
1Loating Features in Soure CodeThomas Eisenbarth, Rainer Koshke, and Daniel SimonAbstrat|Understanding the implementation of a ertainfeature of a system requires to identify the omputationalunits of the system that ontribute to this feature. In manyases, the mapping of features to the soure ode is poorlydoumented. In this paper, we present a semi-automatitehnique that reonstruts the mapping for features thatare triggered by the user and exhibit an observable behavior.The mapping is in general not injetive; that is, a om-putational unit may ontribute to several features. Ourtehnique allows to distinguish between general and spei�omputational units with respet to a given set of features.For a set of features, it also identi�es jointly and distintlyrequired omputational units.The presented tehnique ombines dynami and statianalyses to rapidly fous on the system's parts that re-late to a spei� set of features. Dynami information isgathered based on a set of senarios invoking the features.Rather than assuming a one-to-one orrespondene betweenfeatures and senarios as in earlier work, we an now handlesenarios that invoke many features.Furthermore, we show how our method allows inremen-tal exploration of features while preserving the \mentalmap" the analyst has gained through the analysis.Keywords|program omprehension, formal onept anal-ysis, feature loation, program analysis, software arhite-ture reovery I. IntrodutionUNDERSTANDING how a ertain feature is imple-mented is a major problem of program understand-ing. Before real understanding starts, one has to loatethe implementation of the feature in the ode. Systemsoften appear as a large number of modules eah ontain-ing hundreds of lines of ode. It is in general not obviouswhih parts of the soure ode implement a given feature.Typially existing doumentation is outdated (if it exists atall), the system's original arhitets are no longer available,or their view is outdated due to hanges made by others.So maintenane introdues inoherent hanges whih ausethe system's overall struture to degrade [1℄. Understand-ing the system in turn beomes harder any time a hangeis made to it.One option, when trying to esape this viious irle,is to ompletely reverse engineer the system in order toexhaustively identify its omponents and to assign fea-tures to omponents. We integrated published automatitehniques for omponent retrieval in an inremental semi-automati proess, in whih the results of seleted auto-mati tehniques are validated by the user [2℄.However, exhaustive methods are not ost-e�etive. For-tunately, knowledge of omponents implementing a spe-i� set of features suÆes in many ases. Consequently,T. Eisenbarth, R. Koshke, and D. Simon are with the In-stitute of Computer Siene at the University of Stuttgart,Breitwiesenstra�e 20{22, D-70565 Stuttgart, Germany. E-mail:feisenbarth,simon,koshkeg�informatik.uni-stuttgart.de.

a feature-oriented searh fousing on the omponents ofinterest is needed.This artile desribes a proess and its supporting teh-niques to identify those parts of the soure ode whih im-plement a spei� set of related features. The proess is au-tomated to a large extent. It ombines stati and dynamianalyses and uses onept analysis|a mathematial teh-nique to investigate binary relations|to derive orrespon-denes between features and omputational units. Coneptanalysis additionally yields the omputational units jointlyand distintly required for a set of features.An advantage of starting with features is that domainknowledge from the user's perspetive may be exploited,whih is espeially useful for external hange requests anderror reports expressed in the terminology of a program'sproblem domain.The remainder of this artile is organized as follows.Set. II gives an overview of our tehnique and introduesthe basi onepts. Set. III introdues onept analysis.Set. IV desribes the proess for loating and analyzingfeatures in more detail. In Set. V, we report on two asestudies onduted to validate our approah. The relatedresearh in the area is summarized in Set. VI.II. OverviewThe goal of our tehnique is to identify the omputa-tional units that spei�ally implement a feature as well asthe set of jointly or distintly required omputational unitsfor a set of features. To this end, the tehnique ombinesstati and dynami analyses.This setion gives an overview on our tehnique, de-sribes the relationships among features, senarios, andomputational units (summarized in Fig. 1) and explainswhat kind of dynami information is used as input to ourtehnique. The setion also introdues a simple examplethat we will use throughout the desription of the methodin the following setions. The example is inspired by a pre-vious ase study [3℄ in whih we analyzed the drawing toolXFIG [4℄.Computational unit . A omputational unit is an exe-utable part of a system. Examples for omputationalunits are instrutions (like aesses to global variables),basi bloks, routines, lasses, ompilation units, ompo-nents, modules, or subsystems. The exat spei�ation ofa omputational unit is a generi parameter of our method.Feature. A feature is a realized funtional requirement ofa system (the term feature is intentionally de�ned weaklybeause its exat meaning depends on the spei� ontext).Generally, the term feature also subsumes non-funtionalrequirements. In the ontext of this paper, only funtionalfeatures are relevant; that is, we onsider a feature an ob-

2
computational unit

routine modulebasic block

featurescenario
implemented by

invokes

* Fig. 1. Coneptual model in UML notation.servable behavior of the system that an be triggered bythe user.Example. Our �titious drawing tool FIG (whih re-sembles XFIG [4℄) allows a user to draw, move, and olordi�erent objets, suh as retangles, irles, ellipses, and soforth. From the viewpoint of an analyst who is interestedin the implementation of irle operations in FIG, the abil-ity to draw, to move, and to olor a irle are three relevantfeatures. 2Every omputational unit (exluding dead ode) on-tributes to the purpose of the system and thus orrespondsto at least one feature|be it a very basi feature, suhas the ability of the system to start or terminate. Yet,only few features may atually be of interest to the ana-lyst for her task at hand. In the following, we assume thatonly a subset of features is relevant. Consequently, onlythe omputational units required for these features are ofinterest, too. The feature-unit map|as one result ofour tehnique| desribes whih omputational units im-plement a given set of relevant features.Senario. Features are abstrat desriptions of a system'sexpeted behavior. If a user wants to invoke a feature of asystem, he needs to provide the system with adequate inputto trigger the feature. For instane, to draw a irle, theuser of FIG needs to press a ertain button on the ontrolpanel for seleting the irle drawing operation, then toposition the ursor on the drawing area for speifying theenter of the irle, to speify the diameter by moving themouse, and eventually to press the left mouse button for�nalizing the irle. Suh sequenes of user inputs thattrigger ations of a system with observable result [5℄ arealled senarios.Our tehnique requires a set of senarios that invoke thefeatures the analyst is interested in. A senario s invokesa feature f if f 's result an be observed by the user whenthe system is used as desribed by senario s. A senariomay invoke multiple features and features may be invokedby multiple senarios. For instane, a senario for movinga irle requires to draw the irle �rst, so this senarioalso invokes feature \irle drawing". There may be evendi�erent senarios all invoking the same set of features.Eah senario, then, represents an alternative way of in-voking the features. For instane, FIG allows a user topush a button or to use a keyboard shortut to begin a ir-le drawing operation. A set of senarios eah representingoptions and hoies for the same feature resembles a usease.Senarios are used in our tehnique to gather the om-putational units for the relevant features through dynami

analysis, similarly to Wilde and Sully's tehnique [6℄. Ifthe system is used as desribed by the senario, the exe-ution trae lists the sequene of all performed alls forthis senario. Sine our tehnique aims at only identify-ing the omputational units rather than at the order of theomputational units' exeution, we need only the exeutionpro�le. The exeution pro�le of a given program run isthe set of omputational units alled during the run with-out information about the order of exeution. From theexeution pro�le, we gather the fat that a omputationalunit has been exeuted at least one. We ignore the dura-tion of the omputational unit's exeution beause ompu-tation time hardly gives hints for feature-spei� ompu-tational units. One the spei� omputational units havebeen identi�ed through our tehnique, other tehniques,suh as stati or dynami sliing [7℄, [8℄, an be used toobtain the order of exeution if required. These tehniquesan then be applied more goal-oriented by fousing on themost feature-spei� omputational units yielded by ourtehnique.Feature-unit map. Our tehnique derives the feature-unitmap through onept analysis, a mathematially soundtehnique. In our appliation of onept analysis, oneptanalysis|simply stated|mutually intersets the exeutionpro�les for all senarios and all resulting intersetions toobtain the spei� omputational units for a feature andthe jointly and distintly required omputational units fora set of features.Example. FIG allows to draw a irle either by diameteror by radius. The analyst who is interested in the di�er-enes of these two irle operations and their di�erenes toother irle operations, suh as moving and oloring, willset up the senarios listed in Fig. 2. Figure 3 lists theomputational units exeuted for the senarios in Fig. 2.Interseting the exeution pro�les shows that setRadius isspei� to feature Draw-irle-radius, move toMove-irle,and olor to Color-irle. 2senario name ations performedDraw-irle-diameter draw a irle by diameterDraw-irle-radius draw a irle by radiusMove-irle draw a irle by diameterand move itColor-irle draw a irle by diameterand olor itFig. 2. Example senarios for FIG.Beyond simply identifying the omputational units

3senario exeuted omputational unitsDraw-irle-diameter draw, setDiameterDraw-irle-radius draw, setRadiusMove-irle draw, setDiameter, moveColor-irle draw, setDiameter, olorFig. 3. Exeution pro�les for Fig. 2.spei�ally required for a feature, onept analysis addi-tionally allows to derive detailed relationships between fea-tures and omputational units. These relationships iden-tify omputational units jointly required by any subset offeatures and lassify omputational units as low-level orhigh-level with respet to the given set of features.Example. Interseting the exeution pro�les in Fig. 3additionally shows that the omputational units jointly re-quired for Draw-irle-diameter, Move-irle, and Color-irle are draw and setDiameter, where draw is requiredfor all senarios. 2The information gained by onept analysis is used toguide a subsequent stati analysis along the stati depen-deny graph in order to narrow the omputational units tothose that form self-ontained and understandable feature-spei� omputational units. Computational units thatare only very basi omputational units used as buildingbloks for other omputational units but not ontaining anyappliation-spei� logi are sorted out. Additional statianalyses, like strongly onneted omponent identi�ation,dominane analysis, and program sliing [7℄ support thesearh for the units of interest.For large and omplex systems, our approah an be ap-plied inrementally as desribed in this paper.AppliabilityThe retrieval of the feature-unit map is based on dynamiinformation where all omputational units that are exe-uted for a senario are olleted. The senario desribeshow to invoke a feature. This setion desribes the as-sumptions on features, senarios, and omputational unitswe make.Features . Our tehnique is primarily suited for funtionalfeatures that may be mapped onto omputational units.In partiular, non-funtional features, suh as robustness,reliability, or maintainability, do not easily map to ompu-tational units.The tehnique is suited only for features that an be in-voked from outside; internal implementation features, suhas the use of a garbage olletor, may not neessarily bedeterministially and easily triggered from outside.Senarios . Senarios are designed (or seleted from existingtest ases) to invoke a known set of relevant features; thatis, we assume that the analyst knows in advane whihfeatures are invoked by a senario.Beause suitable senarios are essential to our tehnique,a domain expert is needed to set up senarios. In manyases, the domain expert an reuse existing test ases assenarios to loate features. However, the purpose of test

ases is to reveal errors, and hene test ases tend to beomplex and to over many features. Contrarily, senariosfor our feature loation tehnique should be simpler and in-voke fewer features to di�erentiate the omputational unitsmore learly.In order to explore variations of a feature, the domainexpert provides several senarios, eah triggering a featurevariation with a di�erent set of input. To obtain e�e-tive and eÆient overage, he builds equivalene lasses ofrelevant input data. Identifying equivalene lasses mayrequire knowledge on internal details of a system.Computational units . The exat notion of omputationalunit is a generi parameter to our tehnique and dependson the task and system at hand. In priniple, there is nolimit to the granularity of omputational units: One oulduse basi bloks, routines, lasses, modules, or subsystems.Subsystems as omputational units are suitable to obtainan overview for very large systems. Considering routines,methods, subprograms, et. as omputational units givesan overview at the global delaration level, whereas lassesand modules lie in between subsystem and global delara-tion level. Basi bloks as omputational units are onlyadequate for smaller systems or parts of a system wheremore detail is needed due to the likely information over-load to the analyst.For pratial reasons, for this paper we deided to useroutines as the omputational unit of hoie, where a rou-tine is a funtion, proedure, subprogram, or method a-ording to the programming language. For the ase studiespresented later on in this paper, routines were appropriate.Stati and dynami dependenies . The results from oneptanalysis based on dynami information are used to guidethe analyst in her stati analysis, that is, her inspetion ofthe stati dependeny graph. We use dynami informationonly as a guide and not as a de�nite answer beause dy-nami information depends upon suitable input data andthe test environment in whih the senarios are exeuted.The stati dependeny graph an be extrated from pro-edural, funtional, as well as objet-oriented programminglanguages. Beause exeution pro�les an be reorded forthese languages, too, our tehnique is appliable to all theselanguages. However, the preision of the stati extra-tion inuenes the ease of the analyst's inspetion of thestati dependenies, and stati analysis is inherently morediÆult for objet-oriented languages (and for funtionallanguages with higher-order funtions) than for proedurallanguages.Stati analyses need to make onservative assumptionsin the presene of pointers and dynami binding, whihweaken the preision of the dependeny graph. Fortu-nately, researh in pointer analysis has made onsiderableprogress. There is a large body of work on pointer anal-ysis for proedural languages [9℄, [10℄, [11℄, [12℄, [13℄, [14℄,[15℄, [16℄ and objet-oriented languages [17℄, [18℄ that re-solves general pointers, funtion pointers, and dynamibinding. These tehniques vary in preision and osts.Interestingly enough, Milanova and others have reently

4presented empirial data indiating that less expensiveand|theoretially|less preise tehniques to resolve fun-tion pointers reah the preision of more expensive and|theoretially|more preise tehniques [19℄ due to the om-mon way of using funtion pointers (as opposed to pointersto stak and heap objets).III. Formal Conept AnalysisThis setion presents the neessary bakground informa-tion on formal onept analysis. Readers already familiarwith onept analysis an skip to the next setion.Formal onept analysis is a mathematial tehnique foranalyzing binary relations. The mathematial foundationof onept analysis was laid by Birkho� [20℄ in 1940. Formore detailed information on formal onept analysis we re-fer to [21℄, where the mathematial foundation is explored.Conept analysis deals with a relation I � O�A betweena set of objets O and a set of attributes A. The tuple C =(O;A; I) is alled a formal ontext. For a set of objetsO � O, the set of ommon attributes �(O) is de�ned as:�(O) = fa 2 A j (o; a) 2 I for all o 2 Og (1)Analogously, the set of ommon objets �(A) for a set ofattributes A � A is de�ned as:�(A) = fo 2 O j (o; a) 2 I for all a 2 Ag (2)A formal ontext an be represented by a relation table,where the olumns hold the objets and the rows hold theattributes. An objet oi and attribute aj are in the rela-tion I i� the ell at olumn i and row j is marked by "�".As an example, a binary relation between arbitrary objetsand attributes is shown in Fig. 4(a). For that formal on-text, we have: �(fo1g) = fa1; a4; a6; a7g�(fa6; a7g) = fo1; o3gA tuple = (O;A) is alled a onept i� A = �(O)and O = �(A), that is, all objets in share all attributesin . For a onept = (O;A), O is alled the extent of, denoted by extent(), and A is alled the intent of ,denoted by intent(). Informally speaking, a onept or-responds to a maximal retangle of �lled table ells modulorow and olumn permutations. In Fig. 4(b), all oneptsfor the relation in Fig. 4(a) are listed.The set of all onepts of a given formal ontext forms apartial order via the superonept-subonept ordering �:(O1; A1) � (O2; A2), O1 � O2 (3)or, dually, with(O1; A1) � (O2; A2), A1 � A2 (4)Note that (3) and (4) imply eah other by de�nition. Ifwe have 1 � 2, then 1 is alled a subonept of 2 and2 is alled superonept of 1. For instane, in Fig. 4(b)we have 4 � 2.

