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ABSTRACT 2

Speaker-independent speech recognition technology has made significant progress from the days
of isolated word recognition. Today, state-of-the-art systems are capable of performing large
vocabulary continuous speech recognition (LVCSR) on audio streams derived from complex
information sources such as broadcast news and two-way telephone dialogs. A significant
contribution to this advancement in technology is the development of search techniques that find
suboptimal but accurate solutions in problems involving large search spaces and extremely
complex statistical models. Moreover, these search strategies are capable of dynamically
integrating information from a number of diverse knowledge sources to determine the correct
word hypothesis, and limit the scope of the search by using a hierarchical search strategy. We
refer to this problem as thedecoding or search problem.

This paper describes the complexity associated with decoding using hierarchical representations
for linguistic and acoustic knowledge sources. An extensible object-oriented decoder available in
the public domain, that leverages current state-of-the-art technology is described to illustrate these
concepts. This decoder supports efficient handling of acoustic models for cross-word context-
dependent phones, multiple pronunciations of words using lexical trees, and rescoring of word
graphs based on N-gram language models in a single pass. It employs a state-of-the-art Viterbi-
style dynamic programming algorithm, and is equipped with several heuristic pruning criteria to
minimize the consumption of computational resources while maintaining good accuracy.
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2. An on-line copy of this paper is available at:
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1. THE SPEECH RECOGNITION PROBLEM

Speech is one of the most natural means of exchanging information for humans. This has sp
a growing interest in developing machines that can accept human speech as input a
appropriately based on the information conveyed. Enlisting the possible applications of s
system capable of understanding natural human speech is a task limited only by h
imagination. In fact, a new field of human language engineering is emerging that attemp
harness this computational power to augment human-to-human or human-to-machine inte
The aim of a continuous speech recognition system is, therefore, to provide an efficien
accurate mechanism to transcribe human speech into text. To make such a system ubiquito
important that the system be able to handle a large vocabulary, and be independent of spea
language characteristics such as accents, speaking styles, dysfluencies (particularly impo
spontaneous speech), syntax, and grammar.

Even though human communication through speech appears to be extremely easy, mathem
modeling the underlying processes has proven to be one of the grand challenges of m
computing. Many of the fundamentals of the speech communication process are still not c
understood and defy rigorous mathematical descriptions. Due to the wide variation in
characteristics of speech produced by humans, and our inability to model such varia
compactly, the dimensionality of an expert system based on such a limited understanding
problem is prohibitively high. A statistical approach to speech recognition circumvents the
for manual encoding of such extraordinary amounts of complex information in favo
self-organization of such knowledge, and therefore is the most popular and successful appro
this problem.

Speech recognition systems today accomplish this task through an excruciatingly de
analysis of the speech signal. An example of this analysis is summarized in Figure
recognize speech using computers, we must ultimately assign a symbol to every short segm
the speech signal, and then combine these symbols to form words, sentences, actions, int
etc. As will be seen shortly, often these symbols represent phones — the basic sound units
language according to current linguistic theories — which are modeled using Hidden Ma
Model (HMM) technology. Since we don’t really know where words or phones begin or en
the signal, or whether pauses occurred between the words, it is extremely productive to
recognition system decide for us (in an optimal manner) where these units exist in the signa
is referred to as the segmentation or time-alignment of the speech signal, and is one of the r
why the decoding problem is so complicated.

To someone skilled in the art of optimization, an obvious solution to this problem is to make
of the principle of dynamic programming (DP) [43], as summarized in Figure 2. Dyna
programming allows different paths through a network to be merged if they converge at the
node. Only the path with the most desirable score at each node needs to be retained. All res
allocated for the discarded paths can be returned to the system for reuse by the software. T
approach guarantees an optimal solution in terms of the best path at a computational co
grows only linearly with time and approximately linearly with the number of nodes in
network, assuming reasonable constraints on the model topology. Its ability to produce an o
solution yet minimize computational costs makes it an extremely attractive algorithm for sp
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999
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In hierarchically structured search problems, such as that shown in Figure 1, the process o
merging is not as simple. For instance, the correct sentence hypothesis for the example in F
is “hard rock.” However, the search process generates a number of possible alternative
sequences (e.g. “heart wrong”, “hard raw”, “card rock” etc.), all very close to the cor
hypothesis or the true utterance in terms of acoustic similarity and segmentation. Moreo
silence “word” needs to be hypothesized after each word to account for possible pauses b
words. In spontaneous speech, such pauses do not necessarily appear at each word e
therefore the silence hypotheses are optional. This significantly increases the number of p
paths and the bookkeeping required to keep track of theses paths. The latter we will later r
as the path history. Managing these histories is a concept central to the speech recognition
problem.

To make matters worse, extra care needs to be taken when merging partial paths termina
such silences. For example, silences following the words “hard” and “heart” in Figure 1, th
terminating at the same instance in time, cannot be merged as they represent two path
different word histories. Similarly, neither of these silences can be merged with the sil
hypothesized at the start of the utterance. At the same time, even though the path “sil hard
appears different from the path “sil hard sil rock” (the former hypothesis is missing the se
silence), they both need to be treated as the same word sequence as the silence does not c
syntactic meaning.

In this paper, we first introduce the fundamental components of a typical speech recog
system. We formally define the search problem and present an overview of several way
problem can be solved. For an excellent comprehensive discussion of this topic, see a com
paper appearing in this issue [43]. Next, we introduce a specific implementation of a s
algorithm, discuss its performance on two drastically different tasks, and analyze its run
characteristics. The intent here is to provide the reader with first-hand knowledge of m
important heuristics that have become commonplace in LVCSR systems, and are crucial t
success in extremely complex applications. There are many systems available that
vocabularies of several thousand words in somewhat limited domains such as dictati
telephone queries. However, there are few systems capable of processing spontaneous
such as telephone conversations, or other such unrestricted domains with perform
approaching state of the art.

2. STATISTICAL METHODS IN SPEECH RECOGNITION

The most popular framework for the speech recognition problem is a statistical formulation
in which we choose the most probable word sequence from all word sequences that coul
possibly been generated. For a sequence of words , if is the aco

evidence that is provided to the system to identify this sequence, then the recognition system

choose a word string that maximizes the probability that the word string was spoken

that the acoustic data  was observed:

W w1 w2 … wN, , ,= A

Ŵ W

A
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is known as the a posteriori probability since it represents the probability of occurr

of a sequence of words after observing the acoustic signal .

2.1. The Bayesian Approach

It is obviously difficult to directly compute the maximization in Equation 1 since there
effectively an infinite number of such word sequences for a given language. This problem c

significantly simplified by applying a Bayesian approach to finding :

. (2)

The probability, , that the data was observed if a word sequence was spok

typically provided by anacoustic model. The likelihood that enumerates the a prio

chances of the word sequence being spoken is determined using alanguage model.
Probabilities for word sequences, which we refer to as hypotheses, are generated as a pro
the acoustic and language model probabilities. The process of combining these two prob
scores and sorting through all plausible hypotheses to select the one with the max
probability, or likelihood score, is called decoding or search. Figure 3 illustrates the b
schematic structure of a such a statistical approach to speech recognition.

What makes the speech recognition problem difficult is that we never know exactly
individual sounds or words were spoken until the entire word sequence has been iden
Therefore we must allow the recognizer to systematically search all possible word sequ
including all possible start and stop times for each word, all possible ways silence could
occurred between words, and all possible ways the word could have been pronounc
maximize the overall probability of the word sequence. Contrast this with the problem of a s
checking program that processes keyboard input. Here we know the identity of each lette
letter produced when you strike a key is a deterministic process), and merely have to fin
“closest” correctly spelled word — a fairly small combinatorial problem by speech recogn
standards. Given that can be nonzero for most words at any point in time, we mus
order hypotheses and pursue only the most promising alternatives to keep the search
manageable. Language modeling plays a crucial role in reducing the size of this search sp

2.2. Acoustic Models

A key assumption in stochastic speech processing is that the speech signal is stationary ov
intervals of time. Signal processing plays an important, but often unappreciated role in a s
recognition system. The acoustic front-end converts the analog speech signal into a seque

Ŵ argmax
W

p W A⁄( )=

p W A⁄( )

A

Ŵ

Ŵ argmax
W

p A W⁄( )p W( )=

p A W⁄( ) A W

p W( )

W

p A W⁄( )
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feature vectors. A comprehensive tutorial of this aspect of a speech recognition system c
found in [56] (the acoustic front-end is not the focus of this paper). The main goal of
subsystem is to generate a sequence of feature vectors representing the temporal and
behavior of the signal. In our statistical approach, each feature vector is considered
statistically independent from other feature vectors. Though this is not the case in practice, i
extremely convenient assumption for the statistical models we will develop.

Typically, the signal is divided into 10 msec frames using an overlapping window approac
which each window accounts for 25 msec of the signal. The spectral features can be ext
using a multitude of techniques. The most popular acoustic front-end in use today emplo
parameters per frame of speech data, and consists of the signal energy and 12 mel-spaced
coefficients, plus their first and second-order temporal derivatives [2, 9, 13, 19, 25, 52, 56].

After a sequence of acoustic feature vectors is obtained from the front-end, the acoustic m

need to provide a probability, or score, for any such given a word sequence . It is impra
to do this calculation for every possible word in a large vocabulary application since it w
require too many models to be processed. Hence, the word sequences are decomposed in
sound units calledphones. Since acoustic modeling is not the major focus of this paper, the rea
is referred to [14, 27, 42, 55, 57, 58, 59] for more details on this topic.

An HMM is used to model each phone. The HMM is a doubly stochastic state machine that
Markov distribution associated with the transitions across various states, and a probability d
function that models the output for every state. Depending on the complexity of the recogn
problem, this distribution can be modeled as a discrete-valued or continuous-valued proc
speech recognition applications the choice of this output probability function is crucial as it
model all of the intrinsic spectral variability of real speech. Most current state of the art sys
use a mixture of multivariate Gaussian distributions to model context-dependent sequen
three phones (triphone models).

If are the weights for combining the scores of the mixture components, and

the multivariate Gaussian distributions of dimension that make up the output distributio

the state , then the probability of the acoustic feature vector given the state can be calc
as

. (3)

Figure 4 shows some topologies of the HMMs typically used to model context-dependent p
in large vocabulary speech recognition systems. These models can be efficiently trained us
Baum-Welch forward-backward training algorithm [6] or the Viterbi algorithm [18].

