
Noname manuscript No.
(will be inserted by the editor)

Call-By-Push-Value: Decomposing Call-By-Value And

Call-By-Name

Paul Blain Levy

Received: date / Accepted: date

Abstract We present the call-by-push-value (CBPV) calculus, which decomposes the

typed call-by-value (CBV) and typed call-by-name (CBN) paradigms into fine-grain

primitives. On the operational side, we give big-step semantics and a stack machine

for CBPV, which leads to a straightforward push/pop reading of CBPV programs. On

the denotational side, we model CBPV using cpos and, more generally, using algebras

for a strong monad. For storage, we present an O’Hearn-style “behaviour semantics”

that does not use a monad.

We present the translations from CBN and CBV to CBPV. All these transla-

tions straightforwardly preserve denotational semantics. We also study their opera-

tional properties: simulation and full abstraction.

We give an equational theory for CBPV, and show it equivalent to a categorical

semantics using monads and algebras. We use this theory to formally compare CBPV

to Filinski’s variant of the monadic metalanguage, as well as to Marz’s language SFPL,

both of which have essentially the same type structure as CBPV. We also discuss less

formally the differences between the CBPV and monadic frameworks.

Keywords call-by-push-value · computational effect · monad · lambda-calculus ·

call-by-value · call-by-name

1 Introduction

1.1 Aims of Paper

Let us consider typed call-by-value (CBV) and typed call-by-name (CBN), and observe

convergence at ground type only. (This restriction does not matter in CBV, but in CBN,

it makes the η-law for functions into an observational equivalence.) Suppose we seek

to combine these into a single “subsuming” language such that

– the subsuming language, like CBV and CBN, is equipped with operational seman-

tics, cpo semantics, monad semantics, storage semantics in the manner of (O’H93)

and continuation semantics in the manner of (SR98)
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– these semantics are at least as simple as the corresponding semantics for CBV and

CBN

– the translations preserve all these semantics.

We could add “etc.” to the list of semantics, but for the sake of precision we will stop

there.

The reason this is a desirable objective is that it is plausible that the situation found

for all the semantics listed will also be true for all other CBV and CBN semantics we

might wish to study. (This cannot be made into a precise statement, because of the

simplicity requirement.) If so, then a researcher studying a new kind of semantics need

only develop it for the subsuming language, because the CBV and CBN semantics can

be derived from the subsuming semantics.

In this paper, we introduce a calculus, call-by-push-value (CBPV), which is a solu-

tion to this problem. It was obtained by analyzing the above semantics to find comon

underlying primitives. But this paper does not follow that route; instead, the only

knowledge presupposed is big-step and cpo semantics for CBV and CBN, and global

store and monad semantics for CBV.

1.2 Related Work

CBPV is closely related to Filinski’s Effect-PCF (Fil96), a form of the monadic meta-

language (Mog91). However it differs from Effect-PCF in 2 respects.

1. CBPV’s computation types denote algebras, not merely carriers of algebras. As we

explain in Sect. 2.1, this is essential in order to treat CBN compositionally.

2. CBPV retains the distinction between a computation and its thunk, familiar to

CBV programmers but erased in monadic metalanguages. Sect. 2.2 explains this

point in the more familiar CBV setting, before we come to CBPV.

Besides Effect-PCF, and somewhat similar pointed/unpointed calculi such as (How96),

there has been much work bringing CBV and CBN into a common framework. However,

it is usually with regard to a narrower range of semantics than we are considering.

– Translations into intuitionistic linear logic (BW96) preserve cpo semantics, but not

the others.

– Translations into SFPL (Mar00) preserve cpo semantics and operational semantics,

but not the others.

– Translations into continuation languages (Plo75), or their polarized counterpart

LLP (Lau99), preserve continuation semantics, including unbracketed game seman-

tics (Lai98), and (certain) operational semantics, but not the others. Likewise the

related work of (Sel01).

We therefore emphasize what, by contrast, is extraordinary about CBPV: the trans-

lations into it preserve such a wide range of semantics. Indeed there are many more,

including game semantics, possible world semantics, non-monad models of nondeter-

minism, etc., that we do not treat in this paper, and the reader is referred to (Lev04)

for more information.
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1.3 Structure of Paper

Before looking at CBPV, we develop some themes in monad semantics of CBN (Sect. 2.1)

and CBV (Sect. 2.2). We then introduce CBPV, with its monad/algebra semantics, and

big-step semantics. We also present a stack machine, which explains why functions are

computations in CBPV: they pop their argument from the stack.

A novel part of the paper is Sect. 6.2, which presents a behaviour semantics for

storage—actually the simpler CBPV version of the CBN semantics in (O’H93). Because

it is not a monad semantics, this model illustrates the difference between CBPV and

the monadic framework. Furthermore, we see that its soundness is trivial, by contrast

with that of the monad/algebra model1.

We then give the translations from CBV and CBN into CBPV, and prove preser-

vation of denotational semantics. This is a trivial result, but it is the most important

one, in the light of our original problem. We also show preservation of operational

semantics—not exactly, but up to some minor “administrative reductions”. And we

state (without proof) full abstraction theorems for these translations.