The set L of all onepts of a given formal ontext andthe partial order � form a omplete lattie, alled oneptlattie:L(C) = f(O;A) 2 2O�2A j A = �(O) and O = �(A)g (5)The in�mum (u) of two onepts in this lattie is om-puted by interseting their extents as follows:(O1; A1)u(O2; A2) = (O1 \ O2; �(O1 \ O2)) (6)The in�mum desribes a set of ommon attributes oftwo sets of objets. Similarly, the supremum (t) is de-termined by interseting the intents:(O1; A1)t(O2; A2) = (�(A1 \ A2); A1 \A2) (7)The supremum yields the set of ommon objets, whihshare all attributes in the intersetion of two sets of at-tributes.The onept lattie for the formal ontext in Fig. 4(a)an be depited as a direted ayli graph whose nodesrepresent the onepts and whose edges denote thesuperonept-subonept relation � as shown in Fig. 5(a).The most general onept is alled the top element andis denoted by >. The most speial onept is alled thebottom element and is denoted by ?.The onept lattie an be visualized in a more readableequivalent way by marking only the graph node with anattribute a 2 A whose represented onept is the most gen-eral onept that has a in its intent. Analogously, a nodewill be marked with an objet o 2 O i� it represents themost speial onept that has o in its extent. The uniqueelement in the onept lattie marked with a is therefore:�(a) = tf 2 L(C) j a 2 intent()g (8)The unique element marked with objet o is:(o) = uf 2 L(C) j o 2 extent()g (9)We will all a graph representing a onept lattie usingthis marking strategy a sparse representation of the lat-tie. The equivalent sparse representation of the lattie inFig. 5(a) is shown in Fig. 5(b). The ontent of a node Nin this representation an be derived as follows:� The objets of N are all objets at and below N .� The attributes of N are all attributes at and above N .For instane, the node in Fig. 5(b) marked with o1 and a1is the onept 4 = (fo1g; fa1; a4; a6; a7g).For pratial reasons, it is sometimes useful to apply onlyone of (8) or (9). For example if we have a large number ofattributes but just a small number of objets, we eliminatethe redundant appearane of attributes and keep the fulllist of objets in the onepts.IV. Analysis ProessOur proess to loate features is depited in Fig. 6 usingthe IDEF0 notation [22℄. It onsists of �ve major ativities:

5a1 a2 a3 a4 a5 a6 a7o1 � � � �o2 � � � �o3 � � � �(a) A formal ontext.
> (fo1; o2; o3g; fa7g)1 (fo1; o2g; fa4; a7g)2 (fo1; o3g; fa6; a7g)3 (fo2; o3g; fa5; a7g)4 (fo1g; fa1; a4; a6; a7g)5 (fo2g; fa2; a4; a5; a7g)6 (fo3g; fa3; a5; a6; a7g)? (;; fa1; a2; a3; a4; a5; a6; a7g)(b) Conepts for the formal on-text.Fig. 4. An example relation between objets and attributes. The orresponding onepts that an be derived from the formal ontext arelisted on the right.

(fo2; o3g; fa5; a7g)
(fo2g; fa2; a4; a5; a7g)(fo3g; fa3; a5; a6; a7g)
(fo1; o3g; fa6; a7g)(fo1; o2; o3g; fa7g)

(;; fa1; a2; a3; a4; a5; a6; a7g)(fo1g; fa1; a4; a6; a7g)(fo1; o2g; fa4; a7g)
(a) Full onept lattie. (fo2g; fa2g)

(;; fa6g)(;; fa5g)(fo3g; fa3g)
(;; fa7g)
(;; ;)(fo1g; fa1g)(;; fa4g)

(b) Sparse representation.Fig. 5. The onept latties for the example ontext in Fig. 4.

code
source

dynamic
analysis

an
al

ys
is

to
ol

co
nc

ep
t

scenario
creation

ex
pe

rt
do

m
ai

n

unit
map

feature−

features
relevant
(initially)

gr
ap

h
ex

tr
ac

to
r

concept
lattice interpretation

of concept
lattice

static
dependency

analysis

filter, granularity

need for additional scenarios (incremental analysis)

pr
of

ile
r

co
m

pi
le

r

validated
statically

unit map

scenarios

1

3 4

2
5

human involvement
(not part of IDEF0 notation)

static dependency
dependency graph

feature−

graph extraction

us
er

an
al

ys
t

an
al

ys
t

de
pe

nd
en

cyFig. 6. Proess for feature loation in IDEF0 notation.

61. Senario reation: Based on features (either known ini-tially or disovered during inremental analysis), the do-main expert reates senarios.2. Stati dependeny-graph extration: The stati depen-deny graph of the system under analysis is extrated.3. Dynami analysis: The system is used aording to se-leted senarios.4. Interpretation of onept lattie: The data yielded bythe dynami analysis is presented to and interpreted by theanalyst. Relevant omputational units are identi�ed.5. Stati dependeny analysis: The analyst searhes thesystem for additional omputational units that are relevantto seleted features.The di�erent roles of human resoures for these ativ-ities are (human resoures are highlighted in the proessdiagrams by a UML ator ion):� The analyst is the person interested in how features maponto soure ode. She interprets the onept lattie andperforms the stati analysis.� The domain expert designs the senarios and lists theinvoked features for eah senario.� The user is the person who uses the system aordingto the seleted senarios.All ativities exept the stati dependeny graph extra-tion (whih is done only one) bene�t from the knowledgethat is gained in previous iterations and an be applied re-peatedly until suÆient knowledge about the system hasbeen gained. The order of the ativities is spei�ed bythe IDEF0 diagram in Fig. 6: An ativity may start oneits input is available. The ativities are explained in thefollowing setions.A. Stati Dependeny Graph ExtrationThe stati dependeny graph should subsume all typesof entities and dependenies present in the dynami depen-deny graph: It is unneessary to extrat dynami informa-tion that is not used in the subsequent stati analysis. Yet,the stati dependeny graph may provide additional typesof entities and dependenies and also more �ne-grained in-formation if a stati extration tool is used that exeedsthe apabilities of the available dynami extration tool.In this ase, the stati analysis an leverage less dynamiinformation but is still onservative. In our ase studies,for instane, we extrated many detailed stati dependen-ies among global delarations (routines, global variables,and user-de�ned types) but the pro�ler we used let us onlyextrat the dynami all relationship among routines. Thisway, we had to analyze stati variable aesses that mighthave never been exeuted in any of our senarios.B. Senario CreationA domain expert is needed for reating the senarios.Any available information on the system's behavior (e.g.,doumentation, existing test ases, domain models, et.) isuseful as input to him. Existing test ases may be usefulbut not neessarily diretly appliable, beause the fousduring testing is to over the ode ompletely and to om-bine features in many ways. Senarios in our sense are very

distintive; that is, they should invoke all relevant featuresbut as few other features as possible to ease the mappingsfrom senarios to features and from features to omputa-tional units (often it is unavoidable to invoke features thatare not of interest for the task at hand).The senarios are doumented for future use similarly totest ases. Additionally, the doumentation inludes thefeatures invoked by the senarios. If the domain expertsalso spei�es the expeted result of the senario, the se-nario may also be used as simple test ase.C. Dynami AnalysisThe goal of the dynami analysis is to �nd out whihomputational units ontribute to a given set of features.Eah feature is invoked by at least one of the preparedsenarios.The proess that deals with the dynami analysis isshown in more detail in Fig. 8. The inputs to the proessare soure ode and a set of senarios reated by proessstep 1 in Fig. 6. We proeed as follows:3.1 Compile for reording: The soure ode is ompiledwith pro�ling options or is instrumented to obtain the ex-eution pro�le.3.2 Senario exeution: The system is exeuted by auser aording to the senarios and exeution pro�les arereorded.If suitable tool support is available, a senario's exeu-tion may be reorded at wish to exlude parts of the exeu-tion that are not relevant, suh as start-up and shutdown ofthe system [23℄, [24℄, [25℄. Certain debuggers, for instane,allow to start and end trae reording. Instrumenting thesoure ode so that only relevant parts are reorded is gen-erally not an option beause this requires that the feature-unit map is at least partially known already.An alternative solution is to speify a speial \start-end"senario ontaining the ations to be �ltered out. For in-stane, in order to mask out initialization and �nalizationode, the domain expert may prepare a \start-end" se-nario in whih the system is started and immediately shutdown.Sine eah senario is a preise desription of the se-quene of user inputs that trigger ations of the system,every exeution of a senario yields the same exeutionpro�le unless the system is nondeterministi. In ase ofnondeterminism, one ould either unite the pro�les of allexeutions of the same senario or di�erentiate eah se-nario exeution. The latter is useful to identify di�erenesdue to nondeterminism.D. Interpretation of Conept LattieIn this proess step, a onept lattie for the relationtable reated by proess step 3 is built. The goals of inter-preting the resulting onept latties are:1. Identi�ation of the relationships between senarios andomputational units (proess steps 4.1{4.3)2. Identi�ation of the relationships between senarios andfeatures and thus between features and omputationalunits (proess step 4.4)

7Set. III main partobjet o u omputational unitset of objets O U set of omputational unitsall objets O U all omputational unitsattribute a s senarioset of attributes A S set of senariosall attributes A S all senariosinidene relation I I invoation tableFig. 7. Translation from the identi�ers of Set. III and the identi�ersused from here on, whih instantiate formal onept analysis.The following subsetions desribe how to ahieve thesegoals. The basi proess of lattie interpretation is depitedin Fig. 9.D.1 Senario SeletionA number of exeution pro�les is seleted in order toset up the ontext. Exeution pro�les may be reombinedto analyze various aspets of a system, where exeutionpro�les and senarios an be reused.Example. The analyst of FIG may �rst be interested inthe two di�erent ways to draw a irle. She would thereforeselet the two senarios Draw-irle-diameter and Draw-irle-radius. When she understands the di�erenes be-tween these two features, she would investigate other irleoperations and additionally selet Move-irle and Color-irle. 2D.2 Conept AnalysisThis proess embodies a ompletely automated step thatreates a onept lattie from the invoation table.In order to derive the feature-unit map by means of on-ept analysis, we have to de�ne the formal ontext (i.e., theobjets, the attributes, and the relation) and to interpretthe resulting onept lattie aordingly.The formal ontext for applying onept analysis to de-rive the relationships between senarios and omputationalunits will be laid down as follows:� Computational units will be onsidered objets.� Senarios will be onsidered attributes.� A pair (omputational unit u, senario s) is in relation Iif u is exeuted when s is performed.Figure 7 shows how to map the identi�ers used in thegeneral desription of onept analysis in Set. III to theidenti�ers used in the spei� instantiation of onept anal-ysis within our method.The system is used aording to the set of senarios, oneat a time, and the exeution pro�les are reorded. Eahsystem run yields all exeuted omputational units for asingle senario; that is, one olumn of the relation tablean be �lled per system run. Applying all senarios thathave been seleted during the proess of senario seletionprovides the relation table for formal onept analysis.Example. Figure 10 shows the onept lattie for theinvoation table in Fig. 3, where all senarios have beenseleted. 2

