DyC: An Expressive Annotation-Directed Dynamic Compiler for C

Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eggers

Department of Computer Science and Engineering
University of Washington

http://ww. cs. washi ngt on. edu/ r esear ch/ dynconp/
{grant, nock, matt hai , chanber s, egger s} @s. washi ngt on. edu

Abstract should be applied. "C [Engler et al. 96, Poletto et al. 97] and its
predecessodcg [Engler & Proebsting 94] take a procedural
approach to user direction, requiring the user to write programs that
explicitly manipulate, compose, and compile program fragments at
run time. These systemsfef great flexibility and control to the
programmerbut at the cost of significant programmeiogfand
debugging dficulty.

We present the design of DyC, a dynamic-compilation system for C
based on run-time specialization. Directed by a few declarative usel
annotations that specify the variables and code on which dynamic
compilation should take place, a binding-time analysis computes
the set of run-time constants at each program point in the annotate:
procedures control-flow graph; the analysis supports program-
point-specific polyvariant division and specialization. The results Alternatively Fabius [Leone & Lee 96],empo [Consel & Noél

of the analysis guide the construction of a run-time specializer for 96], and our previous system [Auslander et al. 96] take a declarative
each dynamically compiled region; the specializer supports variousapproach, employing user annotations to guide dynamic
caching strategies for managing dynamically generated code anccompilation. Fabius uses function currying, in a purely functional
mixes of speculative and demand-driven specialization of dynamicsubset of ML; €Empo uses function-level annotations, annotations

branch successors. Most of the key cost/benefit trddarothe on global variables and structure types, and alias analysis on
binding-time analysis and the run-time specializer are open to useiprograms written in C; and our previous system uses
control through declarative policy annotations. intraprocedural annotations, also in C. Each of these declarative

DyC has been implemented in the context of an optimizing @PProaches adapts ideas from partial evaluation, expressing
compiler and initial results have been promising. The speedups wedynamic compilation as run-time fiifie specialization (i.e.,
have obtained are good, and the dynamic-compilation overhead i<€OMPpile-time binding-time analysis and run-time specialization),
among the lowest of any dynamic-compilation system, typically where static values correspond to run-time state for which
20-200 cycles per instruction generated on a Digital Alpha 21064, Programs are specialized. Declarative approachder dhe

The majority of DyCs functionality has been used to dynamically 2dvantages of an easier interface to dynamic compilation for the
compile an instruction-set simulat@dnly three annotations were ~Programmer (since dynamic optimizations are derived from the
required, but a few other changes to the program had to be mag@nnotations automaticaliyather than being programmed by hand)
due to DyCs lack of support for static global variables. This 2and easier program understanding and debugging (since declarative
deficiency and DyG rudimentary support for partially static data 2nnotations can be designed to avoféaing the meaning of the

structures are the primary obstacles to making DyC easy to use. Underlying programs). Howevedeclarative systems usuallyrerf
less expressiveness and control over the dynamic compilation

Keywords process than imperative systems.

Dynamic compilation, specialization, partial evaluation, constant We have developed a new declarative annotation language and

folding, run-time code generation, program optimization, dataflow underlying run-time specialization primitives that are more

analysis, C language. expressive, flexible, and controllable than previous annotation-
based systems, but are still easy to use. Our system, Bgiad

1 Introduction supports the following features:

Dynamic compilation dérs the potential for increased program * Support for both polyvariant specialization and polyvariant
performance by delaying some parts of program compilation until ~ division, with the degree of specialization for fdient
run time, and then exploiting run-time state to generate code thatic ~ vVariables under programmer control,

specialized to actual run-time behavidhe principal challenge in intra- (program-point-specific) and interprocedural (function-

dynamic compilation is achieving high-quality dynamically level) specialization, with the caller and callee separately
generated code at low run-time cost, since the time to perform run- compilable,

time compilation and optimization must be recovered before any
benefit from dynamic compilation can be obtained. Consequently
a key design issue in developing afeefive dynamic compilation
system is the method for determining where, when, and on what < automatic caching, reuse, and reclamation of dynamically
run-time state to apply dynamic compilation. Ideathe compiler generated code, with cache policies under programmer control,
would make these decisions automaticadlg in other compiler
optimizations; howeverthis ideal is beyond the current state-of- * pqyvariant division allows the same program point to be analyzed for
the-art for general-purpose programs. different combinations of variables being treated as static, and polyvariant
Instead, current dynamic compilation systems rely on some form of Specialization allows multiple compiled versions of a division to be
programmer direction to indicate where dynamic compilation produced, each specialized for different values of the static variables.

arbitrarily nested and overlapping regions of dynamically
generated code,

automatic interleaving of specialization and dynamic execution
to avoid unbounded static specialization for terminating
programs, with the exact trade-obetween speculative
specialization and demand-driven specialization under
programmer control,

automatic interleaving of specialization and dynamic execution
to delay specialization of some code until the appropriate run-
time values have been computed, and

e run-time optimizations, including constant propagation and
folding, conditional-branch folding and dead-code elimination,
memge splitting, loop unrolling, procedure-call specialization,
and strength reduction.

The next section illustrates many of these capabilities using an
annotated bytecode interpreter as an example. Section 3 provides &
overview of the design of the DyC dynamic-compilation system,

which is then detailed in sections 4 through 7. Section 5 presents
DyC'’s annotation language. Section 8 describes our experience:
with the system, and section 9 compares DyC to related wak. W

conclude with our plans for future work.

2 Example

Figure 1 presents a simple interpreter like those for the Smalltalk
and Java virtual machines [Goldbge% Robson 83, Lindholm &
Yellin 97] or themipsi simulator [Sirer 93]. W will use this
example to explain Dy@’capabilities, to illustrate the conciseness
of the annotations, and to demonstrate the steps indjy@amic-
compilation process. In boldface are the annotations we added tc
turn the interpreter into a run-time compjlée. a program that
produces at run time an interpreter that is specialized for the
particular array of bytecodes.

Note that while the interpreter appears simple, its successful
dynamic compilation requires most of DyCfeatures, many of
which are unique to DyC. The example is representative of the
structure of a laye class of interpreters and simulators that loop
over run-time-constant arrays of operations, dispatching on the type
of operation.

2.1 Basic Functionality

The main control annotation imake_static , whose ggument

list of variables the system treatsrags-time constants when run-

time execution reaches that point. By default, DyC will apply
interprocedural polyvariant division and specialization as needed
on all control-flow paths downstream of tmeake_static
annotation, until the variables go out of scofie order to preserve

the run-time constant bindings of each annotated variable. For
example, the variablpc is annotated as static. DyC specializes
code so that, at each program point in the specialized podeill

have a known run-time constant value. The incremenis @f the
switch body do not cause problems, since the value of a run-time
constant after an increment is also a run-time constant. The loog
head at the top of tHer loop requires additional work: DyC will

void interp_program(int bytecodes][], int arg) {
printf(“%d\n”, interp_fn(bytecodes, 0, arg));

int interp_fn(int bytecodes][], int pc, int arg) {
unsigned int inst, rs, rt, rd, offset, reg[32];
make_stati c(byt ecodes, pc:
p_cache_one_unchecked, eager);

/I bytecodes, pc pronoted

reg[1] = arg;

for (;;){ // specializable |oop-head merge
i nst byt ecodes@ pc++] ;
rs = Rl(inst); rt = R(inst);
of fset = | MVEDI ATE(i nst);
switch(OPCODE(inst)) {

rd = R3(inst);

case Ll: /1 1oad i mredi ate val ue
reg[rt]= offset; continue;
case MJL:
reg[rd] = (int) reg[rs] * (int) reg[rt];
conti nue;
case SUBI:
reg[rt]=(int) reg[rs]- offset;
conti nue;
case | F_GOTO
if (reg[rs]==reg[rt])
pc += offset;
conti nue; /'l specializable nerge
case GOTO
pc = offset; continue;
case COVWPUTED_GOTO
pc =reg[rs]; continue; /I pc pronoted
case RET:

return reg[31];

}
Figure 1: Simple Bytecode | nterpreter

int count[N];

#define threshold ...

speci alize interp_fn(bytecodes, pc, arg)
on (bytecodes, pc);

int interp_fn(int bytecodes[], int pc, int arg) {
unsigned intinst, rs, rt,rd,offset,reg[32],callee;
if (++count[pc] >= threshold) {

make_stati c(bytecodes, pc);
}else {
make_dynamni c(byt ecodes, pc);

reg[1] =arg;

for (;;){ // specializable |oop-head merge
... //same as above
switch (OPCODE(inst)) {
... [[same as above

case GOSUB:
callee = offset + pc++;
reg[rd] =
interp_fn(bytecodes, callee,reg[rs));
br eak;

}

automatically produce a separate specialized version of the loog }

body for each distinct value gfc at the loop head, in fett,
unrolling the loop fully (In Figure 1, we have written all run-time
constant operations in italics.)

The @symbol annotates the contents of lly¢ecodes array as
static, implying that the contents of a referenced, run-time-constant
memory location is a run-time-constanthis enables DyC to

" DyC currently does not continue specialization upwards past return
statements, so specialization stops at the end of each function.

T DyC currently does no automatic alias or side-effect analysis, unlike some
other systems, so these annotations are necessary to achieve the desir
effect.

Figure 2: Interprocedural and Conditional Specialization

LIr31, #1 #rli=1
LI r2, #0 #12=0

LO: IF_GOTOrl,r2, L1 #ifrl ==r2 goto L1
MUL r31, r1, r31 #r31=r31*rl
SUBI r1,r1,#1 #rl=rl1-1
GOTO LO # goto LO

L1: RET # return result in r31

Figure 3: Factorial Interpreter Program

constant-fold theswi t ch branch within each iteration (sinpe Idq r24, 440(sp) # reg[l] = arg
byt ecodes, pc and the loaded bytecode are all run-time ldl ri18, 416(sp)

constants), selecting just onase arm and eliminating the others stl ri18, 4(r24)

as dead code. The code that manipulaigsecodes andpc is fnop

also eliminated as dead, once the variables’ interpretation overheau

is constant-folded away ldg r24, 440(sp) # L3t 1

| da r27, 124(zero)

The | F_GOTO bytecode conditionally rebinds the value pof, | da r25, 1(zero)

based on the run-time variable outcome of a previous test. At the addq r24, r27, r27

mege after the f, pc may hold one of two possible run-time stl r2s, 0(r27)

constant values, depending on whidharm was selected. &\tall lda r27, 8(zero) 4L r2, 0

memges such as this one, which have (potentiallyYersft I da r25, 0(zero)

incoming values of run-time constastsecializable merge points. addq r24, r27, r27

By default, becausgc is annotated byrake st at i ¢, DyC will stl r25, 0(r27)

apply polyvariant specialization to the merand all downstream)

code, potentially making two copies of the gerand its LO: : g: ;% 28%;3 #1F_GOTOr1, r2, L1
successors, one for each run-time constant valpe oThe loop cnpeq r27, r25, r25

head is another such specializable gegpoint, which enables the bne r25, L1

loop to be unrolled as described above. Thus, for an input prograr

that contains a tree oF _GOTO bytecodes, this specialization will ldl r27, 4(r24) # ML r31, ri1, r31
produce a tree of unrolled interpreter loop iterations, reflecting the ldl 125, 124(r24)

mull r27, r25, r25

expected structure of a compiled version of the input prograam. W st 125, 124(r24)

call the ability to perform more than simple linear unrollings of

loops multi-way loop unrolling. DyC allows the programmer to Idl r27, 4(r24) #suBl r1, r1, 1
specify less aggressive specialization policies for static variables, tc I da r27, -1(r27)
provide finer control over the tradef®between cost and benefit of stl r27, 4(r24)
run-time specialization. br LO 4 GOTO LO
At each of these specializable merpoints, by default DyC
maintains a cache of all previously specialized versions, indexed byL1: Idl r0, 124(r24) # RET
the values of the static variables at the geepoint. When a ldg ra, 128(sp)
specializable mee point is encountered during run-time Ifggps
LT . - p, 544(sp)
specialization, DyC examines the cache to see whether a version ¢ ret zero, (ra), 1
the code has already been produced, and, if so, reuses it. In th
interpreter example, the cache checks at the loop heayt iave Figure 4: Dynamically Generated Code for Factorial
the efect of connecting backward-branching bytecodes directly to
previously generated iterations, forming loops in the specialized ldl r1, 416(sp) reg[1] = arg

#
code. Similarly the cache checks allow iterations to be shared, if lda r2, 1(zero) # LI r31, 1
the input interpreted program contains other control-flowgmer Ida r3, 0(zero) # Ll r2, 0
points. DyC allows the programmer to specify alternative caching LO: cnpeq r1, r3, r25 # IF_GOTOr1, r2, L1
#
#
#
#

policies or even that no caching be used, to provide finer control to g{]lel rrZE rL% r2 ML r31 ri. r3i
the programmer over this potentially expensive primitive. lda ri, - 1(r 1) SWBl r1 ri1 1
The COVPUTED_GOTO bytecode, which represents a computed br LO GOTO LO

jump, assigns a dynamic expressionpo. By default, DyC L1: or r2, zero, r0 RET

suspends program specialization when the bytecode is encounterex If ggpr a, 128(sp)

and then resumes specialization when execution of the specializet I da sp, 544(sp)

code reaches this point and assigesits actual value. As with ret zero, (ra), 1

specializable mge points, each sudynamic-to-static promotion)))
point has an associated cache of specialized versions, indexed b~ Figure5: Generated Code After Register Actions
the values of the promoted variables. The specializer consults this

cache to see whether a previous version can be reused or a ne

version must be producedigain, programmesupplied policies This is typically done by suspending specialization at each

support finer control over the aggressiveness of dynamic-to-staticy ;. cessor of a dynamic (non-run-time-constant) branch in the
promotion and the caching scheme to be used at promotion points .2 m heing specialized, and resuming only when that successor
Because DyC performs specialization at run time rather than atis actually taken. This strategy avoids non-termination problems
compile time, we have the option of choosing when to specialize and unneeded specialization, but incurs the cost of suspension and
control-flow paths ahead of actually reaching them during normal resumption of specialization. DyC allows the programmer to
program execution. Aggressigpeculative specialization has the specify policies to control speculative specialization; the (safe)
lowest cost, assuming that all specialized paths will eventually bedefault introduces suspension points at each specializable loop
taken at run time. Howeveit incurs the cost of specializing any head.

path not executed, and can lead to non-termination in the presenc o o

of loops or recursion. Alternativelgemand-driven specialization 2.2 Interprocedural and Conditional Specialization

only specializes code that definitely will be executed at run time. Figure 2 extends the simple single-procedure interpreter to support
interpreting programs made up of multiple procedures. It also
" Eachmake_st at i ¢ annotation is also a dynamic-to-static promotion illustrates several other DyC capabilities, in particutzow it
point, with an associated cache of versions specialized ferefit run- exploits polyvariant division to support conditional specialization,
time values of the newly static variables. and annotations that support interprocedural specialization.