Next, we move to the more technical part of the paper: relating CBPV to the well-

established monadic framework. To do this, we need an equational theory for CBPV,

and we also need to add certain complex values to the syntax, though they can always

be eliminated from a computation. We give a monad/algebra categorical semantics and

prove that every CBPV model is equivalent to a monad model (even though it may be

unnatural to present it in this way). This enables us, finally, to prove the soundness of

the algebra model for storage, deducing it from that of the behaviour semantics.

Finally, having dealt with complex values and the equational theory, it is straight-

forward to relate CBPV to Filinski’s Effect-PCF and Marz’s SFPL (except for recursive

types, which we do not treat in this paper).

1.4 Note

Since the original presentation in (Lev99), some changes have been made to the CBPV

syntax (including recursion).

produce V  return V

〈. . . , i.Mi, . . .i∈I〉  λ{i.Mi}i∈I

let x be V. M  let V be x. M

(̂ı, V )  〈̂ı, V 〉

(V, V ′)  〈V, V ′〉

µx. M  rec x. M

2 Monads

2.1 Algebra Semantics For Call-By-Name

There are two theories for typed CBN:

1 In fact the latter can be deduced from the former, as explained at the end of Sect. 9.
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– the “lazy” theory (HD97; Ong88), where convergence is observed at every type

– the “PCF-style” theory (Plo77), where convergence is observed at ground type

only.

The terms λxA.divergeB and divergeA→B are observationally equivalent in the PCF-

style theory, but not in the lazy theory. (The lazy theory has also been studied in the

untyped setting (Abr90; HD97; Ong88; Plo75).)

Moggi’s seminal paper (Mog91) provided translations from CBV and lazy CBN

into his “monadic metalanguage”, and hence semantics for CBV and CBN in any

bicartesian closed category C equipped with a strong monad T . The translation from

lazy CBN is shown in (Hat94) to be the composite

lazy CBN // CBV // monadic metalanguage

Here the first factor is the thunking transform of (HD97).

A semantics of PCF-style CBN in (C, T ) is given in (BHM00; Fil96). In it, we have

[[bool]] = T (1 + 1)

[[A → B]] = [[A]] → [[B]]

[[A + B]] = T ([[A]] + [[B]])

and a term A0, . . . , An−1 ⊢ M : B denotes a function from [[A0]]×· · ·× [[An−1]] to [[B]].

This semantics—which, for reasons explained below, we call carrier semantics—is

not compositional. For example, the interpretation of if must be given by induction

over types: it is trivial at ground type or sum type, and at function type it is given by

if M then N else N ′ = λx. (if M then (Nx) else (N ′
x)) (1)

in the sense that the denotation of the LHS is defined to be that of the RHS. Further-

more, in order to prove the computational adequacy of such a semantics, one first has

to prove2 that (1) is an observational equivalence.

The solution to this non-compositionality problem is that, in monad semantics, a

CBN type should denote not an object of C, but rather a T -algebra. We recall that this

is defined to be a pair (X, θ), where X ∈ ob C and TX
θ // X is a morphism such

that

X
ηX

//

id
!!B

B

B

B

B

B

B

B

TX

θ

��

T 2X
µX

oo

Tθ

��

X TX
θ

oo

(2)

commutes. We call X the carrier and θ the structure of the algebra. Here are some

examples:

– An algebra for the lifting monad on Cpo has a pointed cpo or cppo (cpo with a

least element), as a carrier, and each pointed cpo has a unique structure map. Thus

this monad is unusual in that an algebra is determined by its carrier.

– An algebra for the printing monad A∗ ×− on Set can be described as an A-set, a

set X together with a binary operation ∗ from A×X to X. This corresponds to a

monoid action, written ∗∗, of A∗ on X.

2 An alternative method is given in Remark 1 below.
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Given a strong monad T on cartesian C, we can build T -algebras for it in the following

ways.

– The free T -algebra on a C-object A has carrier TA and structure map µA.

– For a family of T -algebras {(Xi, θi)}i∈I , suppose the object family {Xi}i∈I has

a product, with vertex V and projection V
πi // Xi for each i ∈ I. Then the

product algebra
∏

i∈I(Xi, θi) has carrier V and structure the unique TV
φ

// V
such that

TV

φ

��

Tπi // TXi

θi

��

V πi

// Xi

commutes for each i ∈ I.

– For a C-object A and T -algebra (X, θ), suppose there is an exponential from A to

X, with vertex V and evaluation A × V
ev // X . Then the exponential algebra

A → (X, θ) has carrier V and structure the unique TV
φ

// V such that

A × TV

A×φ

��

tA,V
// T (A × V )

T ev // TX

θ

��

A × V
ev

// X

commutes.

Suppose we write FT A for the free T -algebra on A, and UT B for the carrier of a T -

algebra B. Then (assuming C to be bicartesian closed) the algebra semantics of CBN

types is given by

[[bool]] = FT (1 + 1)

[[A → B]] = UT [[A]] → [[B]]

[[A + B]] = FT (UT [[A]] + UT [[B]])

and a term A0, . . . , An−1 ⊢ M : B denotes a function from UT [[A0]]× · · · ×UT [[An−1]]

to UT [[B]].

