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Abstract

We are building Coral, a peer-to-peer content distribu-
tion system. Coral creates self-organizing clusters of
nodes that fetch information from each other to avoid
communicating with more distant or heavily-loaded
servers. Coral indexes data, but does not store it. The
actual content resides where it is used, such as in nodes’
local web caches. Thus, replication happens exactly in
proportion to demand.

We present two novel mechanisms that let Coral
achieve scalability and high performance. First, a
new abstraction called adistributed sloppy hash table
(DSHT) lets nodes locate nearby copies of a file, re-
gardless of its popularity, without causing hot spots in
the indexing infrastructure. Second, based on the DSHT
interface, we introduce a decentralized clustering algo-
rithm by which nodes can find each other and form clus-
ters of varying network diameters.

1 Introduction

The academic community has implemented a number of
distributed hash tables (DHTs) as efficient, scalable, and
robust peer-to-peer infrastructures. However, we should
ask whether DHTs are well-suited for the desired ap-
plications of the wider Internet population. For exam-
ple, can DHTs be used to implement file-sharing, by
far the most popular peer-to-peer application? Or could
DHTs replace proprietary content distribution networks
(CDNs), such as Akamai, with a more democratic client
caching scheme that speeds up any web site and saves it
from flash crowds at no cost to the server operator?

Thus far, the answer to these questions is no. DHTs
fail to meet the needs of real peer-to-peer applications
for two main reasons.

DHTs provide the wrong abstraction. Suppose many
thousands of nodes store a popular music file or cache
CNN’s widely-accessed home page. How might a hash
table help others find the data? Using CNN’s URL as
a key, one might store a list of every node that has

the web page. Of course, any single node responsible
for such a URL-to-node-list mapping would quickly be
overloaded. DHTs typically replicate popular data, but
replication helps only with fetches, not stores. Any node
seeking a web page will likely also cache it. There-
fore, any URL-to-node-list mapping would be updated
almost as frequently as it is fetched.

An alternative approach, taken by CFS [2],
OceanStore [3], and PAST [8], is to store actual
content in the hash table. This approach wastes both
storage and bandwidth, as data must be stored at nodes
where it is not needed. Moreover, while users have
clearly proven willing to burn bandwidth by sharing
files they themselves are interested in, there is less
incentive to dedicate bandwidth to sharing unknown
data. Worse yet, storing content in a DHT requires large
amounts of data to be shifted around when nodes join
and leave the system, a common occurrence [9].

DHTs have poor locality. Though some DHTs make
an effort to route requests through nodes with low net-
work latency, the last few hops in any lookup request are
essentially random. Thus, a node might need to send a
query half way around the world to learn that its neigh-
bor is caching a particular web page. This is of partic-
ular concern for any peer-to-peer CDN, as the average
DHT node may have considerably worse network con-
nectivity than the web server itself.

This paper presents Coral, a peer-to-peer content dis-
tribution system we are building. Coral is based on a
new abstraction we call adistributed sloppy hash ta-
ble (DSHT). It is currently being built as a layer on the
Chord lookup service [12], although it is equally de-
signed to support Kademlia [5] or other existing sys-
tems [6, 7, 13]. Coral lets nodes locate and download
files from each other by name. Web caches can use it to
fetch static data from nearby peers. Users can employ it
directly to share directories of files. Coral’s two princi-
pal goals are to avoid hot spots and to find nearby data
without querying distant nodes.
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The DSHT abstraction is specifically suited to locat-
ing replicated resources. DSHTs sacrifice the consis-
tency of DHTs to support both frequent fetches and fre-
quent stores of the same hash table key. The fundamen-
tal observation is that a node doesn’t need to know every
replicated location of a resource—it only needs a single,
valid, nearby copy. Thus, a sloppy insert is akin to an
append in which a replica pointer appended to a “full”
node spills over to the previous node in the lookup path.
A sloppy retrieve only returns some randomized subset
of the pointers stored under a given key.

In order to restrict queries to nearby machines, each
Coral node is a member of several DSHTs, which we
call clusters, of increasing networkdiameter. The di-
ameter of a cluster is the maximum desired round-trip
time between any two nodes it contains. When data is
cached somewhere in a Coral cluster, any member of the
cluster can locate a copy without querying machines far-
ther away than the cluster’s diameter. Since nodes have
the same identifiers in all clusters, even when data is not
available in a low-diameter cluster, the routing informa-
tion returned by the lookup can be used to continue the
query in a larger-diameter cluster.