Since a typical LVCSR system requires thousands of models to account for all possible sou
all possible contexts, the total number of parameters in an LVCSR system is prohibitively lar

Y

Y W

wi m ℵ µ
i

Σi,( )

m d

s x s

p x s⁄( ) wi
1

2π( )d 2⁄ Σi
1 2⁄----------------------------------- exp 1

2
---– x µ

i
–( )TΣi

1–
x µ

i
–( )

i 1=

m

∑=
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is common for a state-of-the-art system to have several million parameters that need to be
simultaneously from data. Most LVCSR systems therefore use clustering approaches to
parameter count. State-tying [69] and mixture-tying [17] are popular solutions to this proble
large database of labeled training data is also required to train such systems. It is not unco
to use more than 200 hours of speech training data to develop a state-of-the-art system.

2.3. Language Models

A language model (LM) provides constraints on the sequences of words that are allowed
recognized. In particular, it provides a mechanism to estimate the probability of some word

a word sequence given the surrounding words. Ideally, the LM integrates linguistic knowle
domain knowledge, and any other pertinent information to reduce the size of the search
The linguistic complexity of the search space is often measured in terms of perplexity [31
information theoretic measure closely related to the average branching factor or number of
possible at each point in the dialog or transaction.

Since the probability of a word being spoken often depends on the words spoken previou

simple but effective way of modeling language is to model a sequence of words as anth order
Markov chain:

. (4)

This gives rise to the notion of N-grams [30] where the probability of the occurrence of a w
depends only on its  predecessors:

. (5)

N-grams indirectly encode syntax, semantics and pragmatics by concentrating on the
dependencies between words. Also, N-gram probabilities can be directly computed from tex
and therefore do not require explicit linguistic rules like a formal language grammar. N-gram
a good example of how deeply rooted statistical methods are in speech recognition. Most sy
use a trigram back-off language model [44], though there are some systems that have ve
into higher-order N-grams [26], long-range dependencies [33], cache [32], link [34] and tri
models [35], class grammars [28], and decision-tree clustered language models [4].

The net result of all such techniques is to limit the number of alternatives that must be investi
to find the most probable sequences of words. As stated earlier, the spontaneous
recognition problem is rather unique in that any word can theoretically occur at any time,
some nonzero probability. Hence the search space is large, and our search algorithm m
efficient. In the next section, we present an overview of the fundamental issues in sear
speech recognition.

wk

W

M n

p W( ) p W1
M

( ) p wi wi 1– wi 2– … wi n–, , ,( )
i 1=

M

∏= =

N

p wk W1
k 1–
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k 1–
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3. SEARCH ALGORITHMS

A search strategy is used to select a word sequence with the highest probability give
observed acoustic data. The number of possible hypotheses grows exponentially as a func
the number of models, vocabulary size and the form of linguistic constraints; and this imp
formidable requirements on the computation and storage capability of the system fo
implementation of the search algorithm.

3.1. The Complexity of Search

Consider a simple application of recognizing spoken telephone numbers. The vocabular
could reasonably be constrained to 11 words (the digits “zero”, “one”,..., “nine” and the w
“oh” often used in place of “zero”). In this case, it is easy to build an acoustic model for e
complete word. For an unconstrained grammar, where any word is equally likely to follow
other word, the search space complexity is an exponential function of the length of the digit s

In other words, for sequences six digits long, there are a total of possible alternatives
every extra digit in the string increases the number of alternatives by an order of magn
Obviously, an exhaustive search through all possible hypotheses to find the best one is
impractical. Good search strategies attempt to save on this computation by modifying the s
space via imposition of some constraints in terms of additional knowledge about the dom
the speech recognition application. While these constraints reduce the number of hypothese
enumerated, there are some costs associated with their implementation.

For instance, a language model can be derived based on the knowledge that telephone n
are typically 4, 5, 7, 10, or 11 digits long, and only certain numbers are allowed for area c
Applying this language model can limit the search space to a fairly large extent, becaus
number of possible next words is now dependent on the branching factor, or perplexity [3
the language model instead of the vocabulary size. In turn, the system needs to load the la
model probabilities in addition to the acoustic models. It also needs to modify the search c
flow to look up the list of the most likely words to follow the current word, and this adds so
bookkeeping and storage overhead to the system.

Things get significantly more complicated in a task where the knowledge used to constra
search space is organized in a hierarchical fashion, since information from each of these sou
applied to the hypotheses at different levels in the hierarchy. For example, suppose inst
using word-level acoustic models, we use models that represent the basic sound units, or p
in each word. Further, a word such as “zero” could be treated as having two pronuncia
“zero” and “oh.” We can add a silence model that, in addition to being a good model of
spectral characteristics of the background channel, also includes common mouth noises s
lip smacks, breath noises, etc. The net result is a system that better integrates linguist
acoustic knowledge about the problem, but now consists of a network that describes digit s
in terms of words (a language model), a network that describes words in terms of phon
pronunciation dictionary), and a network that describes phones in terms of sequences of s
vectors derived from the speech signal (acoustic models).

11
6

IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999
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In large vocabulary speech recognition the related complexity issues are even more pronoun
is no longer practical to use word-level acoustic models, since sufficient training data for a
number of words is very expensive to generate. Sub-word units such as phones become es
Words and sentences can be constructed by concatenating the corresponding phon
constitute their pronunciation. As a result, a new component is added to the recognition sy
This is the pronunciation dictionary or lexicon, which consists of all the words in the vocabu
and their pronunciations in terms of the phones. Often, words have more than one po
pronunciation, and therefore multiple paths need to be explored for a single word.

Moreover, it has been found that simply using the models for individual phones does not
good recognition performance, since the actual articulation of each phone is influenced st
by its context — the preceding and following phones. Context-dependent phone models use
the left (previous) or right (next) phonetic context (such two-phone models are know
diphones), or both the left and right contexts (these are called triphone models). Such de
acoustic models give measurable improvements in recognition performance, yet requ
increase in the system size (e.g. the number of acoustic models rises from approximat
context-independent phones to over 80,000 triphones).

State-of-the-art LVCSR systems routinely use triphone acoustic models that also take into a
the phonetic context across word boundaries (these models are referred to as cross-word t
models). This adds one more degree of complexity, since the end of each word needs
hypothesized multiple times, once each for a different phonetic context corresponding to th
possible word. Some of this complexity can be reduced using techniques such as phonetic
trees [5, 7], but overall the amount of information to be stored during the hierarchical se
process is quite large.

Typically, the decoding strategy in a speech recognition system uses dynamic programmin
to find the most likely word sequence given the acoustic models, language model constrain
the input audio data. However, as described earlier in this section, the path calculations th
the search space often involve a hierarchy of graphs (sentences, words, phones, and a
model states). Figure 5 displays the hierarchical structure of knowledge sources during s
The control structure required to perform this search is conceptually simple, but extremely h
implement efficiently in software. It involves extensive data structure manipulations, particu
in the case of a trigram language model and cross-word context-dependent phone model
result, decoding is the most time-consuming component of the speech recognition process

3.2. Typical Search Algorithms

The decoding process needs to be restructured to restrict the search space without compro
system performance. Most popular techniques for restructuring the search space [36] in
clever ways to share information amongst active hypotheses. Use of such approximations
the decoder to make suboptimal choices. However, it has been observed that a suboptimal s
often does not impact performance (i.e. the number of words misrecognized by the syste
this section, we review some popular search techniques. Throughout this section it is impor
note that as you decode an utterance, its cumulative path probability — which is a product
probability computed at each frame of input speech data — monotonically decreases wi
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999
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number of frames. This is the result of a fundamental concept in probability theory
probabilities are bounded by , and hence the product of these probabilities is a decre
function of time. Therefore, comparison of two hypotheses that account for a different numb
frames of data is difficult, since the hypothesis accounting for more frames of data will on av
have a lower probability. During implementation of the search, underflow problems may aris
representing the scores of longer paths. Therefore, it is standard practice to use the logar
the probability (known aslikelihood) to represent the path scores, and products of probabili
are handled as sums of likelihoods.

Viterbi Search

Viterbi search and its variant forms belong to a class of breadth-first search techniques. H
hypotheses are pursued in parallel and gradually pruned away as the correct hypothesis e
with the maximum score. In this case, the recognition system can be treated as a rec
transition network composed of the states of HMMs in which any state can be reached from
other state. The Viterbi search algorithm [67] builds a breadth-first search tree out of this ne
following the steps enumerated in Figure 6.

Viterbi search is time-synchronous, i.e. at any stage all partial hypotheses generated dur
search terminate at the same point in time. Since these hypotheses correspond to the same
of the utterance, they can be directly compared with each other. However, a complete V
search is impractical for even moderate-sized tasks because of the large size of the state s
Viterbi beam search is used to reduce the search space.

In Viterbi beam search only the hypotheses whose likelihood falls within a fixed radius, or b
of the most likely hypothesis are considered for further growth [11, 37, 38, 43]. The best b
size can be determined empirically or adaptively. The advantage of the dynamic beam heuri
that it allows the search to consider many good hypotheses in the absence of a clearly do
solution. Conversely, in case of a clear best hypothesis few others need to be maintaine
main problem with the Viterbi beam search, as we will see in the next section, is tha
state-level information cannot be merged readily to reduce the number of required computa

Many variations of Viterbi beam search have been proposed to improve its performance
instance, different beam widths can be applied at different levels in the search hierarchy [1
each of these can be adjusted independently based on the number of active paths at that
another modification, a tighter pruning beam can be applied to the paths at initial frames of d
limit the extent of hypothesis generation [16]. In very large vocabulary tasks, a tree-struc
network is used to represent the search space in which the states corresponding to phones
common to different words are shared by different hypotheses [50]. This approach uses th
that the uncertainty about the identity of the word is much higher at its beginning than at the
Therefore, more computations are required at the beginning of a word than towards its end

Stack Decoders

The stack decoding algorithm [3] is similar to the A* search popularly used in artifi
intelligence [49]. It is a depth-first technique in which the most promising hypothesis is pur

0 1,[ ]
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999
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until the end of the speech data is reached. The basic stack decoder paradigm [53, 54]
summarized as described in Figure 7. Stack decoding algorithm requires an evaluation func
compare hypotheses of different lengths. Since the score of a path progressively decreas
time (it is a product of probabilities), the search process is biased to always prefer sh
hypotheses. This problem is overcome by normalizing the score of a path based on the num
frames of data it spans. However, the A* stack decoder suffers from problems of speed
accuracy and robustness for large vocabulary spontaneous speech applications.

Multi-Pass Search

A multi-pass search algorithm [8, 10, 40, 47, 48, 61, 62, 65] employs a coarse-to-fine strate
decoding. In this approach, computationally inexpensive acoustic models are initially us
produce a list of likely word hypotheses. These hypotheses are later refined using more d
and computationally demanding models. The first search pass (often called a fast match) pr
either an N-best list of possible word sequences or a word graph (or lattice) as its output.
entities are illustrated in Figure 8.