Clearly,

– every type’s carrier denotation is the carrier of its algebra denotation (hence the

name “carrier semantics”)

– the two sides of (1) have the same denotation in algebra semantics (but not by

definition, unlike in carrier semantics)

– hence each term has the same denotation in algebra and carrier semantics.

But in algebra semantics, the interpretation of conditionals is compositional.

Remark 1 The computational adequacy of carrier semantics can be deduced from that

of algebra semantics, since the denotations of terms are the same.
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Similarly, consider a CBN language containing a print c instruction (for c ∈ A)

that can be prefixed to a term of any type. The language is modelled using the printing

monad A∗ ×− on Set. In carrier semantics, print would be interpreted by induction

on types. But in algebra semantics, a CBN type denotes an A-set (X, ∗), and we define

[[print c. M ]]ρ = c ∗ [[M ]]ρ

The following is sufficient to ensure that all exponentials and finite products of

algebras exist, so that algebra semantics can be constructed.

Definition 1 An algebra-building structure consists of a strong monad (T, η, µ, t) on

a distributive category C, with an exponential from every C-object to every carrier of

a T -algebra.

2.2 Call-By-Value and Thunks

We recapitulate and critique the analysis of CBV semantics that leads to the monadic

metalanguage.

Consider a CBV language with booleans and multi-ary functions, together with

some computational effects—let us say global store, and write S for the set of stores.

The types of this language are

A ::= bool | (A0, . . . , An−1) → A

The 0-ary function type ( ) → A is well known to CBV programmers, being a type of

thunks that can be forced whenever convenient. Following (HD97; Mog89), we might

call this type TA, and write thunk M and force N for λ( ).M and N( ) respectively.

Before monads became popular, the denotational semantics of this language would

have been formulated as follows. First we interpret each type by a set:

[[bool]] = 1 + 1

[[(A0, . . . , An−1) → B]] = (S × [[A0]] × · · · × [[An−1]]) → (S × [[B]])

Then we interpret each term Γ ⊢ M : B by a function S × [[Γ]]
[[M ]]

// S × [[B]] . Next,

we interpret each value Γ ⊢ V : B by a function [[Γ]]
[[V ]]val

// [[B]] such that [[V ]](s, ρ) =

(s, [[V ]]valρ) for each s ∈ S and ρ ∈ [[Γ]].

We proceed to prove 2 substitution lemmas, for substitution of values into terms

and into values. Finally, we prove soundness and adequacy, which completes the story.

The line of thought that leads from this account to the monadic metalanguage

proceeds in three steps.

The first step is as follows. Since a value has 2 denotations—as a term, and as a

value—it makes sense to introduce an explicit judgement Γ ⊢v V : A for values, and to

make explicit the coercion of values into effectful terms. Doing this gives something like

the fine-grain CBV language3 shown in Fig. 1. This greatly simplifies the semantics of

CBV constructs, e.g. application.

3 The language MIL-lite in (BK99), which distinguishes between different effects, is some-
what similar. However, fine-grain CBV differs from the original CBV language only in its
judgements and terms; the types are unchanged.
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Types

The same as the original CBV language

Judgements

Γ ⊢v V : A Γ ⊢ M : A

Terms

Γ, x : A, Γ′ ⊢v x : A

Γ ⊢v V : A Γ, x : A ⊢ M : B

Γ ⊢ let V be x. M : B

Γ ⊢v V : A

Γ ⊢ return V : A

Γ ⊢ M : A Γ, x : A ⊢ N : B

Γ ⊢ M to x. N : B

Γ, x : A ⊢ M : B

Γ ⊢v λx.M : A → B

Γ ⊢v V : A → B Γ ⊢v W : A

Γ ⊢ V W : B

The rules for multi-ary functions are similar.

Γ ⊢v true : bool

Γ ⊢v V : bool Γ ⊢ M : B Γ ⊢ M ′ : B

Γ ⊢ if V then M else M ′ : B

Fig. 1 Syntax of Fine-Grain CBV, for boolean and multi-ary function types

The second step, a rather minor one, is to allow values to be formed using let and

if, by adding the typing rules

Γ ⊢v V : A Γ, x : A ⊢v W : B

Γ ⊢v
let V be x. W : B

Γ ⊢v V : bool Γ ⊢v W : B Γ ⊢v W ′ : B

Γ ⊢v
if V then W else W ′ : B

These so-called complex values greatly complicate the operational semantics, because

they need to be evaluated. However, they are very natural from a denotational and

categorical viewpoint. We discuss complex values in detail in Sect. 8.2 (not in the CBV

setting, but everything we say applies equally to CBV).

The third step is to observe that

[[( ) → B]] = S → (S × [[B]]) (3)

[[λ( ).M ]]valρ = λs.([[M ]](s, ρ)) (4)

[[V ( )]](s, ρ) = ([[V ]]valρ)s (5)

So terms Γ ⊢ M : B correspond to values Γ ⊢v V : () → B, via these thunking and

forcing operations. Therefore—it is argued—the ⊢ judgement is redundant, and we

might as well abolish it, leaving only values. That gives the monadic metalanguage.

But this third step is problematic. Firstly, because it erases the conceptually signif-

icant difference between a CBV term and its thunk. Secondly, because this difference,

though invisible in monad semantics, is apparent in many others. These other seman-

tics, although they can be squashed into the monadic straitjacket, become less simple

and less intuitive as a consequence.