Note that some DHTs replicate data along the last
few hops of the lookup path, which increases the avail-
ability of popular data and improves performance in the
face of many readers. Unfortunately, even with locality-
optimized routing, the last few hops of a lookup are pre-
cisely the ones that can least be optimized. Thus, with-
out a clustering mechanism, even replication does not
avoid the need to query distant nodes. Perhaps more
importantly, when storing pointers in a DHT, nothing
guarantees that a node storing a pointer is near the node
pointed to. In contrast, this property follows naturally
from the use of clusters.

Coral’s challenge is to organize and manage these
clusters in a decentralized manner. As described in the
next section, the DSHT interfaceitself is well-suited for
locating and evaluating nearby clusters.

2 Design

This section first discusses Coral’s DSHT storage layer
and its lookup protocols. Second, it describes Coral’s
technique for forming and managing clusters.

2.1 A sloppy storage layer

A traditional DHT exposes two functions.
put(key , value) stores a value at the specifiedm-
bit key, andget(key) returns this stored value, just as

in a normal hash table. Only one value can be stored
under a key at any given time. DHTs assume that
these keys are uniformly distributed in order to balance
load among participating nodes. Additionally, DHTs
typically replicate popular key/value pairs after multiple
get requests for the samekey.

In order to determine where to insert or retrieve
a key, an underlying lookup protocol assigns each
node anm-bit nodeid identifier and supplies an RPC
find closer node(key). A node receiving such an RPC
returns, when possible, contact information for another
a node whosenodeid is closer to the target key. Some
systems [5] return a set of such nodes to improve per-
formance; for simplicity, we hereafter refer only to the
single node case. By iterating calls tofind closer node ,
we can map a key to some closest node, which in most
DHTs will require an expectedO(log n) RPCs. This
O(log n) number of RPCs is also reflected in nodes’
routing tables, and thus provides a rough estimate of to-
tal network size, which Coral exploits as described later.

DHTs are well-suited for keys with a single writer and
multiple readers. Unfortunately, file-sharing and web-
caching systems have multiple readersand writers. As
discussed in the introduction, a plain hash table is the
wrong abstraction for such applications.

A DSHT provides a similar interface to a DHT, except
that a key may have multiple values:put(key , value)
stores a value underkey , andget(key) need only return
some subset of the values stored. Each node stores only
some maximum number of values for a particular key.
When the number of values exceeds this maximum, they
are spread across multiple nodes. Thus multiple stores
on the same key will not overload any one node. In con-
trast, DHTs replicate the exact same data everywhere;
many people storing the same key will all contact the
same closest node, even while replicas are pushed back
out into the network from this overloaded node.

More concretely, Coral manages values as fol-
lows. When a node stores data locally, it inserts
a pointer to that data into the DSHT by executing
put(key ,nodeaddr). For example, the key in a distri-
buted web cache would behash(URL). The insert-
ing node callsfind closer node(key) until it locates
the first node whose list stored underkey is full, or it
reaches the node closest tokey. If this located node is
full, we backtrack one hop on the lookup path. This
target node appendsnodeaddr with a timestamp to the
(possibly new) list stored underkey. We expect records
to expire quickly enough to keep the fraction of stale
pointers below 50%.
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A get(key) operation traverses the identifier space
and, upon hitting a node storingkey , returns the
key’s corresponding contact list. Then, the requesting
node can contact these nodes, in parallel or in some
application-specific way, to download the stored data.

Coral’s “sloppy store” method inserts pointers along
the lookup path for popular keys. Its practice of
“spilling-over” when full helps to balance load while
inserting pointers, retrieving pointers, and downloading
data. Rapid membership changes remain inexpensive as
the system only exchanges pointers.

While sloppy stores eliminate hot spots, we still
must address the problem of latency. In particular,
find closer node(key) may circle the globe to find
some nearby host with the data. To take advantage of
data locality, Coral introduceshierarchical lookup.