For example, an initial search pass can be performed using word-internal context-depe
phones with a bigram language model to generate a list of candidate hypotheses. The
second pass of decoding, a trigram language model, which treats common three-word seq
can be used with cross-word context dependent phones. The resulting two-pass search w
performance comparable to a single-pass Viterbi search, but often require less comput
resources. An important emerging variant of the stack decoding technique is envelope searc

Forward-Backward Search

Forward-backward search algorithms use an approximate time-synchronous search in the f
direction to facilitate a more complex and expensive search in the backward direction [8, 47
This generally results in speeding up the search process on the backward pass as the nu
hypotheses to be explored is greatly reduced by the forward search.

A simplified acoustic or language model is used to perform a fast and efficient forward-
search in which the scores of all partial hypotheses that fall above a pruning beam width are
at every state. Then a normal within-word beam search is performed in the backward direct
generate a list of the N-best hypotheses. The backward search yields a high score on a hyp
only if there also exists a good forward path leading to a word-ending at that instant of
Figure 9 describes the concept of the forward-backward search.

Similar to the Baum-Welch algorithm used for training acoustic models [6], the total path sco
each state of the HMM at time is obtained by combining the scores on the forward

backward passes. The forward pass score of a partial path represents the joint probab

observing the input feature sequence over time instants through , and being in a state

time . Similarly, the backward pass score denotes the joint probability of a path

accounts for the observed features from time until the final frame of input data, eme

s t

αt s( )

1 t s

t βt s( )

t 1+ T
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999



SEARCH IN LVCSR PAGE 10 OF 57

f the

path

ing this
the best

scale
out any
ptimal
scores

large
this
some
w we
terbi

two

nd the
w an

igned
ts to
er of
ts a

ed to
tems,
from a state at time . Thus the total path score is given by combining the scores o

forward and backward paths that meet in the state  at time .

(6)

Here is the score for the best complete forward path, and is used for normalization of

scores so that different paths can be compared. The N-best word sequences obtained us
procedure are rescored using more sophisticated acoustic and language models to obtain
sentence hypothesis.

Forward-backward search algorithms have greatly facilitated real-time handling of large-
speech recognition tasks. The backward pass search is fast enough to be performed with
perceptible delay after the forward search. The forward pass can be made extremely subo
and efficient, as the forward path scores do not need to be very accurate relative to the path
obtained in the backward pass.

So far, we have provided a general overview of different search strategies prevalent in
vocabulary speech recognition. It is admittedly difficult to implement these algorithms from
high-level discussion. However, the main goal of the preceding sections was to provide
insight into how important organization of the search space is to the decoding process. No
move to the main goal of this paper — a discussion of a specific implementation of the Vi
search. We describe this particular algorithm in detail, and analyze its performance on
applications very different in terms of the search complexity.

4. A TIME-SYNCHRONOUS VITERBI-BASED DECODER

As we have established, the software complexity of a search algorithm is considerable, a
effort required to build an efficient decoder is quite large. For this reason, we describe belo
algorithm that is available in the public domain [15]. This speech recognition system is des
to efficiently and transparently handle tasks of varied complexity, from connected digi
conversational speech. It is somewhat typical in its architecture, and similar to a numb
systems available from a variety of sources [26, 60, 66, 68]. This system implemen
time-synchronous Viterbi decoder, and includes the following modes of search:

• Recognition Supervision: forced alignment using the reference transcription and arbitrary
pronunciation models; flexible alignments for dealing with noisy reference transcriptions

• Decoding: arbitrary hierarchical finite-state language models; N-grams with arbitrary acoustic model
topologies; one-best or N-best decoding; generation of alternate word choices at each point in time

• Word Graph Postprocessing: word graph error rate calculations; word graph rescoring with new
language models, acoustic models, etc.

The system is designed in an object-oriented fashion and written entirely in C++. It is design
facilitate introduction of new research — something not easily done in most recognition sys

s t γ t s( )

s t

γ t s( )
αt s( )βt s( )

αT
-----------------------=

αT
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999



SEARCH IN LVCSR PAGE 11 OF 57

ore of
tion of
f the

tations
ever
SR
essful

resent
(or the
e as
on its

lexicon,
el set.
state
etwork.
based
good

resent
guage
guage

next
roblem

el the
hones
hones
within
context
rd-end
and to support a wide range of algorithm choices for each component of the system. The c
this system is a single-pass, lexical-tree based decoder that implements a hierarchical varia
the Viterbi time-synchronous search paradigm. We now present a detailed account o
evolution of the search algorithm implemented within this system.

4.1. Complexity of Search

As described earlier, the primary inputs to a decoder, beyond the speech data, are:

• lexicon: contains all the words in the system’s vocabulary along with their pronunciations (often there
are multiple pronunciations per word)

• acoustic models: HMMs that represent the basic sound units the system is capable of recognizing

• language model: determines the possible word sequences allowed by the system (encodes
knowledge of the syntax and semantics of the language)

Not surprisingly, the complexity of the search space is strongly dependent on the represen
used for these knowledge sources. Though computing is vastly more powerful today than
before, it is still not possible to run an arbitrary combination of the above items for most LVC
applications. Careful design of these components is crucial to the development of a succ
system.

One obvious simplification that can be made to a system is to allow each acoustic unit to rep
a phoneme, one of approximately 50 basic sound units used to represent a language
symbol set used to describe pronunciations in a dictionary). We refer to thes
context-independent acoustic models since the choice of any symbol does not depend
adjacent sounds. These same symbols can be used to represent pronunciations in the
thereby giving a one-to-one correspondence between the lexicon and the acoustic mod
Another simplification that can be made is to define a language model using a finite
machine, or network, that describes each possible sentence as a unique path through this n
This is an approach often used in small to medium-sized vocabulary applications. Systems
on these two principles are popular because of their conceptual simplicity, but do not deliver
performance in practice.

An important step beyond such a simple system is to allow the language model to rep
n-tuples of words (such as “see Jane run” or “the red hat”). We refer to this as an N-gram lan
model. N-gram orders of two (bigrams) and three (trigrams) are popular models. Such lan
models, though also conceptually attractive, significantly increase the number of possible
words for each word-ending hypothesis during the search process. This makes the search p
significantly harder compared to a network language model.

The search complexity increases further if context-dependent phones are used to mod
acoustics, since the number of models required to represent all the combinations of p
occurring in the data is extremely large (e.g. from approximately 50 context-independent p
to close to 80,000 context-dependent phones). While such phonetic context can be limited
each word (word-internal models), the search space explosion is even more severe when
across word boundaries (cross-word models) is also taken into account. Here, each wo
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999
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hypothesis needs to be replicated to account for all the phonetic contexts derived from
possible next words. Figure 10 describes this transition in the scale of the search problem
now describe the steps required to go from a simple search engine to the complex e
employed by state-of-the-art systems.

Network Decoding

If the linguistic constraints on the search space are described in terms of a network of words
the decoder can expand this network in terms of the phones constituting the pronunciation o
of the words. The word network can be a grammar that defines the structure of the languag
in the recognition task, or a word graph generated by a previous recognition process. The d
evaluates the states of each phone model in the network active at the time and propagate
through the network. The corresponding language model score is added to the acoustic pat
as soon as the path lands on a word-level node in the network.

Figure 11 illustrates the process of network decoding using a word-level network along w
corresponding network of word-internal context-dependent phones. Note that during the s
process, there may exist two or more paths which reach the triphonehh-aa+r at the same time.
However, they cannot be merged into a single path if such instances of the same tri
correspond to different nodes in the network at the word level. Thus an instance of an ac
model is represented in terms of the identity of the associated triphone and the word-level n
the network. The two instances of the phonehh-aa+r are circled in Figure 11.

Network decoding can be performed efficiently only for moderately sized vocabularies u
word-internal acoustic models. Since the decoder needs to expand the whole network in te
the constituent phones before processing any data, the complexity of the search and m
requirements are directly proportional to the size of the expanded network. Often, we seek
to reduce the size of the search network to increase efficiency. Dynamic expansion [46]
network is an important approach to avoid a large initial memory allocation to hold the e
structure.

N-Gram Decoding

For larger vocabularies, the N-gram language model provides a relatively compact represe
of the linguistically probable word sequences since it provides estimates of the likelihood o
occurrence of a word based on the previously observed words. If the vocabulary size
words, then to provide complete coverage of all possible word sequences the language

needs to consist of N-grams (i.e. sequences of words). This is prohibitively expe

(e.g. a bigram language model for a 40,000 words vocabulary will require big
pairs), and many of such sequences have negligible probabilities. Therefore, the language
typically consists of only a subset of the possible N-grams, and the likelihood of the other
sequences can be estimated using a back-off model [44]. For instance, in a bigram lan
model the probability of a word sequence  is given by

N 1– M

M
N

N

1.6 10
9×

wi wj,( )
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(7)

where is the back-off weight for the word , and is the unigram probability (

probability of any occurrence) of the word . The score is added to the path at the instant w

the evaluation of the word has just ended, and the path is about to be propagated into th

, i.e. at the start of the new word.

In N-gram decoding, different paths at the same instant of time can be differentiated only
on the phone model and the word history of each path. Thus paths with very diffe
origins can be merged later in time if they have the same current instance, which is now d
by the phone model and the N-gram history word sequence. Figure 12 illustrates this approa
a bigram language model.

Even though N-gram language models store only a small subset of all the possible sequence
words, they are significantly large for large vocabulary applications. For instance, a bi
language model for a 20,000 word application involving telephone conversations may have
300,000 bigrams along with the 20,000 unigrams; and a trigram language model for this
might hold an additional 200,000 trigrams. Therefore, loading the entire language model
poses severe demands on the system memory, and also makes the language model scor
cumbersome. Therefore, an alternative approach to implement the language model is to ca
N-gram scores of all the active words (since these are likely to remain active for the nex
frames) in memory, and leave the rest of the language model on disk.

Cross-Word Acoustic Models

Our prior discussions have been based on word-internal, context-dependent acoustic m
These are found to yield satisfactory performance for clearly articulated speech, such a
speech [51]. Word-internal triphones are unable to model pronunciation effects that occur a
word boundaries, often referred to as a form of coarticulation, since they do not account fo
full acoustic context for the first and last phone of a word. For instance, in the examp
Figure 11, the word sequence “hard rock” is translated to word-internal triphones ashh+aa hh-
aa+r aa-r+d r-d r+ao r-ao+k ao-k. The phoner-d at the end of “hard”, as well as the phoner+ao
at the start of “rock”, do not contain knowledge of the phonetic context of the adjacent word

In spontaneous or conversational speech, the pronunciation of a word depends largely
coarticulation effects of the surrounding words (e.g. “did you” becomes “didja”, “three eigh
articulated as one word). To reduce the acoustic mismatch at word boundaries and mod
effect of phonetic context across word boundaries, cross-word context dependent models a
in conversational speech recognition. This greatly complicates the search problem since t
phone in the current word becomes dependent on the next word, which is not known until la
time. Hence, we must change our search strategy so that we can handle such deferred de

p wi wj,( )
p wj wi( ) … wi wj,( ) exists in LM

b wj( )p wi( ) … otherwise



=

b wj( ) wj p wi( )

wi

wi

wj

N 1–

N
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4.2. Search Space Organization

Figure 13 illustrates the cross-word phonetic network generated for the word graph in Figu
As can be seen here, the use of cross-word context increases the size of the network cons
since every word end needs to be hypothesized multiple times, once each for the possib
words. Thus there is a large fan-out in the number of possible paths through the network at t
of each word, and even for a moderately large vocabulary size the search space explodes w
number of potential hypotheses.

