source code because it is a separate component—
whereas the history is an integral part of Chimera’s kernel
(cf. Fig. 16(b)). There is no set of routines of Chimera
that could be reasonably addressed as ”history manager
component” as in Mosaic. Chimera uses a layer of wrap-
pers calling a dispatching routine around a list of actions
where the displayed URLs are part of that list.

The recovered partial architecture shows that Chimera’s
browser kernel is built around a list of visited URLs
whereas Mosaic’s browser kernel does not know the his-
tory of visited URLs at all. As the analysis of the partial
architectural architectures reveals, re-using Mosaic’s his-
tory components in Chimera would be very difficult due to
the architectural mismatch [29].
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Fig. 17. Mosaic’s and Chimera’s bookmark architecture.

A.7 Results for Bookmarks

The partial architectures of the two systems are similar
to each other with respect to bookmarks. Both architec-
tures include an encapsulated bookmark component, which
communicates via a narrow interface with the basic browser
kernel (see Fig. 17).

The basic actions that have to be performed are: (1) get
currently shown URL, (2) set currently shown URL, (3) dis-
play the bookmarks, and (4) communicate the bookmark
selection back.

Exchanging the two implementations between Mosaic
and Chimera would be reasonably easy.

B. Case Study Agilent

This section reports on a case study conducted to inves-
tigate the usefulness of the approach in a realistic full-scale
industrial setting. The case study stresses the importance
of incremental understanding of very large concept lattices
as described in Section IV-F and the modeling of scenarios
as set of features as explained in Section IV-D.4.

The system analyzed is part of the software of the Ag-
ilent 93000 SOC Series, a semi-conductor test equipment
produced by Agilent Technologies.

B.1 Agilent 93000 SOC Series

The Agilent 93000 SOC Series is a single scalable tester
platform used in the manufacturing process of integrated
circuits. It provides test capabilities for digital, analog, and
radio frequency circuits as well as for embedded memories.
The SmarTest software controls the complex tester hard-
ware. It is an interactive environment for developing and
running test programs.

SmarTest consists of numerous tools supporting test en-
gineering tasks. At the center of the software lies the
firmware, an interpreter for IEEE-488-like commands. The
firmware is responsible for programming the hardware.
The input to the firmware are the test cases, which are se-
quences of firmware commands. The firmware parses and
interprets each command, drives the Agilent 93000 device,

and returns the result. It is the firmware that was analyzed
in our case study.

The software of the Agilent 93000 SOC series is main-
tained by several geographically distributed groups. Two
of them are situated in the USA, one in Japan, and one
in Germany. The group in which the case study was con-
ducted is the SOC Test Platform Division at Boblingen,
Germany.

The firmware of the Agilent 93000 has evolved over 15
years. Today, it consists of 1.2 million commented lines
of C code—counted with the Unix program wc—or about
500.000 non-empty lines of declarative or executable C
code, respectively. The static call graph of the part of the
firmware that was analyzed for this case study had 9.988
routines and 17.353 call edges excluding standard C rou-
tines and operating system routines.

Figure 18 depicts the software architecture of the
firmware as described by one of the software architects at
Agilent. The firmware is used simultaneously by different
tools running as separate processes. Interaction between
these tools and the firmware is through shared memory
and message queues as part of the firmware. A semaphore
is used to synchronize interaction between firmware and
other tools.

The firmware is basically an interpreter for test pro-
grams. When a test program is filed into the shared mem-
ory, the firmware parses and runs each command. In order
to run a command, the firmware dispatches the correspond-
ing C routine that acts as an entry point to the implemen-
tation of the command. There is one such C routine—also
referred to as executor—for each command. When the ex-
ecutor has finished, its result is written back to the shared
memory and the waiting process is informed through the
message queue. As Fig. 18 suggests, the executors share
a set of re-usable utility routines—routines offering more
general services. Which utility routines are actually shared
by which executors is, however, not shown in the architec-
tural sketch. As a matter of fact, the software architect
currently does not exactly know what the precise relation



between executors and utility routines is due to the size of
the system and the lack of documentation.

Many commands interpreted by the firmware come in
pairs: the actual command and an additional command to
fetch the result of its execution. The latter is called the
query command. The commands are named by four-letter
acronyms. Query commands are additionally annotated
with a question mark. For instance, CNTR? is the query
command of CNTR.