D.3 Basi InterpretationConept analysis applied to the formal ontext desribedin the last setion yields a lattie from whih interestingrelationships an be derived. These relationships an befully automatially derived and presented to the analyst.Thus, the analyst has to know how to interpret the derivedrelationships, but does not need to be familiar with thetheoretial bakground of latties.The following base relationships an be derived from thesparse representation of the lattie (note the duality):� A omputational unit u is required for all senarios atand above (u) in the lattie; for instane, SetDiameter isrequired for Draw-irle-diameter, Move-irle, and Color-irle aording to Fig. 10.� A senario s requires all omputational units at and be-low �(s) in the lattie; for instane, Color-irle requiresolor, setDiameter, and draw aording to Fig. 10.� A omputational unit u is spei� to exatly one senarios if s is the only senario on all paths from (u) to thetop element; for instane, olor is spei� to Color-irleaording to Fig. 10.� Senarios to whih two omputational units u1 andu2 jointly ontribute an be identi�ed by the supremum(u1)t(u2). In the lattie, the supremum is the losestommon node toward the top element starting at the nodesto whih u1 and u2 are attahed. All senarios at and abovethis ommon node are those jointly implemented by u1 andu2. For instane, setDiameter and olor jointly ontributeto Color-irle aording to Fig. 10.� Computational units jointly required for two senarios s1and s2 are desribed by the in�mum �(s1)u�(s2). In thelattie, the in�mum is the losest ommon node toward thebottom element starting at the nodes to whih s1 and s2are attahed. All omputational units at and below thisommon node are those jointly required for s1 and s2. Forinstane, setDiameter and draw are jointly required forMove-irle and Color-irle aording to Fig. 10.� Computational units required for all senarios an befound at the bottom element; for instane, draw is requiredfor all senarios aording to Fig. 10.� Senarios that require all omputational units an befound at the top element. In Fig. 10, there is no suhsenario.Beyond these relationships between omputational unitsand senarios, further useful aspets between senarios onone hand and between omputational units on the otherhand may be derived:� If (u1) < (u2) holds for two omputational units u1and u2, then omputational unit u2 is more spei� withrespet to the given senarios than omputational unit u1beause u1 ontributes not just to the features for whih u2ontributes, but also to other features. For instane, oloris more spei� to Color-irle than setDiameter and set-Diameter is more spei� than draw aording to Fig. 10.� If �(s1) < �(s2) holds for two senarios s1 and s2, thensenario s2 is based on senario s1 beause if s2 is exeuted,all omputational units in the extent of �(s1) need also tobe exeuted. For instane, Move-irle and Color-irle

8
scenario

execution
compile for

recording

profiles
execution

co
m

pi
le

r

code
source

3.1 3.2executable

scenarios

pr
of

ile
r

us
erFig. 8. The proess for the dynami analysis in Fig. 6.

scenario
selection

an
al

ys
is

in
cr

em
en

ta
l

an
al

ys
is

to
ol

co
nc

ep
t

table
invocation

concept
analysis

senario
feature

mapping feature−
unit map

an
al

ys
t

an
al

ys
t

concept

an
al

ys
t

4.1 4.2 4.4

execution
profiles

4.3

basic
interpretation

lattice

Fig. 9. The proess for interpretation of onept lattie in Fig. 6.
draw

setDiameter

color setRadiusmove Draw−circle−radiusColor−circle

Draw−circle−diameter

Move−circle

Fig. 10. Sparse onept lattie for Fig. 3.are based on Draw-irle-diameter aording to Fig. 10.Thus the lattie also reets the level of appliationspei�ity of omputational units. The information de-sribed above an be derived by a tool and fed bak tothe analyst. Inspeting the relationships derived from theonept lattie, a deision may be made to analyze only asubset of the original features in depth due to the additionaldependenies that onept analysis reveals. All omputa-tional units required for these features (easily derived fromthe onept lattie) form a starting point for further statianalyses to validate the identi�ed omputational units andto identify further omputational units that were possiblynot exeuted during dynami analysis beause of limita-tions in the design of the senarios.

D.4 Senario Feature MappingThe interpretation of the onept lattie as desribedabove gives insights into the relationship between senariosS and omputational units U . However, the analyst isprimarily interested in the relationship between features Fand omputational units U . This setion desribes how toidentify this relationship in the onept lattie if there is noone-to-one orrespondene between senarios and features.Beause one feature an be invoked by many senariosand one senario an invoke several features, there is notalways a strit orrespondene between features and se-narios. For instane, as disussed above, the senariosMove-irle and Color-irle of FIG are based on Draw-irle-diameter aording to Fig. 10 beause in order tomove or olor a shape, one has to draw it �rst. The se-nario for moving or oloring a shape will thus neessarilyinvoke the feature whih draws a shape. Fortunately, there

9f1 f2 f3 u1 u2 u3 u4 u5 u6 u7s1 � � � � � �s2 � � � � � �s3 � � � � � �(a) Invoation relation I.
(fu6; u7g; fs1; s3gg)

(fu3; u5; u6; u7g; fs3g)(fu2; u4; u5; u7g; fs2g)
(fu5; u7g; fs2; s3g)

(fu1; u2; u3; u4; u5; u6; u7g; ;)
(fu7g; fs1; s2; s3g)(fu4; u7g; fs1; s2g)(fu1; u4; u6; u7g; fs1g)

(b) Conept lattie for ontext in Fig. 11(a) (fu6g; fs1; s3gg)(fu5g; fs2; s3g)(fu3g; fs3g)Spe Rlvt(fu7g; fs1; s2; s3g)
(;; ;)

(fu4g; fs1; s2g)(fu1g; fs1g)Csp ShrdIrlvt(fu2g; fs2g)
() Sparse onept lattie of Fig. 11(b) ategorized with re-spet to feature f1 that has been exposed in senarios s1and s2.Fig. 11. Categorizing onept latties.is still a simple way to identify omputational units rele-vant to the atual features in the onept lattie, althoughan unambiguous identi�ation may require additional dis-riminating senarios. The basi idea is to isolate featuresin the onept lattie through ombinations of overlappingsenarios.If a senario invokes several features, one an formallymodel a senario as a set of features s = ff1; f2; : : : ; fmg,where fn 2 F for 1 � n � m (F is the set of all relevantfeatures). This modeling is simplifying beause it abstratsfrom the exat order and frequeny of feature invoationsin a senario. On the other hand, if the order or frequenyof feature invoations do ount, the senarios may indeedbe onsidered omplex features in their own right. If thesesenarios yield di�erent exeution pro�les, they will appearin di�erent onepts in the lattie and their ommonalitiesand di�erenes are revealed and may be analyzed.With the domain expert's additional knowledge of whihfeatures are invoked by a senario we an identify the om-putational units relevant to a ertain feature. Let us on-sider the invoation relation I in Fig. 11(a) (for better leg-ibility, senarios are listed as rows and omputational unitsas listed as olumns). The table ontains the alled ompu-tational units u1; : : : ; u7 per senario, and furthermore theinvoked features per senario: s1 = ff1; f3g, s2 = ff1; f2g,and s3 = ff2; f3g. The orresponding onept lattie forthe invoation relation in Fig. 11(a) is shown in Fig. 11(b).The feature part of the table is ignored while onstrutingthis lattie.Computational units spei� to feature f1 an be foundin the intersetion of the exeuted omputational units of

the two senarios s1 and s2 beause f1 is invoked for s1 ands2. The intersetion of the omputational units exeutedfor s1 and s2 an be identi�ed as the extent of the in�mumof the onepts assoiated with s1 and s2: �(s1)u�(s2) =(fs1; s2g; fu4; u7g). Sine s1 and s2 do not share any otherfeature, the omputational units partiularly relevant to f1are u4 and u7.We notie that u7 is also used in all other senarios, sothat one annot onsider u7 a spei� omputational unitfor any of f1, f2, or f3. Computational unit u4, in on-trast, is only used in senarios exeuting f1. We thereforestate the hypothesis that u4 is spei� to f1 whereas u7is not. Beause there is no other senario ontaining f1other than s1 and s2, omputational unit u4 is the onlyomputational unit spei� to f1.Note that this is just a hypothesis beause other featuresmight be involved to whih u4 is truly spei� and that arenot expliitly listed in the senarios. Another explanationould be that, by aident, u4 is exeuted both for f2 (ins2) and f3 (in s1); then, it appears in both senarios butnevertheless is not spei� to f1. However, hanes are highthat u4 is spei� to f1 beause u4 is not exeuted when f2and f3 are jointly invoked in s3, whih suggests that u4 atleast omes into play only when f1 interats with f2 or f3.At any rate, the ategorization is hypotheti and needs tobe validated by the analyst.Computational units that are somehow related to butnot spei� for f1 are suh omputational units that areexeuted for senarios invoking f1 amongst other features.In our example, both s1 and s2 invoke f1. Computationalunits in extents of onepts whih ontain s1 or s2 are there-

10fore potentially relevant to f1. In our example, u1; u2; u5,and u6 are potentially relevant in addition to u4 and u7.Computational unit u3 is only exeuted for senario s3,whih does not ontain f1.Altogether, we an identify �ve ategories for omputa-tional units with regard to feature f1 (see Fig. 11()):Spe: u4 is spei� to f1 beause it is used in all senariosinvoking f1 but not in other senarios.Rlvt: u7 is relevant to f1 beause u7 is used in all se-narios invoking f1; but it is also more general than u4 be-ause u7 is also used in senarios not invoking f1 at all.Csp: u1 and u2 are only exeuted in senarios invokingf1. They are less spei� than u4 beause they are not usedin all senarios that invoke f1; that is, these omputationalunits are only onditionally spei�. Whether u1 and u2 aremore or less spei� than u7 is not deidable based on theonept lattie. On one hand, they are used in all senariosinvoking f1 and other senarios, whereas u7 is also exeutedin senarios that do not require f1. On the other hand, u7is exeuted whenever f1 is required, whereas u1 and u2 arenot exeuted in some senarios that do require f1.Shrd: u5 and u6 are exeuted in senarios invoking f1 butthey are also exeuted in senarios not invoking f1; that is,they are shared with other features. These omputationalunits are presumably less relevant than u1 and u2, whihare exeuted only when f1 is invoked, and also less relevantthan u7, whih is exeuted in all senarios invoking f1.Irlvt: u3 is irrelevant to f1 beause u3 is only exeutedin senarios not ontaining f1.These fats are more obvious in the sparse representationof the lattie. Using this representation, given a featuref , one identi�es the onept, f , for whih the followingondition holds:f = (U; S) and \sj2S sj = ffg (10)Conept f is alled a feature-spei� onept for f .Based on the feature-spei� onept, one an ategorizethe omputational units as follows:Spe: all omputational units u for whih (u) = holds.Rlvt: all omputational units u for whih (u) = 0 and0 < holds.Csp: all omputational units u for whih (u) = 0 and < 0 holds.Shrd: all omputational units u for whih u is in the in-tent of onept 0 where < 0 holds and and (u) areinomparable.Irlvt: all other omputational units not ategorized byother ategories.When the distane between and 0 is onsidered, thereare additional nuanes within ategories Rlvt, Csp,and Shrd possible. The distane measures the size of theset of features a omputational unit is potentially relevantfor. The larger the set, the less spei� the omputationalunit is.Example. The senario Move-irle in Fig. 2 invokestwo features: the ability of FIG to draw a irle by di-ameter and the ability to move this irle. The senario

Color-irle also uses the ability to draw a irle; yet, itolors the irle instead of moving it. Hene, the ompu-tational units responsible for drawing a irle are attahedto the onept in Fig. 10 that represents the intersetion ofthe features invoked by Move-irle and Color-irle. Thesenario Draw-irle-diameter would not neessarily havebeen required to identify the omputational units for draw-ing a irle by diameter: The sparse lattie reveals theseomputational units as the diret in�mum of Move-irleand olor-irle even if Draw-irle-diameter is not onsid-ered. However, Draw-irle-diameter is useful to separatedraw from setDiameter. 2As a matter of fat, there ould be several onepts forwhih ondition (10) holds when di�erent omputationalunits are exeuted for the given feature, depending on thesenario ontexts in whih the feature is embedded. Forinstane, let us assume we are analyzing FIG's undo a-pabilities. Three senarios an be provided to explore thisfeature:� Draw a irle: fdraw-irleg� Undo irle drawing: fdraw-irle, undog� Undo without preeding drawing operation: fundogFor the overlapping senarios fdraw-irle, undog andfundog, we may assume that di�erent omputational unitswill be exeuted beyond those that are spei� to om-mand draw-irle: Quite likely, additional omputationalunits will be exeuted to handle the erroneous attempt toall undo without previous operation. Consequently, thelattie will ontain an own onept for fdraw-irle, undogand another one for fundog, where the latter is not a sub-onept of the former. The in�mum of these two senarioswill ontain the omputational units of the undo opera-tion exeuted for normal as well as exeptional exeution,whereas the onept representing fundog ontains the om-putational units for error handling.In ase of multiple onepts for whih ondition (10)holds, we an unite the omputational units that are inSpe with respet to these onepts. If the identi�ed on-epts are in a subonept relation to eah other, the su-peronept represents a strit extension of the behavior ofthe feature. If the onepts are inomparable, these on-epts represent varying ontext-dependent behavior of thefeature.If there is no onept for whih ondition (10) holds,one needs additional senarios that fator out feature f .For instane, in order to isolate feature f1 in senarios1 = ff1; f3g, one an simply add a new senario s2 =ff1; f2g. The omputational units spei� to f1 will be in�(s1)u�(s2).It is not neessary to onsider all possible feature om-binations in order to isolate features in the lattie. Inter-seting all urrently available senarios exatly tells whihfeatures are not yet isolated (the intersetion ould be doneby onept analysis applied to the formal ontext onsist-ing of senarios and features, where the inidene rela-tion desribes whih feature is invoked by whih senario).Slightly modi�ed variants of senarios invoking the featurean be added to isolate the feature spei�ally.