The most glaring example is the possible world semantics of (Lev02), where the

semantic equations for the monadic metalanguage are much more complicated than

for fine-grain CBV, because they must repeatedly force and thunk. Other examples

are continuation and game models; these describe the interaction or jumping between
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different parts of a program, and forcing corresponds to a jump. It is not possible to

treat these examples in this paper, but a full treatment can be found in (Lev04).

For these reasons, we will maintain the distinction between a term (computation)

and its thunk.

3 CBPV Syntax and Monad/Algebra Semantics

CBPV has two disjoint classes of terms: values and computations. Below, we shall

see this difference in operational terms: a value is, whereas a computation does. As

explained in Sect. 2.2, we take care to distinguish a computation M from its thunk, the

latter being a value that can be forced at any time.

CBPV likewise has two disjoint classes of type: a value has a value type, while a

computation has a computation type. The types are given by

value types A ::= UB |
∑

i∈IAi | 1 | A × A

computation types B ::= FA |
∏

i∈IBi | A → B

where I is any finite4 set. The elements of I are called tags, and we write them starting

with #, to avoid confusion with identifiers. For example,

∑
{#jan.A, #feb.B, #mar.C}

is a value type if A, B, C are value types.

The type 1 is entirely analogous to ×, so we generally omit typing rules, etc., for

it.

It is obvious how to interpret these types in an algebra-building structure: a value

type denotes an object of C whereas a computation type denotes a T -algebra. Thus

FA denotes the free T -algebra on [[A]], whilst UB denotes the carrier of [[B]]. The type

A → B denotes the exponential algebra from [[A]] to [[B]].

In particular, using the lifting monad on Cpo, we interpret a value type by a cpo

and a computation type by a cppo. Here FA denotes the lift of [[A]], whilst UB has the

same denotation as B, so U is invisible. (A unary construct c is said to be invisible in

a given denotational semantics when [[c(Q)]] = [[Q]].)

As in CBV, an identifier in CBPV can be bound only to a value, so it must have

value type. We accordingly define a context Γ to be a sequence

x0 : A0, . . . , xn−1 : An−1

of distinct identifiers with associated value types. We often omit the identifiers and

write just A0, . . . , An−1. In an algebra building structure this denotes the C-object

[[Γ]] = [[A0]] × · · · × [[An−1]].

We write Γ ⊢v V : A to mean that V is a value of type A, and we write Γ ⊢c M : B

to mean that M is a computation of type B. The terms of CBPV are given in Fig. 2.

We explain some of the less familiar constructs. The keyword pm stands for “pattern-

match”. We write ‘ for application in reverse order; the advantage of this is explained

4 For certain purposes, including game semantics, Böhm trees and possible worlds, it is
convenient to consider infinitary forms of CBPV, CBV and CBN. In the infinitary setting, I
can be any countable set (but only finite products of value types are allowed). In this paper,
we treat only finitary languages, but use the indexed notation with a view to this infinitary
extension.
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in Sect. 5.2. Because we think of
∏

i∈I as the type of functions taking each i ∈ I to

a computation of type Bi, we have made its syntax similar to that of →. We use the

keyword to corresponding to the Haskell idiom >>= λ. Thus M to x. N (unlike in

Haskell, N can have any computation type) is the sequenced computation that first

executes M , and when this produces a value x proceeds to execute N . We reserve let

for plain binding.

We write
A + B for

∑
{#l.A, #r.B}

0 for
∑

{}

A Π B for
∏

{#l.A, #r.B}

1Π for
∏

{}

Γ, x : A, Γ′ ⊢v x : A

Γ ⊢v V : A Γ, x : A ⊢c M : B

Γ ⊢c let V be x. M : B

Γ ⊢v V : A

Γ ⊢c return V : FA

Γ ⊢c M : FA Γ, x : A ⊢c N : B

Γ ⊢c M to x. N : B

Γ ⊢c M : B

Γ ⊢v thunk M : UB

Γ ⊢v V : UB

Γ ⊢c force V : B

Γ ⊢v V : Aı̂
ı̂ ∈ I

Γ ⊢v 〈ı̂, V 〉 :
∑

i∈I
Ai

Γ ⊢v V :
∑

i∈I
Ai Γ, x : Ai ⊢c Mi : B (∀i ∈ I)

Γ ⊢c pm V as {〈i, x〉.Mi}i∈I : B

Γ ⊢v V : A Γ ⊢v V ′ : A′

Γ ⊢v 〈V, V ′〉 : A × A′

Γ ⊢v V : A × A′ Γ, x : A, y : A′ ⊢c M : B

Γ ⊢c pm V as 〈x, y〉.M : B

Γ ⊢c Mi : B
i

(∀i ∈ I)

Γ ⊢c λ{i.Mi}i∈I :
∏

i∈I
B

i

Γ ⊢c M :
∏

i∈I
B

i
ı̂ ∈ I

Γ ⊢c ı̂‘M : Bı̂

Γ, x : A ⊢c M : B

Γ ⊢c λx.M : A → B

Γ ⊢v V : A Γ ⊢c M : A → B

Γ ⊢c V ‘M : B

Fig. 2 Terms of CBPV

In an algebra-building structure (C, T ), a value Γ ⊢v V : A denotes a C-morphism

from [[Γ]] to [[A]], whilst a computation Γ ⊢c M : B denotes a C-morphism from [[Γ]] to

the carrier of [[B]]. In particular:

– if Γ ⊢v V : A, then return V denotes the composite

[[Γ]]
[[V ]]

// [[A]]
η[[A]]

// T [[A]]

– If Γ ⊢c M : FA and Γ, x : A ⊢c N : B and B denotes the algebra (Y, φ) then

M to x. N denotes the composite

[[Γ]]
(id,[[M ]])

// [[Γ]] × T [[A]]
t[[Γ]],[[A]]

// T ([[Γ]] × [[A]])
T [[N ]]

// TY
φ

// Y
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– thunk and force are invisible.