This problem is even more severe for N-gram decoding using back-off language models,
any word has a chance to follow any other word and all such paths need to be hypothesized
end of each word. With cross-word context, the end of each word results in possible

where is the total number of words, and the complexity of the search space becomes

respect to the time .

Lexical Trees

The solution to this combinatorial explosion lies in exploiting the fact that even though
vocabulary size may be large, the number of phones (context-independent) used to represe
pronunciations in the lexicon is very small (about 50 for English, for instance). Thus the nu
of possible unique phonetic contexts is much smaller than the number of possible next word
by sharing this phonetic context across all the words the number of paths to be grown a
word end can be reduced drastically.

This concept results in the implementation of a lexical tree-based search [41]. A lexical tr
pronunciation prefix tree is used to represent the pronunciations of all the words in the vocab
Each node in the lexical tree is associated with a monophone in the pronunciation of the
(see Figure 14) and can be shared by multiple words with the same partial pronunciatio
sharing phones across different words (as opposed to using a separate instance of every p
the pronunciation of each word) the lexical tree provides a compact representation o
acoustic-phonetic search space, as well as a mechanism to efficiently handle m
pronunciations of the same word. A terminal node of the lexical tree signifies a unique word

While the lexical tree nodes are associated with monophones (i.e. context-independent p
constituting the pronunciations of the words, the models used to represent the acoustics
speech typically use context-dependent phones (such as triphones). Building a lexical tree
context-dependent phones is not practical as it significantly increases the tree size (and th
the memory requirements), particularly when cross-word triphone models are used for ac
modeling.

To avoid this problem, we use a technique known asdynamic generation of context-depende
phone models. Context-dependent phones, or triphones in this case, are generated dynamica
traversing the lexical tree nodes at each step as illustrated in Figure 15. The instance stru
contained in the path markers keep track of the current lexical node, and create the next tr
by creating the appropriate contexts from the predecessor phone and all the child lexical

M

M M
2t

t
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respectively. Cross-word triphones are created as needed by spanning the termina
representing the ending word in the current lexical tree and all the start nodes of the lexica
corresponding to the next words.

A drawback of this approach is that for an N-gram language model with back-off probabil
every word in the vocabulary can be instantiated at any word end with the appropriate likel
as specified by the language model. Therefore a really large lexical tree that covers all the
in the lexicon is required at every word end during the search process. Since the lan
modeling scores applied for each word depend on the predecessor words on the path, the la
model scores at the terminal nodes in the tree must depend on the predecessor word. As a
for every word end the LM scores stored in the lexical tree representing that node are diff
and a copy of the lexical tree has to be made with the corresponding LM scores. This appro
referred to as alexical tree-based search.

For large vocabulary applications, even a few copies of the complete lexical tree qu
overshoot the available memory. The decoder avoids this explosion in memory requireme
dissociating the LM scores from the lexical tree and using only a single tree that is independ
the predecessor words. The language model score for a word is calculated on an as-need
and stored in the instance associated with the corresponding history word and lexical node
the instances are reused in the decoder, the score calculation needs to be done only once

In word graph rescoring modes, each lexical tree is associated with a node in the word grap
covers only the child nodes representing the next possible words, and therefore is of a
smaller size. The tree for a node is created only when the word corresponding to this nod
been evaluated in the decoding process. It is shared across multiple instances of the word
The language modeling score corresponding to the arc connecting the parent word node t
child word node in the word graph is stored in the instance corresponding to the child word. A
no longer actively used for decoding is pruned away to save memory.

Also, due to sharing of phones across different words it is no longer possible to define a u
path instance only in terms of the acoustic model and the word history (either as the N-gram
word network node). Since different instances of a word correspond to different lexical tree
virtual tree copies), the instance definition also requires the identity of the lexical tree. More
it is possible to come across the same triphone model at more than one place in the same
tree (see Figure 13). Therefore, the unique path instance is defined in terms of the phone
identity, the appropriately defined word history and the identity of the current lexical tree no

As you might imagine, decoding the language model now has become a problem of imm
proportions. We cannot simply entertain all possible paths in this network. Reduction o
search space by discarding unlikely paths is extremely important, and something that hum
extremely well by anticipating the next set of possible words. We now describe the proce
which we implement lookahead in a speech recognition system. This plays a crucial ro
limiting the size of the search space in the lexical tree approach.

Language Model Lookahead
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999
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Since the language model provides additional constraints on the search space by as
different likelihoods to the possible words, it is beneficial to apply the language model scor
the hypotheses as early in the search as possible. Without linguistic knowledge, a large num
competing paths have fairly similar acoustic scores and it is difficult to discriminate betwee
more probable paths and the unlikely ones. As a result, a much larger than necessary num
competing hypotheses needs to be propagated forward, increasing the computational and m
requirements on the system.

In a decoder that does not use lexical trees, the identity of each next word is uniquely known
end of the predecessor node and therefore the correct LM score can be applied at the insta
of the very first phone in the pronunciation of the word. On the other hand, due to the p
sharing that occurs in lexical trees, the identity of a word is uniquely known only at the term
node for that word. Therefore, the correct value of the language model score for the word
given history is also known only at the end of the evaluation of that word. Often, the lang
model score for the terminating word is stored in this node as well. The delay in the applicati
the LM score at the word end as opposed to the start of the word allows for undesirable gro
the complexity of the search, and therefore must be avoided.

State-of-the-art decoders use a technique called language model lookahead [46] to overco
problem. Here, the path markers corresponding to the models internal to a word (i.e. cov
non-terminal lexical tree nodes) store in their instance the maximum LM score of all the w
covered by that lexical node. This score is appended to the path score temporarily for the s
pruning comparisons, and removed immediately thereafter. Once a terminal node is reached
lexical tree, the identity of the word is uniquely known and the actual word LM score is adde
the path score.

There is one more important issue related to the organization of the search space. We ha
that at any given instance, many different hypotheses require the same acoustic mode
evaluated. Evaluation of acoustic models, particularly the evaluation of the Gaussian m
embedded at each state in an HMM, often comprises about 50% of the total computation tim
system. Constantly reevaluating these states can result in a significant amount of inefficie
the system. We briefly describe next the process by which this is avoided.

Acoustic Evaluation

At each frame, the decoder reads in a new feature vector of speech data and evalua
probability for all the active states of the acoustic models. Typically, this involves computatio
the Mahalanobis distance of the feature vector from a weighted mixture of multivariate Gau
distributions as described in Equation 3. As described earlier, the decoder deals with likel
scores instead of probabilities to avoid underflow problems, and therefore only the logarith
the Mahalanobis distance needs to be calculated. The resulting likelihood score is given by

(8)l x s⁄( ) x µ
i

–( )TΣi
1–

x µ
i

–( ) Ki+[ ]
i 1=

m

∑=
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where  is a constant term dependent on the particular distribution and .

This is typically the most expensive computation in search, since it needs to be conduct
every active state for each frame. Since the same state can be accessed by different models
state-tying), or by different instances of the same model corresponding to different paths
likelihood score needs to be calculated multiple times in each frame. For efficiency reason
decoder performs this calculation only once per frame, when this state is accessed for th
time by a path. The likelihood score evaluated is stored locally with the state information
reused whenever that state is revisited in that frame.

4.3. Search Space Reduction

Thus far, we have discussed the complexity of the search problem and the organization
resulting search space. We have noted that discarding improbably or unlikely paths
important way to maintain computational efficiency. Modern speech recognition system
some extremely clever approaches to achieving this goal. These techniques belong to a fa
algorithms known asbeam searchin the artificial intelligence literature, and are referred to
pruning algorithms.

Pruning

In order to conserve the computing and memory resources, it is imperative to identify low-sc
partial paths that have a very low probability of getting any better, and stop propagating
further. The process of removing such paths from the search space is known as pruning. A n
of heuristic criteria are applied to identify such paths and to set the appropriate thresholds o
scores which allow only qualified paths to be grown. Some commonly used heuristics are:

• setting pruning beams based on the hypothesis score

• limiting the total number of model instances active at a given time

• setting an upper bound on the number of words allowed to end at a given frame

Most pruning techniques add to the bookkeeping overhead of the system (such as sorting o
based on scores), but this is more than amply compensated by the ensuing reduction in the
complexity.

Our decoder allows the user to set a separate threshold, or beam, at each level in the
hierarchy (typically words, phones, and states). A constant likelihood value, known as the
width, is added to the maximum path score at each level at that frame of time, and all paths
score difference larger than the beam width compared to the maximum score are remove
further consideration. This is referred to asbeam pruning. The beam width at each level is
determined empirically, and the beam threshold is computed with respect to the best scorin
marker at that level. For instance, if at a frame the best path scores at the state, phone an
levels are respectively given by

Ki wi

t
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then for beam widths of , the decoder prunes all hypotheses which satis

. (10)

State-level pruning is also referred to as the global beam pruning if applied across the s
hierarchy (e.g. phone and word levels), in conjunction with the level-specific pruning criteri
the decoder control flow, the state-level beam is applied right after all states have been eva
and propagated to the transition states. Phone-level beam pruning takes place just
transcending to the word level by creating word instances out of end-of-word phones. Word
pruning is conducted when the instantiating model enters into new word hypotheses.

Since the identity of a word is known with a much higher likelihood at the end of the w
compared to its beginning (since by the end of the word, we have a much better idea wha
was spoken), stricter pruning can be applied at word ends. Also, for large vocabulary applic
it is beneficial to curb the fan-out caused by the language model list of possible next w
Therefore, the word-level threshold is usually tighter compared to the state and phone
beams.