The firmware understands about 250 different actual
commands; most of them have a corresponding query com-
mand. Altogether, there are about 450 different com-
mands.

For this case study, we focused on the digital part of
the firmware, namely on Configuration Setup, Relay Con-
trol, Level Setup, Timing Setup, and Vector Setup com-
mands (other classes of commands are Analog Setup, AC
Test Function, DC Measurement, Test Result, Utility Line,
and Calibration and Attributes commands):

Configuration Setup Commands: Configuring pins is the
first step one must take when preparing a test. Commands
of this class allow assigning pin names to a test or power
supply channel, configuring pin type and operation modes,
specifying the series resistor, and other things.

Routing Setup Commands: The Routing Setup commands
specify the signal mode and connection for each pin, and
the order of connections.

Level Setup Commands: The Level Setup commands spec-
ify the required driver amplifier and receiver comparator
voltage levels, as well as set termination via the active load
or set the clamp voltage.

Timing Setup Commands: The Timing Setup commands
define the length of the device cycle, the shape of the wave-
forms making up a device cycle, and the position of the
timing edges in a tester cycle for all configured pins.
Vector Setup Commands: The Vector Setup commands
are required to set up and sequence test vectors.

Relays Control Commands: The Relay Control commands
are used to set relay positions and the tester state.

B.2 Objectives

This case study had three goals:

1. The architectural sketch in Fig. 18 had to be mapped
to the source code so that the parts of the system that
contribute to the blocks “executors” and “utility functions”
are identified. It had to be clarified which routines are
executors.

2. The utility routines were to be assigned to the executors
they support. This mapping clarifies the fine structure of
the “utility functions” block in Fig. 18.

3. Some commands of the Agilent 93000 firmware we in-
vestigated were not assigned to one of the classes of Config-
uration Setup, Relay Control, Level Setup, Timing Setup,
or Vector Setup commands, neither by the architect nor
by the user manual. These were to be classified according
to the resulting concept lattice to see whether the lattice
provides useful information to classify features.
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The overall goal of our case study was to map the archi-
tecture sketch in Fig. 18 to the source and to show which
utility routines are really shared. Given the above men-
tioned classes of commands, our hypothesis was that the
executors for commands of the same class share many util-
ity routines. On the other hand, for commands of different
classes, we expected less commonalities, in other words,
one would expect that only more general utility routines
are shared.

B.3 Scenarios for the firmware of Agilent 93000

The software architect at Agilent selected the commands
for digital tests that were to be investigated. Three stu-
dents of the University of Stuttgart created the test cases—
advised by the expert. For each relevant firmware com-
mand, a test case was provided that executes the command.

The execution of some commands is bound to certain
preconditions that need to be fulfilled by calling other com-
mands first, which requires to add these commands to the
test cases. Hence, a test case is generally not a single
command but a sequence of firmware commands, of which
one is the relevant command and the others are required
preparing steps. The order of preparing commands was the
same for all test cases that had these commands as precon-
ditions, and there were no two test cases executing the same
set of routines. As already described in Section IV-D.4, we
can thus model a test case (scenario) as set of commands
(features) s = {command;, commands, ...,command,,}.

In order to identify the routines specific to the relevant
command only, one can factor out preparing steps by ad-
ditional test cases, which execute the preparing commands
but not the relevant command. For instance, in order to
call command UDPS, one needs to execute DFPS first. Thus,
the test case for UDPS is {DFPS, UDPS} where only UDPS is
relevant. In order to identify the routines for UDPS specifi-
cally, one can simply add another test case executing DFPS
only. The routines specific to UDPS can then be identified
in the concept lattice as described in Section IV-D.4.

If a command has a query command, two test cases were
created: one for the actual command and one for the query
command. The former contains only the actual command
but not the query command and the latter only the query
command but not the actual command (in all cases where
the query command can be called without calling the actual
command before).

If a command has different options, the test case exe-
cutes the command with several different combinations of
options. The combination is aimed at covering equivalence
classes of option settings.

For one pair of an actual and a query command, namely,
the command SDSC, four scenarios were created: two for
the actual and two for the query command. The difference
of the two scenarios for both the actual and the query com-
mand is the setting of the specification parameter, that ei-
ther relates to Timing or Level Setup. The distinction was
made to see whether the command requires routines from
different parts of the system, that is, the timing setup and
level setup parts.
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Fig. 19. Test cases / scenarios.