11The addition of new senarios in order to disriminatefeatures in the lattie will lead us to an inremental on-strution of the onept lattie desribed in Set. IV-F.Before we ome to that, we desribe the stati dependenyanalysis.E. Stati Dependeny AnalysisFrom the onept lattie, we an easily derive all om-putational units exeuted for any set of relevant features.However, this gives us only a set of omputational units,but it is not lear whih of these omputational units aretruly feature-spei� and whih of them are rather general-purpose omputational units used as building bloks forother omputational units. Given a feature f of interest,this question an be answered as follows:� As a �rst approximation, all omputational units in theextents of all feature-spei� onepts for f jointly on-tribute to f .� The analyst re�nes this approximation by adding and re-moving omputational units: By inspeting the stati de-pendeny graph and the soure ode of the omputationalunits, she sorts out irrelevant omputational units; she mayalso add feature-relevant omputational units that were notexeuted due to an inomplete input overage of the se-narios. The onept lattie is an important guidane forthe analyst's inspetion of the dependeny graph.Example. For FIG's ability to olor a irle, the ana-lyst will need to validate the set of omputational unitsfolor; setDiameter; drawg aording to the onept lat-tie in Fig. 10. The lattie shows that the analyst shouldstart with inspeting olor beause this appears as the mostspei� omputational unit for oloring a irle. 2E.1 Building the Starting SetAll omputational units in the extent of a onept jointlyontribute to all features in the intent of the onept, whihimmediately follows from the de�nition of a onept. How-ever, there may also be omputational units in the extentthat ontribute to other features as well, so that they arenot spei� to the given feature. There may be omputa-tional units in the extent that do not ontain any feature-spei� ode at all. Thus, omputational units in the ex-tent of the onept need to be inspeted manually. Beausethere are no reliable riteria known that automatially dis-tinguish feature-spei� ode from general-purpose ode,this analysis annot be automated and human expertise isneessary. However, the onept lattie may narrow theandidates for manual inspetion.The onept lattie and the dependeny graph an helpto deide in whih order the omputational units are to beinspeted suh that the e�ort for manual inspetion an beredued to a minimum. Sine we are interested in om-putational units most spei� to a feature f , we start atthose omputational units ui that are attahed to a feature-spei� onept of f , that is, for whih f = (ui) holds,where f is a feature-spei� onept for f . If there areno suh omputational units, we ollet all omputationalunits below any of the feature-spei� onepts f of f with

minimal distane to f in the sparse representation. Therean be more than one onept f , so we unite all omputa-tional units that are attahed to one of these onepts. Thesubset of omputational units identi�ed in this step that isaepted after manual inspetion is alled the starting setSstart (f).Example. The starting set for FIG's ability to olor airle, Sstart (olor-irle), is folorg. 2E.2 Inspetion of the Stati Dependeny GraphNext, we inspet the exeutable stati dependeny graph(as one spei� subset of the stati dependeny graph) thatontains all transitive ontrol-ow suessors and predees-sors of omputational units in Sstart (f). We onentrate onomputational units here beause they are the ative on-stituents and beause they were subjet to the dynamianalysis. The exeutable stati dependeny graph an beannotated with the features and senarios for whih theomputational units were exeuted. If a omputationalunit is not annotated with any senario, the omputationalunit was not exeuted. Non-exeutable parts of the system,namely, delarative parts, may be added one all relevantomputational units have been identi�ed. A stati points-to analysis is needed to resolve dynami binding and allsvia routine pointers if present. The stati points-to anal-ysis may take advantage of the knowledge about atuallyexeuted omputational units yielded by the dynami anal-ysis.We primarily onsider only those omputational units uifor whih ui 2 extent(f) holds beause only those om-putational units are atually exeuted when f is invokedaording to the dynami analysis. Hene, we ombinestati and dynami information to eliminate onditionalstati omputational units exeutions in order to reduethe searh spae. Nevertheless, one should hek for thereasons why ertain omputational units have not been ex-euted.Any kind of traversal of the exeutable stati dependenygraph is possible, but a depth-�rst searh along the ontrol-ow is most suited beause a omputational unit an onlybe understood if all its exeuted omputational units areunderstood. In a breadth-�rst searh, a human would haveto ope with ontinuous ontext swithes. The goal of theinspetion is to sort out omputational units that do notbelong to the feature in a narrow sense beause they donot ontain feature-spei� ode.The exeutable stati dependeny graph rather than theonept lattie is traversed for inspetion beause the lat-tie does not really reet the ontrol-ow dependenies:(u1) > (u2) does not imply that u1 is a ontrol-ow pre-deessor of u2. However, the onept lattie may still pro-vide useful information for the inspetion. In Setion IV-D,we made the observation that the lower a onept (u) isin the lattie, the more general omputational unit u is be-ause it serves more features|and vie versa. Thus, theonept lattie gives us insight into the level of abstra-tion of a omputational unit and, therefore, ontributes tothe degree of on�dene that a spei� omputational unit

12ontains feature-spei� ode.Example. The analyst would �rst validate the startingset for FIG's ability to olor a irle Sstart (olor-irle) =folorg. Then she would inspet the ontrol-ow predees-sors and suessors of olor. Some of them might not beexeuted, yet a brief hek is still neessary to make surethat they are indeed irrelevant. Then, she would ontinuewith setDiameter and eventually inspet draw. 2Two additional analyses gather further information use-ful while navigating on the dependeny graph:� Strongly onneted omponent analysis is used to iden-tify yles in the dependeny graph: If there is one ompu-tational unit in a yle that ontains feature-spei� ode,all omputational units of the yle are related to the fea-ture beause of the yli dependeny.� Dominane analysis is used to identify omputationalunits that are loal to other omputational units. A om-putational unit u1 dominates another omputational unitu2 if every path in the dependeny graph from its root tou2 ontains u1. In other words, u2 an only be reahedby way of u1. If a omputational unit u is found to befeature-spei�, then all its dominators are also relevantto the feature, beause they need to be exeuted in orderfor u to be exeuted. If none of a dominator's dominateesontains feature-spei� ode and the dominator itself isnot feature-spei�, then the dominator is a lear uttingpoint as all its dominatees are loal to it. Consequently,the dominator and all its dominatees an be omitted whileunderstanding the system.If more than one feature is relevant, one simply unitesthe starting sets for eah feature and then follows the sameapproah. For more than one feature, the onept lattieidenti�es omputational units jointly and distintly usedby those features.One all relevant omputational units have been identi-�ed, other stati (e.g., program sliing) as well as dynamianalyses (e.g., trae reording to obtain the order of exeu-tion) an be applied to obtain further information. Theseanalyses an be performed more goal-oriented by leveragingthe retrieved feature-unit map.F. Inremental AnalysisThere are at least two reasons why an inremental on-sideration of senarios is desirable. First, one might notget the suite of senarios suÆiently disriminating the �rsttime. New senarios beome neessary to further di�erenti-ate senarios into features. Seond, new senarios are usefulwhen trying to understand an unfamiliar system inremen-tally. One starts with a small set of relevant senarios toloate and understand a fundamental set of features byproviding a small and manageable overview lattie. Then,one suessively inrements the set of onsidered senariosto widen the understanding.Adding senarios means adding attributes to the formalontext; but there are also situations in whih objets areadded inrementally: in ases where omputational unitsneed to be re�ned. For instane, omputational units withlow ohesion|that is, omputational units with multiple,

yet di�erent funtions|will \sink" in the onept lattie ifthey ontribute to many features. A routine ontaining avery large swith statement where only one branh is atu-ally exeuted for eah feature is a typial example. If theanalyst enounters suh a routine during stati analysis,she ould lower the level of granularity for omputationalunits spei�ally for this routine to basi bloks. Basibloks as omputational units disentangle the interleavedode: For the example routine with the large swith state-ment, the individual swith branhes would be more learlyassigned to the respetive feature in the onept lattie.In this setion, we desribe an inremental onsiderationof attributes, namely, senarios. Inremental onsiderationof objets|that is, re�nement of omputational units|isanalogous.As soon as one understands the basis of a system, oneadds new senarios for further detailed investigation andexploration of the unknown portions of the system. If onetries to apture all features of a software at one, the re-sulting lattie may beome too large, too detailed, and thusunmanageable. If one starts with a smaller set of senariosand further inreases this set, all aumulated knowledgean analyst gained while working with the smaller lattiehas to be preserved. The lattie|the mental map for theanalyst's understanding|hanges when new senarios areadded. Fortunately, the smaller lattie an be mapped tothe larger one (the smaller lattie is the result of a so-alledsubontext).Definition. Let C = (O;A; I) a ontext, O0 � O, andA0 � A. Then C 0 = (O0; A0; I \ (O0 �A0)) is alled a sub-ontext of C and C is alled a superontext of C 0. 2In our appliation of onept analysis, we only add newrows (one for eah new senario, assuming that senariosour in rows of the relation table) but never new olumnsto the relation table (beause we statially know all om-putational units in advane). Adding new rows leads to anew formal ontext (U; S0; I 0) in whih relation I 0 extendsrelation I.Proposition. Let C = (O;A; I) and C 0 = (O;A0; I 0),where A0 � A and I 0 = (I \ (O �A0)). Then every extentof C 0 is an extent of C. 2Proof. See [21℄. 2Aording to this proposition, eah extent within thesubontext will show up in the superontext. This anbe made plausible with the relation table: Added rowswill never hange existing rows, so the maximal retan-gles forming onepts will only extend in vertial diretion(if senarios are listed in rows).This proposition on the invariability of extents of sub-ontexts that only di�er in the set of objets results ina simple mapping of onepts from the subontext to thesuperontext (for a formal proof see [21℄):(U; S) 7! (U; �(U))The mapping is a u-preserving embedding, meaning that

13the partial order relationship is ompletely preserved. Con-sequently, the superontext is basially a re�nement of thesubontext. By this mapping all onepts of the subontextan be found in the superontext.The superontext may inlude new onepts not foundin the subontext. The onsequene for the visualizationof the superontext is that the newly introdued oneptsan be highlighted easily in the visualized lattie of thesuperontext and that onepts in the subontext an bemapped onto onepts in the superonept along with pos-sible user annotations. Additionally, an inremental auto-mati graph layout an be hosen: Only additional nodesand edges may be introdued in the superontext, nodesand edges of the subontext are kept. Thus, the positionof onepts relatively to eah other will be preserved.Example. Let us assume the analyst of FIG is nowinterested whether invoking the feature \irle drawing"twie makes a di�erene and what the di�erenes betweendrawing a irle and drawing a dot (\Draw-dot") on onehand and between moving a irle and undoing a irlemove operation (\Move-irle-undo") on the other handare. The domain expert will design the appropriate se-narios. The resulting invoation table for these and allprevious senarios may be as in Fig. 12(a). The lattiefor this new superontext is shown in Fig. 12(b). Thenew senario Draw-irle-diameter-twie is subsumed bythe existing senario Draw-irle-diameter, showing thatusing the feature twie does not lead to additional rele-vant omputational units. The new senario Draw-dot issubsumed by the bottom onept; thus, Draw-dot sharesonly the omputational unit draw with the feature \ir-le drawing". Both senarios Draw-irle-diameter-twieand Draw-dot do not hange the general struture of thelattie. Only the onept highlighted in Fig. 12(b) is new.This onept shows the di�erene betweenMove-irle andMove-irle-undo, whih is the additionally exeuted om-putational unit undo. 2V. Case StudiesThis setion desribes two ase studies evaluating ourmethod. The �rst ase study on web browsers shows thebene�t from ombining stati and dynami information.The seond ase study fouses on dynami information andexempli�es the inremental analysis for a very large om-merial system.In both ase studies, the omputational units of hoieare routines. The Bauhaus [26℄ tools were used to ex-trat the stati dependeny graph. The extrated statidependeny graph ontains all global delarations (rou-tines, global variables, and user-de�ned types) and manydependenies suh as alls between routines, referenes ofglobal variables by routines, type information for variables,dependenies between user-de�ned types, ourrenes oftypes in routine signatures, and so on [27℄.For the dynami analysis, we used a standard pro�ler togather exeution pro�les. The pro�ler has the limitationthat it does not reord aesses to variables. We thereforeanalyzed variable aesses statially.

system version KLOC(w) #subprogramsMosai 2.6 51,440 701Chimera 2.0a19 38,208 928Fig. 13. Analyzed web browsers.A. Web BrowsersIn this setion, we disuss the usefulness of stati anddynami informations as introdued in Set. IV-E.We analyzed two web browsers (both written in C; seeFig. 13) using the same set of relevant related features.The onept lattie for eah of these systems was derived asdesribed in Set. IV. The required routines as identi�ed bydynami analysis and the relationships derived by oneptanalysis formed a starting point for the stati dependenyanalysis.A.1 Case Study SetupIn two experiments, we tried to understand how twospei� sets of related features are implemented in bothbrowsers using the proess desribed above. The goal ofthis analysis was to reover the feature-spei� omputa-tional units and the way they interat|that is, to reverseengineer a partial desription of the software arhiteture.The partial software arhiteture, for instane, allows oneto deide whether feature-spei� omputational units anbe extrated from one system and integrated into anothersystem with only minor hanges. Chimera does not imple-ment all features that Mosai provides and we wanted to�nd out whether the respetive feature-spei� omputa-tional units of Mosai an be reused for Chimera.� Experiment \History" (H): Chimera allows going bakin the history of already visited URLs, but Chimera doesnot have a forward button that allows a user to move for-ward in the history again after the bak button was used.Mosai has both a bak and a forward button. In this ex-periment, going bak and going forward were onsideredrelated features.� Experiment \Bookmark" (B): Both Mosai and Chimerao�er bookmarks for visited URLs. URLs may be book-marked, and bookmarked URLs may be loaded and re-moved. We onsidered the following related features: ad-dition of a new bookmark for a urrently viewed URL,removal of a bookmark, and navigation to a bookmarkedURL.A.2 ObjetivesThe questions we wanted to answer in our ase study areas follows:� Identi�ation and extration: How are the history andthe bookmark features implemented in Mosai (Chimera)?What are the interfaes between the spei� omputationalunits that implement these features and the rest of Mosai(Chimera)? In both ases, a partial desription of the soft-ware arhiteture was reovered.� Integration: How an the identi�ed portion of the odeof one browser be integrated into the other browser?