In a large vocabulary speech recognition application, the search space expansion is maxim
word ends, where a single path is propagated into multiple next words. If an N-gram bac
language model is used, the fan-out for each word end (i.e. the number of possible next wo
extremely large, since all the words in the vocabulary are possible candidates and need
instantiated. Thus the search space expansion is even more severe. However, eventually v
of these generated paths survive the acoustic evaluation and subsequent pruning. The sear
can be controlled by forbidding some of the word end paths to grow further. For acc
recognition, it is usually sufficient to propagate only a few word ends that are associated wi
highest likelihood path scores. We refer to this asmaximum active word-end pruning. The
decoder can limit the number of words extended by keeping a sorted list of word-end paths a
frame and selecting only the top few for propagation. The rest of the paths can be pruned a

The total memory requirements, as well as the amount of computation involved at each fra
the decoding process are directly related to the number of paths active at that frame. All va
of a path (i.e. paths that have the same word and model sequence, but possibly differen
alignments) are associated with a single instantiation of the currently active model. Su

qmax s t,( ) max
s

q s t,( ){ }=

qmax p t,( ) max
p

q p t,( ){ }=

qmax w t,( ) max
w

q w t,( ){ }=

b s( ) b p( ) andb w( ),

q s t,( ) qmax s t,( ) b s( )+<

q p t,( ) qmax p t,( ) b p( )+<

q w t,( ) qmax w t,( ) b w( )+<
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instance of a phone model can be defined in terms of its position in the search space. Each
path or active hypothesis in the search space is identified in terms of the current node in the
tree it is associated with, the identity of the phone model being evaluated for that path and th
completely evaluated word in the word sequence defined by that path. Therefore all path
have a common set of these coordinates are said to belong to the same instance. We can l
number of these instances active at any time using an approach referred to asmaximum active
phone model instance (MAPMI) pruning.

The number of such instances active at a frame displays sizeable surges at word boundarie
a large number of new models are activated at a word boundary to accommodate the genera
new words. This can pose very severe requirements on the system memory. By setting an
limit on the number of active phone model instances per frame, the memory usage (and th
required for the corresponding computations) can be effectively regulated [50]. At each fram
instances are sorted in order of the best score associated with each of them, and the instan
fall below the threshold score indicated by the upper bound on the number of instance
removed (i.e. all the paths associated with that instance are pruned off). All paths havi
instance with the best score better than the threshold score are allowed to propagate.

Path Merging

If all hypotheses are allowed to grow independently, the search space expands exponentiall
step through the network or N-gram language model. In turn, the computational load o
decoder also increases exponentially with time. By sharing the evaluation of similar par
different hypotheses the decoder can prevent this computational overload. Hypotheses w
same acoustic and linguistic context (as determined by the path history, the position in the l
tree and the acoustic model index) have identical futures, and therefore can be merged
single path with the information of the highest-scoring of all such merged paths propa
forward. This is an application of the principle of dynamic programming. Path merging t
place at all levels of the search hierarchy. The information that must be maintained for eac
marker to support this step is known as aninstance of the path marker.

At the word level, only the highest scoring of all the word ends corresponding to a partic
instance is preserved. More specifically, at any frame, if more than one active path leads to t
of a word (as represented in the grammar or the word graph), such that they have the
acoustic context (same triphone), then only the best path among them is propagated furth
the rest are deleted, returning valuable memory to the system. The lexical tree structure
decoder framework automatically ensures that all the partial hypotheses represented he
identical linguistic context.

During word graph generation, the word-level markers keep track of multiple histories leadi
the current word-end. Therefore when merging word-level paths, their histories are sorted b
score and assigned to the higher-scoring path. Thus even though only one path is prop
multiple path histories are preserved through this sorted backpointer list. For phone and
levels, path merging takes place in a classical dynamic programming manner. At the state
paths entering a state for a given instance are compared and only the best path is allo
proceed further. Phone-level paths are can be merged when a path reaches the exit sta
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999
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Word Graph Compaction

A word graph generated by N-gram decoding of an utterance often contains multiple instan
the same word sequences, each with a different alignment with respect to time. In other w
two arcs emerging from a node in the word graph may have the same word identity, but a dif
word-end time stamp. As a result, the total number of unique word sequences (based only
word identity and ignoring the timing information) that can be derived from a word graph is o
a fraction of the total number of derivable word sequences when the timing information is t
into account.

During acoustic or linguistic rescoring of the word graph, the graph is used only as a mea
limit the number of possible word sequences. The timing information is rarely used for resc
experiments. When this information is removed, many arcs of the word graph indicate esse
the same word sequence and need not be decoded individually [47]. Therefore, a word gra
provides only the unique word sequences is needed and it is fairly standard practice to igno
timing information associated with the nodes. Word graph compaction is illustrated in Figur
The decoder uses a word graph compaction algorithm that reduces the original word graph
word graph that preserves all the word hypotheses, yet merges all the duplicate arcs. Simila
has been described in [39, 63] in a more generalized framework of finite state machines (F
This causes a significant reduction in the search space complexity (usually the word grap
drops by a factor of 2 to 5 in terms of the number of nodes and arcs) at minimal computa
overhead.

4.4. System Architecture

Figure 17 shows a schematic representation of the control flow involved in the search proce
the single-pass lexical-tree based decoder described in this paper. The decoder processes
feature data frame by frame, evaluating the states of the active acoustic models and growin
at the state level via transitions within the models, as well as at the phone level by transiti
from one phone to the next one in the pronunciation of the word. Various pruning criteria ap
at different points in the search space attempt to constrain the search within a reaso
complexity.

Since bookkeeping is a large part of a search engine, we briefly describe the manner in
paths and their histories are represented within the system. The decoder uses a s
information data structure, referred to as a marker, that maintains all information about the c
path. The specific data structure used is shown in Figure 18. The current location in the s
space is stored in this structure in terms of an instance definition, which is based on the iden
the most recently completed word, the current node in the lexical tree and the index o
acoustic model being evaluated. In addition, the marker contains other information such
state index in the model, and pointers to the previous nodes on the current path.

At the state level in the search space, the markers corresponding to the same instan
compared and only the best-scoring of these is allowed to propagate. At the model and
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999
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levels in the search hierarchy, such comparisons require additional information. In the interim
path markers at these levels are stored in various linked lists — each indexed by the corresp
model or word identity. The decoder loops over each linked list to process the paths sto
these, and passes markers back and forth among various lists as well as up and do
hierarchy. The newly created markers are stored in the appropriate linked lists.

The instance information, as well as the lexicon and the N-gram language model require fre
access and are reused extensively. Therefore, these are typically stored as hash tab
structures for efficient lookup. Even then, language model lookup is an expensive process
size of the LM increases tremendously with the N-gram order. Therefore, an alternative
cache the language model scores of all the active words (since these are likely to remain ac
the next few frames) in memory, and leave the rest of the language model on disk.

At each instantiation of an acoustic model (such as a triphone), a state-level path mar
projected from the previous phone or word-level marker and added to a state-level list of
markers. For each frame, the active states are evaluated only once. The state-level mark
compared and the best marker for each different instance of the state is projected to the nex
as governed by the state transition probabilities (Viterbi decoding). The score for each st
stored locally and added to the projected path marker score. A marker exiting the model is
to the phone-level marker list and used to project the next triphone markers. Simi
phone-level path markers at end of words are promoted to the word level and used to projec
into the subsequent words. An appropriate language model score is added for the
representing a word hypothesis once the identity of the current word on that path is known.

5. PERFORMANCE ANALYSIS

The recognition accuracy of a decoder is measured in terms of its word error rate (WER), wh
the percentage of words recognized incorrectly. The WER is calculated by aligning the
hypothesis generated by the system with the reference word sequence, and then count
number of misalignments. This quantity is often distributed into three classes of errors
provide some insight into the nature of complexity of the application:

• a substitution error refers to the case where the decoder misrecognizes a word in the reference
sequence as another in the hypothesis.

• a deletion error occurs when the there is no word recognized corresponding to a word in the
reference transcription.

• an insertion error corresponds to the case where the hypothesis contains an extra word that has no
counterpart in the reference.

For example, if the original word sequence is “I like hard rock music”, and the best output o
decoder is “I uh like heart rock”, then the word “uh” is an insertion error, the word “heart”
substitution in place of the word “hard”, and the word “music” from the reference transcrip
has been deleted.

While recognition accuracy is often the primary focus in the evaluation of a speech recogn
system, there are many other factors that influence the performance of a system:
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• scalability: Can the algorithm scale gracefully from small constrained tasks to large unconstrained
tasks?

• recognition accuracy: How accurate is the best word sequence found by the system?

• word graph accuracy: Can the system generate alternate choices that contain the correct word
sequence? How large must this list of choices be?

• memory: What memory is required to achieve optimal performance? How does performance vary
with the amount of memory required?

• run-time: How many seconds of CPU time per second of speech are required (xRT) to achieve
optimal performance? How does run-time vary with performance (run-time should decrease
significantly as error rates increase)?

Of course, many of these factors are interdependent on a number of things, includin
application. Hence, we present several experiments on two different corpora: the
Alphadigits [12] and SWITCHBOARD [22] tasks, using both word-internal as well as cross-w
triphone models. The models were trained and evaluated using feature vectors that are com
of 12 mel-frequency cepstral coefficients (mfcc) and energy, as well as their first and second
temporal derivatives (delta and delta-delta coefficients respectively) as described in Sectio
All evaluations were conducted using a 333 MHz Pentium II processor with 512 MB of mem
the Sun Solaris x86 v2.6, and GNU’sgcc compiler (v2.8.1).

Results are presented for both the network decoding and word graph rescoring mode
relationship between various pruning and recognition performance is also discussed. Fina
analysis of the search complexity is presented.

5.1. Alphadigits

The OGI Alphadigits Corpus (OGI-AD) is a database of telephone speech collected
approximately 3,000 subjects. The vocabulary consisted of the letters of the alphabet as w
the digits 0 through 9, a total of approximately 40 words. Each subject spoke a list of either
29 alphanumeric strings, each six words long. Each list was set up to balance phonetic c
between all letter and digit pairs. In all, there were 1102 separate prompting strings which g
balanced coverage of vocabulary and acoustic contexts. The language model for this appl
consisted of a fully connected graph (where any word can follow any other word) as show
Figure 19. Thus the recognition system needs to use the network decoding mode to con
performance evaluation.

The OGI-AD task represents a small vocabulary application that involves making extre
precise acoustic distinctions. For example, the E-set words, which consist of all letters i
alphabet that contain the vowel “ih,” differ only by one phoneme (we refer to such word
minimal pairs). This is an application that is relatively easy to handle with a basic se
algorithm, and one in which we can employ extremely complex acoustic models.

In Table 1, we present results for a system that uses a variety of acoustic models and a n
grammar language model. It can be observed that as the complexity of the acoustic m
increases (from context-independent to word-internal context-dependent to cross-word
memory requirements and real-time rates increase as well. However, the quality of the ac
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models also improves, resulting in better recognition performance. Pruning thresholds typ
need to adjusted with each type of acoustic model to achieve optimum performance and min
run-time. Hence, different combinations of thresholds are used for each model set in Table

The maximum memory requirement in Table 1 refers to the total amount of memory used b
recognition system — including the program space, lexicon, acoustic and language mode
decoding work space. The memory required to decode each test utterance varies with the le
the utterance. Longer utterances require a larger number of alternate paths, and he
increased work space. Memory typically varies linearly with the length of the utterance. Th
summarized in Figure 20, for both word-internal and cross-word context-dependent ac
models and for word graph generation as well as rescoring modes of search.

