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Abstract the web page. Of course, any single node responsible

for such a URL-to-node-list mapping would quickly be

Yyerloaded. DHTs typically replicate popular data, but
plication helps only with fetches, not stores. Any node
eking a web page will likely also cache it. There-

We are building Coral, a peer-to-peer content distrib
tion system. Coral creates self-organizing clusters
nodes that fetch information from each other to avo
communicating with more distant or heavily-loadeg, any URL-to-node-list mapping would be updated
servers. Coral indexes data, but does not store it. Fné)st as frequently as it is fetched.

actual content resides where it is used, such as in no esAn alternative approach, taken by CFS [2],

local web caches. Thus, replication happens exaCtlyciﬂ:eanStore [3], and PAST [8], is to store actual

proportion to demand. content in the hash table. This approach wastes both

We present FV.VO novel _mechanlsms that Iet_ Co@?orage and bandwidth, as data must be stored at nodes
achieve scalability and high performance. First,

Where it is not needed. Moreover, while users have
new abstraction called distributed sloppy hash table lear] illina t d idth by shari
(DSHT) lets nodes locate nearby copies of a file, rC early proven willing to burn bandwi y sharing

) X X . ﬁfes they themselves are interested in, there is less
gardiess of its popularity, without causing hot spots lHcentive to dedicate bandwidth to sharing unknown

the indexing infrastructure. Second, based on the DS'EEta. Worse yet, storing content in a DHT requires large

interface, we introduce a decentralized clustering alggr—nounts of data to be shifted around when nodes join
rithm by which nodes can find each other and form cluahd leave the system, a common occurrence [9]

ters of varying network diameters. DHTs have poor locality. Though some DHTs make

an effort to route requests through nodes with low net-
work latency, the last few hops in any lookup request are
The academic community has implemented a numberesisentially random. Thus, a node might need to send a
distributed hash tables (DHTSs) as efficient, scalable, agid@ery half way around the world to learn that its neigh-
robust peer-to-peer infrastructures. However, we shodildr is caching a particular web page. This is of partic-
ask whether DHTs are well-suited for the desired aplar concern for any peer-to-peer CDN, as the average
plications of the wider Internet population. For exanPHT node may have considerably worse network con-
ple, can DHTs be used to implement file-sharing, Bectivity than the web server itself.
far the most popular peer-to-peer application? Or could This paper presents Coral, a peer-to-peer content dis-
DHTSs replace proprietary content distribution networkigibution system we are building. Coral is based on a
(CDNSs), such as Akamai, with a more democratic cliefew abstraction we call distributed sloppy hash ta-
caching scheme that speeds up any web site and savekeifDSHT). It is currently being built as a layer on the
from flash crowds at no cost to the server operator? Chord lookup service [12], although it is equally de-
Thus far, the answer to these questions is no. DHFigned to support Kademlia [5] or other existing sys-
fail to meet the needs of real peer-to-peer applicatiotgms [6, 7, 13]. Coral lets nodes locate and download
for two main reasons. files from each other by name. Web caches can use it to
DHTSs provide the wrong abstraction. Suppose many fetch static data from nearby peers. Users can employ it
thousands of nodes store a popular music file or cagtigectly to share directories of files. Coral’s two princi-
CNN’s widely-accessed home page. How might a haghl goals are to avoid hot spots and to find nearby data
table help others find the data? Using CNN’s URL agithout querying distant nodes.
a key, one might store a list of every node that has
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The DSHT abstraction is specifically suited to locath a normal hash table. Only one value can be stored
ing replicated resources. DSHTSs sacrifice the consisader a key at any given time. DHTs assume that
tency of DHTSs to support both frequent fetches and frihese keys are uniformly distributed in order to balance
guent stores of the same hash table key. The fundamiead among participating nodes. Additionally, DHTs
tal observation is that a node doesn'’t need to know evayypically replicate popular key/value pairs after mulépl
replicated location of a resource—it only needs a singlget requests for the saniey.
valid, nearby copy. Thus, a sloppy insert is akin to anIn order to determine where to insert or retrieve
append in which a replica pointer appended to a “full key, an underlying lookup protocol assigns each
node spills over to the previous node in the lookup patmode anm-bit nodeid identifier and supplies an RPC
A sloppy retrieve only returns some randomized subs@étd_closer_node(key). A node receiving such an RPC
of the pointers stored under a given key. returns, when possible, contact information for another