In the modifiedi nt er p_f n routine, acount array associates 3 System Overview

with eachpc that corresponds to a function entry point the number

of times that function has been invoked. In order to apply dynamic DyC expresses dynamic compilation as run-time specialization.
compilation only to heavily used functions, the programmer has Directed by a few declarative user annotations that specify the
made the originalneke_stati ¢ annotation from Figure 1 variables for which portions of a program should be specialized,
conditional- specialization occurs only when the invocation count DyC'’s static compiler produces an executable that includes both
of some interpreted procedure reaches a threshold. At ttgemer Statically compiled code and a run-time specializer for code that is
after thei T, byt ecodes andpc are static along one predecessor t0 be dynamically compiled. Section 4 describes our run-time
but dynamic along the otheBy default, DyC applies polyvariant ~ specializer and its capabilities.

d|V|S|on.t0 produce two separate versions of the remaqnder of thety achieve the fastest possible dynamic compilation, DyC does
body ofi nter p_f n. In one, the two variables are static and lead ,ch of the analysis and planning for run-time specialization
to run-time specialization, as in Figure 1. In the ottieey are ing static compile time. An flihe binding-time analysis (BY)
dynamic, and no run-time specialization takes place; the input isgetermines which operations can be performed at dynamic compile
interpreted normallyat no extra run-time cost. time, and the run-time specializer is implemented by constructing
Thespeci al i ze annotation directs the compiler to produce an generating extensions (GEs), that is, custom specializers, one for
alternate entry point to thient er p_f n procedure that is used each piece of code to be dynamically compiled. These GEs perform
when its first two parameters are run-time constants. At
i nt er p_f n call sites, where the corresponding actugliarents

are static, a specialized versionioft er p_f n is produced (and

cached for later reuse) for the run-time constant values of the actua :

S . . Stati
amguments. The body of the specializedt er p_f n is compiled CodeS
as if its formal parameters were annotatedrake st ati c at An otasc Static Executable Dynamic
entry (The callee procedure and each of its call sites can be “squrc Compiler Program Code
compiled separatelygiven aspeci al i ze annotation in the @

shared header file.) This specialization has thé&ecef of
streamlining the calling sequence for speciali2e8UB bytecodes

to specialized callees: neithbyt ecodes norcal | ee will be Satic Compile Time Run Time
passed in the specialized call, and the specialized interpreter for th

target function (i.e., the compiled code for theg&rfunction) will) 5
be invoked directly If the callee function is not yet heavily m Input Execute

executed, then after entry tmmke_dynam ¢ annotation will
turn of specialization for that input procedure; all bodies of Figure 6: DyC'’s Static and Dynamic Components
infrequently executed procedures will branch to the same
precompiled (and unspecialized) version of the interpreter

. the dynamic compilation when provided the values of the annotated
2.3 A Compiling Interpr eter variables. © enable arbitrary interleaving of execution and
Figure 3 presents a program input for the bytecode interpféter ~ Specialization and arbitrarily overlapping regions of dynamically
program computes the factorial of its input, which is assumed to becompiled codedynamic code), DyC is capable of invoking GEs
in registerr 1. Figure 4 illustrates the code produced when the from dynamic code as well as from statically compiled cetdei¢
dynamically compiling interpreter executes the factorial bytecode code). Figure 6 illustrates the interactions among By@mpile-
program on a Digital Alpha 21064. Although the actual code time and run-time components.

produced at run time is executable machine code, we haverigyre 7 depicts Dy@ oganization. V& have implemented the
presented it in assembly language for readability binding-time analysis (BA) and most of the generating-extension
The structure of the run-time-generated code reflects the structureconstruction in the optimizing Multiflow compiler [Lowney et al.
of the bytecode program used as input to the interprEtercode 93]. We did so to enable static global optimization of dynamic code
contains a conditional branch as a result of multi-way unrolling the with a minimum of restrictions. @believe that performing regular
interpreter loop beyond theF_GOTO bytecode. Following the compiler optimizations over both statically compiled and
specialization of theGOTO bytecode, a backward branch is dynamically compiled code is crucial for generating high-quality
generated to the cached specialized loop iteration corresponding tccode.

the labelL0, creating a loop in the run-time-generated code. Our analyses and transformations follow traditional dataflow
Since Figure 4 is obtained by straightforward specialization of the optimizations, such as common-subexpression elimination, and
interpreter each reference to a virtual register in the interpreter loop unrolling, because our transformations would otherwise
results in a load to or a store from the array that implements theinterfere with these optimizations. Unfortunatelythese
registers. Better code could be generated by addgnger actions optimizations also interfere with our analyses, mainly by obscuring
to DyC [Auslander et al. 96]. Register actions permit memory the intended meaning of the annotations, so some modifications to
locations to be assigned registers through pre-planned localthem were required to preserve information. This issue is discussed
transformations. In this case, elements of the register, areay further in section 8.1.

can be allocated to registers, because &ketf into the array are
run-time-constant, and all loads and stores can be rewritten as direc
references to the corresponding registers. Figure 5 shows the resu
of applying register actions to the dynamically compiled factorial

Following DyC’s core analyses and transformations, Multiflow’
combined register allocator and instruction scheduler optimizes the
ordinary static code, the static code to be executed by the run-time
specializerand the dynamic code. Modifications to this phase were

program. required to handle run-time constants in the dynamic code, to

- introduce certain scheduling constraints, and to propagate
Result operands are shown in boldfda{l /q] = load 32/64 bitsst * = information to the assembly-code outplitegrate, a post-pass
store.nul * = multiply. | da = add with 16-bit signed immediate. that follows assembly-code generation, integrates the dynamic code

Specialize(unit:Unit,
Annotated C Program context:Context,
backpatch_addr:Addr):Addr {
* see if we've already specialized this unit for
this particular context */
(found:bool, start_addr:Addr) :=

; ; CacheLookup(unit, context);
/ Multiflow Compiler \ i not found then

/* need to produce & cache the specialization */

edge_contexts:List<Context>,
edge_addrs:List<Addr>) :=

unit.ReduceAndResidualize(context);
Data_f lO.W & loop CacheStore(unit, context, start_addr);
optimizations I* see how to handle each successor of the
specialized unit */
foreach edge:UnitEdge,

/ DyC's Core \ edge_context:Context,
edge_addr:Addr
(Binding-time analysis) in unit.edges, edge_contexts, edge_addrs do
if edge.eager_specialize then
/* eagelrly ?pgcialize the successor now */
Specialize(edge.target_unit,
/ GEgen \ edge_context,
—— edge_addr);
(Split divisions) else
/* lazily specialize the successor by
- emitting code to compute the values of
(Identify lazy edges) promoted variables and then call the
specializer with the revised context */
- - addr:Addr :=
C Identify units) edge.ResolvePromotions(edge_context);
T Backpatch(edge_addr, addr);
- patch_addr:Addr :=
Separate static & if edge.one_time_lazy
dynamic subgraphs then edge_addr else NULL;
Emit(“pc := Specialize("edge.target_unit’,

. promoted_context,
(Insert explicators) o “patch_addr’)");
Emit(‘jump pc”);

endif

1
C Insert DC operation§ endfor
\\ // endif
/*make the predecessor unit branch to this code */
Backpatch(backpatch_addr, start_addr);

l return start_addr;
N Y)

Figure 8: Run-Time Specializey Part |

executable contains both ordinasgatic code and the generating
extensions.

The following sections describe DyC in more detai #iscuss the
run-time specializer first, in section 4, in order to specify the
functionality of the generating extensions produced by ByC’
compile-time phases. Section 5 then presents the annotation
language in more detail than in the motivating example in section
2, section 6 describes our BTand section 7 details our approach

)] - to producing generating extensions from the information th&® BT
(Link with DyC'’s run-time library) derives, including descriptions of the subphases showaEgen.
l Section 7 also includes a discussionnégrate.

Executable Program 4 Run-Time Specializer

Stati d GE Our run-time specializer (Figures 8, 9, and 10) is an adaptation of
alic code S the strategy for polyvariant program-point specialization of a flow

chart language described by Jones, Gomard, and Sestoft [Jones et
al. 93]. The main process produces specialized code dnit da
Figure 7: DyC’s Compile-Time Phases generalization of a basic block that has a single entry but possibly

. . - multiple exits), given itontext (the run-time values of the static

into the_statlc specializer code so _that the_ dynaml_c code is emlttecvariables on entry to the unit). The static compiler is responsible for
at run time when the corresponding static code is executed by épreaking up dynamically compiled regions of the input program
generating extension. Finallfhe resulting code is assembled and into units of specialization, producing the static data structures and
linked with DyC5s run-time library The resulting stand-alone code that describe units and their connectityd generating the

CacheLookup(unit:Unit, context:Context) type Context = Tuple<Value>;

:(found:bool, start_addr:Addr) { class Unit {
if CacheAllUnchecked U unit.cache_policies then id:int,
/* always produce a new specialization */ cache_policies:Tuple<CachePolicy>;
return (false, NULL); edges:List<UnitEdge>;
else ReduceAndResidualize(context:Context)
/* first index on CacheAll values */ ‘(start_addr:Addr,
let cache_alls := out_contexts:List<Context>,
elements of context with CacheAll policy; edge_addrs:List<Addr>);
(found, sub_cache) := * Take the the values of the static vars and
cache.lookup(unit.id, cache_alls); produce specialized code for the unit.
if not found then return (false, NULL); Return the address of the start of the unit's
/* then index on CacheOne values specialized code and, for each successor unit,
in nested cache */ the new values of the static variables at that
let cache_ones := edge and the address of the exit point in the
elements of context with CacheOne policy; specialized code for the unit */
(found, start_addr) :=
sub_cache.lookup(cache_ones); class UnitEdge {
* no need to index on CacheOneUnchecked */ target_unit:Unit;
return (found, start_addr); eager_specialize:bool;
endif one_time_lazy:bool;
ResolvePromotions(context:Context):Addr;
CacheStore(unit:Unit, context:Context, /* Generate code to extract the current run-time
start_addr:Addr):void { values of any static variables being promoted
if CacheAllUnchecked O unit.cache_policies then at this edge, updating the input
/* don't store it, since we won'’t reuse it */ context and leaving the result in the
else “promoted_context” run-time variable.
[* first index on CacheAll values */ Return the address of the start of the
let cache_alls := generated code. */
elements of context with CacheAll policy;
(found, sub_cache) := enum CachePolicy {
cache.lookup(unit.id, cache_alls); CacheAll, CacheAllUnchecked,
if not found then CacheOne, CacheOneUnchecked
sub_cache := new SubCache; }
cache.add(unit.id, cache_alls, sub_cache);
endif Figure 10: Run-Time Specializer, Part |11

* then index on CacheOne values
in nested cache */
let cache_ones :=
elements of context with CacheOne policy;
/* store the new specialization in the cache,

Data Structures

to lazy edges between units; here code is generated that will inject

replacing any there previously */ the promoted run-time values into the context before invoking the
saqu_cache.replace(cache_ones, start_addr); specializer
endai
. To implement demand-driven specialization, DyC makes lazy the
Ba}fli(](p:gﬁ?ézo,f?\led?_?_d;hg"r:gbeg:c’?‘(gg?c}‘]’?ﬁ{branch branch successor edges that determine execution of the code that is
instruction at source to jump to target */ to be specialized on demand (identification of these edges is
} described in section 7.1). DyC dynamically overwrites calls to the
Emit(instruction:Code) { Specialize function placed on these edges with direct jumps to
/* apc%%”e‘f ""eﬁg‘%g apstction o the current the dynamically generated code for thegéwunits, which achieves
g P a one-time suspension and resumption of specialization at each
such point.

Figure 9: Run-Time Specializer, Part 11:

Helper Functions The caching structure for units is one of the chief points of

flexibility in DyC. Each of the variables in the context has an
associated policy QacheAllUnchecked , CacheAll ,
CacheOne, and CacheOneUnchecked , listed in decreasing
order of specialization aggressiveness), that is derived from user
annotations and static analystacheAllUnchecked variables
TheSpecialize function first consults a cache to see if code for are considered to be rapidly changing and their values unlikely to
the unit and entry context has already been produced (using theaecur so that there is no benefit in checking and maintaining a cache
unit’s caching policy to customize the cache lookup process), and.of specializations to enable code sharing or reuse; each time the unit
if so, reuses the existing specialization. If not, the @init'" is specialized, a new version of code is produced, used, and either
ReduceAndResidualize function is invoked to produce code connected directly to the preceding coderothe case of dynamic-
for the unit that is specialized to the input context. The updatedto-static promotions, thrown awalfor CacheAll variables, the
values of the contexts at program points that correspond to unitsystem caches one version for each combination of their values for
exits are returned. The specialized code is added to the cache (agapotential future reuse, assuming that previous combinations are
customized by the un#’caching policy). likely to recur For CacheOne variables, only one specialized
Finally, the specializer determines how to process each of the exitsvr? rS|o|n IS mfalntalr}eﬂ, for t.hﬁlcu"ﬁ nt vaIuES of th_oselvarlabl_e?. Ifd
of a specialized unit. Each exit edge can eithegager, in which the values of any of the variables change, the previously specialize
L g . L code is dropped from the cache, assuming that that combination of
case the successor unit is specialized right aerdgzy, indicating values is not likely to recuf he values o€acheOneUnchecked
that specialization should be suspended until run-time execution y
reaches that edge; lazy edges are implemented by generating st
code that will call back into the specializer when the edge is This requires the edge bear no change in cache context and no dynamic-
executed. Points of dynamic-to-static promotion always correspond to-static promotions.

initial calls to the Specialize function at the entries to
dynamically compiled code.

variables are invariants or are pure functions of other non- A convenient syntactic sugar for a nested dynamic region is
CacheOneUnchecked variables, so the redundant cache checks nake_st ati ¢ followed by a compound statement enclosed in
for those variables are suppressed. braces, for instance