Each test case represents a scenario. In total, 93 sce-
narios were provided (cf. Fig. 19). Among these, 76 sce-
narios correspond to one relevant firmware command for
digital tests. One additional scenario contained just the
no-operation (NOP) command, which has no effect on the
tester. Two additional scenarios were added to call com-
mand SDCS and its query command with the alternative
parameter setting. The remaining scenarios were used to
refactor scenarios: The start-end scenario was used to re-
move start-up and shutdown code by simply starting the
system, executing a reset command, and shutting down the
system, and 13 factoring scenarios were provided to factor
out preparing steps in real scenarios.

Agilent’s own large test suite for testing the firmware
could not be used since we needed scenarios that explore
preferably one command (or feature, respectively) at a
time. Agilent’s test cases use combinations of commands.
Moreover, the existing test driver of the test suite executes
all tests in one run so that the result would have been a sin-
gle profile for all test cases instead of an individual profile
for each test case.

B.4 Resulting Concept Lattice

The resulting concept lattice is shown in Fig. 20. It con-
sists of 165 concepts and 326 non-transitive subconcept re-
lations. Out of the 9.988 statically declared routines, only
1.463 were actually executed by at least one of the 92 con-
sidered scenarios (the start-end scenario is used to remove
those routines from the profiles of the other scenarios that
are executed for initialization, reset, and shutdown of the
system only).

Although, the worst case execution time to compute a
concept lattice is exponential in the number of objects and
attributes, our computation of the concept lattice for the
firmware took less than 2 minutes on an Intel Pentium III
800 MHz machine running Linux.

Another developer at Agilent (different from the soft-
ware architect who sketched the firmware architecture) was
asked to validate the resulting concept lattice. To make a
clear distinction between this validating expert and the ex-
pert who sketched the firmware architecture, the former
will be called developer and the latter software archi-
tect in the following.

The developer was familiar with the firmware but was
not involved in the preparation of the test cases. We ex-
plained the test cases that were selected and the interpre-
tation of the concept lattice as described in this paper.
We did not show the architecture sketch from the soft-
ware architect. We asked the developer to explain the gen-
eral structure of the system with the concept lattice and
whether there are any surprises in the lattice.

The developer immediately spotted in the 65 direct sub-
concepts of the top element—that is, concepts in the first
row below the top element of the lattice—the individual ex-
ecutors for 65 commands (including the executor for NOP).
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Fig. 20. The lattice for all commands. The boxes’ height corresponds to the number of routines in the concepts.

(The top element itself does not contain any scenario.)
Among these 65 concepts, 63 contain a single scenario and
two contain two scenarios. The ones with two scenarios are
the two different parameter settings for the SDSC command
and the corresponding query command (cf. Sect. V-B.3).
Consequently, the implementation of the SDSC command
executes the same routines independently from the param-
eter that refers to timing or level setup, respectively. Thus,
65 executors could immediately be detected in the lattice.
Based on these observations, we could easily map the con-
cept lattice in Fig. 24 to the architecture sketch of Fig. 18.

The other 12 real scenarios can be found in subconcepts
of the above mentioned 65 concepts. The reason why these
scenarios cannot be found directly below the top element
is that they represent commands that are also needed as
preparing steps for other commands. For instance, before
the commands PSLV and UDPS can be called, one must call
DFPS. The scenarios for PLSV and UDPS are consequently
{DFPS, PLSV} and {DFPS,UDPS}, respectively. The scenario
that contains DFPS only will therefore be part of the concept
that is the common infimum of the scenarios for PLSV and
UDPS since {DFPS} = {DFPS,PLSV} N {DFPS,UDPS}. By rep-
resenting test cases (scenarios) as sets of commands (fea-
tures) and isolating commands through intersecting test
cases as described in Section IV-D.4, we could easily iden-
tify the executors for the remaining 12 commands whose
test case is not directly located below the top element.

As described above, the firmware commands can be cat-
egorized in different classes (Configuration Setup, Relay
Control, Level Setup, Timing Setup, and Vector Setup
command). In order to visualize the jointly used routines
by executors for commands of the same class, we colored
the concept lattice as follows:

1. Each concept representing an executor in the lattice gets
the color of the executor’s class; the colored concept is the
starting node for the traversal in the next step.