In Sect. 6.2, we shall see a model where thunk and force are visible.

Divergence

Γ ⊢c diverge : B

Γ, x : UB ⊢c M : B

Γ ⊢c rec x. M : B

Printing elements of a countable set A

Γ ⊢c M : B
c ∈ A

Γ ⊢c print c. M : B

Storing elements of a finite set S in a cell

(We could allow denumerable S, making the syntax infinitary.)

Γ ⊢c M : B
s ∈ S

Γ ⊢c cell := s. M : B

Γ ⊢c Ms : B (∀s ∈ S)

Γ ⊢c read-cell-as {s.Ms}s∈S : B

Fig. 3 Adding divergence, printing, storage

In Fig. 3 we show how to add constructs for divergence/recursion, printing elements

of a set, and storing elements of a set in a global cell. Although there are many other

effects we can treat, this limited range suffices to illustrate our main points about

CBPV.

It is convenient to treat commands for printing etc. as prefixes, rather than as

primitive terms.

The denotational semantics of divergence in the cppo model is

[[diverge]]ρ = ⊥

with rec x. M interpreted as a least prefixpoint. The denotational semantics of printing

in the A-set model is

[[print c. M ]]ρ = c ∗ [[M ]]ρ

We discuss denotational semantics of storage in Sect. 6.1.

4 Big-Step Semantics

We begin the big-step semantics by defining a special class of closed computations

where evaluation stops, which we call terminal computations. (We cannot, of course,

call them “values”.) They are given by

T ::= return V | λ{i.Mi}i∈I | λx.M

The big-step semantics are expressed using the judgement M ⇓ T , where M is a closed

computation and T a terminal computation of the same type. The rules are presented

in Figs. 4–5.
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Each big-step rule has the form

M0 ⇓ T0 · · · Mr−1 ⇓ Tr−1

M ⇓ T
(6)

for some r > 0. Here they are:

M [V/x] ⇓ T

let V be x. M ⇓ T

return V ⇓ return V

M ⇓ return V N [V/x] ⇓ T

M to x. N ⇓ T

M ⇓ T

force thunk M ⇓ T

Mı̂[V/x] ⇓ T

pm 〈ı̂, V 〉 as {〈i, x〉.Mi}i∈I ⇓ T

M [V/x, V ′/y] ⇓ T

pm 〈V, V ′〉 as 〈x, y〉.M ⇓ T

λ{i.Mi}i∈I ⇓ λ{i.Mi}i∈I

M ⇓ λ{i.Ni}i∈I Nı̂ ⇓ T

ı̂‘M ⇓ T

λx.M ⇓ λx.M

M ⇓ λx.N N [V/x] ⇓ T

V ‘M ⇓ T

Fig. 4 Big-step semantics for CBPV

Proposition 1 (termination and determinism)

no effects For each M there is a unique T such that M ⇓ T .

divergence For each M there exists at most one T such that M ⇓ T .

printing For each M there is a unique m, T such that M ⇓ m, T .

storage For each s, M there is a unique s′, T such that s, M ⇓ s′, T .

The proof is standard, and in the Appendix.

Definition 2 For any computation ⊢c M :
∑

i∈I1 (such a computation is said to be

ground), its operation [M ] is

no effects an element of I. If M ⇓ return 〈i, 〈〉〉 then [M ] = i

divergence an element of I⊥. If M ⇓ return 〈i, 〈〉〉 then [M ] = up i, and if M diverges

then [M ] = ⊥

printing an element of A∗ × I. If M ⇓ m, return 〈i, 〈〉〉 then [M ] = (m, i)

storage an element of S → (S × I): for each s ∈ S, if s, M ⇓ s′, return 〈i, 〈〉〉 then

[M ]s = (s′, i).