2.2 A hierarchical lookup layer

Instead of one global lookup system as in [2, 3, 8], Coral
uses severallevels of DSHTs called clusters. Coral
nodes belong to one DSHT at each level; the current
implementation has a three-level DSHT hierarchy. The
goal is to establish many fast clusters with regional cov-
erage (we refer to such “low-level” clusters as level-2),
multiple clusters with continental coverage (referred to
as “higher” level-1 clusters), and one planet-wide clus-
ter (level-0). Reasonable round-trip time thresholds are
30 msec for level-2 clusters, 100 msec for level-1, and
∞ for the global level-0. Section 3 presents some exper-
imental measurements to support these choices. Each
cluster is named by anm-bit cluster identifier,cid i; the
globalcid0 is predefined as0m.

Coral uses this hierarchy for distance-optimized
lookup, visualized in Figure 1 for both the Chord [12]
and Kademlia [5] routing structures.

To insert a key/value pair, a node performs aput on
all levels of its clusters. This practice results in a loose
hierarchical data cache, whereby a higher-level cluster
contains nearly all data stored in the lower-level clusters
to which its members also belong.

To retrieve a key, a requesting noder first performs a
get on its level-2 cluster to try to take advantage of net-
work locality. find closer node on this level may hit
some node caching the key and halt (ahit). If not, the
lookup will reach the node in that cluster closest to the
target key, call itt2. r then continues its search in its
level-1 cluster. However,t2 has already returned rout-
ing information in the level-1 cluster. Thus,r begins
with the closest level-1 node int2’s routing table. Even
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Figure 1: Coral’s hierarchical lookup visualized on the Chord
(left) and Kademlia (right) routing structures. Nodesmain-
tain the same id in each of their clusters; smaller-diameter
low-level lusters are naturally sparser. For a lookup on keyk,
a node first searches on its lowest cluster. This lookup fails
on that level if the node closest tok, nodet2, does not store
the key. If this occurs, Coral continues its lookup on a higher-
level cluster, having already traversed the id space up tot2’s
prefix. Route RPCs are shown with sequential numbering.

if the search eventually switches to the global cluster,
Coral does not require any more RPCs than a single-
level lookup service, as a lookup always restarts where it
left off in the id space. Moreover, Coralguarantees that
all lookups at the beginning are fast. This functionality
arises naturally from a node having the samenodeid in
all DSHTs to which it belongs. Note that Coral achieves
this property independent of any distance optimization
in its underlying lookup protocol.

Two conflicting criteria impact the effectiveness of
Coral’s hierarchical DSHTs. First, clusters should be
large in terms of membership. The more peers in a
DSHT, the greater its capacity and the lower themiss
rate. Second, clusters should have small network diam-
eter to achieve fast lookup. That is, the expected la-
tency between randomly-selected peers within a cluster
should be below the cluster’s specified threshold.

The remainder of this section describes Coral’s mech-
anisms for managing its multiple DSHT clusters. These
mechanisms are summarized in Table 1.

2.3 Joining a cluster

Coral largely inherits its join and leave protocols from
its underlying lookup service, with one difference.
Namely, a node will only join anacceptable cluster, that
is, one in which the latency to 90% of the nodes is below
the cluster’s diameter. This property is easy for a node
to test by collecting round trip times to some subset of
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The Task Coral’s Solution

Discovering and joining a low-level cluster,
while only requiring knowledge ofsome other
node, not necessarily a close one.

Coral nodes insert their own contact information and Internet topology
hints into higher-level clusters. Nodes reply to unexpected requests
with their cluster information. Sloppiness in the DSHT infrastructure
prevents hotspots from forming when nodes search for new clusters and
test random subsets of nodes for acceptable RTT thresholds.Hotspots
would otherwise distort RTT measurements and reduce scalability.

Merging close clusters into the same name-
space without experiencing oscillatory behav-
ior between the merging clusters.

Coral’s use of cluster size and age information ensures a clear, stable
direction of flow between merging clusters. Merging may be initiated
as the byproduct of a lookup to a node that has switched clusters.

Splitting slow clusters into disjoint subsets, in
a manner that results in an acceptable and sta-
ble partitioning without causing hotspots.

Coral’s definition of a cluster center provides a stable point about which
to separate nodes. DSHT sloppiness prevents hotspots whilea node
determines its relative distance to this known point.

Table 1: Overview of the Coral’s design for self-organizing clusters

nodes in the cluster, perhaps by simply looking up its
own identifier as a natural part of joining.