In order to restrict queries to nearby machines, eaamode whos&odeid is closer to the target key. Some
Coral node is a member of several DSHTSs, which waystems [5] return a set of such nodes to improve per-
call clusters, of increasing networldiameter. The di- formance; for simplicity, we hereafter refer only to the
ameter of a cluster is the maximum desired round-trgingle node case. By iterating callsfiad_closer_node,
time between any two nodes it contains. When datavi& can map a key to some closest node, which in most
cached somewhere in a Coral cluster, any member of DEITs will require an expected(logn) RPCs. This
cluster can locate a copy without querying machines f&{log n) number of RPCs is also reflected in nodes’
ther away than the cluster's diameter. Since nodes hawating tables, and thus provides a rough estimate of to-
the same identifiers in all clusters, even when data is rtaknetwork size, which Coral exploits as described later.
available in a low-diameter cluster, the routing informa- DHTSs are well-suited for keys with a single writer and
tion returned by the lookup can be used to continue thaultiple readers. Unfortunately, file-sharing and web-
qguery in a larger-diameter cluster. caching systems have multiple readarsl writers. As

Note that some DHTSs replicate data along the ladiscussed in the introduction, a plain hash table is the
few hops of the lookup path, which increases the availwong abstraction for such applications.
ability of popular data and improves performance in the ADSHT provides a similar interface to a DHT, except
face of many readers. Unfortunately, even with localitghat a key may have multiple valuegut(key, value)
optimized routing, the last few hops of a lookup are pretores a value undeéty, andget(key) need only return
cisely the ones that can least be optimized. Thus, witeme subset of the values stored. Each node stores only
out a clustering mechanism, even replication does rsatme maximum number of values for a particular key.
avoid the need to query distant nodes. Perhaps muvben the number of values exceeds this maximum, they
importantly, when storing pointers in a DHT, nothingire spread across multiple nodes. Thus multiple stores
guarantees that a node storing a pointer is near the nodehe same key will not overload any one node. In con-
pointed to. In contrast, this property follows naturallyrast, DHTs replicate the exact same data everywhere;
from the use of clusters. many people storing the same key will all contact the

Coral's challenge is to organize and manage thesame closest node, even while replicas are pushed back
clusters in a decentralized manner. As described in thet into the network from this overloaded node.
next section, the DSHT interfad¢tsalf is well-suited for More concretely, Coral manages values as fol-

locating and evaluating nearby clusters. lows. When a node stores data locally, it inserts
_ a pointer to that data into the DSHT by executing
2 Design put(key, nodeaddr). For example, the key in a distri-

: L : : buted web cache would beash(URL). The insert-
This section first discusses Coral's DSHT storage Iay.%rg node callsfind_closer_node (key) until it locates

?enc(:]rlltis ngoflélieo?::itr?czﬁd nSqZEZn?ﬁ it (IJIestcrlbes Coralﬁe first node whose list stored undery is full, or it

q 9 ging ClUSIers. reaches the node closestiey. If this located node is
full, we backtrack one hop on the lookup path. This
target node appendsodeaddr with a timestamp to the
A traditional DHT exposes two functions.(possibly new) list stored undéey. We expect records
put(key, value) stores a value at the specified- to expire quickly enough to keep the fraction of stale
bit key, andget(key) returns this stored value, just apointers below 50%.

2.1 A sloppy storage layer
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A get(key) operation traverses the identifier space
and, upon hitting a node storingey, returns the

node can contact these nodes, in parallel or in so
application-specific way, to download the stored data.