In each case, we define observational equivalence ≃ to be the largest congruence on

terms such that if M ≃ M ′ then [M ] = [M ′]. More explicitly, for two computations
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Divergence We add the rules

diverge ⇓ T

diverge ⇓ T

M [thunk rec x. M/x] ⇓ T

rec x. M ⇓ T

and we say that M diverges when there does not exist T such that M ⇓ T . (This
exploits determinism, of course.)
Printing The big-step judgement takes the form M ⇓ m, T where m ∈ A∗. We
accordingly replace each rule (6) by

M0 ⇓ m0, T0 · · · Mr−1 ⇓ mr−1, Tr−1

M ⇓ m0 + m1 + · · · + mr−1, T

where + means concatenation of strings, and we add the rule

M ⇓ m, T

print c. M ⇓ [c] + m, T

Storage The big-step judgement takes the form s, M ⇓ s′, T where s, s′ ∈ S. We
accordingly replace each big-step rule of the form (6) by

s0, M0 ⇓ s1, T0 · · · sr−1, Mr−1 ⇓ sr, Tr−1

s0, M ⇓ sr, T

and we add the rules

s′, M ⇓ s′′, T

s, cell := s′. M ⇓ s′′, T

s′, Ms′ ⇓ s′′, T

s′, read-cell-as {s.Ms}s∈S ⇓ s′′, T

Fig. 5 Big-step semantics for divergence, printing and storage

Γ ⊢c M, M ′ : B, we say M ≃ M ′ when [C[M ]] = [C[M ′]] for any ground-computation

context C with hole Γ ⊢c [·] : B.

In the case of divergence, we define observational inequality . to be the largest

precongruence on terms such that if M . M ′ then [M ] 6 [M ′]. More explicitly, for

two computations Γ ⊢c M, M ′ : B, we say M . M ′ when [C[M ]] 6 [C[M ′]] for any

ground-computation context C with hole Γ ⊢c [·] : B.

In Sect. 3 we have given denotational semantics for divergence (using cpos/cppos)

and for printing (using A-sets), and we have to prove them sound and adequate.

Proposition 2 (soundness/adequacy) Let M be a closed computation. We write ǫ

for the empty environment.

divergence If M ⇓ T then [[M ]]ǫ = [[T ]]ǫ. If M diverges then [[M ]]ǫ = ⊥.

printing If M ⇓ m, T then [[M ]]ǫ = m ∗∗ [[T ]]ǫ.

The proof is standard, and in the Appendix.

Corollary 1 Both for divergence and for printing, we have [[N ]]ǫ = [N ] for every

ground computation N . Hence for any terms M, M ′ (not necessarily closed), if [[M ]] =

[[M ′]] then M ≃ M ′, by compositionality of [[−]]. In the case of divergence, [[M ]] 6 [[M ′]]

implies M . M ′.
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Initial Configuration

M nil

Transitions

let V be x. M K  
M [V/x] K

M to x. N K  
M to x. N :: K

return V to x. N :: K  
N [V/x] K

force thunk M K  
M K

pm 〈ı̂, V 〉 as {〈i, x〉.Mi}i∈I K  
Mı̂[V/x] K

pm 〈V, V ′〉 as 〈x, y〉.M K  
M [V/x, V ′/y] K

ı̂‘M K  
M ı̂ :: K

λ{i.Mi}i∈I ı̂ :: K  
Mı̂ K

V ‘M K  
M V :: K

λx.M V :: K  
M [V/x] K

Terminal Configurations

return V nil

λ{i.Mi}i∈I nil

λx.M nil

Fig. 6 CK-machine for CBPV

5 CK-Machine

5.1 Introducing the CK-Machine

The CK-machine is a form of operational semantics that is more explicit than big-step

semantics and has certain advantages over it; for example, it allows the easy formula-

tion of control effects. It can be given for CBV, CBN and CBPV. It was introduced

by (FF86) in a CBV setting, and there are many similar formulations (Kri85; PS98;

SR98).

At any point in time, the machine has configuration M, K when M is the compu-

tation we are evaluating and K is a stack. Here is a “raw” (i.e. type free) grammar of

stacks:

K ::= nil | to x. N :: K | V :: K | ı̂ :: K
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For a typed grammar, see (Lev05).

To understand the CK-machine, just think about how we might implement the

big-step rules using a stack. Suppose for example that we are evaluating M to x. N .

The big-step semantics tells us that we must first evaluate M . So we put the rest of

the term to x. N onto the stack, because at present we do not need it. Later, having

evaluated M to return V , we can remove to x. N from the stack and proceed to

evaluate N [V/x], as the big-step semantics suggests.

As another example, suppose we are evaluating V ‘M . The big-step semantics tells

us that we must first evaluate M . So we put the argument V onto the stack, because

at present we do not need it. Later, having evaluated M to λx.N , we can remove this

argument from the stack and proceed to evaluate N [V/x], as the big-step semantics

suggests.

The machine is shown in Fig. 6. To evaluate a closed computation M , we start

with the configuration M, nil and follow the transitions until we reach a configuration

T, nil for a terminal computation T .

The CK-machine agrees with the big-step semantics in the following sense:

Proposition 3 For any closed computation M , we have M ⇓ T iff M, nil ∗ T, nil.

This is proved in (Lev04) by standard techniques. For each of our effects, it is straight-

forward to adapt the CK-machine and obtain a variant of Prop. 3.

5.2 Pushing and Popping

The strangest feature of CBPV, for people familiar with CBV, is the fact that λx.M is

a computation. But the CK-machine gives a simple explanation of this feature. Looking

at Fig. 6, it is apparent that V ‘ can be read as an instruction “push V ”, whilst λx can

be read as an instruction “pop x”. This is why we prefer an operand-first notation for

application.

A fortunate consequence of the push/pop interpretation is that it makes CBPV

programs easy to read. Here is an example program using printing. The program in-

volves some complex values such as arithmetic and string expressions, which are easy

to understand although they are not officially included within the CK-machine.

print "hello0".

let 3 be x.

let thunk (

print "hello1".