14 draw setDiameter setRadius move olor undoDraw-irle-diameter � �Draw-irle-radius � �Move-irle � � �Color-irle � � �Draw-irle-diameter-twie � �Move-irle-undo � � � �Draw-dot �(a) Superontext of Fig.3.
draw

setDiameter

color setRadiusmove

undoMove−circle−undo

Draw−circle−diameter

Draw−circle−radiusColor−circleMove−circle

Draw−circle−diameter−twice

Draw−dot(b) Lattie for the (super)ontext in Fig. 12(a)Fig. 12. The lattie for the superontext of Fig. 10.The whole experiment (from initial setup of senariosand ompiling with pro�ler options up to the arhiteturalskethes) took two people half a day of work altogether forMosai and Chimera.A.3 Senarios for Dynami AnalysisFor eah experiment and eah browser, we ran thebrowser in a start-end senario in whih the browser wasstarted and immediately quit in order to separate start-up and shutdown ode. The following additional senarioswere de�ned spei�ally to the two experiments. Experi-ment \History" was overed by the following three senar-ios:(H1) Basi senario doing nothing but browsing(H2) Senario using the bak button(H3) Senario using the bak and forward buttonsFor Chimera, the last senario was not performed (be-ause Chimera possesses no forward button).Experiment \Bookmark" was overed by the followingfour senarios:(B1) Basi senario: simply opening and losing the book-mark window(B2) Senario: adding a new bookmark for the urrentlydisplayed URL(B3) Senario: removing a bookmark(B4) Senario: seleting a bookmark and visiting the as-soiated URLEah senario was immediately ended by quitting therespetive system. We provided senarios that invoke onefeature only exept for one senario: One annot use theforward button without using the bak button. Conse-

(1) (2) (3) (2) \ (3) relevantMosai/(B) 701 359 99 74 16Mosai/(H) 348 74 65 6Chimera/(B) 928 431 89 55 3Chimera/(H) 419 123 55 24Fig. 14. Subprogram ounts for Mosai and Chimera.quently, the onept ontaining routines exeuted for se-nario (H2) is a subonept of the onept related to (H3).Likewise, a bookmark an only be deleted when a URL hasbeen added before. To irumvent this problem, we startedthe browser with a non-empty bookmark �le in all senar-ios. Thus, we did not onsider the ase of insertion into anempty bookmark list.A.4 Stati Dependeny AnalysisIn the dependeny graph for the browsers, visualizedusing the Bauhaus extension to Rigi [28℄, we derived allstatially transitively alled routines (using Rigi's basi se-letion failities [28℄) and interseted the stati informa-tion with the atually exeuted routines manually. We ad-ditionally �ltered out all routines spei� to HTML andthe X-window-based graphial user interfae guided by thebrowser's proper naming onventions. These routines wereall in the bottom element of the onept lattie.A.5 ResultsFigure 14 provides a summary of the numbers of rou-tines that needed to be further onsidered in eah step andshows how the searh spae ould be redued in eah step.

15
(3)

(2)

(1)
browser

GUI
history

(a) Mosai's history. inner
state

location
of history

dispatch

browser

GUI

(b) Chimera's history.
component data storage routine callFig. 16. Mosai's and Chimera's history arhiteture.

routine calls routine

less specific routines and general purpose functions

very specific routines

cutting level

lower region

upper region

Fig. 15. Relevant parts of Chimera for history.The history experiment is denoted by (H) and the book-mark experiment is denoted by (B). The total number ofall routines of the kernels (not inluding libraries suh ashtml, jpeg, zlib) is in olumn (1), the number of atuallyexeuted routines for any of the senarios is shown in ol-umn (2). All routines statially alled by routines seletedfrom the set of dynamially exeuted routines in upper on-epts of the lattie (i.e., alled from routines in the start-ing set) are in olumn (3). The intersetion of olumn (2)and (3) ontains all routines dynamially alled by routinesseleted from the set of dynamially exeuted routines inupper onepts of the lattie; their number is reported inolumn \(2) \ (3)". Column relevant reports all routinesin olumn (2)\ (3) that are spei� to the seleted featuresaording to our manual inspetion. All other routines areused for other purposes than bookmarks and histories.Eventually, only a small number of routines needed to

be inspeted more thoroughly due to the top-down inspe-tion proess. As an example, Fig. 15 shows the remainingroutines of Chimera (omitting their names) relevant to thehistory experiment. This piture learly shows the possibleutting points in the dependeny graph (onsisting of rou-tines, global variables, and user-de�ned types and their de-pendenies) of routines spei� to the history features (up-per region) and non-spei� routines (lower region): Onlytwo entities need to be removed to isolate feature-spei�from non-spei� entities.We reovered the parts of the arhiteture of Mosai andChimera relevant to the two experiments.A.6 Results for HistoryThe interfae between Mosai's browser kernel and thehistory omponent (see Fig. 16(a)) is formed by three rou-tines to (1) get the urrent URL, (2) set the urrent URL,and (3) ommuniate the ation and event (hanged URL).The history omponent an be easily extrated from Mo-sai's soure ode beause it is a separate omponent|whereas the history is an integral part of Chimera's kernel(f. Fig. 16(b)). There is no set of routines of Chimerathat ould be reasonably addressed as "history manageromponent" as in Mosai. Chimera uses a layer of wrap-pers alling a dispathing routine around a list of ationswhere the displayed URLs are part of that list.The reovered partial arhiteture shows that Chimera'sbrowser kernel is built around a list of visited URLswhereas Mosai's browser kernel does not know the his-tory of visited URLs at all. As the analysis of the partialarhitetural arhitetures reveals, re-using Mosai's his-tory omponents in Chimera would be very diÆult due tothe arhitetural mismath [29℄.

16
(2)

(1)

(3)

(4)

browser

GUI

bookmarks

(a) Mosai's bookmarks. inner
state

(2)

(1)

(3)

(4)

dispatch

GUI

browser

bookmarks

(b) Chimera's bookmarks.Fig. 17. Mosai's and Chimera's bookmark arhiteture.A.7 Results for BookmarksThe partial arhitetures of the two systems are similarto eah other with respet to bookmarks. Both arhite-tures inlude an enapsulated bookmark omponent, whihommuniates via a narrow interfae with the basi browserkernel (see Fig. 17).The basi ations that have to be performed are: (1) geturrently shown URL, (2) set urrently shown URL, (3) dis-play the bookmarks, and (4) ommuniate the bookmarkseletion bak.Exhanging the two implementations between Mosaiand Chimera would be reasonably easy.B. Case Study AgilentThis setion reports on a ase study onduted to inves-tigate the usefulness of the approah in a realisti full-saleindustrial setting. The ase study stresses the importaneof inremental understanding of very large onept lattiesas desribed in Setion IV-F and the modeling of senariosas set of features as explained in Setion IV-D.4.The system analyzed is part of the software of the Ag-ilent 93000 SOC Series, a semi-ondutor test equipmentprodued by Agilent Tehnologies.B.1 Agilent 93000 SOC SeriesThe Agilent 93000 SOC Series is a single salable testerplatform used in the manufaturing proess of integratediruits. It provides test apabilities for digital, analog, andradio frequeny iruits as well as for embedded memories.The SmarTest software ontrols the omplex tester hard-ware. It is an interative environment for developing andrunning test programs.SmarTest onsists of numerous tools supporting test en-gineering tasks. At the enter of the software lies the�rmware, an interpreter for IEEE-488-like ommands. The�rmware is responsible for programming the hardware.The input to the �rmware are the test ases, whih are se-quenes of �rmware ommands. The �rmware parses andinterprets eah ommand, drives the Agilent 93000 devie,

and returns the result. It is the �rmware that was analyzedin our ase study.The software of the Agilent 93000 SOC series is main-tained by several geographially distributed groups. Twoof them are situated in the USA, one in Japan, and onein Germany. The group in whih the ase study was on-duted is the SOC Test Platform Division at B�oblingen,Germany.The �rmware of the Agilent 93000 has evolved over 15years. Today, it onsists of 1.2 million ommented linesof C ode|ounted with the Unix program w|or about500.000 non-empty lines of delarative or exeutable Code, respetively. The stati all graph of the part of the�rmware that was analyzed for this ase study had 9.988routines and 17.353 all edges exluding standard C rou-tines and operating system routines.Figure 18 depits the software arhiteture of the�rmware as desribed by one of the software arhitets atAgilent. The �rmware is used simultaneously by di�erenttools running as separate proesses. Interation betweenthese tools and the �rmware is through shared memoryand message queues as part of the �rmware. A semaphoreis used to synhronize interation between �rmware andother tools.The �rmware is basially an interpreter for test pro-grams. When a test program is �led into the shared mem-ory, the �rmware parses and runs eah ommand. In orderto run a ommand, the �rmware dispathes the orrespond-ing C routine that ats as an entry point to the implemen-tation of the ommand. There is one suh C routine|alsoreferred to as exeutor|for eah ommand. When the ex-eutor has �nished, its result is written bak to the sharedmemory and the waiting proess is informed through themessage queue. As Fig. 18 suggests, the exeutors sharea set of re-usable utility routines|routines o�ering moregeneral servies. Whih utility routines are atually sharedby whih exeutors is, however, not shown in the arhite-tural sketh. As a matter of fat, the software arhiteturrently does not exatly know what the preise relation

17between exeutors and utility routines is due to the size ofthe system and the lak of doumentation.Many ommands interpreted by the �rmware ome inpairs: the atual ommand and an additional ommand tofeth the result of its exeution. The latter is alled thequery ommand. The ommands are named by four-letteraronyms. Query ommands are additionally annotatedwith a question mark. For instane, CNTR? is the queryommand of CNTR.The �rmware understands about 250 di�erent atualommands; most of them have a orresponding query om-mand. Altogether, there are about 450 di�erent om-mands.For this ase study, we foused on the digital part ofthe �rmware, namely on Con�guration Setup, Relay Con-trol, Level Setup, Timing Setup, and Vetor Setup om-mands (other lasses of ommands are Analog Setup, ACTest Funtion, DC Measurement, Test Result, Utility Line,and Calibration and Attributes ommands):Con�guration Setup Commands: Con�guring pins is the�rst step one must take when preparing a test. Commandsof this lass allow assigning pin names to a test or powersupply hannel, on�guring pin type and operation modes,speifying the series resistor, and other things.Routing Setup Commands: The Routing Setup ommandsspeify the signal mode and onnetion for eah pin, andthe order of onnetions.Level Setup Commands: The Level Setup ommands spe-ify the required driver ampli�er and reeiver omparatorvoltage levels, as well as set termination via the ative loador set the lamp voltage.Timing Setup Commands: The Timing Setup ommandsde�ne the length of the devie yle, the shape of the wave-forms making up a devie yle, and the position of thetiming edges in a tester yle for all on�gured pins.Vetor Setup Commands: The Vetor Setup ommandsare required to set up and sequene test vetors.Relays Control Commands: The Relay Control ommandsare used to set relay positions and the tester state.B.2 ObjetivesThis ase study had three goals:1. The arhitetural sketh in Fig. 18 had to be mappedto the soure ode so that the parts of the system thatontribute to the bloks \exeutors" and \utility funtions"are identi�ed. It had to be lari�ed whih routines areexeutors.2. The utility routines were to be assigned to the exeutorsthey support. This mapping lari�es the �ne struture ofthe \utility funtions" blok in Fig. 18.3. Some ommands of the Agilent 93000 �rmware we in-vestigated were not assigned to one of the lasses of Con�g-uration Setup, Relay Control, Level Setup, Timing Setup,or Vetor Setup ommands, neither by the arhitet norby the user manual. These were to be lassi�ed aordingto the resulting onept lattie to see whether the lattieprovides useful information to lassify features.

The overall goal of our ase study was to map the arhi-teture sketh in Fig. 18 to the soure and to show whihutility routines are really shared. Given the above men-tioned lasses of ommands, our hypothesis was that theexeutors for ommands of the same lass share many util-ity routines. On the other hand, for ommands of di�erentlasses, we expeted less ommonalities, in other words,one would expet that only more general utility routinesare shared.B.3 Senarios for the �rmware of Agilent 93000The software arhitet at Agilent seleted the ommandsfor digital tests that were to be investigated. Three stu-dents of the University of Stuttgart reated the test ases|advised by the expert. For eah relevant �rmware om-mand, a test ase was provided that exeutes the ommand.The exeution of some ommands is bound to ertainpreonditions that need to be ful�lled by alling other om-mands �rst, whih requires to add these ommands to thetest ases. Hene, a test ase is generally not a singleommand but a sequene of �rmware ommands, of whihone is the relevant ommand and the others are requiredpreparing steps. The order of preparing ommands was thesame for all test ases that had these ommands as preon-ditions, and there were no two test ases exeuting the sameset of routines. As already desribed in Setion IV-D.4, wean thus model a test ase (senario) as set of ommands(features) s = fommand1; ommand2; : : : ; ommandmg.In order to identify the routines spei� to the relevantommand only, one an fator out preparing steps by ad-ditional test ases, whih exeute the preparing ommandsbut not the relevant ommand. For instane, in order toall ommand UDPS, one needs to exeute DFPS �rst. Thus,the test ase for UDPS is fDFPS, UDPSg where only UDPS isrelevant. In order to identify the routines for UDPS spei�-ally, one an simply add another test ase exeuting DFPSonly. The routines spei� to UDPS an then be identi�edin the onept lattie as desribed in Setion IV-D.4.If a ommand has a query ommand, two test ases werereated: one for the atual ommand and one for the queryommand. The former ontains only the atual ommandbut not the query ommand and the latter only the queryommand but not the atual ommand (in all ases wherethe query ommand an be alled without alling the atualommand before).If a ommand has di�erent options, the test ase exe-utes the ommand with several di�erent ombinations ofoptions. The ombination is aimed at overing equivalenelasses of option settings.For one pair of an atual and a query ommand, namely,the ommand SDSC, four senarios were reated: two forthe atual and two for the query ommand. The di�ereneof the two senarios for both the atual and the query om-mand is the setting of the spei�ation parameter, that ei-ther relates to Timing or Level Setup. The distintion wasmade to see whether the ommand requires routines fromdi�erent parts of the system, that is, the timing setup andlevel setup parts.