. . . make_static(x, y) {
Our run-time caching system supports mixes of these cache ...
policies. If any variable in the context@acheAl | Unchecked, }
the system skips cache lookups and stores. Otherwise, it performs This shorthand placesake_dynami ¢ annotations for the listed
lookup in an unbounded-sized cache based onCwheAl | variables at each of the exits of the compound statement.
variables (if any); if this is successful, it is followed by a lookup in o
the returned single-entry cache based orCdEheOne variables, 5.2 Policies
which, if successful, returns the address for the appropriategach variable listed in make_st ati ¢ annotation can have an
specialized codeCacheOneUnchecked variables are ignored yeqciated list of policies. These policies control the aggressiveness

during cache lookup. If —all variables have the qf gpecialization, division, and dynamic-to-static promotion, the
CacheOneUnchecked policy, then a single version of the code caching policies, and the laziness policies. The semantics of these

is cached with no cache key policies is described inable 1, with the default policy in each
Since invoking the specializer is a source of overhead for run-time Policy Description
specialization, DyC performs a number of optimizations of this — . —
general structure, principally by producing a generating extension,| Po! y_di vi de perform polyvariant division
which is essentially a specialized version of 8peci al i ze mono_di vi de perform monovariant division
function, for each unit. Section 7 describes these optimizations info61y " speci al | ze | perform polyvariant specialization at rges
more detail. within dynamic regions (specialization is always
polyvariant at promotion points)

5 Annotations nono_speci al i ze | perform monovariant specialization at mes

aut o_pronot e automatically insert a dynamic-to-static promp-
Given the taget run-time specializer described in the previous tion when the annotated static variable is possi-
section, we now present the programiwisible annotation bly assigned a dynamic value
language (in this section) and then the analyses to construct the rurl panual _pronot e | introduce promotions only at explicit
time specializer based on the annotations (in sections 6 and 7 make_st at i ¢ annotations

Appendix A specifies the syntax of our annotations, expressed a
extensions to the standard C grammar rules [Kernighan & Ritchie
88].

| azy suspend specialization at all dynamic branchgs,
avoiding all speculative code generation

speci al i ze_| azy | suspend specialization at all dynamic branch
successors dominating specializablegeer
points and specializable call sites, avoiding spec-

. . . . o ulative specialization of multiple versions of
The basic annotations that drive run-time specialization are code after meyes

make_stati c andnake_dynani c. make_stati c takes a

list of variables, each of which is treated as a run-time constant al
all subsequent program points untii DyC reaches either a
make_dynam ¢ annotation that lists the variable or the end of the
variables scope (which acts as an impliciike_dynami c). We

call the region of code betweemake_st at i ¢ for a variable and

5.1 make_stati c and make_dynami c

| oop_speci al i ze | suspend specialization at all dynamic branch

_lazy successors dominating specializable loop-hepd
merge points and specializable call sites, allop-
ing speculative specialization except where it
might be unbounded

the corresponding (explicit or implicitheke_dynanic a eager eagerly specialize successors of branches, |
dynamic specialization region, or dynamic region for short. assuming that no unbounded specialization will
Because the placementmiike_st ati ¢ andmake_dynami ¢ result, allowing full speculative specialization
annotations is arbitraryhe dynamic region for a variable can have |m cache_al | specialize at mges, assuming that the context is
multiple entry points (if separateke_st at i ¢ annotations for a _unchecked different than any previous or subsequent spg-
variable mege downstream) and multiple exit points. A dynamic cialization
region can be nested inside or overlap with dynamic regions for m cache_al | cache each specialized version atgaer
other vgrlables, as in the following graph fragment (static variables m cache_one cache only the latest version at ges, throwing
shown in boldface): away the previous version if context changes
nmake_static(x); nake_static(x): m _cache_one cache one version, and assume the context is the
XY | XY | _unchecked same for all future executions of this mer
p_cache_none specialize at promotion points, assuming that|the
aKe_stati c(y), _unchecked promoted value is dirent than any previous ar
XY subsequent specialization
p_cache_al | cache all specialized versions at promotion
make_dynami c(x); make_dynam c(y); points
mik: g'y'n'am. ey nak: éi/ln;am (3 p_cache_one cache only the latest version at promotion pojnts
XY Xy p_cache_one cache one version, and assume the promoteg
_unchecked value is the same for all future executions of this
. promotion
This flexibility for dynamic regions is one major feifence
between DyC and other dynamic-compilation systems. Table 1: Policies

category in bold. Annotations in italics are unsafe; their use canresult should be treated as a run-time constant, the following code

lead to changes in observable program behavior or non-terminatiorcan be written:

of specialization, if their stated assumptions about program pake static(t);

behavior are violated. All of our default policies are safe, so the t = *p;

novice programmer need not worry about simple uses of run-time - -- /* lateruses oft are specialized for t s value */ . ..

specialization. Unsafe policies are included for sophisticated usersThis will introduce an automatic promotion and associated cache

who wish to have finer control over dynamic compilation for better check at each execution of the load. If the programmer knows that

performance. the result of the dereference will always be the same for a particular

run-time constant address, the programmer can use the

The polyvariant vs. monovariant division policy controls whether p cache_one_unchecked annotation:

meige points should be specialized for a variable that may not be pye static(t:p_cache one_unchecked):

static along all mge predecessors. Similgrihe polyvariant vs. t = *p: - -

monovariant specialization policy controls whether geepoints ... [I* lateruses oft are specialized for t 's first value */ . ..

should be specialized for éifent values of a variable that flow in However the semantics of this annotation still delays specialization

along diferent mege predecessors. Promotion points, such as until program execution reaches the dereference point the first time.

nmake_st at i ¢, always perform polyvariant specialization of the To avoid any run-time overhead in the specialized code for this

promoted value, beginning at the promotion point. dereference, the programmer must state that the load instruction
] L) itself is a static computation, returning a run-time constant result if

The eagerness vs. laziness policies indicate which code should bjis agument address is a run-time constant. In our annotation

special!zed speculatively or on demand. DyC uses these pplicies YYanguage, a memory-reference operation can be prefixed wig the

determine which branch successor edges to makedsziescribed sympol, indicating that the associated memory load should be done

in section 7.1. DyG default policy is to unroll loops on demand but gt specialization time, assuming the pointer or array is static at that

to specialize other code speculativelshich minimizes the cost point. The programmer can use a static dereference in this example,
incurred by suspension and resumption of specialization, while g5 follows:

avoiding unbounded specialization. make_static(p);

The cache policies specified by the annotations determine the cach { = @ p:

policies, described in section 4, that govern how the run-time ... /* laterusesoft are specialized for t 's value

specializer caches and re-uses dynamically generated code. Eac at specialization time */ . ..

policy controls how many specialized versions of code are cachecThe @ prefix is a potentially unsafe programmer assertion.

(One vs.All), and whether the values of the static variables are usedAlternatively, we could attempt to perform alias and sideatf

to determine which cached version to use (checked vs.analysis to determine automatically which parts of data structures

Unchecked). Our policies currently support either caches of size are run-time constants. Unfortunatetys extremely challenging to

one or caches of unbounded size. It is reasonable to wish forproduce a safe yetfettive alias and sidefefct analysis for this

caching policies that take angament that indicates the desired task, because the analysis would have to reason about aliasing

cache size. Howevebounded multiple-entry caches necessitate a relationships over the whole program (not just within dynamic

non-trivial cache replacement poljover which we would wantto regions) and also about the temporal order of executionfefetiit

offer programmer control. More generallwe might wish to parts of the program (e.g., siddestts that occur when constructing

provide programmers with direct access to the various caches thathe run-time data structures before the dynamic region is first

the run-time specializer maintains.eVleave the design of such entered should be ignored). Soundeetive interprocedural alias

interfaces to future work. analysis for lowetevel languages like C is an open problem and
the subject of ongoing researchi®¥n & Lam 95, Steensgaard

The annotations support two sets of cache policies because wgg], and so we do not attempt to solve the full problem as part of

frequently desired diérent policies to be used at the two kinds of our dynamic compilation system; our current system includes only

program points where new specialized versions were spawnedsimple, local information, such as that local variables that have not

dynamic-to-static promotion points and specializablegaeoints. had their addresses taken are not aliases of any other expression.

For example, theCacheOneUnchecked policy is useful at when efective alias analyses are developed, we can include them

dynamic-to-static promotion points when the promoted variable is as a component of our system; even so, there may still be a need for

invariant, but is seldom useful at specializable geepoints. explicit programmer annotations to provide information that the
ConverselytheCacheAllUnchecked policy is of use primarily at automatic analysis is unable to deduce. Other dynamic compilation
specializable mee points. Those policies prefixed by apply at systems either include an analysis that operates only within a
specializable mee points, and those prefixed py apply at module and rely on programmer annotations to describefémsef
dynamiC'tO'StatiC promotion points. Section 6.3.6 explains how of rest of the program e'fnpo)’ disallow side-&fcts entire|y
caching policies are derived at other program points. (Fabius), or rely on the programmer to perform only legal
)) optimizations ("C).
5.3 Partially Static Data Structures Instead of, or in addition to, providing annotations at individual

dereference operations, we could provide higéeel annotations
of static vs. dynamic components along with variable or type
declarations. For example, the variapleould be declared with a

Frequently the result of a memory reference operation (reading a
variable, dereferencing a pointer indexing an array) is intended
to b_e a run-time constant. This oceurs, for example, when type such asonstant* rather than*, to indicate that all
manipulating a (perhaps partially) static data structure. By default, dereferences would result in runtime constant values: the
the result of a load operation is not a run-time constant, even if itsbyt ecodes array in the initial example in Figure 1 could'be
address is a run-time constard.ifiform our system that the loaded declared azonst ant int byt ecodes[] to indicate that its

contents were run-time constants, thereby eliminating the need for

" The p_cache_none_unchecked annotation policy maps to the@prefix annotation on tHeyt ecodes array index expression.
CacheAllunchecked at promotion points, and implies the dynamically ~ Tempo follows this sort of approach, at least for fieldstafuct
compiled code should be produced, used once, and thrown away. types. This syntactic sugar may be a worthwhile addition to DyC.

Currently the@annotation does not enable stores at specialization that would leave a zerogument call whose result was a dynamic
time, and significant extensions to DyC would be required to do so.value in the specialized code.

Some of these extensions are sketched in section 8.3. We also allow the programmer to prefix individual function calls

5.4 Interprocedural Annotations with the @annotation to spegify that the rgsglt of a function call
should be treated as a run-time constant if igsi@ents are run-

Run-time specialization normally applies within the body of a time constants. For instance, to indicate that a call to the cosine

single procedure: calls to a proced@rdrom within a dynamic function is a pure function, a programmer could write:

region or specialized function all branch to the same unspecializec pre st ati c(X);

version ofP. P itself may have another specialized region in its y = cos@x);

body, but this break in the specialization will cause all thiedht ... [*later uses of y are specialized for y's value
specialized calls dP to mepge together at the entry Ryonly to be at specialization time */ . . .
split back apart again by the cache checks atrthkee_st ati c This is a pecall-site version of theonst ant annotation. W

annotation irP’s body To avoid this overhead, calls can themselves included this annotation because the programmer may, kioow
be specialized, branching to correspondingly specialized versionsexample, that particular uses of a function will not generate side
of the callee procedure, thereby extending dynamic regions acrosteffects, although the function may produce sidea#$ in general.

procedure boundaries. .
-) . . 5.5 Global Variables
The speci al i ze annotation names a procedure with a given

number of aguments and provides a list of divisions for the DyC is not currently capable of specializing for the values of global
procedure. Each division lists a non-empty subset of the formalvariables. Extensions to the function-annotation syntax to support
parameters of the procedure that will be treated as run-timespecialization for global variables would be relatively minor
constants; a division can specify the same policies for listed (simply specifying globals in addition to parameters). Howeter
variables as amke_st at i ¢ annotation. As described in section necessary changes to the rest of the system would be comparable to
7, for each division, Dy@’ static compiler produces a code- the support (described in section 8.3) required for permitting static
generation procedure (i.e., a generating extension) for that divisionwrites to memory

that takes the static formals agwaments and, when invoked on

their run-time values, produces a specialized residual procedureb Analysis of the Annotations

that takes the remaininggaments of the original procedure (if

any), in classical partial-evaluation style. Given the programmer annotations described in the previous

L . i) section, DyC performs dataflow analysis akin to binding-time
At each call site in a specialized region to a proce@uréth an analysis over each procedigeontrol-flow graph representation to
associatedspeci al i ze annotation, DyC will search for the compute where and how run-time specialization should be
division specified foP that most closely matchethe division of performed. The output of this analysis is information associated
actual aguments at the call site (favoring divisions listed earlier in with each program point (formaJlgach edge between instructions
P'sspeci al i ze annotation in case of ties). If one is found, the in the control-flow graph); the domain of the informati&TA,
static compiler produces code that, when specializing the call site aalong with some constraints on its form, is specified in Fighe 1
run time, (1) invokes the generating extension for the selectedThis output is used to produce the generating extension which
division of P, passing the necessary run-time constagiraents, invokes the run-time specializers described in section 7.

and (2) generates code that will invoke the resulting specialized . . .
() g g sp The analysis essentially reasons only about scalar local variables

version forP, passing any remainingguments. Thus, when the ; ;
' P g any g : and compiler temporaries, and annotated data structures are treated

specialized call is eventually executed, the call will branch directly as static pointers. The bindina times of memorv locations are not
to the specialized callee and pass only the run-time Variablecompultedp : : inding t i :

amguments. If no division specified fBrmatches the call, then the
general unspecialized versionPfs called. Calls t&® outside any The analysis computes a set of divisions for each program point.
dynamic region continue to invoke the unspecialized versiéh of ~Each division maps variables annotated as static by
nmeke_static orspecialize to their associated policies at
that program point. Wo divisions are distinct fifthere is some
variable in one division that is annotated with the polyvariant
division policy and is either not found (i.e., it is dynamic) or
annotated dférently in the other division; divisions that do not
differ in the policies of any variables annotated with the polyvariant
division policy will be meged together by the analysis.