λz.

print "we just popped "z.

return x + z

) be y.

print "hello2".

( print "hello3".

7‘

print "we just pushed 7".

force y

) to w.

print "w is bound to "w.

return w + 5
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It is easy to see that the program outputs as follows

hello0

hello2

hello3

we just pushed 7

hello1

we just popped 7

w is bound to 10

and finally returns the value 15.

From this viewpoint, we can give the following operational summary of CBPV

types.

– A value of type UB is a thunk of a computation of type B.

– A value of type
∑

i∈IAi is a pair 〈i, V 〉, where i ∈ I and V is a value of type Ai.

– A value of type A × A′ is a pair 〈V, V ′〉, where V is a value of type A and V ′ is a

value of type A′.

– A value of type 1 is the 0-tuple 〈 〉.

– A computation of type FA returns a value of type A.

– A computation of type
∏

i∈IBi pops a tag i ∈ I, and then behaves as a computation

of type Bi.

– A computation of type A → B pops a value of type A and then behaves as a

computation of type B.

Notice how this description follows the principle “a value is, a computation does”.

6 Denotational Semantics for Storage

6.1 Monad/Algebra Semantics

So far we have seen denotational semantics for divergence and printing, and proved

them sound and adequate, but what about storage? One seemingly reasonable way of

building such a semantics is to use the S → (S × −) monad on Set in the manner of

Sect. 3, so that a computation type denotes an algebra for this monad. But we still have

the task of proving some kind of soundness theorem, at the very least the following.

Proposition 4 If M is a closed computation of type FA, and s, M ⇓ s′, return V ,

then ([[M ]]ǫ)s = (s′, [[V ]]ǫ).

This is not straightforward to prove. One method is to introduce another denotational

model, prove the latter sound, and then prove the agreement of the two models (we

describe this agreement at the end of Sect. 9). We now turn to this other denotational

model, called behaviour semantics, and introduced for CBN in (O’H93). Not only is it

easier to prove sound, but it is arguably more intuitive than the algebra semantics.

6.2 Behaviour Semantics

For values, behaviour semantics is no different from monad semantics:
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– a value type A (and similarly a context Γ) denotes a set

– the connectives
∑

and × denote sum and product of sets

– a value Γ ⊢v V : A denotes a function from [[Γ]] to [[A]].

But a computation type B denotes not an algebra but a set. Intuitively, this is the set

of behaviours of a computation of type B. So a computation Γ ⊢c M : B denotes a

function from S× [[Γ]] to [[B]], because, in a given store s ∈ S and environment ρ ∈ [[Γ]],

it behaves in a certain way. The semantics of types is as follows:

– The behaviour of a computation of type FA is to terminate in a state s ∈ S

returning a value V of type A. So FA denotes S × [[A]].

– The behaviour of a computation of type A → B is to pop a value of type A, and,

depending on the value popped, to behave as a computation of type B. So A → B

denotes [[A]] → [[B]].

– The behaviour of a computation of type
∏

i∈IBi is to pop i ∈ I, and, depending

on the i popped, to behave as a computation of type Bi. So
∏

i∈IBi denotes∏
i∈I [[Bi]].

– A value of type UB can be forced in any store s ∈ S, and depending on this store,

will behave as a computation of type B. So UB denotes S → [[B]].

The semantic equations for terms are straightforward and we omit them. In behaviour

semantics, it is straightforward to formulate a soundness theorem for computations of

all types:

Proposition 5 If s, M ⇓ s′, T then [[M ]](s, ǫ) = [[T ]](s′, ǫ).

and this is proved by induction on ⇓.

Corollary 2 [[N ]](s, ǫ) = [N ]s for every ground computation N and s ∈ S. Hence, for

any terms M, M ′, if [[M ]] = [[M ′]] then M ≃ M ′.

7 Call-By-Value and Call-By-Name Fragments of CBPV

7.1 Introduction

In this section, we shall display CBV and CBN as fragments of CBPV. The types of

CBV are value types and the types of CBN are computation types. Whereas the CBV

boolean and sum types are the same as CBPV, the CBV function type decomposes as

A →CBV B = U(A → FB) (7)

Operationally, this says that a CBV function is a thunk of a computation that pops

an argument and returns an answer. The CBN function type decomposes as

A →CBN B = UA → B

Operationally, this says that an argument to a CBN function is a thunk. The CBN

boolean and sum types decompose as

boolCBN = F (1 + 1)

A +CBN A′ = F (UA + UA′)
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It is crucial to see that all these decompositions preserve denotational semantics, both

for cpos/cppos and, more generally, in the monad/algebra setting. We state this prop-

erly in Sect. 7.4.

The types we treat for CBV and CBN are

A ::= bool | A → A | A + A (8)

deferring the treatment of other connectives to Sect. 7.5. For the connectives in (8), the

term syntax and the big-step semantics (⇓CBN and ⇓CBV) are standard e.g. (Win93).

For recursion, there are several possible formulations, one of which is shown in Fig. 7.

Observational equivalence (≃CBN and ≃CBV) and inequality (.CBN and .CBV) are

defined as in Def. 2, defining ground terms to be closed terms of type bool.