As in any peer-to-peer system, a node must initially
learn about some other Coral node to join the system.
However, Coral adds a RTT requirement for a node’s
lower-level clusters. A node unable to find an acceptable
cluster creates a new one with a randomcid . A node can
join a better cluster whenever it learns of one.

Several mechanisms could have been used to dis-
cover clusters, including using IP multicast or merely
waiting for nodes to learn about clusters as a side ef-
fect of normal lookups. However, Coral exploits the
DSHT interface to let nodes find nearby clusters. Upon
joining a low-level cluster, a node inserts itself into
its higher-level clusters, keyed under the IP addresses
of its gateway routers, discovered bytraceroute.
For each of the first five routers returned, it executes
put(hash(router .ip),nodeaddr ). A new node, search-
ing for a low-level acceptable cluster, can perform aget

on each of its own gateway routers to learn some set of
topologically-close nodes.

2.4 Merging clusters

While a small cluster diameter provides fast lookup, a
large cluster capacity increases the hit rate in a lower-
level DSHT. Therefore, Coral’s join mechanism for
individual nodes automatically results in close clusters
merging if nodes in both clusters would find either ac-
ceptable. This merge happens in a totally decentral-
ized way, without any expensive agreement or leader-
election protocol. When a node knows of two accept-
able clusters at a given level, it will join the larger one.

When a node switches clusters, it still remains in the
routing tables of nodes in its old cluster. Old neigh-
bors will still contact it; the node replies to level-i re-

quests originating outside its current cluster with the
tuple{cid i, sizei, ctime i}, wheresizei is the estimated
number of nodes in the cluster, andctimei is the clus-
ter’s creation time. Thus, nodes from the old cluster
will learn of this new cluster that has more nodes and
the same diameter. This produces an avalanche effect as
more and more nodes switch to the larger cluster.

Unfortunately, Coral can only count on a roughap-
proximation of cluster size. If nearby clustersA andB

are of similar sizes, inaccurate estimations could in the
worst case cause oscillations as nodes flow back-and-
forth. To perturb such oscillations into a stable state,
Coral employs a preference functionδ that shifts every
hour. A node selects the larger cluster only if the fol-
lowing holds:
∣

∣

∣

log(sizeA) − log(sizeB)
∣

∣

∣

> δ (min(ageA, ageB))

whereage is the current time minusctime. Otherwise,
a node simply selects the cluster with the lowercid .

We use a square wave function forδ that takes a value
0 on an even number of hours and2 on an odd num-
ber. For clusters of disproportionate size, the selection
function immediately favors the larger cluster. However,
should clusters of similar size continuously exchange
members whenδ is zero, as soon asδ transitions, nodes
will all flow to the cluster with the lowercid . Should the
clusters oscillate whenδ = 2, the one22-times larger
will get all members whenδ returns to zero.

2.5 Splitting clusters

In order to remain acceptable to its nodes, a cluster may
eventually need to split. This event may result from a
network partition or from population over-expansion, as
new nodes may push the RTT threshold. Coral’s split
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operation again incorporates some preferred direction of
flow. If nodes merely atomized and randomly re-merged
into larger clusters, the procedure could take too long to
stabilize or else form highly sub-optimal clusters.

To provide a direction of flow, Coral specifies some
nodec within cid as acluster center. When splitting, all
nodes near to this centerc join one cluster; all nodes
far from c join a second cluster. Specifically, define
cidN = hash(cid) and letcidF becidN with the high-
order bit flipped. The cluster centerc is the node clos-
est to keycidN in the DSHT. However, nodes cannot
merely ping the cluster center directly, as this would
overloadc, distorting RTT measurements.

To avoid this overload problem, Coral again leverages
its sloppy replication. If a node detects that its clus-
ter is no longer acceptable, it performs aget first on
cidN , then oncidF . For one of the first nodes to split,
get(cidN ) resolves directly to the cluster centerc. The
node joinscid i based on its RTT with the center, and it
performs aput(cid i ,nodeaddr) on its old cluster and
its higher-level DSHTs.

One concern is that an early-adopter may move into a
small successor cluster. However, before it left its pre-
vious level-i cluster, the latency within this cluster was
approaching that of the larger level-(i−1) cluster. Thus,
the node actually gains little benefit from maintaining
membership in the smaller lower-level cluster.