) A L For each division the analysis computes the following pieces of
The const ant prefix to thespeci al i ze annotation is an information:

(unsafe) assertion by the programmer that the annotated procedur
acts like a pure function; in other words, it returns the same result
given the same guments without looping forevemaking
externally observable sidefefts, or generating any exceptions or
faults. DyC exploits this information by calling a constant function
from call sites whose guments are static at specialization time and Tn our notation,— constructs the domain of partial finite maps (sets of
treating its result as a run-time constant, i.e., reducing the call rathe ordered pairs) from one domain to anothiam andrange project the

than specializing or residualizing the call. This behavior feifit first and second elements, respectively, of the ordered pairs in the map,

than simply providing a division where all formals are static, since and @pplying a mapto an element iom(f) returns the corresponding
range element. We use to construct cross-product domains. We write

D(p) to project from the produgb the element that corresponds to

* The most closely matching division is the one with the greatest number of component domaiB, and we writg[D V] to compute a new produgt
formal parameters annotated as static that correspond to static actus that is likep but whoseD element has value Pow denotes the powerset
arguments and no static formals that correspond to dynamic actuals. domain constructor. Note thats B [Pow(AxB).

The callee procedure and any call sites can be compiled separatel
All that they need to agree on is thpeci al i ze annotation,
which typically is put next to the procedwsext er n declaration
in a header file. Since call boundaries across which specializatior
should take place are explicitly identified by the programmver
avoid the interprocedural analysis that would be required to identify
(and propagate run-time-constants through) specializable callees.

« The analysis computes the set of static variables (run-time
constants) at that program point, including both-aserotated
static variables (calledoot variables) and any derived static

Domains:
BTA = Division - DivisionInfo
DivisionInfo = StaticVarlnfo x Promotions x DiscordantVars x
Demotions
Division = Var - Policies
Var = finite set of all variables in scope of procedure being compiled
Policies = DivisionPolicy x SpecializationPolicy x
PromotionPolicy x

MergeCachingPolicy x PromotionCachingPolicy x
LazinessPolicy

DivisionPolicy = {PolyDivision, MonoDivision}
SpecializtionPolicy = {PolySpecialization, MonoSpecialization}
PromotionPolicy = {AutoPromote, ManualPromote}

MergeCachingPolicy = {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

PromotionCachingPolicy = {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}

LazinessPolicy =
{Lazy, SpecializeLazy, LoopSpecializeLazy, Eager}
StaticVarlnfo = Var - CachingPolicy x SourceRoots
CachingPolicy = {CacheAllUnchecked, CacheAll,
CacheOne, CacheOneUnchecked}
SourceRoots = Pow(Var)
Promotions = Pow(Var)
Demotions = Pow(Var)
DiscordantVars = Pow(Var)
LiveVars = Pow(Var)
UsedVars = Pow(Var)
MayDefVars = Pow(Var)
Specializations = Proc - Specializationinfo
Proc =finite set of all procedures in scope of function being compiled
SpecializationInfo = IsConstant x Divisions
IsConstant = {Constant, NotConstant}
Divisions = Pow(Division)
Constraints:
BTALegal(bta:BTA) =
LegalDivisions(dom(bta)) O
0(d,i)Obta.
StaticVars(i)Odom(d) O
OvOStaticVars(i).
(SourceRoots(v, i)Odom(d) O
vOdom(d) O
CachingPolicy(StaticVarlnfo(i)(v)) =
CacheOneUnchecked) O
Promotions(i)C)]dom(d) O
DiscordantVars(i)JPolySpecializationVars(d)
LegalDivisions(ds:Pow(Division)) =
0d,,d,0ds. dy=d, O SeparateDivisions(dy,d,)
SeparateDivisions(d:Division, d,:Division) =
PolyDivisionVars(d4)#PolyDivisionVars(d,) O
CvOPolyDivisionVars(dy). dq(v)Zds(v)
PolyDivisionVars(d:Division) =
{ v@ldom(d) | DivisionPolicy(d(v)) = PolyDivision }
PolySpecializationVars(d:Division) =
{ vOOdom(d) | SpecializationPolicy(d(v)) = PolySpecialization }
StaticVars(i:DivisionInfo) = dom(StaticVarlnfo(i))
SourceRoots(v:Var, i:DivisionInfo) =
if vOStaticVars(i) then SourceRoots(StaticVarlnfo(i)(v)) else O

Figure 11: Domains

10

variables computed (directly or indirectly) from them. The
computed set of static variables will be used to determine which
computations and operands are static, versus which are
dynamic. In addition, it is used to index into the run-time
specializers caches; consequentthe analysis also computes
the appropriate caching policy for each static variable. For
internal purposes, the analysis tracks the set of annotated run-
time constants from which each static variable was computed,
directly or indirectly as described in subsection 6.3.6.

The analysis computes those points that require dynamic-to-
static promotions of variables. Non-empty promotion sets
correspond to promotion points for the listed variables.
Promotions get inserted aftemke_st at i ¢ annotations for
non-constant variables and after (potential) assignments of
dynamic values to variables that are annotated with the auto-
promotion policy

The analysis computes those points that requirdetetion of
variables. The set of demoted variables indicates which
previously static variables have become dynamic and need to
be initialized with their last static value by residual assignments
(calledexplicators [Meyer 91]).

The analysis identifies which nger points require polyvariant
specialization, calledpecializable merges points, because at
least one variable that is annotated with the polyvariant
specialization policy has potentially fdifent definitions on
different mege predecessors. The set of sudikcordant
variablesis computed at these ngerpoints, and is empty at all
other points.

In the remainder of this section we describe the procedure
representation we assume and the set of dataflow analyses used to
construct this output.

6.1 Procedure Representation

We assume that the procedures being analyzed are represented in a
standard control-flow graph, where nodes in the graph can be of one
of the following forms:

e an operator node such as a move, add, or call, with one
predecessor and successor

a mege node with multiple predecessors and one sucgessor

a conditional branch node with one predecessor and multiple
successors, with a single operand that selects the appropriate
successor edge,

an entry node with no predecessors and a single successor
which acts to bind the procedwsdbrmals upon entryr

a return node with one predecessor and no successors, with a
single operand that is the procedanesult.

To enable our analyses to detect when potentialljerdifit
definitions of a variable mge, we assume that nger nodes are
annotated with a list of variables that havefedént reaching
definitions along dferent predecessors, yielding one variable in the
list for eachg-function that would be inserted if we converted the
procedure to static single assignment (SSA) form [Cytron et al. 89].

Flow graph nodes are generated from the following grammar:

Node ::= OpNode | MergeNode | BranchNode |
EntryNode | ReturnNode
OpNode ::= MakeStaticNode | MakeDynamicNode |

ConstNode | MoveNode | UnaryNode | BinaryNode |
LoadNode | StaticLoadNode | StoreNode | CallNode

MakeStaticNode ::=make_st ati c(Var: Palicies)
MakeDynamicNode ::= nake_dynam c(Var)

ConstNode = Var : = Const

MoveNode :=Var: = Var

UnaryNode :=Var : = UnaryOp Var
BinaryNode := Var : = Var BinaryOp Var
LoadNode =Var:=* Var
StaticLoadNode =Var: =@ Var
StoreNode n=* Var: =Var

CallNode :=Var: =Proc(Var, ..., Var)
MergeNode w=nerge(Var, ..., Var)
BranchNode n=test Var

EntryNode =enter Proc

ReturnNode »=return Var

whereVar, Const, UnaryOp, BinaryOp, andProc are terminals
andPolicies is as defined in Figurell

6.2 Prepasses

Our analyses will need to identify those program points where a
variable may be assigned. Direct assignments as part of ar
OpNode are clearbut assignments through pointers and as side-
effects of calls are more @idult to track. Vi abstract this may-
side-efect analysis problem into a prepass whose output is
MayDefVars. MayDefVars is a set of variables at each program
point that may be modified during execution of the previous node
(other than the left-hand-side variable of the node).

Our analyses will work better if they can identify when annotated
and derived run-time constant variables are deadalétract the
result of a live variables analysis into a prepass that computes
LiveVars, the set of live variables at each program poirg.al¢o
compute and abstract a similar analySisedVars, which is the set

of variables at each program point that have an earlier definition anc
a later use (but may temporarily be dead at this pdiiv@Vars is

used to determine when variables can be removed from
StaticVarinfo. Becaus®ivision contains the policies attributed to
annotated variables, a variable cannot be removed Bisrsion
when it simply goes dead: when the variable is used again
downstream, its policy information will be needed. Hence,
UsedVars is used to determine when an annotated variable can be
removed fromDivision.

Finally, we process the interprocedural specialization directives and
record them in th8pecializations domain.Specializations maps
each annotated procedure to a set of divisions given in the
speci al i ze annotation and indicates whether the procedure was
annotated asonst ant. This information is assumed to be
replicated at all program points, for convenience in writing the
analysis functions.

6.3 TheMain Analysis

Figures 12, 13, 14, and 15 define the annotation analysi8TFe
family of dataflow equations defines the information on the
program point(s) after a node in terms of the information computed
for the point(s) before the nodétd), the helper information
described in subsection 6.2 for the program point(s) after the node
(lvs, uvs, and mds), and the evepresent specialized function
information ép). A solution to the (recursive) dataflow equations
is the greatest fixed-point of the set of equations for each node in the
procedure, which we solve by simple iterative dataflow analysis;
the top element of the lattice, used to initialize back-edges during

11

BTAopnode: OPNode - LiveVars — UsedVars — MayDetVars
- Specializations - BTA - BTA
BTAopNode [Make_st ati c(x: p)] lvs uvs mds sp bta =
Merge(lvs, { (doutriout) |
(d,ij) Obta O
dgyt = ForgetDeadVars(uvs, d - { (x',p)0d | X' = x } O {(x,p)},
StaticVarinfo(i)) O
let i’ = MakeStatic(x,dy.i[DiscordantVars - O0]) in
iout = ComputeDemoted(lvs,dq 1, i)})
BTAopNode [Make_dynani c(x)] Ivs uvs mds sp bta =
Merge(lvs, { (doutriout) |
(d,ijy Obta O
dgyt = ForgetDeadVars(uvs, d - { (x',p)0d | X' = x },
StaticVarinfo(i)) O
let i’ = i[DiscordantVars - 0] in
iout = ComputeDemoted(lvs, dg, i, I')})
BTAopNode [X 1 = K Ivs uvs mds sp bta =
Merge(lvs, { (dout-iout) |
(d,ijy Obta O
(dout-iout) = ProcessAssignment(lvs, x, true, O, uvs,
mds, d, i)})
BTAopNode [X : = yI Ivs uvs mds sp bta =
Merge(lvs, { (doutiout) |
(d,ij)Obta O
(dout-lout) = ProcessAssignment(lvs,
X, yOStaticVars(i), SourceRoots(y,i), uvs, mds, d, i)})
BTAopNode [X = op Y] Ivs uvs mds sp bta =
Merge(vs, { (doyioud) |
(d,ijy Obta O
(doutslout) = ProcessAssignment(lvs,
X, yOStaticVars(i) O Pure(op), SourceRoots(y,i),
uvs, mds, d, i)})
BTAopNode [X =y op z] Ivs uvs mds sp bta =
Merge(lvs, { (doutiout) |
(d,ij)Obta O
(dout-lout) = ProcessAssignment(lvs,
X, {y,z}0StaticVars(i) O Pure(op),
SourceRoots(y,i) O SourceRoots(z,i), uvs, mds, d, i)})
BTAopNode [X 1 = *p] lvs uvs mds sp bta =
Merge(lvs, { (doutriout) |
(d,ijy Obta O
(doutsiout) = ProcessAssignment(lvs, x, false, O, uvs,
mds, d, i)})
BTAopNode [X 1= @ p] Ivs uvs mds sp bta =
Merge(lvs, { (doutriout) |
(d,ijy Obta O
(dout-lout) = ProcessAssignment(lvs,
x, pOStaticVars(i), SourceRoots(p,i), uvs, mds, d, i)})
BTAopNode [*P : = Y] Ivs uvs mds sp bta =
Merge(lvs, { (doutiout) |
(d,j)Obta O
(dout-lout) = ProcessStmt(lvs, O, uvs, mds, d, i)}
BTAopNode X = f (Y1, ..., Yn)]Ivsuvs mds sp bta =
Merge(lvs, { (doutiout) |
(d,ij)Obta O
(dout-lout) = ProcessAssignment(lvs,
{y1,....yn}0OStaticvVars(i) O
f Odom(sp) O IsConstant(sp(f)) = Constant,
Oyi 0 y1,....yny SourceRoots(y;,i), uvs, mds, d, i)})

X,

Figure 12: Flow Functions, Part |

BTAEmry: EntryNode - LiveVars - UsedVars - Specializations - BTA
BTAgnyy [enter P]Ivs uvssp =
let ds = (if POdom(sp) then Divisions(sp(P)) else 0) O {O} in
Merge(lvs, { (d, (s, O, O, 0)) |
d'Ods O
d = ForgetDeadVars(uvs, d’, 0) O
s = { InitialBinding(v, d) | vCldom(d) } })

BTAgranch: BranchNode - LiveVarsxLiveVars - UsedVarsxUsedVars
- MayDefVarsxMayDefVars - Specializations - BTA - BTAXBTA
BTAgranch It est xJ| (Ivsy,lvs,) (uvsy,uvs,) (mdsy,mds,) sp bta =
(Merge(lvsy, { (doytiout) |
(d,i) Obta O (doytsiour) = ProcessStmt(lvsy, O, uvsy, mdsq, d, i)}),

Merge(lvsy, { (doutiout) |
(d,i) O bta O (dgypiout) = ProcessStmt(lvs,, O, uvs,, mds,, d, i)}))

BTAwerge: MergeNode - LiveVars - UsedVars — MayDefVars
- Specializations -~ Pow(BTA) -~ BTA
BTAverge [mer ge(x4, . . ., X,) I lvs uvs mds sp btas =
let bta = O btas in
Merge(lvs, { (dout.iout) |

(d,ij) Obta O
pvs = {X1,...,.Xp} N PolySpecializationVars(d) n lvs O
smvs = {x | X£{Xy,....xn}0 merge for x is static in division d}O]
mvs = ({Xq,....Xp} = pvs —smvs) n lvs O

doyt = ForgetDeadVars(uvs, d - { (x,p")0d | xOmvs }

StaticVarinfo(i)) O
iout =
if pvs = O then ComputeDemoted(lvs,dqyy, i,
(StaticVarlnfo(i) - mvs, O, O, 0))
else
let "= ({ (v, (mp, {v})) | (v.p)Odgy O
mp = if vOpvs then MergeCachingPolicy(p)
else CachingPolicy(StaticVarlnfo(i)(v)) },
O,pvs,0)}in
ComputeDemoted(lvs, dq, i, I')

Figure 13: Flow Functions, Part ||

the initial* iteration of analysis of loops, is the empty set (no
divisions).