18

utility functions

ex
ec

tu
or

ex
ec

tu
or

ex
ec

tu
or

constructor

command

YACC parser

response

semaphor queue
messageshared

memory

control flow

data flow

applications

firmware

firmware

hardwareFig. 18. Software arhiteture of Agilent 93000 �rmwarereal 76 senarios for relevant ommands1 senario for NOP ommandadditional 2 additional parameter ombinationsfatoring 1 start-end13 senarios for preparing stepstotal 93 senariosFig. 19. Test ases / senarios.Eah test ase represents a senario. In total, 93 se-narios were provided (f. Fig. 19). Among these, 76 se-narios orrespond to one relevant �rmware ommand fordigital tests. One additional senario ontained just theno-operation (NOP) ommand, whih has no e�et on thetester. Two additional senarios were added to all om-mand SDCS and its query ommand with the alternativeparameter setting. The remaining senarios were used torefator senarios: The start-end senario was used to re-move start-up and shutdown ode by simply starting thesystem, exeuting a reset ommand, and shutting down thesystem, and 13 fatoring senarios were provided to fatorout preparing steps in real senarios.Agilent's own large test suite for testing the �rmwareould not be used sine we needed senarios that explorepreferably one ommand (or feature, respetively) at atime. Agilent's test ases use ombinations of ommands.Moreover, the existing test driver of the test suite exeutesall tests in one run so that the result would have been a sin-gle pro�le for all test ases instead of an individual pro�lefor eah test ase.

B.4 Resulting Conept LattieThe resulting onept lattie is shown in Fig. 20. It on-sists of 165 onepts and 326 non-transitive subonept re-lations. Out of the 9.988 statially delared routines, only1.463 were atually exeuted by at least one of the 92 on-sidered senarios (the start-end senario is used to removethose routines from the pro�les of the other senarios thatare exeuted for initialization, reset, and shutdown of thesystem only).Although, the worst ase exeution time to ompute aonept lattie is exponential in the number of objets andattributes, our omputation of the onept lattie for the�rmware took less than 2 minutes on an Intel Pentium III800 MHz mahine running Linux.Another developer at Agilent (di�erent from the soft-ware arhitet who skethed the �rmware arhiteture) wasasked to validate the resulting onept lattie. To make alear distintion between this validating expert and the ex-pert who skethed the �rmware arhiteture, the formerwill be alled developer and the latter software arhi-tet in the following.The developer was familiar with the �rmware but wasnot involved in the preparation of the test ases. We ex-plained the test ases that were seleted and the interpre-tation of the onept lattie as desribed in this paper.We did not show the arhiteture sketh from the soft-ware arhitet. We asked the developer to explain the gen-eral struture of the system with the onept lattie andwhether there are any surprises in the lattie.The developer immediately spotted in the 65 diret sub-onepts of the top element|that is, onepts in the �rstrow below the top element of the lattie|the individual ex-eutors for 65 ommands (inluding the exeutor for NOP).

19

Fig. 20. The lattie for all ommands. The boxes' height orresponds to the number of routines in the onepts.(The top element itself does not ontain any senario.)Among these 65 onepts, 63 ontain a single senario andtwo ontain two senarios. The ones with two senarios arethe two di�erent parameter settings for the SDSC ommandand the orresponding query ommand (f. Set. V-B.3).Consequently, the implementation of the SDSC ommandexeutes the same routines independently from the param-eter that refers to timing or level setup, respetively. Thus,65 exeutors ould immediately be deteted in the lattie.Based on these observations, we ould easily map the on-ept lattie in Fig. 24 to the arhiteture sketh of Fig. 18.The other 12 real senarios an be found in suboneptsof the above mentioned 65 onepts. The reason why thesesenarios annot be found diretly below the top elementis that they represent ommands that are also needed aspreparing steps for other ommands. For instane, beforethe ommands PSLV and UDPS an be alled, one must allDFPS. The senarios for PLSV and UDPS are onsequentlyfDFPS, PLSVg and fDFPS,UDPSg, respetively. The senariothat ontains DFPS only will therefore be part of the oneptthat is the ommon in�mum of the senarios for PLSV andUDPS sine fDFPSg = fDFPS,PLSVg\ fDFPS,UDPSg. By rep-resenting test ases (senarios) as sets of ommands (fea-tures) and isolating ommands through interseting testases as desribed in Setion IV-D.4, we ould easily iden-tify the exeutors for the remaining 12 ommands whosetest ase is not diretly loated below the top element.As desribed above, the �rmware ommands an be at-egorized in di�erent lasses (Con�guration Setup, RelayControl, Level Setup, Timing Setup, and Vetor Setupommand). In order to visualize the jointly used routinesby exeutors for ommands of the same lass, we oloredthe onept lattie as follows:1. Eah onept representing an exeutor in the lattie getsthe olor of the exeutor's lass; the olored onept is thestarting node for the traversal in the next step.2. By top-down traversal starting at the olored onept,the olor of the respetive exeutor is propagated to allsubonepts of the exeutor's onept (until a di�erent ex-

eutor is reahed).The olored onept lattie for Agilent's �rmware givesinteresting insights. All onepts diretly below the top el-ement in Fig. 24 have just one olor beause these oneptsatually represent just one exeutor of a given ommand. Ifa onept, , has more than one olor, the routines, ui, forwhih (ui) = holds ontribute to ommands of di�erentlasses. As a matter of fat, there were only few oneptsabove the bottom element with di�erent olors showingthat there is substantial sharing of routines among exeu-tors of the same lass of ommands. The utility routinesin onepts having only one olor seem to be spei� tojust a single lass of ommands. In other words, either aroutine is spei� to a lass of ommands or it is used forall ommand lasses in general.The dynami analysis in onjuntion with onept analy-sis thus has given important insight into the internal stru-ture of the blak box labeled "utility routines" in Fig. 18:534 routines (out of 1.463 routines exeuted for at leastone test ase and 9.988 statially delared routines, respe-tively) ould be related to the exeutors, that is, are notspei�ally attahed to the bottom element.There are also exeutors for ommands of the same lassthat share only the most general routines in the bottomelement, that is, those routines exeuted for all exeutors.The most remarkable example are the exeutors for theon�guration setup of single pins on one hand and those forthe on�guration setup of whole pin groups. While the ex-eutors for single pins share many routines spei� to theirlass, the exeutors for pin groups (whih also belong to thesame lass Con�guration Setup) do not share any routinebeyond those in the bottom element, neither with exeutorsfor single pins nor with other exeutors for pin groups. Ourhypothesis was that there are many routines jointly usedby on�guration setup ommands for pin groups similarlyto ommands for single pins. The developer reviewing theonept lattie explained that maros are heavily used forroutine inlining in the subsystem implementing pin groupon�guration. Aording to the developer, this subsystem

20is an older part of the system. Apparently, at its initialdevelopment, no ompiler with automati routine inliningwas available. The use of maros undermines our way toollet dynami information. The pro�ler we used reordsonly routine alls and, hene, annot reveal ode sharingamong these pin group ommands.Generally, the onepts just below the top element on-tain only one routine. Some ontain more than one rou-tines but less than �ve. In these ases, a programmer ap-parently has split a large exeutor into smaller piees forbetter modularization. There is one onept just belowthe top element that ontains a very large number of rou-tines. This onept represents the test exeution. Thedeveloper explained that the routines spei�ally attahedto this onept are strongly related but ould have beenfurther grouped if more senarios for test exeution wouldhave been provided.The developer also looked at another very large oneptloated in the middle of the onept lattie. By looking atthe routines spei�ally attahed to this onept, he told usthat about 70% of these routines deal with memory man-agement. Hene, this onept olleted a large number ofsemantially related routines.There are 929 routines spei�ally attahed to the bot-tom element, that is, routines that are used for all senar-ios. For these routines, either the seletion of test asesfailed to further struture this set of routines or the rou-tines are neessarily required for all possible usage senar-ios, in whih ase other tehniques are needed to groupthese routines semantially. Sine our goal was to identifythe exeutors and the routines shared by the exeutors,we did not further investigate the routines in the bottomelement.B.5 Inferring Categorization from Conept LattiePrior to our analysis, the software arhitet seleted�rmware ommands that were to be investigated. He alsoategorized the ommands as desribed in Setion V-B.3.As it turned out during our analysis of the onept lattie,the ategorization was inomplete. The software arhitetategorized only the ommands listed in Fig. 21. Addi-tionally, he prepared senarios that explored the ommandslisted in Fig. 22. The inomplete ategorization gave us theopportunity to hek whether it would be possible to at-egorize ommands into the above lasses just on the basisof the onept lattie without any knowledge of the systemand the appliation domain.One of the authors of this artile guessed the ategoriesbased on the onept lattie only|more preisely, based onthe sharing of utility routines with other already lassi�edommands. The assumption was that a ommand belongsto the lass of ommands with whih it shares most utilityroutines. Altogether 7 out of 12 ommands were atuallyassigned to one of these lasses based on this assumption.For the remaining ommands, the lattie did not provideunambiguous information.We used two orales to validate these guesses. Firstlywe asked the developer to lassify these ommands and

Con�guration SetupCNTR, CNTR?, CONF, CONF?UDEF, UDPS, UDGPDPFN, DFPN?, DFPS, DFPS?DFGP, DFGP?, DFGE, DFGE?PALS, PALS?, PSTE, PSTE?PSFC, PSFC?, PQFC, PQFC?PACT, PACT?Relay Control (Test Exeution)RLYC, RLYC?Level Setup CommandsLSUS, LSUS?, DRLV, DRLV?RCLV, RCLV?, TERM, TERM?Timing Setup CommandsPCLK, PCLK?, DCDF, DCDF?WFDF, WFDF?, WAVE, WAVE?ETIM, ETIM?, BWDF, BWDF?Vetor Setup CommandsSQLA, SQLB, SQLB?, SQPG, SQPG?SPRM, SPRM?, SQSL, SQSL?Fig. 21. Categorization of ommands as found by the software ar-hitet. UnategorizedFTST, VBMP, PSLV, CLMPWSDM, DCDT, CLKR, VECCSDSC, SREC, DMAS, STMLFig. 22. Commands not ategorized by the software arhitet.Guess Developer ManualRelay Control (Test Exeution)FTSTLevel Setup CommandsPSLV PSLV PSLVCLMP CLMPFTST VBMP VBMPTiming Setup CommandsDCDT DCDTCLKR CLKR CLKRWSDMVetor Setup CommandsVECC VECC VECCDMAS DMASSRECOthers/MultipleSDSC SDSC SDSCDMASSTML STML STMLSREC SRECVBMP DCDTWSDM WSDMFTSTCLMPFig. 23. Comparison with orales.

21seondly we heked the user manual for the �rmware. Theomparison of the guesses with the two orales is shown inFig. 23.Interestingly enough, the lassi�ation given in the man-ual is also inomplete. Two of the used ommands, namely,CLMP and STML, are not desribed in the manual. Moreover,the ommand FTST does not really belong to the targetedlasses of ommands aording to the manual; it was addedby the software arhitet beause it is the starting om-mand for the atual test exeution. SDSC and WSDM areommands that annot be assigned to one lass of om-mand only but rather ontain aspets of di�erent lasses.As an be seen in Fig. 23, the lassi�ation of the devel-oper is also inomplete sine he did not know all �rmwareommands. There are more than 250 ommands, notounting the orresponding query ommands. The las-si�ation of the developer is in aordane with the usermanual exept for CLMP, whih is not desribed in the man-ual.If we ompare the lattie-based guesses with the orale,we �nd that the author was truly wrong only one, namely,for ommand FTST. In ase of ommand WSDM, he assigneda ommand to one lass of two equally possible lasses.It was interesting to see that many ommands ould beassigned orretly simply based on the lattie without anyknowledge of the appliation domain and implementationof the system.B.6 Lessons LearntIn the beginning of our ase study, we explained the ba-si interpretation of the onept lattie to the developerwithout going into the formal mathematial details. Thedeveloper learnt how to read the onept lattie surpris-ingly quikly in less than 10 minutes, whih suggests thatthe tehnique an easily be adopted by pratitioners.The developer on�rmed that the tehnique ould be use-ful for maintenane programmers who are less familiar withthe system in order to quikly identify the exeutors. Sinethere was a naming onvention for exeutors in plae, loat-ing the exeutors ould have been done with textual searhtools, suh as grep, more easily, he noted. The developeralso on�rmed the general approah for the stati analysisone the exeutors have been loated: If he is to modifya ommand, he also traverses the dependeny graph. Forlak of more sophistiated tools, he is using simple tools,suh as the Unix tool tags, to get the neessary ross-referene information. However, the developer agreed thatit would have been very diÆult for him|using suh sim-ple tools|to identify the �rmware ommands to whih agiven routine ontributes. Suh kind of information wouldhelp him in the impat analysis of hanges. Moreover, itwould also have been very diÆult for him to identify thesharing of utility routines among exeutors.This ase study also revealed some diÆulties with theproposed tehnique. For instane, due to the use of inliningof routines by way of maros, the pro�ler ould not identifythe ode sharing of ommands for pin groups. For suhinlining, a stati analysis is neessary. In order to identify

this kind of ode sharing, one ould try to identify jointuses of maros in the non-preproessed ode or dupliatedode in the preproessed ode by way of lone detetiontehniques.Another diÆulty that had to be takled in this asestudy is the problem of handling parameterized senarios,that is, senarios that are alike exept for values of ertainparameters. For instane, most ommands of the �rmwarehave options. The options, of ourse, inuene the behaviorof the system. The same ommand may exeute di�erentroutines for di�erent options. This problem is equivalent tothe input overage problem of testing software in general.Analogously, the test ases for the Agilent ase study werede�ned so as to over equivalene lasses of possible param-eter values. The �rmware ommands were then alled withdi�erent ombinations of representative values of equiva-lent parameter settings. However, full overage of all possi-ble ombinations would exeed all available resoures, andthere is no guarantee that the software atually behavesequivalently for all apparently equivalent input values.Due to the dynami analysis, only about 15% of the al-most 10,000 routines were present in the formal ontext foronept lattie. Likewise, the number of senarios was re-alisti, yet trimmed to only the digital part of the system.Nevertheless, the onept lattie for the �rmware of theAgilent 93000 hip tester|ontaining 165 onepts|wasrelatively large and omplex. Suh large onept lattiesare a hallenge for visualization. Not so muh with re-gard to the time to produe a visualization but with thereading and understanding of suh a large graph. We usedGraphViz by AT&T [30℄ to layout the graph automati-ally in virtually no time. Also, the resulting layout wasaeptable|at any rate, muh better than we ould havedrawn the graph. However, we would have liked to groupthe nodes of the graph semantially in terms of the lassesto whih the assoiated ommands belong beyond the aes-theti riterion of minimizing edge rossings. Moreover,the lattie was too large to be presented on a 21" sreen.For this reason, we used a print-out of the lattie with 19pages (DIN A4 format) for the disussion with the devel-oper, and even on this print-out, the names of routines andsenarios were hard to read.The experienes with size and omplexity of the �nal lat-tie in the Agilent ase study lead us to develop supportfor inremental onstrution and understanding of the on-ept lattie as desribed in Setion IV-F. The visual di�er-ene for onsidering senarios inrementally is illustratedby Fig. 24. Figure 24(a) ontains the onept lattie forall Timing Setup ommands. For the lattie in Fig. 24(b),all senarios for Vetor Setup have been added. When allsenarios for all lasses of ommands are added, the lattiein Fig. 20 is obtained.VI. Related ResearhThis setion disusses researh related to our work. Wedisuss work on several aspets that are of interest. First,we take a look at papers most losely related to our own ap-proah. Next, we summarize work that visualizes dynami