As more nodes transition, theirgets begin to hit the
sloppy replicas ofcidN and cidF : They learn a ran-
dom subset of the nodes already split off into the two
new clusters. Any node that finds clustercidN accept-
able will join it, without having needed to ping the old
cluster center. Nodes that do not findcidN acceptable
will attempt to join clustercidF . However, clustercidF

could be even worse than the previous cluster, in which
case it will split again. Except in the case of pathologi-
cal network topologies, a small number of splits should
suffice to reach a stable state. (Otherwise, after some
maximum number of unsuccessful splits, a node could
simply form a new cluster with a random ID as before.)

3 Measurements

Coral assigns system-wide RTT thresholds to the differ-
ent levels of clusters. If nodes otherwise choose their
own “acceptability” levels, clusters would experience
greater instability as individual thresholds differ. Also, a
cluster would not experience a distinct merging or split-
ting period that helps to return it to an acceptable, stable
state. Can we find sensible system-wide parameters?
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Figure 2: CDFs of round-trip times between specified RON
nodes and Gnutella peers.

To measure network distances in a deployed system,
we performed latency experiments on the Gnutella net-
work. We collected host addresses while acting as a
Gnutella peer, and then measured the RTT between 12
RON nodes and approximately 2000 of these Gnutella
peers. Both operations lasted for 24 hours. We deter-
mined round-trip times by attempting to open several
TCP connections to high ports and measuring the mini-
mum time elapsed between the SYN and RST packets.

Figure 2 shows the cumulative distribution function
(CDF) of the measured RTT’s between Gnutella hosts
and the following RON sites: New York University
(NYU); Nortel Networks, Montreal (Nortel); Intel re-
search, Berkeley (Intel); KAIST, Daejon (South Korea);
Vrije University (Amsterdam); and NTUA (Athens).

If the CDFs had multiple “plateaus” atdifferent
RTT’s, system-wide thresholds would not be ideal. A
threshold chosen to fall within the plateau of some set of
nodes sets the cluster’s most natural size. However, this
threshold could bisect the rising edge of other nodes’
CDFs and yield greater instability for them.

Instead, our measurements show that the CDF curves
are rather smooth. Therefore, we have relative freedom
in setting cluster thresholds to ensure that each level of
cluster in a particular region can capture some expected
percentages of nearby nodes.
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Our choice of 30 msec for level-2 covers smaller clus-
ters of nodes, while the level-1 threshold of 100 msec
spans continents. For example, the expected RTT be-
tween New York and Berkeley is 68 msec, and 72 msec
between Amsterdam and Athens. The curves in Figure 2
suggest that most Gnutella peers reside in North Amer-
ica. Thus, low-level clusters are especially useful for
sparse regions like Korea, where most queries of a tradi-
tional peer-to-peer system would go to North America.

4 Related work

Several projects have recently considered peer-to-peer
systems for web traffic. Stadinget. al. [10] uses a DHT
to cache replicas, and PROOFS [11] uses a randomized
overlay to distribute popular content. However, both
systems focus on mitigating flash crowds, not on nor-
mal web caching. Therefore, they accept higher lookup
costs to prevent hot spots. Squirrel [4] proposed web
caching on a traditional DHT, although only for LANs.
It examines storing pointers in the DHT, yet reports poor
load-balancing. We attribute this result to the limited
number of pointers stored (only 4), which perhaps is due
to the lack of any sloppiness in the system’s DHT inter-
face. SCAN [1] examined replication policies for data
disseminated through a multicast tree from a DHT de-
ployed at ISPs.

5 Conclusions

Coral introduces the following techniques to enable
distance-optimized object lookup and retrieval. First,
Coral provides a DSHT abstraction. Instead of storing
actual data, the system stores weakly-consistent lists of
pointers that index nodes at which the data resides. Sec-
ond, Coral assigns round-trip-time thresholds to clus-
ters to bound cluster diameter and ensure fast lookups.
Third, Coral nodes maintain the same identifier in all
clusters. Thus, even when a low-diameter lookup fails,
Coral uses the returned routing information to continue
the query efficiently in a larger-diameter cluster. Finally,
Coral provides an algorithm for self-organizing merging
and splitting to ensure acceptable cluster diameters.

Coral is a promising design for performance-driven
applications. We are in the process of building Coral
and planning network-wide measurements to examine
the effectiveness of its hierarchical DSHT design.
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