In general, each flow function computes a hepdated set of
divisions from the inflowing set(s) of divisions.eWemove any
permanently dead variables (those no longer itugerVars set)T
from the set of annotated variablé3ivision, and any at least
temporarily dead variables (those no longer in tieeVars set)
from the set of run-time constantStaticVarinfo, to avoid

unnecessary polyvariant division or specialization. Once a new sef

of divisions and associated information is computed, divisions that
no longer difer in the policies of any variables annotated as leading
to polyvariant division are mged together into a single division.

* We follow the conventions of dataflow analysis in solving dogatest
fixpoints and initializing information along edges to tbp of the lattice.
In this paper we do not bother to more formally define the lattice ordering
and meet operations, since we have given an explicit flow function for

Merge(lvs:LiveVars, bta:BTA):BTA =
MergePartitions(lvs, Partition(bta))
Partition(bta:BTA):Pow(BTA) =
{{ (d,i)Obta | DivisionSelector(d) = ds } |
ds ODivisionSelectors(bta) }
DivisionSelectors(bta:BTA):Divisions =
{ DivisionSelector(d) | (d,i)Ubta }
DivisionSelector(d:Division):Division =
{ (v,p)d | vOPolyDivisionVars(d) }
MergePartitions(lvs:LiveVars, btas:Pow(BTA)):BTA =
{(d,i) | bta O btas O
d = N pjyision dom(bta) O
i = FilterStaticVars(lvs, d, N pivisioninfo fange(bta)) }
FilterStaticVars(lvs:LiveVars, d:Division, i:DivisionInfo
):DivisioniInfo =
let si = { (v, (p,rvs))dStaticVarinfo(i) |
vOlvs O Derived(v,StaticVarinfo(i)} in
i[StaticVarInfo -
{ (v, (p,rvs))Usi | rvsOdom(d) } O
{ InitialBinding(v, d) |
(v, (p,rvs))Osi OvOdom(d) O = (rvsOdom(d)) }]
Derived(v: Var, si: StaticVarinfo):Pow(Var) =
V| (v, p,rvs)Osidv Orvs'Ov£EV'}
ComputeDemoted(lvs:LiveVars, d: Division, i, i":DivisionInfo
): DivisioniInfo =
let svf = StaticVars(FilterStaticVars(lvs, d, i)
svi = StaticVars(i), svo = StaticVars(i’) in
i'[DemotedVars - (svi — svo) O (svo — svf)]
InitialBinding(v:Var, d:Division
):Var x (CachingPolicy x SourceRoots) =
(v, (PromotionCachingPolicy(d(v)), {v}))
MakeStatic(v:Var, d:Division, i:DivisionInfo):Divisioninfo =
if vOStaticVars(i) then i
else (StaticVarinfo(i) O {InitialBinding(v, d)}, {v}, O, O)
Pure(op:Op):bool =
returns true iff op isidempotent and cannot raise an exception or fault;
most operators are pure; div and malloc are canonical impure operators

Figure 14: Helper Functions, Part |

Thus the degree of polyvariant division can vary from program
point to program point.

6.3.1 Entry Nodes

The analysis of the procedure entry node creates the initial
division(s), including at least the empty unspecialized division with
no run-time constants. For a specialized procedure, each of the
divisions listed in thespeci al i ze annotation introduces an
additional specialized division in the analysis. For each division,
the set of run-time constants is initialized to the set of annotated
variables, with each variabgelnitial caching policy taken from its
specifiedPromotionCachingPolicy.

6.3.2 nake_stati c and make_dynam c Nodes

The analysis of amke_st at i ¢ pseudo-instruction adds a new
static variable to each of the existing divisions, and replaces the

merge nodes and defined the top lattice element, and simple iterative oPOlicies associated with the variable if it is already present in some
worklist-based analyses need nothing more. A soundness proof for ourdivision. If the variable was not already a run-time constant in some

analysis would of course require a more formal treatment. Since the
domain of analysis is finite and each analysis function is monotonic,
termination of analysis is assured.

T We do not remove permanently dead variables fbwision if any static
variables derived from them are still live, because doing so would require
us to kill those derived static variables, as described in subsection 6.3.6.

12

division, then themake_static instruction introduces a
dynamic-to-static promotion. Theake_dynami c instruction
simply removes the annotated variable from each of the inflowing
divisions; as described above, this may cause divisions tgemer
and run-time static variables derived from the newly dynamic
variable to be dropped.

6.3.3 Assignment and Store Nodes

The various forms of assignment nodes all have similar analyses
dependent only on whether the right-hand-side expression is a run
time constant expression. Compile-time constants are trivially run-
time constants. A unary or binary expression yields a run-time
constant, if its operands are run-time constants and if the operato
is a pure function (e.g., it cannot trap and always returns the same
result given the samegments). A load instruction yields a run-

ProcessAssignment(lvs:LiveVars, v:Var,

rhs_is_static:bool, rvs:SourceRoots,
uvs:UsedVars, mds:MayDefVars,
d:Division, i:DivisionInfo
):Division x DivisionInfo =

if rhs_is_static

then ProcessStmt({(lvs, v,(CacheOneUnchecked,rvs))}, mds,
uvs, d, i)

else ProcessStmt(lvs, O, mds O {v}, uvs, d, i)

time constant ffits address operand is a run-time constant (which ProcessStmt(lvs:LiveVars, static_assigns:StaticVarinfo,

includes fixed values, such as the address of a global or loca
variable) and it is annotated wi@ by the programmeA call to a
procedure annotated by the programmecasst ant yields a
run-time constant if all its guments are run-time constants. Since
a call annotated witk®is identical, we have omitted that case. A
store instruction has no definitely assigned result variable, only
potential side-éécts, as described by tMayDefVars set.

The efect of these nodes is summarized into two sets. The firstis a
(singleton or empty) set of variables definitely assigned run-time
constant values; the other is a set of variables possibly assigne:
dynamic expressions (comprised of the assigned variable if the

uvs:UsedVars, dyn_assigns:Pow(Var),
d:Division, i:DivisionInfo
):Division x DivisionInfo =
(doutsiour) Where
d’ = ForgetDynVars(dyn_assigns - ps, d)
si = StaticVarlnfo(i)
si' = si —{ (v,vi)Osi | vildom(static_assigns) } O static_assigns
Sigyt = ProcessDynAssigns(
si’, dom(static_assigns), dyn_assigns, d’)
doyt = ForgetDeadVars(uvs, d’, Sigyy)
pSout = MayPromotedVars(d, dyn_assigns) n dom(dg,)

fight-hand-side expression is dynamic, as well as any variables in ‘out = ComputeDemoted(lvs, dou, i, (Siout, PSout 0, 1))
the MayDefVars set). The definitely static variables are added to MayPromotedVars(d:Division, vs:Pow(Var)):Promotions =
the set of run-time constant variables. The possibly dynamic {VEvs|vOdom(d) O PromotionPolicy(d(v)) = AutoPromote }
variables are divided into those annotated with the auto-promoteProcessDynAssigns(si:StaticVarlnfo, svs:Pow(Var), dvs:Pow(Var),
policy (which instructs DyC to insert a dynamic-to-static promotion d:Division):StaticVarinfo =
automatically if they ever get assigned a dynamic value), and those si - { (v, (p,rvs))Osi | vOdvs O (vOdom(d) Orvsn(svsOdvs)Z0) }
that arert auto-promoted (which DyC drops from the set of O { InitialBinding(v, d) | vOdom(d) OvOdvs }
annotated variables and the set of run-time constants, if present itForgetDeadVars(uvs:UsedVars, d:Division,si:StaticVarinfo
either). As with the analysis of any node, dropping variables from):Division =
the set of annotated variables can cause divisions gemer { (v.p)0d | vOuvs OV, gom(siy SOurceRoots(si(v'))}
ForgetDynVars(vs:Pow(Var), d:Division):Division =

{(v,p)d | vOvs }
ForgetDynVars(vs:Pow(Var), d:Division):Division

{(v,p)Cd | vOvs }

6.3.4 MergeNodes

The analysis of a mge node must deal wittliscordant variables
that have potentially diérent definitions along dérent
predecessors (these variables were identified by a prepass an
stored with the mege node, as described in section 6.2). For those
discordant variables that the programmer annotated as run-time
constants with a polyvariant specialization paglitye analysis will
mark this mege as discordant in those variables, triggering 6-3.5 Branch and Return Nodes

specialization of the mge and downstream code. Any other The analysis of a branch node simply replicates its incoming
discordant variables are dropped from the set of annotated variablejnformation along both successors (as always, after filtering the set
and run-time constants, if present. (Again, this dropping of of variables to exclude those that are no longer live along that
variables from the annotated set may cause divisions tgemer syccessor). Return nodes need no analysis function, since there are
Derived run-time constants are implicitty monovariantly no program points after return nodes, and we do not currently do
Specialized, since they were not eXpIICItIy annotated as interprocedura| flow ana|ysis of annotations.

polyvariantly specialized by the programme&he caching policy
for all discordant variables at the rgeris set to those variables’
meige caching policy

Figure 15: Helper Functions, Part |1

6.3.6 Caching Policies and Derivations of
Static Variables

This analysis can be improved for the case efatic merge. A At each program point, the analysis computes a caching policy for
static mege is a mege where at most one of the mes qach varlabl_e. This policy is usgd to contrc_;l |_ndexmg into the run-
predecessors can be followed at specialization time, because thtime specializes caches of previously specialized code. Annotated
predecessors are reached only on mutually exclusive staticvariables at promotion points (and at the start of analysis of a
conditions. Since only one predecessor will be specialized, thedivision of a specialized function) are given the tscified
memge node wort’ actually mege any branches in the specialized P.romotlonCachlngPollcy value. At specializable mge points, a ’
code and only one definition of each static variable will reach the discordant variable is changed to use the varigble
memge when the residual code is executed. In fact, all that is MergeCachingPolicy value.

required is to ensure that only one definition of a static variable canDerived run-time constants are given &cheOneUnchecked

reach the mee at execution time, either because there is only one policy. This ensures that unannotated run-time constants are never
reaching definition, or potentially drent definitions are only used in cache lookups and consequently do not lead to additional
along predecessors with mutually exclusive static reachability specialization beyond that explicitly requested by the. URes
conditions. Such variables are not included in the set of discordaniunchecked caching policy is safe, as long as each derived run-time
variables. Subsection 6.4 describes the reachability analysis used tconstant is a pure function of some set of annotated variables. An
identify static meges. annotated variable can be assigned a static expression, in which

13

case it is treated (morefiefently) as a derived run-time constant normal form) over the static branch outcomes that are required in
with a CacheOneUnchecked policy, instead of its annotated order to reach that program point. A static branch is a branch whose
caching policy test variable is identified as a run-time constant biideanalysis.

Assignments to root annotated variables violate the assumption tha” Static mege is one whose predecessors have mutually exclusive
a derived run-time expression is a function of a set of root annotatecStatic reachability conditions. A g is static for a particular
variables. In this case, the derived run-time constants need to b/ariablex with respect to a given divisiorf it most one possible
dropped from the set of static variables, and annotated derived rundefinition reaches the ngs, or diferent incoming potential
time constants need to be restored to their regular explicitde“”!t!ons are along mutually exclusive predecessors. Reachability
PromotionCachingPolicy value. The analysis tracks the set of conditions are computed &}t the same time a8Teinformation,
root annotated variableSourceRoots, on which a derived run- Since they depend on tBFA division and static variable analysis
time constant depends; whenever a root variable is (possibly)@nd influence thBTA analysiss treatment of mge nodes. Further
assigned to or is removed from the division, all dependent run-timedetails on reachability analysis can be found in an earlier paper
constants are dropped (or restored to their regular caching,blicy [Auslander et al. 96]
roots themselves). . . .
637 Computation of Demotions 7 Creating the Generating Extensions
At each program point the analysis computes the set of demotecGiven the output of thBTA analysis, DyC statically constructs the
variables. A variable can be demoted in two ways: (1) if it was static code and static data structures that, when executed at run time, will
before thé point but is dynamic after the poti ('_ svo in the call the run-time specializer with the appropriate run-time-constant
equations), or (2) if it becomes static at the node but is dropped2/@uments to produce and cache the run-time specialized code, i.e.,
from the set of static variables right after the node because ofth€ generating extensions. The following steps, shown in Figure 7,
filtering of live variablesgvo — svf in the equations). are performed:

- . . « Split divisions: The compiler statically replicates control-flow
6.3.8 Additional L attice Meet Operations paths, so that each division receives its own code. After
The Merge helper function uses the lattice meet operators for the replication, each program point corresponds to a single

Division and Divisioninfo domains. The lattice meet operator division. Replication starts at entries to specialized functions
Npivision Over elements oDivision indicates how to combine (producing several distinct functions), and at geepoints
different annotations for a set of variables in the same division, and where diferent divisions combine. Replicated paths reyaeit

is defined as follows: points where divisions cease tofdif and are joined by the

d1 NDjvision 92 = Merge function.

{ (v,p) | v@idom(d;)ndom(dy) O p = d(V) Npgjicies d2(V) }

Identify lazy edges. The compiler identifies which branch

Elements ofPolicies are met point-wise. Elements of individual successor ~ edges should be lazy specialization edges.

policy domains are totally ordered, with elements listed earlier in ~ Subsection 7.1 discusses this in more detail. Lazy points due to

the set of alternatives for a domain in Figuteotdered less than dynamic-to-static promotions are trivially identified.

elements listed later; for example: « Identify units: The compiler identifies the boundaries of the
AutoPromote <promotionPolicy ManualPromote units manipulated by the run-time specializer (described in

Thus, the lattice meet operator for a particular policy domain ~ Section 4). Unit boundaries primarily correspond to dynamic-

returns its smallest gument, for example: to-static promotion pointgviction points (where variables are

evicted from the set of annotated variables), specializable

AutoPromote n i icy ManualPromote = AutoPromote - .
PromotionPolicy meme points, and lazy branch successor edges. The first three

This rule has the fct of picking the strongest policy of any of the cases are cache lookup points, and the last case avoids
meiging divisions. speculative specialization. This process is described in more
The lattice meet operatom piisioninfo Over elements of detail in subsection 7.2, below clustering algorithm then
Divisioninfo is defined as the pointwise meet over its component attempts to mge boundaries together to minimize their cost,
domains, which are defined as follows: as described in subsection 7.3. Thei t and Uni t Edge

Siy N staticvarinfo Sz = specializer data structures are generated at the end of this
{ (v, (p,rvs)) | vOdom(si)Odom(si,) O process.
P = P1 NcachingPolicy P2 U Separate static & dynamic subgraphs: The compiler

rvs =rvsy U rvs; separates the static operatio@plodes whose right-hand-
where p; = if vldom(si,) then CachingPolicy(sip(v)) side expressions were computed to be static byBf&

else CacheOneUnchecked analysis) and the dynamic operations into two separate, parallel

p; = if vOldom(siy) then CachingPolicy(siy(v)) control-flow subgraphs; in earlier work we called these

else CacheOneUnchecked subgraphs “set-up code” and “template code,” respectively
rvs; = if vlldom(si;) then SourceRoots(si;(v)) else O [Auslander et al. 96]. Subsection 7.4 discusses some aspects of

rvs, = if vdom(siz) then SourceRoots(sip(v)) else U } this separation in more detail. Our method of determining the

VS1 N promotions VS2 = VS10vs, control flow of the static subgraph, after all dynamic branches

VS1 N piscordantvars VS2 = VS10VS, have been removed from it, is described in subsection 7.5.