Coral’s “sloppy store” method inserts pointers along
the lookup path for popular keys. Its practice of
“spilling-over” when full helps to balance load while
inserting pointers, retrieving pointers, and downloading

data. Rapid membership changes remain meXpenSN%%ﬁre 1: Coral's hierarchical lookup visualized on the Chord

the sy_stem only exchange_s pomters. (left) and Kademlia (right) routing structures. Nod®sin-
While sloppy stores eliminate hot spots, we sti

in the same id in each of their clusters; smaller-diameter
must address the problem of latency.

d ol de(k icle th | It? part:fuclj%w-level lusters are naturally sparser. For a lookup onkey
findc oseri)nohe( ey) hmﬁy ((j:lrce the ?(O zto Ind 5 r%ode first searches on its lowest cluster. This lookup fails
some nearby host with the data. To take a vantageoﬂ that level if the node closest g nodet,, does not store

data locality, Coral introducetsierarchical lookup. the key. If this occurs, Coral continues its lookup on a highe

level cluster, having already traversed the id space up'so
2.2 A hierarchical lookup layer prefix. Route RPCs are shown with sequential numbering.

Instead of one global lookup system as in [2, 3, 8], Coral

uses severalevels of DSHTs called clusters. Coral

nodes belong to one DSHT at each level; the curréTﬂthe search eventuglly switches to the global Cquter’
implementation has a three-level DSHT hierarchy. TiePral does not require any more RPCs than a single-

goal is to establish many fast clusters with regional col/€! I00KUp service, as a lookup always restarts where it

erage (we refer to such “low-level” clusters as Ievel-25€ft off in the id space. Moreover, Corglarantees that

multiple clusters with continental coverage (referred ﬁ'JI_ lookups at”th]? beginnir:jg ?]re _fast.hThis func'.ti;_nality
as “higher” level-1 clusters), and one planet-wide clygyises natura yh_r?]m E r:o € having the scamdlez r:n

ter (level-0). Reasonable round-trip time thresholds ik DSHTS towhichitbelongs. Note that Coral achieves
30 msec for level-2 clusters, 100 msec for level-1, aﬂ\la's property independent of any distance optimization

o for the global level-0. Section 3 presents some expd?-ItS underlying lookup protocol. _
wo conflicting criteria impact the effectiveness of

imental measurements to support these choices. E%CE s hi hical DSHTS. Fi | hould b
cluster is named by am-bit cluster identifier,cid;; the ora_s \erarchica S'_ Irst, clusters shou i €
global cid, is predefined ag™. large in terms of m_embersh_lp. The more peers in a
Coral uses this hierarchy for distance-optimizeBSHT’ the greater its capacity and the lower mBS.
lookup, visualized in Figure 1 for both the Chord [12 ate. Second, clusters should have small network diam-

and Kademlia [5] routing structures. ter tob achieve fasdt I0(I)kup.I Thgt is, the _eri(_pecteld la-
To insert a key/value pair, a node performsat on tency between randomly-selected peers within a cluster

all levels of its clusters. This practice results in a loosi'ould be below the cluster's specified threshold.

hierarchical data cache, whereby a higher-level cluster-_rhe remainder of this section describes Coral's mech-

contains nearly all data stored in the lower-level clustefg!'Sms f_or managing Its multlp_le DSHT clusters. These
to which its members also belong. mechanisms are summarized in Table 1.

Toretrieve a key, a requesting noddirst performs a
get on its level-2 cluster to try to take advantage of nep3  jojning a cluster
work locality. find_closer_node on this level may hit
some node caching the key and halth{g. If not, the Coral largely inherits its join and leave protocols from
lookup will reach the node in that cluster closest to thiess underlying lookup service, with one difference.
target key, call itts. 7 then continues its search in itdfNamely, a node will only join aacceptable cluster, that
level-1 cluster. Howevett, has already returned rout-is, one in which the latency to 90% of the nodes is below
ing information in the level-1 cluster. Thus,begins the cluster's diameter. This property is easy for a node
with the closest level-1 node in’s routing table. Even to test by collecting round trip times to some subset of
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The Task | Coral’sSolution |