2. By top-down traversal starting at the colored concept,
the color of the respective executor is propagated to all
subconcepts of the executor’s concept (until a different ex-

ecutor is reached).

The colored concept lattice for Agilent’s firmware gives
interesting insights. All concepts directly below the top el-
ement in Fig. 24 have just one color because these concepts
actually represent just one executor of a given command. If
a concept, ¢, has more than one color, the routines, u;, for
which y(u;) = ¢ holds contribute to commands of different
classes. As a matter of fact, there were only few concepts
above the bottom element with different colors showing
that there is substantial sharing of routines among execu-
tors of the same class of commands. The utility routines
in concepts having only one color seem to be specific to
just a single class of commands. In other words, either a
routine is specific to a class of commands or it is used for
all command classes in general.

The dynamic analysis in conjunction with concept analy-
sis thus has given important insight into the internal struc-
ture of the black box labeled ”utility routines” in Fig. 18:
534 routines (out of 1.463 routines executed for at least
one test case and 9.988 statically declared routines, respec-
tively) could be related to the executors, that is, are not
specifically attached to the bottom element.

There are also executors for commands of the same class
that share only the most general routines in the bottom
element, that is, those routines executed for all executors.
The most remarkable example are the executors for the
configuration setup of single pins on one hand and those for
the configuration setup of whole pin groups. While the ex-
ecutors for single pins share many routines specific to their
class, the executors for pin groups (which also belong to the
same class Configuration Setup) do not share any routine
beyond those in the bottom element, neither with executors
for single pins nor with other executors for pin groups. Our
hypothesis was that there are many routines jointly used
by configuration setup commands for pin groups similarly
to commands for single pins. The developer reviewing the
concept lattice explained that macros are heavily used for
routine inlining in the subsystem implementing pin group
configuration. According to the developer, this subsystem
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is an older part of the system. Apparently, at its initial Configuration Setup

development, no compiler with automatic routine inlining CNTR, CNTR?, CONF, CONF?

was available. The use of macros undermines our way to UDEF, UDPS, UDGP

collect dynamic information. The profiler we used records DPFN, DFPN?, DFPS, DFPS?

only routine calls and, hence, cannot reveal code sharing DFGP, DFGP?, DFGE, DFGE?

among these pin group commands. PALS, PALS?, PSTE, PSTE?
Generally, the concepts just below the top element con- PSFC, PSFC?, PQFC, PQFC?

tain only one routine. Some contain more than one rou- PACT, PACT?

tines but less than five. In these cases, a programmer ap-
parently has split a large executor into smaller pieces for
better modularization. There is one concept just below
the top element that contains a very large number of rou-
tines. This concept represents the test execution. The
developer explained that the routines specifically attached
to this concept are strongly related but could have been
further grouped if more scenarios for test execution would
have been provided.

Relay Control (Test Execution)
RLYC, RLYC?

Level Setup Commands

LSUS, LSUS?, DRLV, DRLV?
RCLV, RCLV?, TERM, TERM?
Timing Setup Commands
PCLK, PCLK?, DCDF, DCDF?
WFDF, WFDF?, WAVE, WAVE?

The developer also looked at another very large concept
located in the middle of the concept lattice. By looking at
the routines specifically attached to this concept, he told us
that about 70% of these routines deal with memory man-

ETIM, ETIM?, BWDF, BWDF?

Vector Setup Commands

SQLA, SQLB, SQLB?, SQPG, SQPG?

SPRM, SPRM?, SQSL, SQSL?

agement. Hence, this concept collected a large number of Fig. 21. Categorization of commands as found by the software ar-
semantically related routines. chitect.