VS1 Npemotions VS2 = VS1VS;

Insert explicators: The compiler inserts explicators in the
dynamic subgraph for all variables in tBemotions set at
each program point. F@emotions sets at mge nodes, each
6.4 Reachability Analysis

We identify static meyes by computing astatic reachability * Our earlier paper presents the reachability analysis for a monovariant
condition at each program point for each division. A static binding-time analysis; the analysis also uses a slightly more conservative
reachability condition is a boolean expression (in conjunctive rule for determining static merges than the one described here.

14

assignment must be inserted on each predecessor edge to tf
mege where the now-dynamic variable was previously static.

implementation ofSpeci al i ze, such as cache lookups,
memory allocation, and branch patching, are inserted into the
static and dynamic subgraphs before they are passed throug!
the backend of the compiléome optimizations of the calls to
the run-time specializer are discussed in subsection 7.7.

Integrate: Finally, each uni8 ReduceAndResi dual i ze
function is completed. The control-flow and the reduce
operations of theReduceAndResi dual i ze function are
derived from the static control-flow subgraph. The residualize
operations are introduced by translating the operations and
dynamic branches of the dynamic subgraph into code to emit
the dynamic instructions (perhaps with run-time-constant

annotated withCacheOneUnchecked do not contribute to
the cache context.)

Insert DC operations: The operations needed to complete the Given the cache context and the other program-point-specific
information, unit boundaries are identified as follows:

* Any point where the cache contextfdis from the cache

context at a predecessor point is a unit boundarge diferent
degrees of polyvariant specialization or of cache retention can
occut In practice, this rule can be relaxed since, except at
promotion points, these boundaries are not required for
correctness. Unit-boundary clustering (see the next subsection)
also helps to mitigate the impact of the many boundaries this
rule can insert.

« A non-emptyPromotions set at a program point corresponds

to a dynamic-to-static promotion point, and introduces a unit

operands) in the static subgraph; this process is described ir boundary) . .
more detail in subsection 7.6 beloWhe resulting subgraph * A non-emptyDiscordantVars list corresponds to a special-
forms theReduceAndResi dual i ze function for the unit, izable mege point, and introduces a unit boundary

and the dynamic subgraph is thrown away « Each edge labelled as a lazy edge introduces a unit boundary

7.1 Computing Lazy Branch Successors In addition, units are constrained to be single-entry regioms. T
ensure this, additional unit boundaries are inserted at control-flow
meiges of paths (including loop back edges) fronfiedént units.
These unit boundaries can be omitted, howe¥el paths from
different units have mutually exclusive static reachability
conditions (the same way it is determined that multiple static
definitions are not truly discordant; see section 6.4). This eliminates
A branch successor edge is layits test variable is dynamic and the overhead associated with crossing the omitted unit boundaries

at least one of the following conditions holds: (discussed in the next subsection), and permits program points to be

« At least one of the run-time constants at the branch is annotatecShared among multiple units, at the cost oféargenerating
with theLazy policy, extensions.

The branch successor eddetermines execution (as defined The Uni t Edge data structure records whether each unit edge
below) of a predecessor edge of a later specializablgemer should be specialized eagerly or laziy unit boundary is eager
node, where at least one of the discordant variables is annotateunless it is a promotion point (which must be suspended until the
with theSpecializeLazy policy, computed run-time value is available) or a lazy edge.

* The branch successor edge determines execution of aFigure 16 illustrates the units (shown in gray) that are identified for
predecessor edge of a later specializable loop-heagemede, the interpreter example in Figure 2. The two entry points
where at least one of the discordant variables is annotated witFcorrespond to the specialized and unspecialized divisions of the
the LoopSpecializeLazy policy, or i nt er p_f n function. The unspecialized entry point and the false

to a specialized division of a procedure, and some run-time conditional-specialization tests lead to unspecialized, statically

constant live at the call is not annotated withEager policy. compiled code. Demotions (indicated By of byt ecodes and
pc are required on the edge from the specialized test as they are

evicted from the set of annotated variables.

Laziness policies on variables indicate the extent of speculative
specialization that should be performed after dynamic branches.
Based on these policies, successors of some dynamic branches a
determined to be lazy edges, each of which corresponds to a one
time suspension and resumption of specialization at run time.

.

We say that a branch successor edge determines execution of
program point if the edge is postdominated by the program point,
but the branch node itself is not, i.e., the branch successor is (on'The specialized entry point begins unit 1. The true branches of the
of) the earliest point(s) where it is determined that the downstreamtests mege at the code to be specialized, forming unit 2, which is
program point will eventually be executed. Once the created by the dynamic-to-static promotion (indicatedPpyof
(post)dominator information relating program points is computed, Pyt ecodes andpc on the edge from the unspecialized test. Unit

a linear scan over the dynamic branches, specializablgemer 3, Which contains the loop body to be specialized, is created
points, and specialized calls serves to compute the lazy edg(becausqac, which has definitions both inside and outside the loop,
information. is discordant at its head. A promotionpaf is required on the back
edge from theCOMPUTED_GOTO case aftepc is assigned an
address location. The successors of the dynamic branch in the
| F_GOTO case are madéazy as required by the (default)
LoopSpecializeLazy policy, because the branch determines the
execution of diferent paths to the specializable loop head. The false
branch extends to the loop head, so no new unit is required, but the
true branch creates the fourth unit.

7.2 Unit ldentification

Each interaction with the run-time specializercluding cache
lookup points and demand-driven specialization points, introduces
a unit boundaryTo identify the boundaries based on cache lookup
points, we first compute theache context at each program point
from the set of static variables at that point, as follows:

«If any static variable is annotated with the
CacheAllUnchecked policy, then the cache context is the
special markereplicate.

« Otherwise, the cache context is the pair of the set of variables
annotated with th&€acheAll policy and the set of variables
annotated with th€€CacheOne policy. (The set of variables

The specializable loop head will include a specialization-time

cache lookup, the edges carrying promotions will correspond to
run-time cache lookups, and the lazy edges will become one-time
call-backs to the specializer

* Note that a program point can be a boundary in more than one way.

15

promotions, as these will reduce the amount of specialized
entry 1. interp_fn_bytecodes_pe(. ..) entry 21+| nterp_fn(...) code. V& choose either the start or end of the intersection range,
- —] - —— - based on the relative mix of promotions and evictions, and

unsigned int inst,rs...; unsigned int inst,rs...; . . .
if (++count[pe]. .. if (++count[pc]. .. insert a single boundary for all the ged ranges at that point.

Then we continue processing the sorted list of boundary ranges,
P: byt ecodes, pc ~ Dibyt ecodes, pc__y until the list is exhausted.

—

unit 1

o cn(cpooDC wet)) € minimum number of unit boundaries possible, given the restricted

unit 2 case Ll: ... kinds of ranges produced in the first step (the restriction to control-
specializable merge: case GOSUB: ... equivalent program points is key)o Tprove this, note that we

o~ P) ! produce a clusterfifve detect a kernel range, so that the number of

-
1] = H . . .
| regl1] = arg; D ey e This algorithm for coalescing boundary ranges produces the

clusters is equal to the number of kernels. Since kernels never
unit 3 overlap, no clustering scheme could place two kernels in the same
swi 1 eh(GPCCDE(i nst)) cluster The number of kernels is therefore also the minimum

—— number of clusters required, implying that our algorithm produces

case LI case OOVPUTED_GOTO. | |case | F_GOTO no more clusters and, therefore, no more boundaries than necessary
reg[rt] = offset; pc = reg[rs]; if(reg[rs] ==reg[rt])

| More elaborate versions of the clustering algorithm may take into
lazy account the fact that dérent kinds of boundaries incur f@ifent
¥ kinds of costs. W do not wish to cluster boundaries withfetiént
) kinds of cost togetheif that would increase overall expense. Eager
unit 4 boundaries incur cost only at specialization time. Lazy-edge
boundaries incur cost at run-time, but only once, the first time that
boundary is executed, since the edge is patched to branch directly
) o . . to the specialized successor code. Promotion boundaries require
Figure 16: Specialization Unitsfor Figure2 run-time cost each time they are executee d&vnot wish to cluster
an eager cache lookup boundary with a lazy edge to form a lazy
7.3 Clustering Unit Boundaries cache Ilookup that would incur run-time cost at each execution, for
example.

inst = bytecodes@ pc++];

P: pc lazy

A unit boundary introduces run-time specialization overhetal
package up the run-time-constant context from the exitingsunit’
ReduceAndResi dual i ze function, to execute the run-time
specializer and any cache lookups, and to invoke tgettanits
ReduceAndResi dual i ze function (unpacking the tget’s run-

time context). In some circumstances, series of unit boundaries car
be created with little if any work in between, for instance when a
series of annotated static variables become dead, leading to a seric nmake_static(i, n : p_cache_one_unchecked,

inti ; i i ; m cache_al | _unchecked);
of eviction points and corresponding unit boundaries. for (i =0 i <n: i+9) {

Different cache policies should distinguish unit boundaries as well.
We do not wish to cluster or reorder unit boundaries whose overall
caching policies are ddrent, particularly when the context at one
of the boundaries igeplicate. Doing so would likely violate the
usefs intention in specifying diérent cache policies. A trivial
example of this is shown below:

To avoid excessive unit boundaries, we attempt to combine

multiple boundaries whenever possiblee Wave developed a }

boundary clustering algorithm that works as follows: In this example, unit boundaries are required atrttiee_st at i c
annotation to promote, and at the loop head, because the initial
and loop-carried definitions of are discordant at the loop-head
meige. When the two unit boundaries are distinct, the overall cache
policy of the lazy unit boundary due to the promotioma$ n’s

t promotion cache poligyCacheOneUnchecked; the eager loop-
head unit boundary receives an overall cache policy of
CacheAllUnchecked, derived from ’s mege cache policyif the

two boundaries were clustered togethtbe clustered boundary
would have theCacheAllUnchecked policy under the current
scheme, causing new code to be generated for every execution of
the dynamic region, which is the opposite of what the user wanted.

 First, for each boundarywe construct the range over the
procedure where that boundary can be legally moved.
Specializable mege points and lazy-edge boundaries cannot be
moved, so their range is a single program p*ol?ltomotion and
eviction boundaries can move to any control-equivalen
[Ferrante et al. 87] program point that are bounded by earlier
and later uses of any promoted or evicted variable; however
promotion points cannot move above earlier definitiowde
delay inserting the single-entry-producing unit boundaries until
after all the other boundaries have been clustered, so they dc
not participate in the clustering algorithm.

« Second, we sort the boundary ranges in increasing order of theillt IS Not clear how to extend the clustering algorithm to keep

ends, and then make a linear scan through this sorted &st. W incompatible types of unit boundaries distinct while maintaining
remove the range that ends first in the list (call thierael optimality. Simply preventing clustering of adjacent boundaries

range), remove all other ranges that overlap with the first range that are incompatible may_be overly restrictive. Permitting
(call the union of these ranges duster), and find the clustering beyond control-equivalent regions would also be useful,

intersection of these ranges. This resulting intersection is thePut makes the problem morefiitilt still.
program region where all of these boundaries can be plaged. W

prefer earliest possible points for evictions and later points for 7.4 Separating Static and Dynamic Operations

For most straight-line operations, it is clear whether the operation is
* Except at loop heads, cache lookups due to specializable merge pointstatic or dynamic. Howeveeall instructions are trickier

could be permitted to be moved down by the clustering algorithm. « A call to a regular unspecialized function (or to the
T Definitions and uses are mobile as well, so a fair range of motion should unspecialized version of a specialized function) is treated as a
be possible while still respecting data and control dependences. dynamic operation and appears only in the dynamic subgraph.

16

« A call to aconst ant function (or one annotated wi@ with topologically sorting their successors, then regasithe common
static aguments is treated as a regular static computation, tails of the static paths bottom-up. The time required by the
appearing only in the static subgraph. algorithm can be exponential in the maximum number of sequential

« Acall to a particular specialized division of a function has both Static branches on any static control path within a single unit, which
static and dynamic components inplement this, the call ~ We expect to be a small number in practice.
operation is split into two separate calls, one static and one| jnearization causes what were originally alternative code
dynamlc. The static version of the call invokes t_h_e 'statlcally segments to be executed sequentiale must ensure that the
compiled generating extension for the selected division of the segments executed earlier do not alter the initial static state
callee, taking as guments the divisios’static aguments, and expected by subsequent alternative segments. This could be
returning a static procedure address. This is followed by a gchieved by saving the static state at each dynamic branch and
dynamic call that invokes the static procedure address andrestoring it before executing each branch succedgus is the
passes the remaininggaiments to produce a dynamic result. approach we have taken in order to propagate the static context
The static call will be moved to the static Subgraph, and the between units. Howevﬁwithin a Sing'e unit' a more fafient
dynamic call will appear in the dynamic subgraph. solution is possible by converting static variables to static-single-

Control-flow nodes, including branches and gest, initially are ~ assignment (SSA) form [Cytron et al. 89]. SSA form ensures that
replicated in both the static and the dynamic subgraphs. Lateronly one assignment is made to each variable, which implies that

transformations can optimize them. state changes made by segments that occur earlier in the linearized
o] unit are made to variables not read by alternative segments. In this
7.5 Determining Control Flow of the Static Subgraph case, the SSA form is easy to compute, because issues arising from

loops and aliasing can be safely ignored due to By&strictions

on the form of units (i.e., units cannot contain static loops) and its
prohibition of static stores. If these restrictions were eased,
however an alternate solution may have to be found.