Coral nodes insert their own contact information and Inéétopology
Discovering and joining a low-level cluster, hints into higher-level clusters. Nodes reply to unexpeatquests
while only requiring knowledge agome other | with their cluster information. Sloppiness in the DSHT adtructure
node, not necessarily a close one. prevents hotspots from forming when nodes search for nestallsiand
test random subsets of nodes for acceptable RTT threshattspots
would otherwise distort RTT measurements and reduce stiglab
Merging close clusters into the same name€oral’'s use of cluster size and age information ensuresa,céable
space without experiencing oscillatory behavelirection of flow between merging clusters. Merging may hbgated
ior between the merging clusters. as the byproduct of a lookup to a node that has switched cfuste
Splitting slow clusters into disjoint subsets, [nCoral’s definition of a cluster center provides a stable paout which
a manner that results in an acceptable and sti@ separate nodes. DSHT sloppiness prevents hotspots ainitele
ble partitioning without causing hotspots. determines its relative distance to this known point.

Table 1: Overview of the Coral’'s design for self-organizing cluste

nodes in the cluster, perhaps by simply looking up itpiests originating outside its current cluster with the
own identifier as a natural part of joining. tuple{ cid;, size;, ctime; }, wheresize; is the estimated
As in any peer-to-peer system, a node must initiallfumber of nodes in the cluster, antime; is the clus-
learn about some other Coral node to join the systetar’s creation time. Thus, nodes from the old cluster
However, Coral adds a RTT requirement for a nodeill learn of this new cluster that has more nodes and
lower-level clusters. A node unable to find an acceptatitee same diameter. This produces an avalanche effect as
cluster creates a new one with a randeid. A node can more and more nodes switch to the larger cluster.
join a better cluster whenever it learns of one. Unfortunately, Coral can only count on a rough-
Several mechanisms could have been used to gisaximation of cluster size. If nearby cluster$ and B
cover clusters, including using IP multicast or merelgre of similar sizes, inaccurate estimations could in the
waiting for nodes to learn about clusters as a side &forst case cause oscillations as nodes flow back-and-
fect of normal lookups. However, Coral exploits thérth. To perturb such oscillations into a stable state,
DSHT interface to let nodes find nearby clusters. Up&oral employs a preference functiérthat shifts every
joining a low-level cluster, a node inserts itself intthour. A node selects the larger cluster only if the fol-
its higher-level clusters, keyed under the IP addressewing holds:
of its gateway routers, discovered by acer out e.
For each of the first five routers returned, it executgdog(size) — log(size)| > & (min(age 4, ageg))
put(hash(router.ip), nodeaddr). A new node, search-
ing for a low-level acceptable cluster, can performea  whereage is the current time minustime. Otherwise,
on each of its own gateway routers to learn some setadhode simply selects the cluster with the lowét.

topologically-close nodes. We use a square wave function fothat takes a value
. 0 on an even number of hours agdon an odd num-
24 Merging clusters ber. For clusters of disproportionate size, the selection

While a small cluster diameter provides fast Iookup,anCt'on immediately favors the larger cluster. However,

large cluster capacity increases the hit rate in a low&hould clusters of similar size continuously exchange

level DSHT. Therefore, Coral's join mechanism fof’€MPers whed is zero, as soon astransitions, nodes

individual nodes automatically results in close clustef4!l all flowto the cluster with the Iowede._ShouId the

merging if nodes in both clusters would find either a&lUSters oscillate when = 2, the one2"-times larger

ceptable. This merge happens in a totally decentrijll 9et all members whea returns to zero.

ized way, without any expensive agreement or Iead@fﬁ5 Splitting clusters

election protocol. When a node knows of two accept-

able clusters at a given level, it will join the larger one.n order to remain acceptable to its nodes, a cluster may
When a node switches clusters, it still remains in theventually need to split. This event may result from a

routing tables of nodes in its old cluster. Old neigmetwork partition or from population over-expansion, as

bors will still contact it; the node replies to leveke- new nodes may push the RTT threshold. Coral’s split



operation again incorporates some preferred direction of 1
flow. If nodes merely atomized and randomly re-merged: °%| 1
into larger clusters, the procedure could take too long t¢ °°