5.2. Switchboard

The Switchboard (SWB) task consists of recognition of spontaneous conversational s
collected over standard telephone lines. It is currently one of the most challenging benchma
LVCSR systems, and an extremely hard task to decode. Some reasons for this are:

• Acoustics: telephone bandwidth speech with a variety of transducers and noisy channels;

• Language Model: an extremely large vocabulary (tens of thousands of words) with very few
constraints on word sequences and frequent amounts of sentence restarts, dysfluencies,
non-speech mouth noises and expressions, laughter, etc.

• Pronunciation Variation: the speaking style is spontaneous, so pronunciations vary widely from the
expected forms contains in the lexicon (baseforms); many words are poorly articulated and smeared
together (coarticulation and reduction)

As a result, word error rates on this task are typically in the mid-30% range with sophistic
systems, and in the mid-40% range for simple baseline systems. Often, it is prudent to ge
word graphs with a simpler language model (e.g. a bigram) to conserve computing resource
then run another pass of decoding to rescore these word graphs with more advanced acou
language models. Decoding with cross-word acoustic models is a challenge on this task,
large amount of pruning is required to limit the search space from expanding indefinitely d
the large vocabulary size.

The decoder efficiency and accuracy is highly dependent on proper settings for all pr
thresholds. The optimal values of the various beam widths as well as the MAPMI and word
limits need to be derived in an empirical fashion after careful experimentation. If pru
thresholds are set to allow only a few hypotheses to grow, the correct hypothesis may get p
away early on in the decoding process and the word error rate degrades significantly. On th
hand, if the pruning is too relaxed, then a large number of competing paths are allow
propagate.

The results of an evaluation that involves rescoring of word graphs derived from the develop
test set of the WS97 subset [20, 21] of the SWB corpus are presented in Table 2. Performa
word graph generation using a bigram language model and several types of context-dep
acoustic models is tabulated in Table 3. The maximum memory requirements and av
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computation time per second of speech data (xRT) are also presented for each case.

Since the search space is relatively simple for context-independent and word-internal c
dependent models, the pruning in these cases can be tighter without any degradat
recognition performance. On the other hand, the search space complexity is very large
cross-word context-dependent acoustic models are used in conjunction with an N-gram lan
model. Correspondingly, pruning thresholds need to be modified to exercise a tight control o
search space expansion without significantly affecting the performance. Moreover, different
of pruning heuristics affect the search space in different fashions. In the next sections, we e
some of these relationships.

5.3. Beam Pruning

Since the state-level or global pruning beam affects the hypotheses at all levels, this thre
keeps the overall search space manageable by removing lower-ranked hypotheses (often, t
trivial variants of other hypotheses that remain within the beam). In the absence of a g
pruning beam the number of new hypotheses generated per frame grows very rapidly and
monotonically increasing. The global beam is set to allow for the initial expansion where
decoder is uncertain about the initial words in a phrase, and thereafter limits the growth of
hypotheses once the search space is filled with active hypotheses.

The phone-level beam ensures that only those partial paths that have a good acoustic mat
the input speech data are allowed to culminate in a word. Its effect is usually secondary to t
the global beam, and therefore it can be set to a tighter value compared to the state-leve
width. Only the word-end paths that survive the phone-level beam are updated with the lan
model score and projected to the word-level in the search space hierarchy.

In the absence of a word-level pruning beam, all word ends that survive the global pruning
generate the corresponding next words. In a large vocabulary application this causes an ex
in the number of new paths created since the number of possible next words is very
Word-level pruning prevents a huge number of follow-on words to be hypothesized by remo
word-end paths that fall below the pruning threshold. A very narrow word-level beam, how
also destroys valid hypotheses and introduces recognition errors. Figure 21 shows the ef
beam pruning on recognition accuracy and computation time. The memory required by the s
is directly proportional to computation time — the more memory the system needs, the
computation time is required to search through the hypotheses occupying this memory.

5.4. MAPMI Pruning

The maximum active phone model instance pruning also has a critical impact on the de
performance. It has direct bearing on the memory usage of the decoder, since the num
number of active paths at each frame is directly proportional to the number of acoustic m
active at that frame. If this number is allowed to grow unbounded, then at word boundarie
surge in the number of newly created paths can impose severe constraints on the m
requirements of the system.
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This is especially critical in word graph generation and grammar decoding, as illustrate
Figure 22. For this example, even for utterances with a short duration, the required amo
memory approached 350 MB without MAPMI pruning. With MAPMI pruning, the number
active instances generated at each frame is reduced significantly, and an even smaller num
these is allowed to propagate. As a result, the memory required for the example utterance d
to 135 MB. The decoding time, too, improved from 650 xRT to 330 xRT.

Figure 23 shows the overall effect of MAPMI pruning on decoder performance and effici
during rescoring of word graphs. A very tight upper bound on the number of active instance
drastically affect the recognition accuracy, but beyond a certain range an increase in the M
threshold only increases the memory and computation requirements by allowing a larger n
of instances to exist. The effect of the MAPMI limit is considerably more pronounced for w
graph generation.

6. SUMMARY

LVCSR systems have advanced significantly in recent years due largely to our ability to h
extremely large problem spaces in fairly small amounts of memory. The goal of this paper w
introduce readers to the problem of search, discuss in detail a typical implementation of a s
engine, and demonstrate the efficacy of this approach on a range of problems. The ap
presented here is nicely scalable across a wide range of applications. It is designed to a
research needs, where a premium is placed on the flexibility of the system architecture, a
needs of application prototypers, who require decoding speeds approaching real-time wit
great sacrifice in WER.

Future directions in search can be summarized in one word: real-time. Since the market for s
recognition technology has been exploding recently, one major area of focus for researcher
development of real-time systems. With only minor degradations in performance (typicall
more than a 25% increase in WER), the systems described in this paper can be transform
systems that operate at 10xRT or less. There are four active areas of research related
problem. First, more intelligent pruning algorithms that prune the search space more heav
required. Lookahead and N-best strategies at all levels of the system are key to achievin
large reductions in the search space. Second, multi-pass systems that perform a quick searc
a simple system, and then rescore only the N-best resulting hypotheses using better mod
very popular for real-time implementation. Third, since much of the computation in these sys
is devoted to acoustic model processing, fast-matching strategies within the acoustic mod
important. Finally, since Gaussian evaluation at each state in the system is a major issue co
of CPU time, vector quantization-like approaches that enable one to compute only a small n
of Gaussians per frame are proven to be successful.

In some sense, the Viterbi-based system presented here represents only one path throu
continuum of recognition search strategies. One goal of the public domain system descri
this paper is to accommodate as many alternate search approaches as possible, and to all
to investigate these strategies from within a common recognition platform. To learn more
search, and speech recognition in general, we recommend several textbooks on
recognition [29, 14] and some nice web sites devoted to these problems [24, 64].
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Figure 1. An example illustrating why the decoding problem is so difficult. The search algorithm produces
a segmentation of the utterance as well as an estimate of the words that were spoken. Since pauses often
do not occur between words in spontaneous speech, we must allow pauses to be optional at every point in
the network describing allowable word sequences. This is one example of a constraint that makes the tra-
ditional dynamic programming solution much more difficult to implement.
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Figure 2. An overview of the principle of dynamic programming illustrated over a small word graph. (a) The
start node. (b) For all current nodes, make transitions to all possible nodes keeping track of the history node.
(c) At each node at the end of a path, sort all the incoming paths by score. Keep only the highest scoring
path and delete the rest. (d) In the end, follow back the history of the stop node with the highest path score
to generate the best hypothesis. Note that the final best path need not be the best at an earlier point in the
network.
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Figure 3. Schematic overview of a statistical speech recognition system
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Figure 4. Some typical HMM topologies used for acoustic modeling in large vocabulary speech recognition:
(a) typical triphone, (b) short pause, and (c) silence. The shaded states denote the start and stop states for
each model.
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1. Generate a list of all states  for each frame  of the utterance.

2. Initialize each list by setting the probability of the initial state to 1 and the rest to 0.

3. For each state

For each possible transition from  to some state

• If the list for is uninitialized, initialize it with the transition score and a

back-pointer to .

• Else update the score for  only if this transition gives a better path score.

4. Repeat step 3 with .

5. If , the utterance duration, then trace back to get the best path.

S t( ) t

s S t( )∈

s s' S t( )∈

s' p s' s⁄( )

s

s'

t t 1+=

t N=
Figure 6. An outline of the Viterbi search algorithm (also see Figure 2).
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1. Pop the best partial hypothesis from the stack

2. Apply acoustic and language model fast matches (computationally cheap methods for
reducing the number of word extensions) to shortlist the candidate next words.

3. Apply acoustic and language model detailed matches (more accurate but computationally
expensive methods) to candidate words.

4. Choose the most likely next word and update all hypotheses.

5. Insert surviving new hypotheses into the stack and reorder stack.

6. Go to 1 if it is not the end of the utterance.

7. Output the hypothesis on the top of the stack.
Figure 7. Simple overview of the stack decoding algorithm.
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Rank Hypotheses Likelihood