There are 929 routines specifically attached to the bot-
tom element, that is, routines that are used for all scenar-
ios. For these routines, either the selection of test cases
failed to further structure this set of routines or the rou-
tines are necessarily required for all possible usage scenar-
ios, in which case other techniques are needed to group
these routines semantically. Since our goal was to identify
the executors and the routines shared by the executors,
we did not further investigate the routines in the bottom

Uncategorized

FTST, VBMP, PSLV, CLMP
WSDM, DCDT, CLKR, VECC
SDSC, SREC, DMAS, STML

Fig. 22. Commands not categorized by the software architect.

| Guess | Developer | Manual |

Relay Control (Test Execution)

element. | FTST |
Level Setup Commands
B.5 Inferring Categorization from Concept Lattice PSLV | PSLV PSLV
Prior to our analysis, the software architect selected CLMP | CLMP

firmware commands that were to be investigated. He also FTST
categorized the commands as described in Section V-B.3.
As it turned out during our analysis of the concept lattice,

VBMP VBMP
Timing Setup Commands

the categorization was incomplete. The software architect DCDT DCDT
categorized only the commands listed in Fig. 21. Addi- CLKR | CLKR CLKR
tionally, he prepared scenarios that explored the commands WSDM
listed in Fig. 22. The incomplete categorization gave us the Vector Setup Commands
opportunity to check whether it would be possible to cat- VECC | VECC VECC
egorize commands into the above classes just on the basis DMAS DMAS
of the concept lattice without any knowledge of the system SREC
and the application domain. -
. . . Others/Multipl
One of the authors of this article guessed the categories ers/Multiple
. . SDSC SDSC SDSC
based on the concept lattice only—more precisely, based on
. o . . . DMAS
the sharing of utility routines with other already classified
. STML STML STML
commands. The assumption was that a command belongs
. N - SREC SREC
to the class of commands with which it shares most utility
. VBMP
routines. Altogether 7 out of 12 commands were actually DCDT
assigned to one of these classes based on this assumption. WSDM WSDM
For the remaining commands, the lattice did not provide FTST
unambiguous information. CLMP

We used two oracles to validate these guesses. Firstly
we asked the developer to classify these commands and

Fig. 23. Comparison with oracles.



secondly we checked the user manual for the firmware. The
comparison of the guesses with the two oracles is shown in
Fig. 23.

Interestingly enough, the classification given in the man-
ual is also incomplete. Two of the used commands, namely,
CLMP and STML, are not described in the manual. Moreover,
the command FTST does not really belong to the targeted
classes of commands according to the manual; it was added
by the software architect because it is the starting com-
mand for the actual test execution. SDSC and WSDM are
commands that cannot be assigned to one class of com-
mand only but rather contain aspects of different classes.

Ag can be seen in Fig. 23, the classification of the devel-
oper is also incomplete since he did not know all firmware
commands. There are more than 250 commands, not
counting the corresponding query commands. The clas-
sification of the developer is in accordance with the user
manual except for CLMP, which is not described in the man-
ual.

If we compare the lattice-based guesses with the oracle,
we find that the author was truly wrong only once, namely,
for command FTST. In case of command WSDM, he assigned
a command to one class of two equally possible classes.

It was interesting to see that many commands could be
assigned correctly simply based on the lattice without any
knowledge of the application domain and implementation
of the system.

B.6 Lessons Learnt

In the beginning of our case study, we explained the ba-
sic interpretation of the concept lattice to the developer
without going into the formal mathematical details. The
developer learnt how to read the concept lattice surpris-
ingly quickly in less than 10 minutes, which suggests that
the technique can easily be adopted by practitioners.

The developer confirmed that the technique could be use-
ful for maintenance programmers who are less familiar with
the system in order to quickly identify the executors. Since
there was a naming convention for executors in place, locat-
ing the executors could have been done with textual search
tools, such as grep, more easily, he noted. The developer
also confirmed the general approach for the static analysis
once the executors have been located: If he is to modify
a command, he also traverses the dependency graph. For
lack of more sophisticated tools, he is using simple tools,
such as the Unix tool ctags, to get the necessary cross-
reference information. However, the developer agreed that
it would have been very difficult for him—using such sim-
ple tools—to identify the firmware commands to which a
given routine contributes. Such kind of information would
help him in the impact analysis of changes. Moreover, it
would also have been very difficult for him to identify the
sharing of utility routines among executors.

This case study also revealed some difficulties with the
proposed technique. For instance, due to the use of inlining
of routines by way of macros, the profiler could not identify
the code sharing of commands for pin groups. For such
inlining, a static analysis is necessary. In order to identify
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this kind of code sharing, one could try to identify joint
uses of macros in the non-preprocessed code or duplicated
code in the preprocessed code by way of clone detection
techniques.