22

(a) Timing ommands. (b) Timing and vetor ommands.Fig. 24. Conept lattie for digital part of Agilent 93000 �rmware.and stati information in di�erent ways.Feature LoationWilde et al. [6℄, [31℄ pioneered in loating features takinga fully dynami approah. The goal of their Software Re-onnaissane is the support of maintenane programmerswhen they modify or extend the funtionality of a legaysystem.Based on the exeution of test ases for a partiular fea-ture f , several sets of omputational units are identi�ed:� omputational units ommonly involved (ode exeutedin all test ases, regardless of f),� omputational units potentially involved in f (ode exe-uted in at least one test ase that invokes f),� omputational units indispensably involved in f (odethat is exeuted in all test ases that invoke f , and� omputational units uniquely involved in f (ode exe-uted exatly in ases where f is invoked)Sine the primary goal is the loation of starting pointsfor further investigations, Wilde and Sully fous on loat-ing spei� omputational units rather than all requiredomputational units. The approah deals with one featureat a time and gives little insight into onnetions betweensets of related features. If a set of related features is tobe onsidered rather than a single feature, one ould re-peat the analysis invoking eah feature separately and thenunite the spei�ally required omputational units. Eventhen the relationships among groups of features annot bereognized.Another approah based on dynami information istaken by Wong and olleagues [32℄. They analyze exeu-tion slies (orresponds to our exeution pro�les) of testases implementing a partiular funtionality. The proessis as follows:

1. The invoking input set I (i.e., a set of test ases or|inour terminology|a set of senarios) is identi�ed that willinvoke a feature.2. The exluding input set E is identi�ed that will not in-voke a feature.3. The program is exeuted twie using I and E separately.4. By omparison of the two resulting exeution slies, theomputational units an be identi�ed that implement thefeature.For deriving all required omputational units, the exe-ution slie for the inluding input set is suÆient. Bysubtrating all omputational units in the exeution sliefor the exluding input set from those in the exeution sliefor the invoking input set, only those omputational unitsremain that spei�ally deal with the feature. This infor-mation alone is not suÆient to identify the interfae andthe onstituents of a omponent in the soure ode, butthose omputational units are at least a starting point fora more detailed stati analysis. Again, interdependeniesbetween features are not revealed easily.In [33℄, Wong et al. present a way for quanti�ation offeatures. Metris are provided to ompute the dediationof omputational units to features, the onentration offeatures in omputational units, and the disparity betweenfeatures. This work omplements their earlier researh andan be used as a re�nement for Wilde's tehnique.Chen and Rajlih [34℄ propose a semi-automati methodfor feature loation, in whih the programmer browsesthe statially derived abstrat system dependeny graph(ASDG). The ASDG desribes detailed dependeniesamong routines, types, and variables at the level of globaldelarations. The navigation on the ASDG is omputer-aided and the programmer takes on all the searh for afeature's implementation. The method takes advantage of

23the programmer's experiene with the analyzed software.It is less suited to loate features if programmers withoutany pre-knowledge do not know where to start the searh.The ASDG's quality is essential for the method. Ifthe ASDG inludes overoptimisti assumptions on fun-tion pointers, the programmer may miss routines alled viafuntion pointers. If it reets too onservative assump-tions, the searh spae inreases drastially. It is statiallyundeidable whih ontrol ow paths are taken at runtime,so that every onservative stati analysis will yield an over-estimated searh spae. In ontrast, dynami analyses ex-atly reveal whih parts are atually used at runtime|although only for a partiular run. Insights from dynamianalyses are only valid for the input data used and theenvironment in whih the system was run.Reently, Wilde and Rajlih ompared their ap-proahes [35℄. In the presented ase study, both tehniqueswere e�etive in loating features. The Software Reon-naissane showed to be more suited to large infrequentlyhanged programs, whereas Rajlih's method is more ef-fetive if further hanges are likely and require deep andmore omplete understanding.Visualization of Objet-Oriented SystemsDe Pauw and olleagues [36℄, [37℄, [38℄ provide a gen-eral model for the visualization of the exeution of objet-oriented systems. Their language and platform indepen-dent approah visualizes dynami information about theruntime behavior by means of message sequene harts andhart-like views for summary information.Program Explorer [24℄, [25℄ by Lange and Nakamura isa tool for understanding C++ programs by means of vi-sualization. Both stati and dynami information is ex-trated and ombined for the presentation of an objet-oriented system. The stati information derived from thesoure (like lass hierarhy and strutural data) is stored ina program database. The dynami information omprisesmethod invoation, objet longevity, and variable aessesand is gained o�-line from exeution traes. Program Ex-plorer o�ers seletive instrumentation of the soure, requir-ing the user to have a ertain knowledge about the sys-tem. To ope with the amount of information, the useran further merge, prune, or slie results of analyses to re-move undesired information. The dynami information isoupled with the stati information yielding lass-to-objetand objet-to-lass lari�ation. Program Explorer is notuseful for global understanding, the user must have knowl-edge about the system and then fous on relevant parts.The approah is lass and objet entered and does noto�er other levels of abstration.Koskimies and M�ossenb�ok developed Sene [23℄, a toolfor visualizing objet-oriented systems written in the pro-gramming language Oberon. Sene uses senario diagramsfor visualizing the message ow between objets in terms ofmethod invoations. The senario diagrams are generatedfrom event traes and linked to other soures of informa-tion.Jerding and olleagues [39℄, [40℄ fous on the interations

between program omponents at runtime. They observedthat reurring interation pattern an be used in the ab-stration proess for program understanding. The authorsdeveloped a pattern identi�ation algorithm and struturethe dynami information by using identi�ed patterns. Thework primarily aims at objet-oriented systems but alsoseems appliable for proedural programming paradigms.Jerding and Rugaber present the tool ISVis [40℄ to supportarhitetural loalization and extration. They use bothstati and dynami information to extrat omponents andonnetors. The omponents are spei�ed by the analyst(using traditional stati analyses) whereas the onnetorsare reognized from atual exeution traes. These exe-ution traes are then analyzed with the aforementionedmethods. The dynami information is visualized as a vari-ant of message sequene harts; the user has the ability torestrit the instrumentation to spei� �les of the system.Syst�a [41℄ fouses on reverse engineering Java legay sys-tems. She disusses the ombination of stati and dy-nami information when reengineering a Java environment.Rigi [28℄ is used to extrat the stati information from lass�les and to onnet the dynami information (representedas state diagrams) gained through program runs.Visualization and AbstrationAnother e�ort to ombine dynami and stati informa-tion about objet-oriented systems is taken by Rihner andDuasse [42℄. They o�er a query-based approah where thefats about the legay system are modeled in terms of log-ial fats. The queries produe di�erent views of the soft-ware (at di�erent levels of abstration) and help to restritthe amount of data generated. There is no informationexhange between the views.Se�ka and olleagues [43℄ visualize statis and dynamisof an objet-oriented system in terms of its arhiteturalabstrations. The ode instrumentation is light-weight andarhiteture-aware. It provides eÆient on-line instrumen-tation to support arhiteture-guided queries. The arhi-tetural abstration are taken as a basis for the visualiza-tion. Similarly, Walker and olleagues [44℄ aim at visual-ization of dynami information on a higher level of abstra-tion. They use program animation tehniques for programunderstanding.Most reently, Robbillard and Murphy [45℄ address theproblem of rossutting onerns in objet-oriented sys-tems. They propose the usage of Conern Graphs thatabstrat implementation details of onerns and expliitlyshow relationships between parts of the onerns. The ex-tration of onern graphs from a given legay system ouldbene�t from dynami feature-loation tehniques.Conept AnalysisPrimarily Snelting has reently introdued onept anal-ysis to software engineering. Sine then it has been usedto evaluate lass hierarhies [46℄, explore on�gurationstrutures of preproessor statements [47℄, [48℄, for re-doumentation [49℄, and to reover omponents [50℄{[56℄.

24All of that researh utilizes stati information derived fromsoure ode.A tehnique similar to ours is taken by Ball [57℄. He de-sribes how to use onept analysis for the dynami analysisof test sets. The soure ode is instrumented and pro�leinformation is gathered. The results of onept analysis onthe data are used to provide an intermediate point betweenentity-based and path-based overage riteria.SummaryAll the researhers using program traes fae the sameproblem: the huge amount of data that is produed bythe exeution. The problem is takled by removing unde-sired information|either by instrumenting only parts ofthe system or by providing �ltering mehanisms (patternsor stati information) on the stored traes.The amount of information gained by pro�ling ratherthan traing is muh smaller (and less preise), and antherefore be handled more eÆiently. Even pro�ling on amore �ne grained level than routines or methods (e.g., basibloks) leads to omprehensible results. For our primarygoals, the sequenes of operations was not ruial and anat least in parts be regained from stati information. Thefrequeny of invoations does not play a major role by now,but we believe that suh information ould be exploited infuture researh. VII. ConlusionsThe tehnique presented in this paper identi�es ompu-tational units spei� to a set of related features using ex-eution pro�les for di�erent usage senarios. At �rst, on-ept analysis|a mathematially sound tehnique to an-alyze binary relations|allows loating the most feature-spei� omputational units among all exeuted omputa-tional units. Then, a stati analysis uses these feature-spei� omputational units to identify additional feature-spei� omputational units along the dependeny graph.The ombination of dynami and stati information re-dues the searh spae drastially.The value of our tehnique has been demonstrated byseveral ase studies. In one ase study, analyzing twoweb browsers, we ould reover a partial desription of thesoftware arhiteture with respet to a spei� set of re-lated features. Commonalities and variabilities betweenthese partial arhitetures ould be reovered quikly. Al-together, we found in two experiments with two systems 16and 6, respetively, feature-spei� routines out of 701 rou-tines for Mosai and 3 and 24, respetively, out of 928 forChimera. Only very few routines needed to be inspetedmanually.The seond ase study was performed on a 1.2 millionLOC prodution system. The experienes we made duringthat ase study showed two problems of our approah: thegrowing omplexity of onept latties for large systemswith many features and the need for handling ompositionsof features.In this paper, we extended our tehnique to solve theseproblems. We showed how the method allows inremen-

tally exploring features while preserving the \mental map"the analyst has gained through the analysis.The seond improvement desribed in this paper is a de-tailed look at omposing features into more omplex se-narios. Rather than assuming a one-to-one orrespondenebetween features and senarios as in earlier work, we annow handle senarios that invoke many features.Further, the implementation of our approah is simple.For onept analysis we used the tool onepts [58℄. Forvisualization we used our graphial Bauhaus front end [26℄.Layouts are generated by GraphViz [30℄. The glue ode iswritten in Perl, for ompiling and pro�ling we used g andgprof. AknowledgmentsWe would like to thank Gerd Bleher and Jens Elmen-thaler (both at Agilent Tehnologies) for their support inthe Agilent ase study. We also like to thank Tahir Karaa,Markus Knauss, and Stefan Opferkuh (all students at theUniversity of Stuttgart) for preparing the test ases in theAgilent ase study. Referenes[1℄ Meir M. Lehman, \Programs, Life Cyles and the Laws of Soft-ware Evolution," Proeedings of the IEEE, Speial Issue onSoftware Evolution, vol. 68, no. 9, pp. 1060{1076, Sept. 1980.[2℄ Rainer Koshke, Atomi Arhitetural Component Reovery forProgram Understanding and Evolution, Dissertation, Univer-sit�at Stuttgart, Germany, 2000.[3℄ Thomas Eisenbarth, Rainer Koshke, and Daniel Simon,\Derivation of Feature-Component Maps by Means of Con-ept Analysis," in Proeedings of the 5th European Confereneon Software Maintenane and Reengineering, Lisbon, Portugal,Mar. 2001, pp. 176{179, IEEE Computer Soiety Press.[4℄ \The XFIG drawing tool, Version 3.2.3d," Available at http://www.xfig.org/, 2001.[5℄ James Rumbaugh, Ivar Jaobson, and Grady Booh, The Uni-�ed Modeling Language Referene Manual, Addison-Wesley,1999.[6℄ Norman Wilde and Mihael C. Sully, \Software Reonnais-sane: Mapping Program Features to Code," Journal of Soft-ware Maintenane: Researh and Pratie, vol. 7, pp. 49{62,Jan. 1995.[7℄ Susan Horwitz, Thomas Reps, and David Binkley, \Interproe-dural Sliing Using Dependene Graphs," ACM Transations onProgramming Languages and Systems, vol. 12, no. 1, pp. 26{60,Jan. 1990.[8℄ �Arp�ad Besz�edes, Tam�as Gergely, Zsolt Mih�aly Szab�o, J�anosCsirik, and Tibor Gyim�othy, \Dynami sliing method for main-tenane of large C programs," in Proeedings of the 5th EuropeanConferene on Software Maintenane and Reengineering. Mar.2001, pp. 105{113, IEEE Computer Soiety Press.[9℄ Lars Ole Andersen, Program Analysis and Speialization for theC Programming Language, Ph.D. thesis, DIKU, University ofCopenhagen, Danmark, 1994.[10℄ Guiliano Antoniol, F. Calzolari, and Paolo Tonella, \Impat ofFuntion Pointers on the Call Graph," in Proeedings of the Eu-ropean Conferene on Software Maintenane and Reengineering,Amsterdam, Netherlands, Mar. 1999, pp. 51{59.[11℄ Ben-Chung Cheng and Wen-Mei W. Hwu, \Modular interproe-dural pointer analysis using aess paths," in Proeedings of theConferene on Programming Language Design and Implemen-tation, Vanouver, BC, Canada, 2000, pp. 57{69.[12℄ Manuvir Das, \Uni�ation-based Pointer Analysis with Dire-tional Assignments," in Proeedings of the Conferene on Pro-gramming Language Design and Implementation, Vanouver,BC, Canada, 2000, pp. 35{46.[13℄ Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren,\Context-Sensitive Interproedural Points-to Analysis in the