1 SILENCE HARD ROCK SILENCE -5880.11
2 SILENCE HARD WRONG SILENCE -5905.17
3 SILENCE HARD RAW SILENCE -5906.32
4 SILENCE A HARD ROCK SILENCE -5920.68
5 SILENCE HARD ROT SILENCE -5922.05
6 SILENCE HARD RON SILENCE -5923.69
7 SILENCE CARD WRONG SILENCE -5924.51
8 SILENCE CARD RAW SILENCE -5925.66
9 SILENCE YOU HARD ROCK SILENCE -5928.95
10 SILENCE HART WRONG SILENCE -5929.97
11 SILENCE HEART WRONG SILENCE -5930.42
12 SILENCE ARE HARD ROCK SILENCE -5936.11
13 SILENCE CARD ROCK SILENCE -5936.86
14 SILENCE OF HARD ROCK SILENCE -5937.56
15 SILENCE CARD ROT SILENCE -5941.39
16 SILENCE CARD RON SILENCE -5943.03
17 SILENCE A HARD WRONG SILENCE -5945.74
18 SILENCE PART WRONG SILENCE -5946.36
19 SILENCE HART ROT SILENCE -5946.85
20 SILENCE A HARD RAW SILENCE -5946.89
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Figure 8. An example of the N-best list of hypotheses generated for a simple utterance, and the resulting
word graph with N equal to 20. Note that most of the paths are almost equally probable, and only minor
variants of each other in terms of segmentation. This indicates the severity of the acoustic confusability in
spontaneous, conversational speech recognition.
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Figure 9. Forward-backward search — the combined score is the normalized product of the forward and
backward path scores.
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Figure 10. An overview of the relative complexity of the search problem for large vocabulary conversational
speech recognition that shows the impact of various types of acoustic and language models.
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Figure 11. An example of network decoding using word-internal context-dependent models. (a) The word
network providing linguistic constraints (b) The pronunciation lexicon for the words involved (c) The network
expanded using the corresponding word-internal triphones derived from the pronunciations of the words.
Note that every pronunciation of a word needs to be treated as a different word (e.g. “A”), and every instance
of a word needs to be hypothesized separately. The two circled triphones represent different instances as
they belong to two different words.
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IEEE
1. SILENCE YOU HARD ROCK...
2. SILENCE CARD ROCK...
Figure 12. While the two paths above have very different origins, they will be merged at the end of the word
“rock” in case of a bigram language model being used for decoding. Since for the bigram the paths can be
uniquely separated only based on the previous complete word, these paths can be merged at the word-level
in the search hierarchy.
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Figure 13. A small part of the expanded network from Figure 11 using cross-word triphones. Note the ex-
plosion in the number of paths at the end and start of each word.
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Figure 14. An example lexical tree used in the decoder. The triphones are generated dynamically, on the
fly for each of the lexical tree nodes. Each lexical node contains a list of the words (or lattice nodes) on that
path covered by the monophone held in the lexical node. The dark circles represent starts and ends of
words, the word identity is unknown till a word-end lexical node is reached.
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Figure 15. Generation of triphones from the lexical tree consisting of monophone lexical nodes. Note the
increase in the number of triphones at word boundaries due to cross-word context.
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Figure 16. An illustration of the word graph compaction in the decoder. The reduced word graph yields the
same unique word sequences as the original, but its size is significantly smaller. On large word graphs, the
compaction results in a 2 to 5 times drop in the word graph size.
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Figure 17. A schematic diagram of the control flow of the decoder in the ISIP automatic speech rec-
ognition system, for a single utterance N frames long. The shaded region represents the core
search. The preprocessing (data loading etc.) and postprocessing (best path backtrace, word graph
generation) are also described.
E SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999



SEARCH IN LVCSR PAGE 50 OF 57

uw
YOU

y-uw+k
y-uw+h

k

aa

r

h aa r t

CARD

HART

HEART

HARD

d

d

uw-k+aa

uw-h+aa
h-aa+r

r-d+r

k-aa+r

aa-r+d r-d+r

aa-r+t
aa-r+d

r-t+r

r-t+r

history = YOU
lex node = [r]
model = aa-r+t
lm score = max {p(x/YOU) :

x∈ {HART, HEART, HARD}}

history = YOU
lex node = [r]
model = aa-r+d
lm score = max {p(x/YOU) :

x∈ {HART, HEART, HARD}}

Instance

Trace

History* history_d; // word history of this path
Instance* instance_d; // the instance associated with

// this path
Lex_node* lex_next_d; // the next node in the lexical

// tree
int_4 level_d; // level in the search network

// hierarchy
int_4 phone_index_d; // the actual phone index
int_4 state_index_d; // the current state index
int_4 max_hist_d; // max number of previous

// histories
float_8 score_d; // path probability at this trace

Hash_cell* word_d; // history word node
Lex_node* lex_node_d; // position in the lexical tree
int_4 phone_index_d; // index of the model
Link_list* token_list_d; // list of tokens for each state
float_8 max_score_d; // max path score for this

// instance
float_8 lm_score_d; // best lm score for this

// instance
int_4 frame_d; // frame in which this instance

// was last active

The tree node with the phone “r” in
the above lexical tree corresponds
to two triphones and represents
paths that can possibly terminate
in three different words. Therefore,
there are two instances associated
with it for each word history, and
the language model lookahead
score is computed based on that
word history.
Figure 18. An illustration of the definition of a path instance for two paths in the lexical tree of Figure 15.
Also shown are the actual C++ class definitions for the path marker or Trace class and the Instance class.
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Figure 19. The language model for the Alphadigits corpus is a fully connected grammar. The empty word
cells do not correspond to a word, but are used to denote the loop-back for the grammar.
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Figure 20. Memory and run-time for word graph rescoring and generation as a function of utterance length.
In (a), we use word-internal models to rescore word graphs. In (b), we use cross-word models. In (c),
word-internal models are used for word graph generation. Both memory and run-time tend to vary linearly
with utterance length. This is highly desirable in a search algorithm.
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Figure 21. Effect of beam widths on the recognition accuracy and complexity of the search, on a subset of
the SWB corpus for word graph rescoring with cross-word triphone acoustic models. A fixed MAPMI limit of
8000 was used. As the beams get wider, the computation time increases rapidly. However, very narrow
beams cause significant degradation in recognition performance. Beam widths larger than some limiting val-
ues do not contribute to any improvement in performance.
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Figure 22. Effect of MAPMI pruning on memory usage as illustrated on a 68 frames long utterance from the
SWB corpus for word graph generation using cross-word triphone acoustic models and a bigram language
model. The number of instances active without any pruning, and therefore the memory required, is signifi-
cantly larger than when a MAPMI bound is in place.
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Figure 23. Effect of MAPMI pruning on the recognition accuracy and complexity of the search, on a subset
of the SWB corpus for word graph rescoring with cross-word triphone acoustic models. The pruning beam
widths were fixed at 300, 150 and 150 respectively for the state, phone and word levels. As the MAPMI
threshold decreases, the computation time decreases rapidly. However, a very low limit on the MAPMI
bound causes degradation in recognition performance.
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System

Pruning % Error Rate
Max

Memory
(MB)

Real-
Time†

(xRT)

state
model
word

MAPMI Sub Del Ins WER

Context-Independent
Phones

200
100
100

300 14.3 1.7 1.5 17.5 18 3.3

Context-Dependent
Word-Internal Phones

250
125
125

400 11.6 0.6 1.4 13.6 24 4.3

Context-Dependent
Cross-Word Phones

300
150
150

500 7.4 0.9 1.1 9.4 41 9.6
† Comparisons were performed on a 333 MHz Pentium II processor with 512MB RAM.

Table 1. An analysis of performance on the OGI-AD task for network decoding. WER and the maximum
amount of memory used both vary exponentially with real-time performance. For example, a 50%
reduction in error rate requires an increase by a factor of three in xRT.
System

Pruning % Error Rate
Max

Memory
(MB)

Real-
Time†

(xRT)

state
model
word

MAPMI Sub Del Ins WER

Context-Independent
Phones

200
100
100

3000 40.6 19.7 2.4 62.8 120 42

Context-Dependent
Word-Internal Phones

250
125
125

5000 32.2 14.8 2.9 49.8 160 48

Context-Dependent
Cross-Word Phones

300
150
150

8000 30.9 10.1 4.6 45.6 200 60
† Comparisons were performed on a 333 MHz Pentium II processor with 512MB RAM.

Table 2. An analysis of performance on the LDC-SWB task for rescoring word graphs generated using a
bigram language model. The amount of memory increases by 67% when WER decreases by 27%.
Similarly, xRT increases by 43%.
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System

Pruning % Error rate
Max

Memory
(MB)

Real-
Time†

(xRT)

state
model
word

MAPMI Sub Del Ins WER

Context-Dependent
Word-Internal Phones

250
125
125

5000 33.2 17.3 2.2 52.6 220 240

Context-Dependent
Cross-Word Phones

300
150
150

8000 30.4 16.3 2.1 48.7 300 470
† Comparisons were performed on a 333 MHz Pentium II processor with 512MB RAM.

Table 3. Summary of the decoder performance on the LDC-SWB task for word graph generation using a
bigram language model. Note that WER is slightly higher because word graphs are generated with tighter
pruning thresholds than decoding. Also, real-time rates double when cross-word models are used.
IEEE SP MAGAZINE FINAL VERSION: V6.0 JUNE 15, 1999


	1. Pop the best partial hypothesis from the stack
	2. Apply acoustic and language model fast matches (computationally cheap methods for reducing the...
	3. Apply acoustic and language model detailed matches (more accurate but computationally expensiv...
	4. Choose the most likely next word and update all hypotheses.
	5. Insert surviving new hypotheses into the stack and reorder stack.
	6. Go to 1 if it is not the end of the utterance.
	7. Output the hypothesis on the top of the stack.
	1. Generate a list of all states for each frame of the utterance.
	2. Initialize each list by setting the probability of the initial state to 1 and the rest to 0.
	3. For each state
	4. Repeat step 3 with .
	5. If , the utterance duration, then trace back to get the best path.
	HIERARCHICAL SEARCH FOR LARGE VOCABULARY CONVERSATIONAL SPEECH RECOGNITION
	Institute for Signal and Information Processing (ISIP)
	Department of Electrical and Computer Engineering
	Mississippi State University, Mississippi State, MS 39762
	{deshmukh, ganapath, picone}@isip.msstate.edu
	ABSTRACT
	Table 1.�� An analysis of performance on the OGI-AD task for network decoding. WER and the maximu...
	Table 2.�� An analysis of performance on the LDC�SWB task for rescoring word graphs generated usi...
	Table 3.�� Summary of the decoder performance on the LDC�SWB task for word graph generation using...
	Figure�1.�� An example illustrating why the decoding problem is so difficult. The search algorith...
	Figure�2.�� An overview of the principle of dynamic programming illustrated over a small word gra...
	Figure�3.�� Schematic overview of a statistical speech recognition system
	Figure�4.�� Some typical HMM topologies used for acoustic modeling in large vocabulary speech rec...
	Figure�5.�� Hierarchical representation of the search space.
	Figure�6.�� An outline of the Viterbi search algorithm (also see Figure 2).
	Figure�7.�� Simple overview of the stack decoding algorithm.
	Figure�8.�� An example of the N�best list of hypotheses generated for a simple utterance, and the...
	Figure�9.�� Forward-backward search — the combined score is the normalized product of the forward...
	Figure�10.�� An overview of the relative complexity of the search problem for large vocabulary co...
	Figure�11.�� An example of network decoding using word-internal context-dependent models. (a) The...
	Figure�12.�� While the two paths above have very different origins, they will be merged at the en...
	Figure�13.�� A small part of the expanded network from Figure�11 using cross�word triphones. Note...
	Figure�14.�� An example lexical tree used in the decoder. The triphones are generated dynamically...
	Figure�15.�� Generation of triphones from the lexical tree consisting of monophone lexical nodes....
	Figure�16.�� An illustration of the word graph compaction in the decoder. The reduced word graph ...
	Figure�17.�� A schematic diagram of the control flow of the decoder in the ISIP automatic speech ...
	Figure�18.�� An illustration of the definition of a path instance for two paths in the lexical tr...
	Figure�19.�� The language model for the Alphadigits corpus is a fully connected grammar. The empt...
	Figure�20.�� Memory and run�time for word graph rescoring and generation as a function of utteran...
	Figure�21.�� Effect of beam widths on the recognition accuracy and complexity of the search, on a...
	Figure�22.�� Effect of MAPMI pruning on memory usage as illustrated on a 68 frames long utterance...
	Figure�23.�� Effect of MAPMI pruning on the recognition accuracy and complexity of the search, on...
	1.�� THE SPEECH RECOGNITION PROBLEM
	2.�� STATISTICAL METHODS IN SPEECH RECOGNITION
	 . (1)
	2.1.�� The Bayesian Approach
	 . (2)