Another difficulty that had to be tackled in this case
study is the problem of handling parameterized scenarios,
that is, scenarios that are alike except for values of certain
parameters. For instance, most commands of the firmware
have options. The options, of course, influence the behavior
of the system. The same command may execute different
routines for different options. This problem is equivalent to
the input coverage problem of testing software in general.
Analogously, the test cases for the Agilent case study were
defined so as to cover equivalence classes of possible param-
eter values. The firmware commands were then called with
different combinations of representative values of equiva-
lent parameter settings. However, full coverage of all possi-
ble combinations would exceed all available resources, and
there is no guarantee that the software actually behaves
equivalently for all apparently equivalent input values.

Due to the dynamic analysis, only about 15% of the al-
most 10,000 routines were present in the formal context for
concept lattice. Likewise, the number of scenarios was re-
alistic, yet trimmed to only the digital part of the system.
Nevertheless, the concept lattice for the firmware of the
Agilent 93000 chip tester—containing 165 concepts—was
relatively large and complex. Such large concept lattices
are a challenge for visualization. Not so much with re-
gard to the time to produce a visualization but with the
reading and understanding of such a large graph. We used
GraphViz by AT&T [30] to layout the graph automati-
cally in virtually no time. Also, the resulting layout was
acceptable—at any rate, much better than we could have
drawn the graph. However, we would have liked to group
the nodes of the graph semantically in terms of the classes
to which the associated commands belong beyond the aes-
thetic criterion of minimizing edge crossings. Moreover,
the lattice was too large to be presented on a 21” screen.
For this reason, we used a print-out of the lattice with 19
pages (DIN A4 format) for the discussion with the devel-
oper, and even on this print-out, the names of routines and
scenarios were hard to read.

The experiences with size and complexity of the final lat-
tice in the Agilent case study lead us to develop support
for incremental construction and understanding of the con-
cept lattice as described in Section IV-F. The visual differ-
ence for considering scenarios incrementally is illustrated
by Fig. 24. Figure 24(a) contains the concept lattice for
all Timing Setup commands. For the lattice in Fig. 24(b),
all scenarios for Vector Setup have been added. When all
scenarios for all classes of commands are added, the lattice
in Fig. 20 is obtained.

VI. RELATED RESEARCH

This section discusses research related to our work. We
discuss work on several aspects that are of interest. First,
we take a look at papers most closely related to our own ap-
proach. Next, we summarize work that visualizes dynamic
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(a) Timing commands.

(b) Timing and vector commands.

Fig. 24. Concept lattice for digital part of Agilent 93000 firmware.

and static information in different ways.

Feature Location

Wilde et al. [6], [31] pioneered in locating features taking
a fully dynamic approach. The goal of their Software Re-
connaissance is the support of maintenance programmers
when they modify or extend the functionality of a legacy
system.

Based on the execution of test cases for a particular fea-
ture f, several sets of computational units are identified:

o computational units commonly involved (code executed
in all test cases, regardless of f),

o computational units potentially involved in f (code exe-
cuted in at least one test case that invokes f),

o computational units indispensably involved in f (code
that is executed in all test cases that invoke f, and

o computational units uniquely involved in f (code exe-
cuted exactly in cases where f is invoked)

Since the primary goal is the location of starting points
for further investigations, Wilde and Scully focus on locat-
ing specific computational units rather than all required
computational units. The approach deals with one feature
at a time and gives little insight into connections between
sets of related features. If a set of related features is to
be considered rather than a single feature, one could re-
peat the analysis invoking each feature separately and then
unite the specifically required computational units. Even
then the relationships among groups of features cannot be
recognized.

Another approach based on dynamic information is
taken by Wong and colleagues [32]. They analyze execu-
tion slices (corresponds to our execution profiles) of test
cases implementing a particular functionality. The process
is as follows:

1. The invoking input set I (i.e., a set of test cases or—in
our terminology—a set of scenarios) is identified that will
invoke a feature.

2. The ezcluding input set E is identified that will not in-
voke a feature.

3. The program is executed twice using I and E separately.
4. By comparison of the two resulting execution slices, the
computational units can be identified that implement the
feature.