25Presene of Funtion Pointers," in Proeedings of the Confer-ene on Programming Language Design and Implementation,Orlando, FL, USA, 1994, pp. 242{257.[14℄ Robert P. Wilson and Monia S. Lam, \EÆient ontext-sensitive pointer analysis for programs," in Proeedings ofthe Conferene on Programming Language Design and Imple-mentation, La Jolla, CA, USA, 1995, pp. 1{12.[15℄ Sean Zhang, Barbara G. Ryder, and William Landi, \Programdeompositon for pointer aliasing: A step towards pratial analy-ses," in Symposium on the Foundations of Software Engineering,1996, pp. 81{92.[16℄ Bjarne Steensgaard, \Points-To Analysis in almost linear time,"in Symposium on Priniples of Programming Languages, St. Pe-tersburg Beah, FL, USA, Jan. 1996, pp. 32{41.[17℄ Amer Diwan, Kathryn MKinley, and Eliot Moss, \Using typesto analyze and optimize objet-oriented programs," Program-ming Languages and Systems, vol. 23, no. 1, pp. 30{72, 2001.[18℄ Atanas Rountev, Ana Milanova, and Barbara G. Ryder, \Points-To Analysis for Java using Annotated Constraints," in Pro-eedings of the Conferene on Objet Oriented ProgrammingSystems, Languages, and Appliations, Tampa, FL, USA, Ot.2001, pp. 43{55.[19℄ Ana Milanova, Atanas Rountev, and Barbara G. Ryder, \PreiseCall Graph Constrution in the Presene of Funtion Pointers,"in Proeedings of the 2nd International Workshop on SoureCode Analysis and Manipulation, Montreal, Canada, Ot. 2002,IEEE Computer Soiety Press.[20℄ Garret Birkho�, Lattie Theory, Amerian Mathematial So-iety Colloquium Publiations 25, Providene, RI, USA, �rstedition, 1940.[21℄ Bernhard Ganter and Rudolf Wille, Formal Conept Analysis|Mathematial Foundations, Springer, 1999.[22℄ \IDEF0," Available at http://www.idef.om/idef0.html, De.1993.[23℄ Kai Koskimies and Hanspeter M�ossenb�ok, \Senario-BasedBrowsing of Objet-Oriented Systems with Sene," Report 4,Johannes Kepler Universit�at Linz, Austria, Aug. 1995.[24℄ Danny B. Lange and Yuihi Nakamura, \Program Explorer: AProgram Visualizer for C++," in Proeedings of the USENIXConferene on Objet-Oriented Tehnologies, Monterey, CA,USA, June 1995.[25℄ Danny B. Lange and Yuihi Nakamura, \Objet-Oriented Pro-gram Traing and Visualization," Computer, vol. 30, no. 5, pp.63{70, May 1997.[26℄ \The New Bauhaus Stuttgart," Available at http://www.bauhaus-stuttgart.de/, 2002.[27℄ Rainer Koshke, Jean-Fran�ois Girard, and Martin W�urthner,\An Intermediate Representation for Reverse Engineering Anal-yses," in Proeedings of the 5th Working Conferene on ReverseEngineering, Honolulu, HI, USA, Ot. 1998, pp. 241{250, IEEEComputer Soiety Press.[28℄ \Rigi|a visual tool for understanding legay systems," Avail-able at http://www.rigi.s.uvi.a/, 2002.[29℄ David Garlan, Robert Allen, and John Okerbloom, \Arhi-tetural Mismath or Why It's Hard to Build Systems Out OfExisting Parts," in Proeedings of the 17th International Con-ferene on Software Engineering, Seattle, WA, USA, Apr. 1995,pp. 179{185, ACM Press.[30℄ AT&T Labs-Researh, \GraphViz | Open Soure Graph Draw-ing Software," Available at http://www.researh.att.om/sw/tools/graphviz/, 2002.[31℄ Norman Wilde, Juan A. Gomez, Thomas Gust, and DouglasStrasburg, \Loating User Funtionality in Old Code," in Pro-eedings of the International Conferene on Software Mainte-nane, Orlando, FL, USA, Nov. 1992, pp. 200{205, IEEE Com-puter Soiety Press.[32℄ W. Eri Wong, Swapna S. Gokhale, Joseph R. Horgan, andKishor S. Trivedi, \Loating Program Features using Exe-ution Slies," in Proeedings of the IEEE Symposium onAppliation-Spei� Systems and Software Engineering & Teh-nology, Rihardson, TX, USA, Mar. 1999, pp. 194{203, IEEEComputer Soiety Press.[33℄ W. Eri Wong, Swapna S. Gokhale, and Joseph R. Hogan,\Quantifying the Closeness between Program Components andFeatures," The Journal of Systems and Software, vol. 54, no. 2,pp. 87{98, Ot. 2000.[34℄ Kunrong Chen and V�alav Rajlih, \Case Study of FeatureLoation Using Dependene Graph," in Proeedings of the 8th

International Workshop on Program Comprehension, Limerik,Ireland, June 2000, pp. 241{249, IEEE Computer Soiety Press.[35℄ NormanWilde, Mihelle Bukellew, Henry Page, and V�alav Ra-jlih, \A Case Study of Feature Loation in Unstrutured LegayFortran Code," in Proeedings of the 5th European Confereneon Software Maintenane and Reengineering, Lisbon, Portugal,Mar. 2001, pp. 68{75, IEEE Computer Soiety Press.[36℄ Wim de Pauw, Rihard Helm, Doug Kimelman, and John Vlis-sisdes, \Visualizing the Behavior of Objet-Orient Systems," inProeedings of the Conferene on Objet Oriented ProgrammingSystems, Languages, and Appliations, Washington, DC, USA,Sept. 1993, pp. 326{337, ACM Press.[37℄ Wim de Pauw, Doug Kimelman, and John Vlissides, \Mod-eling Objet-Oriented Program Exeution," in Proeedings ofthe 8th European Conferene on Objet-Oriented Programming,Bologna, Italy, July 1994, vol. 821 of Leture Notes in ComputerSiene, pp. 163{182, Springer.[38℄ Wim de Pauw, David Lorenz, John Vlissides, and Mark Weg-man, \Exeution Patterns in Objet-Oriented Visualization," inProeedings of the 4th USENIX Conferene on Objet-OrientedTehnology and Systems, Santa Fe, NM, USA, 1998, pp. 219{234.[39℄ Dean F. Jerding, John T. Stasko, and Thomas Ball, \VisualizingInterations in Program Exeutions," in Proeedings of the 19thInternational Conferene on Software Engineering, Boston, MA,USA, May 1997, pp. 360{370, ACM Press.[40℄ Dean F. Jerding and Spener Rugaber, \Using Visualization forArhitetural Loalization and Extration," Siene of Com-puter Programming, vol. 36, no. 2{3, pp. 267{284, Mar. 2000.[41℄ Tarja Syst�a, \On the Relationships between Stati and DynamiModels in Reverse Engineering Java Software," in Proeedings ofthe 6th Working Conferene on Reverse Engineering, Atlanta,GA, USA, Ot. 1999, pp. 304{313.[42℄ Tamar Rihner and St�ephane Duasse, \Reovering High-LevelViews of Objet-Oriented Appliations from Stati and DynamiInformation," in Proeedings of the International Conferene onSoftware Maintenane, Oxford, England, UK, Aug. 1999, pp.13{22, IEEE Computer Soiety Press.[43℄ Hohlale� Se�ka, Aamod Sane, and Roy Campbell,\Arhiteture-Oriented Visualization," in Proeedings ofthe Conferene on Objet Oriented Programming Systems,Languages, and Appliations, San Jose, CA, USA, Ot. 1995,pp. 389{405, ACM Press.[44℄ Robert J. Walker, Gail C. Murphy, Bj�rn N. Freeman-Benson,Darin Wright, Darin Swanson, and Jeremy Isaak, \Visualiz-ing Dynami Software System Information Through High-LevelModels," in Proeedings of the Conferene on Objet OrientedProgramming Systems, Languages, and Appliations, Vanou-ver, BC, Canada, 1998, pp. 271{283.[45℄ Martin P. Robillard and Gail C. Murphy, \Conern Graphs:Finding and Desribing Conerns Using Strutural Program De-pendenies," in Proeedings of the 24th International Confer-ene on Software Engineering, Orlando, FL, USA, May 2002.[46℄ Gregor Snelting and Frank Tip, \Reengineering Class Hierar-hies using Conept Analysis," in Proeedings of the 6th SIG-SOFT Symposium on Foundations of Software Engineering, Or-lando, FL, USA, Nov. 1998, pp. 99{110, ACM Press.[47℄ Maren Krone and Gregor Snelting, \On The Inferene of Con-�guration Strutures from Soure Code," in Proeedings of the16th International Conferene on Software Engineering, Sor-rento, Italy, May 1994, pp. 49{58, IEEE Computer Soiety Press.[48℄ Gregor Snelting, \Reengineering of Con�gurations Based onMathematial Conept Analysis," ACM Transations on Soft-ware Engineering and Methodology, vol. 5, no. 2, pp. 146{189,Apr. 1996.[49℄ Tobias Kuipers and Leon Moonen, \Types and Conept Analysisfor Legay Systems," in Proeedings of the 8th InternationalWorkshop on Program Comprehension. June 2000, pp. 221{230,IEEE Computer Soiety Press.[50℄ Gerardo Canfora, Aniello Cimitile, Andrea De Luia, andGuiseppe A. Di Lua, \A Case Study of Applying an EletiApproah to Identify Objets in Code," in Proeedings of the7th International Workshop on Program Comprehension, Pitts-burgh, PA, USA, May 1999, pp. 136{143, IEEE Computer So-iety Press.[51℄ Holger Graudejus, \Implementing a Conept Analysis Tool forIdentifying Abstrat Data Types in C Code," Diplomarbeit,Universit�at Kaiserslautern, Germany, 1998.

26[52℄ Christian Lindig and Gregor Snelting, \Assessing ModularStruture of Legay Code Based on Mathematial Conept Anal-ysis," in Proeedings of the 19th International Conferene onSoftware Engineering, Boston, MA, USA, May 1997, pp. 349{359, IEEE Computer Soiety Press and ACM Press.[53℄ Hourai Sahraoui, Wal�elio Melo, Hakim Lounis, and Fran�oisDumont, \Applying Conept Formation Methods to ObjetIdenti�ation in Proedural Code," in Proeedings of the Inter-national Conferene on Automated Software Engineering, LakeTahoe, CA, USA, Nov. 1997, pp. 210{218, IEEE Computer So-iety Press.[54℄ Mihael Si� and Thomas Reps, \Identifying Modules via Con-ept Analysis," in Proeedings of the International Confereneon Software Maintenane, Bari, Italy, Ot. 1997, pp. 170{179,IEEE Computer Soiety Press.[55℄ Arie van Deursen and Tobias Kuipers, \Identifying Objets us-ing Cluster and Conept Analysis," in Proeedings of the 21stInternational Conferene on Software Engineering, Los Angeles,CA, USA, 1999, pp. 246{255, IEEE Computer Soiety Press.[56℄ Paolo Tonella, \Conept Analysis for Module Restruturing,"IEEE Computer Soiety Transations on Software Engineering,vol. 27, no. 4, pp. 351{363, Apr. 2001.[57℄ Thomas Ball, \The Conept of Dynami Analysis," ACM SIG-SOFT Software Engineering Notes, vol. 24, no. 6, pp. 216{234,Nov. 1999.[58℄ Christian Lindig, \Conepts 0.3e," Available at http://www.gaertner.de/~lindig/software/, 1999.Thomas Eisenbarth reeived his Diplomain omputer siene from the University ofStuttgart, Germany in 1998. Sine then, he isworking for his dissertation at the University ofStuttgart in the �eld of reverse engineering asa member of the Bauhaus [26℄ projet. His re-searh interest is in reengineering, reverse engi-neering, program understanding, and softwarearhiteture. He fouses reovery methods foronnetors from the soure ode.Rainer Koshke is a post-dotoral researherat the omputer siene department at the Uni-versity of Stuttgart. His researh interests areprimarily in the �elds of software engineeringand program analyses. His urrent researh in-ludes arhiteture reovery, feature loation,program analyses, and reverse engineering. Heteahes reengineering, ompilers, and program-ming language onepts. He holds a dotoraldegree in omputer siene from the Universityof Stuttgart, Germany.Daniel Simon reeived his Diploma in om-puter siene from the Saarland University atSaarbr�uken, Germany in 2000. Sine then, heis working for his dissertation at the Universityof Stuttgart in the �eld of reverse engineeringas a member of the Bauhaus [26℄ projet. Hisresearh interest are in the �eld of reverse en-gineering, program analysis, and program un-derstanding. He o-authored several paperson feature loation and software produt lines,whih is his urrent researh fous.