	2.2.�� Acoustic Models
	. (3)

	2.3.�� Language Models
	. (4)
	. (5)


	3.�� SEARCH ALGORITHMS
	3.1.�� The Complexity of Search
	3.2.�� Typical Search Algorithms
	(6)


	4.�� A TIME-SYNCHRONOUS VITERBI-BASED DECODER
	4.1.�� Complexity of Search
	(7)

	4.2.�� Search Space Organization
	(8)

	4.3.�� Search Space Reduction
	, (9)
	. (10)

	4.4.�� System Architecture

	5.�� PERFORMANCE ANALYSIS
	5.1.�� Alphadigits
	5.2.�� Switchboard
	5.3.�� Beam Pruning
	5.4.�� MAPMI Pruning

	6.�� SUMMARY


	REFERENCES
	[1] F.�Alleva, H.�Hon, X.�Huang, M.�Hwang, R.�Rosenfeld and R.�Weide, “Applying SPHINX�II to the ...
	[2] B.S.�Atal, “Effectiveness of Linear Prediction Characteristics of the Speech Wave for automat...
	[3] R.L.�Bahl et al, “Large Vocabulary Natural Language Continuous Speech Recognition,” Proceedin...
	[4] L.�Bahl, P.F.�Brown, P.V.�de�Souza and R.L.�Mercer, “A Tree-Based Statistical Language Model ...
	[5] L.R.�Bahl, P.V.�de Souza, P.S.�Gopalakrishnan, D.�Nahamoo and M.A.�Pichney, “Context Dependen...
	[6] L.E.�Baum, “An Inequality and Associated Maximization Technique in Statistical Estimation for...
	[7] S.�Browning, M.�Russell and S.�Downey, “Phoneme Decision Tree Construction for Automatic Spee...
	[8] J.K.�Chen and F.K.�Soong, “An N�Best Candidates-Based Discriminative Training for Speech Reco...
	[9] G.F.�Chollet and C.�Gagnoulet, “On the Evaluation of Speech Recognizers and Databases Using a...
	[10] Y.L.�Chow and R.M.�Schwartz, “The N�Best Algorithm: An Efficient Procedure for Finding Top N...
	[11] Y.L.�Chow, M.�Ostendorf�Dunham, O.A.�Kimball, M.A.�Krasner, G.F.�Kubala, J.�Makhoul, S.�Rouk...
	[12] R.�Cole et�al, “Alphadigits Corpus,” http://www.cse.ogi.edu/CSLU/corpora/alphadigit, Center ...
	[13] S.B.�Davis and P.�Mermelstein, “Comparison of Parametric Representations for Monosyllabic Wo...
	[14] J.R.�Deller, J.G.�Proakis and J.H.L.�Hansen, Discrete-Time Processing of Speech Signals, Mac...
	[15] N.�Deshmukh, A.�Ganapathiraju, J.�Hamaker and J.�Picone, “Large Vocabulary Conversational Sp...
	[16] N.�Deshmukh, J.�Picone and Y.H.�Kao, “Efficient Search Strategies in Hierarchical Pattern Re...
	[17] V.�Digalakis, P.�Monaco and H.�Murveit, “Genomes: Generalized Mixture Tying in Continuous Hi...
	[18] V.V.�Digalakis, M.�Ostendorf and J.R.�Rohlicek, “Fast Algorithms for Phone Classification an...
	[19] S.�Furui, “Cepstral Analysis Technique for Automatic Speaker Verification,” IEEE Transaction...
	[20] A.�Ganapathiraju, V.�Goel, J.�Picone, A.�Corrada, G.�Doddington, K.�Kirchoff, M.�Ordowski an...
	[21] A.�Ganapathiraju et al, “WS97 Syllable Team Final Report,” Proceedings of the 1997 LVCSR Sum...
	[22] J.�Godfrey, E.�Holliman and J.�McDaniel, “SWITCHBOARD: Telephone Speech Corpus for Research ...
	[23] P.S.�Gopalakrishnan, L.R.�Bahl and R.L.�Mercer, “A Tree Search Strategy for Large- Vocabular...
	[24] J.�Hamaker and B.�Brown, “Experiments,” http://www.isip.msstate.edu/projects/speech/ experim...
	[25] H. �Hermansky, “Perceptual Linear Predictive (PLP) Analysis of Speech,” Journal of the Acous...
	[26] X.D.�Huang, F.�Alleva, H.W.�Hon, M.Y.�Hwang, K.F.�Lee and R.�Rosenfeld, “The SPHINX�II Speec...
	[27] X.D. Huang, H.W.�Hon, M.Y.�Hwang and K.F.�Lee, “A Comparative Study of Discrete, Semi-Contin...
	[28] M.�Jardino, “Multilingual Stochastic N�Gram Class Language Models,” Proceedings of the IEEE ...
	[29] F.�Jelinek, Statistical Methods for Speech Recognition, MIT Press, Cambridge, Massachusetts,...
	[30] F.�Jelinek, “Up From Trigrams! The Struggle for Improved Language Models,” Proceedings of th...
	[31] F.�Jelinek, R.L.�Mercer and S.�Roukos, “Principles of Lexical Modeling for Speech Recognitio...
	[32] R.�Kuhn and R.�de�Mori, “A Cache Based Natural Language Model for Speech Recognition,” IEEE ...
	[33] J.�Kupiec, “Probabilistic Models of Short and Long Distance Word Dependencies in Running Tex...
	[34] J.�Lafferty, D.�Sleator and D.�Temperley, “Grammatical Trigrams: A Probabilistic Model of Li...
	[35] R.�Lau, R.�Rosenfeld and S.�Roukos, “Trigger-Based Language Models: A Maximum Entropy Approa...
	[36] K.F.�Lee and F.�Alleva, “Continuous Speech Recognition,” Advances in Speech Signal Processin...
	[37] K.F.�Lee and H.W.�Hon, “Large-Vocabulary Speaker-Independent Continuous Speech Recognition,”...
	[38] B.T.�Lowerre, “The HARPY Speech Recognition System”, Ph.D.�Thesis, Carnegie Mellon Universit...
	[39] M.�Mohri, M.�Riley, D.�Hindle, A.�Ljolje and F.�Pereira, “Full Expansion of Context- Depende...
	[40] H.�Murveit, J.�Butzberger, V.�Digalakis and M.�Weintraub, “Large Vocabulary Dictation Using ...
	[41] H.�Murveit, P.�Monaco, V.�Digalakis and J.�Butzberger, “Techniques to Achieve an Accurate Re...
	[42] B.F.�Necioglu, M.�Ostendorf and J.R.�Rohlicek, “A Bayesian Approach to Speaker Adaptation fo...
	[43] H.�Ney, “Dynamic Programming Parsing for Context Free Grammars in Continuous Speech Recognit...
	[44] H.�Ney, U.�Essen and R.�Kneser, “On Structuring Probabilistic Dependencies in Stochastic Lan...
	[45] H.�Ney, D.�Mergel, A.�Noll and A.�Paesler, “Data Driven Organization of the Dynamic Programm...
	[46] H.�Ney and S.�Ortmanns, “Dynamic Programming Search for Continuous Speech Recognition,” to a...
	[47] L.�Nguyen, R.�Schwartz, F.�Kubala and P.�Placeway, “Search Algorithms for Software-Only Real...
	[48] L.�Nguyen, R.�Schwartz, Y.�Zhao and G.�Zavaliagkos, “Is N-Best Dead?,” Proceedings of DARPA ...
	[49] N.J.�Nilsson, Problem Solving Methods in Artificial Intelligence, McGraw-Hill, New York, New...
	[50] J.J.�Odell, V.�Valtchev, P.C.�Woodland and S.J.�Young, “A One Pass Decoder Design for Large ...
	[51] D.�Pallett et�al, “1995 Benchmark Tests for the ARPA Spoken Language Program,” Proceedings o...
	[52] D.B.�Paul, “Algorithms for an Optimal A* Search and Linearizing the Search in the Stack Deco...
	[53] D.B.�Paul, “An Efficient A* Stack Decoder Algorithm for Continuous Speech Recognition with a...
	[54] D.B.�Paul, “The Lincoln Large-Vocabulary Stack Decoder Based HMM CSR,” Proceedings of the IE...
	[55] J .�Picone, “Continuous Speech Recognition Using Hidden Markov Models,” IEEE Acoustics, Spee...
	[56] J.�Picone, “Signal Modeling Techniques in Speech Recognition,” Proceedings of the IEEE, Vol....
	[57] L.R.�Rabiner and B.H.�Juang, Fundamentals of Speech Recognition, Prentice Hall, Englewood Cl...
	[58] A.J.�Robinson, “An Application of Recurrent Nets to Phone Probability Estimation,”, IEEE Tra...
	[59] A.J.�Robinson and F.�Fallside, “A Recurrent Error Propagation Network Speech Recognition Sys...
	[60] J.�Schalkwyk, D.�Colton, and M.�Fanty, “The CSLUsh Toolkit for Automatic Speech Recognition,...
	[61] R.�Schwartz and S.�Austin, “A Comparison of Several Approximate Algorithms for Finding Multi...
	[62] R.M.�Schwartz and S.�Austin, “Efficient, High-Performance Algorithms for N�Best Search,” Pro...
	[63] R.D.�Sharp, E.�Bocchieri, C.�Castillo, S.�Parthasarathy, C.�Roth, M.�Riley and J.�Rowland, “...
	[64] K.�Shobaki, “Learn About and Experience Spoken Language Technology,” http:// cslu.cse.ogi.ed...
	[65] F.K.�Soong and E.F.�Huang, “A Tree-Trellis Based Fast Search for Finding the N Best Sentence...
	[66] T.�Takezawa, T.�Morimoto, Y.�Sagisaka, N.�Campbell, H.�Iida, F.�Sugaya, A.�Yokoo and S.�Yama...
	[67] A.J.�Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Optimal Decoding A...
	[68] P.�Woodland et al, HTK Version 1.5: User, Reference and Programmer Manuals, Entropic Researc...
	[69] S.J.�Young and P.C.�Woodland, “State Clustering in HMM-Based Continuous Speech Recognition,”...