For deriving all required computational units, the exe-
cution slice for the including input set is sufficient. By
subtracting all computational units in the execution slice
for the excluding input set from those in the execution slice
for the invoking input set, only those computational units
remain that specifically deal with the feature. This infor-
mation alone is not sufficient to identify the interface and
the constituents of a component in the source code, but
those computational units are at least a starting point for
a more detailed static analysis. Again, interdependencies
between features are not revealed easily.

In [33], Wong et al. present a way for quantification of
features. Metrics are provided to compute the dedication
of computational units to features, the concentration of
features in computational units, and the disparity between
features. This work complements their earlier research and
can be used as a refinement for Wilde’s technique.

Chen and Rajlich [34] propose a semi-automatic method
for feature location, in which the programmer browses
the statically derived abstract system dependency graph
(ASDG). The ASDG describes detailed dependencies
among routines, types, and variables at the level of global
declarations. The navigation on the ASDG is computer-
aided and the programmer takes on all the search for a
feature’s implementation. The method takes advantage of



the programmer’s experience with the analyzed software.
It is less suited to locate features if programmers without
any pre-knowledge do not know where to start the search.

The ASDG’s quality is essential for the method. If
the ASDG includes overoptimistic assumptions on func-
tion pointers, the programmer may miss routines called via
function pointers. If it reflects too conservative assump-
tions, the search space increases drastically. It is statically
undecidable which control flow paths are taken at runtime,
so that every conservative static analysis will yield an over-
estimated search space. In contrast, dynamic analyses ex-
actly reveal which parts are actually used at runtime—
although only for a particular run. Insights from dynamic
analyses are only valid for the input data used and the
environment in which the system was run.

Recently, Wilde and Rajlich compared their ap-
proaches [35]. In the presented case study, both techniques
were effective in locating features. The Software Recon-
naissance showed to be more suited to large infrequently
changed programs, whereas Rajlich’s method is more ef-
fective if further changes are likely and require deep and
more complete understanding.

Visualization of Object-Oriented Systems
De Pauw and colleagues [36], [37], [38] provide a gen-

eral model for the visualization of the execution of object-
oriented systems. Their language and platform indepen-
dent approach visualizes dynamic information about the
runtime behavior by means of message sequence charts and
chart-like views for summary information.

Program Explorer [24], [25] by Lange and Nakamura is
a tool for understanding C++ programs by means of vi-
sualization. Both static and dynamic information is ex-
tracted and combined for the presentation of an object-
oriented system. The static information derived from the
source (like class hierarchy and structural data) is stored in
a program database. The dynamic information comprises
method invocation, object longevity, and variable accesses
and is gained off-line from execution traces. Program Ex-
plorer offers selective instrumentation of the source, requir-
ing the user to have a certain knowledge about the sys-
tem. To cope with the amount of information, the user
can further merge, prune, or slice results of analyses to re-
move undesired information. The dynamic information is
coupled with the static information yielding class-to-object
and object-to-class clarification. Program Explorer is not
useful for global understanding, the user must have knowl-
edge about the system and then focus on relevant parts.
The approach is class and object centered and does not
offer other levels of abstraction.

Koskimies and Mossenbdck developed Scene [23], a tool
for visualizing object-oriented systems written in the pro-
gramming language Oberon. Scene uses scenario diagrams
for visualizing the message flow between objects in terms of
method invocations. The scenario diagrams are generated
from event traces and linked to other sources of informa-
tion.

Jerding and colleagues [39], [40] focus on the interactions
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between program components at runtime. They observed
that recurring interaction pattern can be used in the ab-
straction process for program understanding. The authors
developed a pattern identification algorithm and structure
the dynamic information by using identified patterns. The
work primarily aims at object-oriented systems but also
seems applicable for procedural programming paradigms.
Jerding and Rugaber present the tool ISVis [40] to support
architectural localization and extraction. They use both
static and dynamic information to extract components and
connectors. The components are specified by the analyst
(using traditional static analyses) whereas the connectors
are recognized from actual execution traces. These exe-
cution traces are then analyzed with the aforementioned
methods. The dynamic information is visualized as a vari-
ant of message sequence charts; the user has the ability to
restrict the instrumentation to specific files of the system.

Systd [41] focuses on reverse engineering Java legacy sys-
tems. She discusses the combination of static and dy-
namic information when reengineering a Java environment.
Rigi [28] is used to extract the static information from class
files and to connect the dynamic information (represented
as state diagrams) gained through program runs.