Once each unit has been identified and split into separate static an
dynamic control-flow subgraphs, the control-flow structure of the
unit's ReduceAndResi dual i ze function is computed. Static
and dynamic branches in the unit receivdedént treatment. A
static branch is taken at specialization time, and does not appear il
the dynamically generated (residual) code; accordjogly one of

its successors produces dynamically generated code. ConsequentTo produce the final code for a usiReduceAndResi dual i ze

a static branch appears as a regular branch in the finakynction, we take the linearized static control-flow graph which
ReduceAndResi dual i ze function, selecting some single computes all the static expressions, and blend in code to generate
successor to pursue and residualize. A dynamic branch, on the othéthe dynamic calculations with the appropriate run-time constants
hand, is emitted as a regular branch into the dynamically generateiembedded in them.oTaccomplish this, our system maintains a
code, and both its successors must be residualized. Conseguentimapping from each basic block in the dynamic subgraph to a set of
no branch appears in tlReduceAndResi dual i ze function at corresponding basic blocks in the static subgraph. When splitting
a dynamic branch, and the successors of the dynamic branch arapart static and dynamic operations, the mapping is created, with
linearized instead. each dynamic block mapping to its static counterpatt(Ee

Figure 17 illustrates how the dynamic branches are linearized.Mapping is updated, as the static subgraph is linearized and some
Numbered boxes represent basic blocks and circles represerPlocks are replicated, and as the subgraphs are optimized through
branches. The circle enclosing smepresents a static branch and instruction scheduling. The two subgraphs are integrated, one
the one containing d represents a dynamic branch. dynamic block at a time. First, the static code computes any run-
time constants used in the blogkfynamic instructions. Then, code

to emit the dynamic block is appended to its corresponding static
block.

The code to emit a dynamic instruction embeds the values of any
small run-time constant operands into the immediate field of the
emitted instruction. If the run-time constant is togéato fit in the
immediate field, code is emitted to load it from a global table into a
scratch registerThe emitted instruction then reads the scratch
register to access the run-time constant. The emitting code also
performs any peephole optimizations that are based on the run-time
constant value, such as replacing multiplications by constants with
sequences of shifts and adds.

7.6 Integrating Dynamic Codeinto Static Code

Figure 17: Linearization 7.7 Optimizing Specializer Interactions

In the presence of arbitrarynstructured control flow with mixed ~ Each initial promotion point at the entrance to a dynamic region is
static and dynamic branches, this linearization process may requirdmplemented by generating a static call to the run-time specjalizer
some code duplication to avoid maintaining specialization-time Passing the run-time values of the cache context at that program
data structures and overhead. Our algorithm first splits all staticPoint. Section 4 described the run-time specializer as if a single
control path$ within the unit, linearizing dynamic branches by general-purpose specializer took control at this and all other unit

*

Tempo performs interprocedural binding-time analysis and so can deduce' A static control path includes all dynamically reachable basic blocks,
that the result of a specialized function is static. If we were to extend DyC given particular decisions for all static conditional branches. Each static
to support interprocedural analysis of annotations, then the static half of branch can appear on a static control path at most once, because units
the call would return both a procedure address and the static result value cannot contain static loops.

and the dynamic half would return no result and be invoked only for its * Unit linearization may create multiple instances of a basic block in the
side-effects. static subgraph, as mentioned in section 7.5.

17

boundaries. Our system optimizes this pedagogical model asreplaced by another non-annotated tempotgpycally resulting in

follows: less specialization than desired by the programiméne following
» The Speci al i ze function is specialized for eactni t source code:
agument. All the run-time manipulations of thi t and make_static(x);
Uni t Edge data structures are eliminated, the gnit’ X =Yy,
ReduceAndResi dual i ze function is inlined, and the if (d x =x+1; else x =x + 2;
processing of outgoing lazy unit edges is inlined. If the cache M .. x ../* nofurther usesof y */

policy for any of the wunis context variables is yariablesx andy are represented by temporaries andty,
CacheAllUnchecked, then the cache lookup and store calls regpectively:

are omitted. make_static(tx);

« Rather than recursively calpeci al i ze, a pendi ng- tx = ty;
|'i st is used to keep track of unprocessed (eager) unitedges if (td) tx =tx + 1; else tx =tx + 2;
Furthermore, the overhead of pushing and popping the staticM .. tx ..

context on and éfof thependi ng-1i st can be avoided for Multiflow’s copy propagation and temporary renaming phase
one successor of each unit, which eliminates more than half oftransform this into:

this overhead in dynamic regions without dynaiswg t ch make_static(tx);
statements. if (td) ty =ty + 1; elsety =ty + 2;
¢ Ends of dynamic regions are compiled into direct jumps to M. oty)))
statically compiled code. Since the source variable corresponding to tempdrgrys not
annotated, theake_st at i ¢ annotation orx is efectively lost,
8 Experience with DyC leading to less specialization in the program than expected by the

programmenVe combat this problem by attempting to maintain the
We have implemented the core functionality of the system in the source-variable-to-temporary correspondence through Multglow’
context of the Multiflow compiler [Lowney et al. 93]. Only the many optimization phases, with varying degrees of success.
function annotations, theCacheOne policy, unit-boundary
clustering, and unit linearization have not yet been fully
implemented. W have encountered a number of practical
difficulties in the implementation, particularly in the
implementation of the annotations. Most of these problems related
to naming, i.e., establishing a correspondence between the variablé, ohem e currently disable this optimization at some cost in code
that the programmer sees in the source code and their interna ;

S99 > = oo h Cquality.
representation in the compiler; this issue is discussed in subsectiol”) o))
8.1. Variable expansion, which is performed by the Multiflow compiler

. . . during loop unrolling, exacerbates the problem of lost annotations.
Despite the challenges, we achieved good results withgarlar gince several temporaries are created and are modified

application than previously had been dynamically compiled by hgependently in the loop bodihe source-variable-to-temporary
other general-purpose dynamic-compilation systems. SUbseCt'orcorrespondence cannot be easily establishedgef around this

8.2 describes our positive experiences with this and otheropiem, we currently disable (compile-time) loop unrolling in
applications. On the other hand, as we applied DyC to variousgome cases as well.

programs, we encountered several weaknesses in our currer
design, and these are discussed in subsection 8.3. 8.2 Preliminary Experienceswith Applications

8.1 Challengesin Implementing the Annotations We have applied DyC to a few kernels previously used as
benchmarks for other dynamic compilation systems, and have

In the Multiflow compiler all computations are represented as optained speedups and overhead comparable to these systems. The
operations whose operands are virtual registers datigubraries. _kernels are typically 100-200 lines of C code with dynamic regions
Temporaries are created on demand by the compiler and theilof size 10-25 lines. Our dynamic-compilation overhead ranged

names bear no correspondence to source-level variable names. /petween about 20 and 200 cycles per instruction generated, on the
different program points, a source variable may correspond topjgital Alpha 21064.

different temporaries, and optimizations such as induction-variable
simplification or variable expansiommay even create multiple
simultaneously live temporaries corresponding to a single variable.
Since the programmer annotates source variables, our.
implementation computes a source-variable-to-temporary
correspondence at each program point. This correspondenct
relation is used to apply tH&TA rules to those temporaries that
correspond to annotated source variables and any temporarie
derived from them.

Induction-variable simplification can similarly cause loop-
induction variables to be replaced with temporaries that do not
obviously correspond to annotated (or any) source variables.
Because the specialization annotation on the individual variable has
been lost, the loop may not be unrolled as desirecavbid this

The automation provided by our system has also allowed us to
experiment with dynamically compiling a ¢mr program, the
m psi architectural simulator for the MIPS R3000 architecture.
The simulator consists of approximately 9100 lines of C with a
dynamic region roughly 400 lines long. eWwere able to
dynamically compile the simulator by converting a few global
variables to local variables, and then adding just three lines of
annotations, very similar to those in Figure 1. Nearly all of ByC’
functionality was exercised, including polyvariant division and
Several standard compiler optimizations make maintaining this specialization, automatic dynamic-to-static promotion, and
correspondence diéult. For example, copy propagation can result automatic caching. This resulted in constant folding, constant
in the annotated variable (i.e., its corresponding temporary) beingbranch removal, load elimination, multi-way loop unrolling, and
conditional specialization. The reachability analysis also proved
" Variable expansion createscopies of a variable in the body of a loop that Useful in several instances by preventing derived static variables
is unrolled by a factor oh, one for each unrolled body, and combines the defined under static control from being dropped from the set of run-
values at the loop exits to produce the value that the original variabletime constants at static ngess. (Empo was recently used to

would have had. Creating copies reduces the dependences in the loop dynamically specialize an interpreter comparable in sipe psi
body, thereby enabling potentially better instruction schedules. [Thibault et al. 98].)

18

A preliminary implementation of our system, which did not include
some later optimizations to the run-time specialipeoduced a
speedup of 1.8 at an overhead of 300-400 cycles per instructior
generated.

8.3 Areas Requiring | mprovement

As we applied DyC tari psi and to the small benchmarks, we
encountered a number of weaknesses of our current design. Thes
weaknesses did not reduce specialization opportunities, but madt
the system less automatic than we had hoped. Inadequate suppc
for global variables and partially static data structures may be
DyC’s most serious shortcoming. Most programs we wish to
dynamically compile require specialization for static or partially
static data structures, anipsi used global variables as well. The
@annotation allows DyC to perform dereferences at specialization
time. If the annotated data structures are actually invariant, then this
approach works fine; otherwise, it is ingtient. For example, in

m psi we had to manually copy global variables to annotated local
variables whenever their values may have changed. Unfortunately
extending DyC to be capable of performing static stores would
require significant changes to our context-management strategy
caching mechanism, and unit-linearization scheme. Also,
additional annotations (or interprocedural analysis) would be
required to position explicators for statically written memory
locations.

Additional analyses, for example, to automatically determine when
cache lookups and lazy branches could be safely eliminated, woulc
be useful. Such analyses would reduce the need to use the unsa

* DyC allows the programmer to specify policies to control
division, specialization, caching, and speculative
specialization. @mpo does not provide user controls; the client
program must perform its own caching of specialized code if
desired. A Java front-end toefipo has been designed,
however that provides automatic caching and policies to
govern replacement in the cache; users may also implement
their own policies [glanschi et al. 97].

DyC relies on the programmer to annotate memory references
as static. @mpo performs an automatic alias and sideeef
analysis to identify (partially) static data structuresmpos
approach is more convenient for programmers and less error
prone, but it still is not completely safe, relies on the
programmer to correctly describe aliasing relationships and
side-efects of parts of the program outside of the module being
specialized, and may benefit from explicit user annotations
wherever the analysis is overly conservative. Howevstrong
benefit of Bmpos approach is that static writes to memory are
possible.

DyC supports separate compilation while still being able to
specialize call sites and callee functions for the values of their
static aguments, but performs no interprocedural analysis.
Tempo performs interprocedural sidéeet and binding-time
analyses, can also specialize functions for the values of static
global variables, and can identify static return results of
residual functions. Howeveiit requires the whole module
being specialized to be analyzed and compiled as a unit.

» Tempo also supports compile-time specialization.

caching and laziness policies, which we used extensively in thej, oyr view DyC's focus on intraprocedural specialization,
small benchmarks to achieve the greatest possible performanciytomatic caching and dispatching, control over specialization, and
with the least overhead. At the other end of the ease-of-Us€|oyy run-time overhead is fairly complementary @mpos focus
spectrum, an invalidation-based caching and dispatching o interprocedural specialization, support for partially static data

mechanism could also reduce the cost of saféfy dynamic giyyctures, and uniform support for compile-time and run-time
regions or specialized functions using an invalidation-based CaChespeciaIization.

policy (hypothetically InstallOne, InstallAll, or) . .
InstallAllUnchecked), one specialization would be installed as the Fabius [Leone & Lee 95, Leone & Lee 96] is another dynamic

currently valid version and it would be invoked with direct jumps COmpilation system based on partial evaluation. Fabius is more
or calls until invalidated. Following invalidation, the next execution imited than DyC or mpo, working in the context of a first-order

of the region or function would fall back on Dyxisting caching ~ PUrely functional subset of ML and exploiting a syntactic form of
schemes GacheOne, CacheAll, or CacheAllUnchecked, currying to drive dynamic compilation. Only polyvariant
respectively), and the version retrieved from the cache (or theSPecialization at the granularity of functions is supported. Given the
newly specialized version) would be installed as the current one.Nints of curried function invocation, Fabius performs all dynamic
Such a scheme could improve performance for applications inCompilation optimizations automatically with no additional

which it could be easily determined when to invalidate the current @notations; by the same token, the trade-efvolved in the
specialized version of each dynamic region. dynamic compilation process are not vsentrollable. Fabius does

little cross-dynamic-statement optimization other than register
: allocation, since, unlike DyC, it does not explicitly construct an
9 Comparlson To Related Work explicit dynamic subgraph that can then be optimized.
Tempo [Consel & Noél 96], a compile-time and run-time Compared to our previous system [Auslander et al. 96], DyC has a
specialization system for C, is most similar to DyC. The two more flexible and expressive annotation language, support for
systems dier chiefly in the following ways: polyvariant division and better support for polyvariant
« DyC may produce multiple divisions and specializations of Specialization, support for nested and overlapping dynamic regions,
program points, with the degree of division and specialization support for demand-driven (lazy) specialization, support for
varying from point to point. @mpo supports only function- interprocedural specialization, a much morkckint strategy for
level polyvariant division and specialization, with no additional and optimizations of run-time specialization, and a more well-
division or specialization possible within the function, except developed approach to caching of specialized code.
for some limited support for loop unrolling. Outside the realm of dynamic compilation, other partial evaluation
DyC performs analysis over arbitrapotentially unstructured ~ Systems share characteristics with DyC. In particu@mix
control-flow graphs. @mpo converts all instances of [Andersen 92b, Andersen 94] is a (compile-time)ire partial-
unstructured code to structured form [Erosa & Hendren 94, evaluation system for C. Its analysesfatiffrom DyCs in the
Consel et al. 96], which introduces a number of additional tests following ways:

and may also introduce loops.

DyC allows dynamic-to-static promotions to occur anywhere
within dynamically compiled code. empo requires such
promotions to occur only at the entry point.

19

« C-mix provides program-point polyvariant specialization, but
only function-level polyvariant division.