CDF of min rtt

stabilize or else form highly sub-optimal clusters. 8 Wl ]

To provide a direction of flow, Coral specifies some ~ |/ =
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far from ¢ join a second cluster. Specifically, define
cid = hash(cid) and letcid® be cid™ with the high-
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its sloppy replication. If a node detects that its clus—g 08 g 08f .
ter is no longer acceptable, it performsget first on £ °° £ 08r ]
cid™, then oncid”. For one of the first nodes to split, % *¢ 5 00 I
get(cid™) resolves directly to the cluster centerThe O'z O'z - 7]
node joinscid; based on its RTT with the center, and it 0 50 100 150 200 250 300 0 50 100 150 200 250 300
performs aput(cid;, nodeaddr) on its old cluster and round tp tme (msec) round ip time (msec)

its higher-level DSHTSs. Figure 2: CDFs of round-trip times between specified RON

One concern is that an early-adopter may move intg,gges and Gnutella peers.
small successor cluster. However, before it left its pre-
vious levels cluster, the latency within this cluster was
approaching that of the larger level-1) cluster. Thus,  To measure network distances in a deployed system,
the node actually gains little benefit from maintainingie performed latency experiments on the Gnutella net-
membership in the smaller lower-level cluster. work. We collected host addresses while acting as a
As more nodes transition, thejiets begin to hit the Gnutella peer, and then measured the RTT between 12
sloppy replicas ofcid"¥ and cid?": They learn a ran- RON nodes and approximately 2000 of these Gnutella
dom subset of the nodes already split off into the twseers. Both operations lasted for 24 hours. We deter-
new clusters. Any node that finds cluster’y accept- mined round-trip times by attempting to open several
able will join it, without having needed to ping the oldrCP connections to high ports and measuring the mini-
cluster center. Nodes that do not finii”" acceptable mum time elapsed between the SYN and RST packets.
will attempt to join clusterid". However, clusterid® Figure 2 shows the cumulative distribution function
could be even worse than the previous cluster, in whi¢BDF) of the measured RTT'’s between Gnutella hosts
case it will split again. Except in the case of pathologand the following RON sites: New York University
cal network topologies, a small number of splits shou{iYU); Nortel Networks, Montreal (Nortel); Intel re-
suffice to reach a stable state. (Otherwise, after sogwarch, Berkeley (Intel); KAIST, Daejon (South Korea);
maximum number of unsuccessful splits, a node couldtije University (Amsterdam); and NTUA (Athens).
simply form a new cluster with a random ID as before.) If the CDFs had multiple “plateaus” atifferent
RTT's, system-wide thresholds would not be ideal. A
3 Measurements threshold chosen to fall within the plategu of some set o_f
nodes sets the cluster's most natural size. However, this
Coral assigns system-wide RTT thresholds to the difféhreshold could bisect the rising edge of other nodes’
ent levels of clusters. If nodes otherwise choose th€DFs and yield greater instability for them.
own “acceptability” levels, clusters would experience Instead, our measurements show that the CDF curves
greater instability as individual thresholds differ. Also are rather smooth. Therefore, we have relative freedom
cluster would not experience a distinct merging or splita setting cluster thresholds to ensure that each level of
ting period that helps to return it to an acceptable, staldleister in a particular region can capture some expected
state. Can we find sensible system-wide parametersercentages of nearby nodes.
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Our choice of 30 msec for level-2 covers smaller clus&srimm, Sameer Ajmani, and Rodrigo Rodrigues for
ters of nodes, while the level-1 threshold of 100 mséelpful comments. This research was conducted
spans continents. For example, the expected RTT las- part of the IRIS projecthftp://project-
tween New York and Berkeley is 68 msec, and 72 mseci s. net /), supported by the NSF under Coopera-
between Amsterdam and Athens. The curves in Figuré\& Agreement No. ANI-0225660. Michael Freedman
suggest that most Gnutella peers reside in North Ameras supported by the ONR under an NDSEG Fellow-
ica. Thus, low-level clusters are especially useful fahip. This paper is hereby placed in the public domain.
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