Visualization and Abstraction

Another effort to combine dynamic and static informa-
tion about object-oriented systems is taken by Richner and
Ducasse [42]. They offer a query-based approach where the
facts about the legacy system are modeled in terms of log-
ical facts. The queries produce different views of the soft-
ware (at different levels of abstraction) and help to restrict
the amount of data generated. There is no information
exchange between the views.

Sefika and colleagues [43] visualize statics and dynamics
of an object-oriented system in terms of its architectural
abstractions. The code instrumentation is light-weight and
architecture-aware. It provides efficient on-line instrumen-
tation to support architecture-guided queries. The archi-
tectural abstraction are taken as a basis for the visualiza-
tion. Similarly, Walker and colleagues [44] aim at visual-
ization of dynamic information on a higher level of abstrac-
tion. They use program animation techniques for program
understanding.

Most recently, Robbillard and Murphy [45] address the
problem of crosscutting concerns in object-oriented sys-
tems. They propose the usage of Concern Graphs that
abstract implementation details of concerns and explicitly
show relationships between parts of the concerns. The ex-
traction of concern graphs from a given legacy system could
benefit from dynamic feature-location techniques.

Concept Analysis

Primarily Snelting has recently introduced concept anal-
ysis to software engineering. Since then it has been used
to evaluate class hierarchies [46], explore configuration
structures of preprocessor statements [47], [48], for re-
documentation [49], and to recover components [50]-[56].
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All of that research utilizes static information derived from
source code.

A technique similar to ours is taken by Ball [57]. He de-
scribes how to use concept analysis for the dynamic analysis
of test sets. The source code is instrumented and profile
information is gathered. The results of concept analysis on
the data are used to provide an intermediate point between
entity-based and path-based coverage criteria.

Summary

All the researchers using program traces face the same
problem: the huge amount of data that is produced by
the execution. The problem is tackled by removing unde-
sired information—either by instrumenting only parts of
the system or by providing filtering mechanisms (patterns
or static information) on the stored traces.

The amount of information gained by profiling rather
than tracing is much smaller (and less precise), and can
therefore be handled more efficiently. Even profiling on a
more fine grained level than routines or methods (e.g., basic
blocks) leads to comprehensible results. For our primary
goals, the sequences of operations was not crucial and can
at least in parts be regained from static information. The
frequency of invocations does not play a major role by now,
but we believe that such information could be exploited in
future research.

VII. CONCLUSIONS

The technique presented in this paper identifies compu-
tational units specific to a set of related features using ex-
ecution profiles for different usage scenarios. At first, con-
cept analysis—a mathematically sound technique to an-
alyze binary relations—allows locating the most feature-
specific computational units among all executed computa-
tional units. Then, a static analysis uses these feature-
specific computational units to identify additional feature-
specific computational units along the dependency graph.
The combination of dynamic and static information re-
duces the search space drastically.

The value of our technique has been demonstrated by
several case studies. In one case study, analyzing two
web browsers, we could recover a partial description of the
software architecture with respect to a specific set of re-
lated features. Commonalities and variabilities between
these partial architectures could be recovered quickly. Al-
together, we found in two experiments with two systems 16
and 6, respectively, feature-specific routines out of 701 rou-
tines for Mosaic and 3 and 24, respectively, out of 928 for
Chimera. Only very few routines needed to be inspected
manually.

The second case study was performed on a 1.2 million
LOC production system. The experiences we made during
that case study showed two problems of our approach: the
growing complexity of concept lattices for large systems
with many features and the need for handling compositions
of features.

In this paper, we extended our technique to solve these
problems. We showed how the method allows incremen-

tally exploring features while preserving the “mental map”
the analyst has gained through the analysis.

The second improvement described in this paper is a de-
tailed look at composing features into more complex sce-
narios. Rather than assuming a one-to-one correspondence
between features and scenarios as in earlier work, we can
now handle scenarios that invoke many features.

Further, the implementation of our approach is simple.
For concept analysis we used the tool concepts [58]. For
visualization we used our graphical Bauhaus front end [26].
Layouts are generated by GraphViz [30]. The glue code is
written in Perl, for compiling and profiling we used gcc and

gprof.
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