* While DyC computes point-wise divisions, C-nsixdivisions
are uniform; that is, it assigns only one binding time, static or

dynamic, to each variable and does not permit variables tothe run-time compiler manage code reuse and code-space
change from static to dynamic or vice-versa. Howeg@emnix’s reclamation, and ensure correctness. In return for this programming
analysis runs in nedinear time and is &tient enough to apply burden, "C would seem tofef greater expressiveness than a
interprocedurally while DyC's intraprocedural analysis has declarative, annotation-based system. HoweRgC'’s ability to
exponential (worst-case) complexity perform arbitrary and conditional polyvariant division and

« C-mix copes directly with unstructured code, but it appears to SPecialization enables it to perform a wide range of optimizations

lack reachability analysis to identify static mes [Andersen with very .Iittle user iptervention, and Dnyefs.capabiIities not
94]. available in "C. For instance, "C cannot (multi-way) unroll loops

with dynamic exit tests, because jumps to labels in other tick
expressions are not permitted. ("C recently added limited support
. . for automatic single-way loop unrolling within a tick expression
C-mix includes support for automatic interprocedural call pojettg et al. 97].) Also, tick expressions cannot contain other tick
graph, alias, and sidefett analyses. expressions, so nested and overlapping dynamic regions cannot be
C-mix also provides annotations for controlling code growth by supported. Both of these weaknesses would appear to prevent 'C
limiting specialization with respect to certain variables and for from handling the simple interpreter example in Figure 1. “C can
overcoming the limitations of its conservative analysis; support run-time compiled functions with a dynamically
however its annotations provide less control than DyCC- determined number of guments, but it may be feasible to achieve
mix always polyvariantly specializes control-flow pes, and at least some of this behavior in DyC by specializing a procedure
provides theresi dual annotation to make a variable based on the length and values invits ar gs pseudo-agument.
dynamic in order to prevent explosive code growth due to One advantage that *C does have is that the programmer can easily
multi-way loop unrolling. In contrast, DyC provides control implement a variety of dispatching mechanisms, which may be
over code growth by permitting variables to be specialized important in exploiting certain opportunities for dynamic
monovariantly or by specializing lazily on demand. C-six’ compilation, such as data decompression [Keppel 96].

FlILljsr tieapor:gtgp?hnd %cl)rirensg?)?gsm?grsot\/%rg d' bayng]ggtf rcr)1|ogern A declarqtive system such as Dyp allows better statif: optimization
optimizing compilers of dynamic co_de_ than an imperative system suc_h as 'C, bgacause the
P 9 P) control flow within a dynamic region is more easily determined and
Andersers dynamic basic blocks (DBBs) [Andersen 92a] serve the conveyed to the rest of the optimizing compil@ptimization
same purpose as specialization units, to reduce overhead in thacross tick expressions is as hard as interprocedural optimization
specializer; howevertheir boundaries are determined entirely across calls through unknown function pointers [Poletto et al. 97].
differently DyC's specialization units dér from C-mixs dynamic Finally, programs written in declarative systems can be easier to
basic blocks in the following ways: debug: since (most of) the annotations are semantics-preserving,
» DBBs are bounded by (and may not contain) dynamic control programs can simply be compiled ignoring them. Debugging the
flow. On the other hand, Dy€units are designed to include use of unsafe annotations is still challenging, however
dynamic control flow (via linearization).

« C-mix does not automatically insert specialization points (and 10 Conclusions

thus begin new DBBSs) at specializable geepoints in order o \ye have presented the design of DyC, an annotation-based system
enable code sharing. Unit boundaries are required wherever & performing dynamic compilation that couples a flexible and
new variant of the code must be begun, at both dynamic-to- systematic partial-evaluation-based model of program
static promotions and specializable ger points. Unit yanstormation with user control of key policy decisions. Our
boundaries are also inserted where cache lookups could enablannotations’ design resulted from a search for a small set of flexible
sharing (i.e., at eviction points). primitive directives to govern dynamic compilation, suitable for

» DBBs may overlap. Units currently cannot overlap, though that use by both human programmers and tools (such as a semi-
restriction could be relaxed, as described in section 7.2. automatic dynamic-compilation front-end).itWthe exception of

Schisms filters permit choices about whether to unfold or support for static data structures, we believe that our
residualize a function and whichgaments to generalize (i.e., NBke_static annotation provides the flexibility we require in a
make dynamic), given binding times for the functioparameters ~ concise, elegant mannédy adding policy annotations, users can
[Consel 93]. Because filters are executed by the binding-timegain fine control over the dynamic compilation process when
analysis, only binding-time information can be used to make needed. Our support for arbitrary program-point-specific
decisions. DyG conditional specialization can use the results of polyvariant division and specialization is a key component of
arbitrary static or dynamic expressions to control all aspects of run-DyC's flexibility, enabling, for instance, multi-way loop unrolling
time specialization. and conditional specialization, as illustrated in the interpreter
example. W& exploit the unusual capabilities of run-time

e C-mix handles partially static structures by splitting the
structures into separate variables.

.

Filters can be used to prevent unbounded unfolding and unboundens ecialization in the forms of arbitrary dynamic-to-static promotion
specialization. Both difne partial evaluators, such as Schism, and aﬁd demand-driven specialization ydy P

online specializers, such as Fuse[¥¥ et al. 91], look for dynamic P '

conditionals as a signal that unbounded unfolding or specialization\We have implemented the core functionality of the system in the
could occur and specialization should be stopped. Run-timecontext of an optimizing compile®ur initial experience in using
specializers have an additional option, which is to temporarily DyC has been promisingDyC has obtained good speedups (over
suspend specialization when dynamic conditionals are found instatically compiled code) with low run-time overhead, and required
potential cycles and insert lazy callbacks to the specializer; little modification of source programs. The majority of our syssem’
currently only DyC exploits this option. functionality has been used in the singlg@éaprogram with which

we have experience. Once the full implementation is complete, we

C extends the ANSI C language to support dynamic code plan to focus on applying dynamic compilation to other sizeable,

generation in an imperative rather than annotation-based style
[Engler et al. 96]. The programmer must specify code to be -
generated at run time, substitute run-time values and combine cod: If run-time inlining through function pointers were available in DyC,
fragments (called tick expressions), perform optimizations, invoke analysis across those calls would be of comparalfleudif.

20

real application programs. &Will use these applications to further [Goldberg & Robson 83A. Goldberg and DRobson.Smalltalk-80: The

evaluate DyQ design and implementatione\illso plan to extend Language and its Implementatiokddision-Wesley, 1983.

DyC with additional run-time optimizations, such as run-time [jones et al. 93Y.. D. Jones, CK. Gomard, and FSestoft Partial Evalua-
inlining and register allocation (via register actions). tion and Automatic Program GeneratidPrentice Hall, 1993.
Acknowledgments [Keppel 96]David Keppel Runtime Code GeneratioRhD thesis, Univer-

sity of Washington, 1996.
We are grateful to Charles Consel for his help in understanding
Tempo and some of the related issues in partial evaluatiealdt
thank the anonymous referees for finding several errors and
suggesting other improvements to the pap@avid Grove for [Leone & Lee 95]M. Leone and PLee. Optimizing ML with Run-Time
feedback on earlier drafts of this papEharles Garrett for his Code Generation. Technical report CMU-CS-95-205, School of Com-
implementation work on our dynamic compildohn O’Donnell puter Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,

: December 1995.

and Tyggve Fossum for the source for the Alpha AXP version of

[Kernighan & Ritchie 88B. W. Kernighan and DM. Ritchie.The C Pro-
gramming Language (second editioRyentice Hall, 1988.

the Multiflow compiler and Ben CutleiMichael Adler and Gedf [Leone & Lee 96]M. Leone and PLee. Optimizing ML with Run-Time

Lowney for technical advice in altering it. This work is supported groodcigj?:gesrfgﬁﬁ'iELMAglg‘gﬁgﬁ?ggzsoiggiggow%):olgg:gg]-n'}?ﬂg

by ONR contract N00014-96-1-0402, ARREontract NO0014-94- Language Design and Implementation.

1-1136, NSF Yung Investigator yvard CCR-9457767, and an

NSF Graduate Research Fellowship. [Meyer 91]U. Meyer. Techniques for Partial Evaluation of Imperative Lan-
guages. IrProceedings of the Symposium on Partial Evaluation and

References Semantics-Based Program Manipulation /9iages 94-105, June

o) 1991. Published as SIGPLAN Notices 26(9).
[Andersen 92a] .0. Andersen. C Program Specialization. Technical Re-
port 92/14, DIKU, University of Copenhagen, Denmark, May 1992. [Poletto et al. 97M. Poletto, D.R. Engler, and MF. Kaashoek. tcc: A Sys-

[Andersen 92b]..0. Andersen. Self-Applicable C Program Specialization. tem for Fast, Flexible, and High-level Dynamic Code Generation.
In Proceedings of the Workshop on Partial Evaluation and Semantics- SIGPLAN Noticespages 109-121, June 1997. In Proceedings of the

Based Program Manipulation '9pages 54—61, June 1992. Published ACM SIGPLAN '97 Conference on Programming Language Design
as Yale University Technical Report YALEU/DCS/RR-909. and Implementation.

[Andersen 94]..0. AndersenProgram Analysis and Specialization for the [Sirer 93] EminGun Sirer. Measuring Limits of Fine-Grain Parallelism.
C Programming Languagé>hD thesis, DIKU, University of Copen- Princeton University Senior Project, June 1993.

hagen, Denmark, 1994. Published as DIKU Research Report 94/19. ISt d 96B. St d. Points-to Analvsis in Al L
o eensgaar . Steensgaard. Points-to Analysis in Almost Linear
[Auslander et al. 96). Auslander, MPhilipose, CChambers, SEggers, Time. InConference Record of POPL '96: 23rd ACM SIGPLAN-SI-

and B.Bershad. Fast, Effective Dynamic Compilati®iGPLAN No- GACT Symposium on Principles of Programming Languageses

tices pages 149-159, May 1996. In Proceedings of the ACM SIG-

PLASNp ’36 Conference o};m Programming Lan%uage Design and 32-41, January 1996.

Implementation. [Thibault et al. 98]Scott Thibault, Charles Consel, and Gilles Muller. Safe
[Consel & Noél 96]C. Consel and RANoél. A General Approach for Run- and Efficient Active Network Programming. Technical Report Re-

Time Specialization and its Application to C Qonference Record of search Report 1170, IRISA, January 1998.

POPL '96: 23rd ACM SIGPLAN-SIGACT Symposium on Principles . .
i [Volanschi et al. 97E. N. Volanschi, CConsel, GMuller, and C Cowan.

of Programming Languagepaggs 145_156_' January 4996' Declarative specialization of object-oriented progra®h&PLAN No-
[Consel 93]C. Consel. A Tour of Schism: A Partial Evaluation System for tices 32(10):286-300, October 1997.

Higher-Order Applicative Languages. Rroceedings of the Sympo-

sium on Partial Evaluation and Semantics-Based Program Manipula- [Weise et al. 91D. Weise, RConybeare, ERuf, and SSeligman. Auto-

tion '93, pages 145-154, 1993. matic Online Partial Evaluation. In Hughes, editorRecord of the
Consel et al. 96T. Consel, L Hornof, F.Noél, J.Noyé, and NVolanschi. 1991 Conference on Functional Programming Languages and Com-
[A Uniforqu,;\pproach for Compile-Time andy Run-Time Specializa- puter Architecture LNCS 523, pages 165-191, Cambridge, MA,

tion. In O.Danvy, R.Gliick, and PThiemann, editordartial Evalu- 1991. Springer-Verlag.

ation. Dagstuhl Castle, Germany,February 19B8ICS 1110, pages [wjilson & Lam 95]R. P. Wilson and MS. Lam. Efficient Context-Sensi-

54-72. Springer-Verlag, 1996. tive Pointer Analysis for C ProgranBIGPLAN Noticespages 1-12,
[Cytron et al. 89R. Cytron, J.Ferrante, BK. Rosen, MN. Wegman, and June 1995. In Proceedings of the ACM SIGPLAN '95 Conference on
F.K. Zadeck. An Efficient Method of Computing Static Single As- Programming Language Design and Implementation.

signment Form. IlConference Record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languageges 25-35,
January 1989.

[Engler & Proebsting 94D. R. Engler and TA. Proebsting. DCG: An Ef-
ficient, Retargetable Dynamic Code GeneratoPrdoceedings of the
Sixth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systgmages 263—-273, Octo-
ber 1994.

[Engler et al. 96PD. R. Engler, WC. Hsieh, and MF. Kaashoek. ‘C: A
Language for High-Level, Efficient, and Machine-Independent Dy-
namic Code Generation. lBonference Record of POPL '96: 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 131-144, January 1996.

[Erosa & Hendren 94A.M. Erosa and L.J. Hendren. Taming Control Flow:
A Structured Approach to Eliminating goto Statement$?roceed-
ings of 1994 |IEEE International Conference on Computer Languages
pages 229-240, May 1994.

[Ferrante et al. 87]. Ferrante, KJ. Ottenstein, and D. Warren. The Pro-
gram Dependence Graph and its Use in Optimizai@M Transac-
tions on Programming Languages and Systed(3):319-349, July
1987.

21

Appendix A Grammar of Annotations

Statement:
[* same as in regular C */
make_static (static-var-list) ;
make_dynani c (var-list) ;
make_static (static-var-list) compound-statement

static-var-list:
static-var
static-var , static-var-list

static-var:
identifier policiesyy

policies:
policy-list
policy-list:
policy
policy , policy-list

policy:
division-palicy
specialization-policy
promotion-policy
merge-caching-policy
promotion-caching-policy
laziness-policy

division-poalicy:
pol y_di vi de
nmono_di vi de

specialization-policy:
poly_speciali ze
nmono_speci al i ze

promotion-policy:
aut o_pronote
manual _pronot e

merge-caching-policy:
m cache_al | _unchecked
m cache_al |
m _cache_one
m cache_one_unchecked

promotion-caching-policy:
p_cache_none_unchecked
p_cache_al |
p_cache_one
p_cache_one_unchecked

laziness-policy:
| azy
speci al i ze_| azy
| oop_speci al i ze_| azy
eager

var-list:
identifier
identifier , var-list
external-definition:
... [*same as inregular C */
specialize-definition
specialize-definition:
constant o speci al i ze identifier (var-list)
on specializelist ;

specialize-list:
(dtatic-var-list)
(static-var-list) , specialize-list

expression:)
/* same as in regular C */
@* expression

primary:
... [*same as inregular C */
@ identifier
prlmary@expron listop:)
primary @ expression f
lvalue @ identifier
primary @ > identifier

22