CBN

Γ, x : A ⊢ M : A

Γ ⊢ rec x. M : A

M [rec x. M/x] ⇓CBN T

rec x. M ⇓CBN T

CBV

Γ, x : A, f : A → B ⊢ M : B

Γ ⊢ rec f λx.M : A → B rec f λx.M ⇓CBV rec f λx.M

M ⇓CBV rec f λx.P N ⇓CBV V P [rec f λx.P/f, V/x] ⇓CBV W

MN ⇓CBV W

Fig. 7 Syntax and big-step semantics of recursion in CBN and CBV

7.2 CBN to CBPV

Each CBN term A0, . . . , An−1 ⊢ M : B is translated into a CBPV computation

UAn
0, . . . , UAn

n−1 ⊢c Mn : Bn. The translation is shown in Fig. 8, and it clearly

preserves denotational semantics in the cppo setting, and, more generally, in the

monad/algebra setting. However, it does not precisely preserve substitution or big-

step semantics; as an example, consider the CBN term let true be x. λy.x.

To achieve preservation of substitution, and preservation and reflection of big-step

semantics (we require reflection so that our account extends to a nondeterministic

setting), we work with a relation 7→n from CBN terms to CBPV computations. This

is defined inductively; there is one rule for each line of Fig. 8 e.g.

x 7→n
force x

N 7→n N ′ M 7→n M ′

MN 7→n (thunk N ′)‘M ′

together with an additional rule

M 7→n M ′

M 7→n
force thunk M ′

Now substitution is preserved.
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C Cn (a computation type)
bool F (1 + 1)

A + B F (UAn + UBn)
A → B (UAn) → Bn

A0, . . . , An−1 ⊢ M : C UAn
0
, . . . , UAn

n−1
⊢c Mn : Cn

x force x

let M be x. N let thunk Mn be x. Nn

true return 〈#l, 〈 〉〉
false return 〈#r, 〈 〉〉

if M then N else N ′ Mn to z. pm z as {〈#l, u〉.Nn, 〈#r, u〉.N ′n}
inl M return 〈#l, thunk Mn〉
inr M return 〈#r, thunk Mn〉

pm M as {inl x.N, inr x.N ′} Mn to z. pm z as {〈#l, x〉.Nn, 〈#r, x〉.N ′n}
λx.M λx.Mn

MN (thunk Nn)‘Mn

rec x. M rec x. Mn

print c. M print c. Mn

Fig. 8 Translating CBN to CBPV

Proposition 6 If M 7→n M ′ and N 7→n N ′ then M [N/x] 7→n M ′[thunk N ′/x]

Proposition 7 The relation from CBN to CBPV terms is a bisimulation:

1. If M ⇓CBN T and M 7→n M ′, then there exists T ′ such that T 7→n T ′ and M ′ ⇓ T ′.

2. If M 7→n M ′ and M ′ ⇓ T ′, then there exists T such that T 7→n T ′ and M ⇓CBN T .

Hence the translation reflects observational inequality: if Mn . Nn then M .CBN N .

Proof For (1), induct, primarily on M ⇓CBN T and secondarily on M 7→n M ′. For (2),

induct on M ′ ⇓ T ′.

7.3 From CBV to CBPV

The translation from CBV to CBPV proceeds in two stages: first from CBV to fine-

grain CBV (which we saw in Sect. 2.2), which leaves the types unchanged, and then

from fine-grain CBV into CBPV, which decomposes the function type. But, in this

paper, we just present the composite translation, and it appears in Fig. 9.

As with the translation from CBN, it does not preserve substitution or big-step

semantics. To see this, consider the term let inl true be x. λy.x.

So, again, we give a relation 7→v from CBV terms to CBPV computations, and

another relation 7→val from CBV values to CBPV values. We can present Fig. 9 by

rules such as these:

M 7→v M ′ N 7→v N ′

let x be M. N 7→v M ′
to x. N ′

M 7→v M ′

λx.M 7→val
thunk λx.M ′

To these rules we add the following

M 7→v
return V to x. return inl x

M 7→v
return inl V

M 7→v
return V to x. return inr x

M 7→v
return inr V

We have thus defined non-functional relations 7→v and 7→val, and we will show that

they commute with substitution and preserve and reflect operational semantics.
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C Cv (a value type)
bool 1 + 1

A + B Av + Bv

A → B U(Av → FBv)

A0, . . . , An−1 ⊢ M : C Av
0
, . . . , Av

n−1
⊢c Mv : FCv

x return x

let M be x. N Mv to x. Nv

true return 〈#l, 〈 〉〉
false return 〈#r, 〈 〉〉

if M then N else N ′ Mv to z. pm z as {〈#l, u〉.Nv, 〈#r, u〉.N ′v}
inl M Mv to z. return 〈#l, z〉
inr M Mv to z. return 〈#r, z〉

pm M as {inl x.N, inr x.N ′} Mv to z. pm z as {〈#l, x〉.Nv, 〈#r, x〉.N ′v}
λx.M return thunk λx.Mv

MN Mv to f. Nv to x. x‘(force f)
print c. M print c. Mv

rec f λx.M return thunk rec f. λx.Mv

A0, . . . , An−1 ⊢ V : C Av
0
, . . . , Av

n−1
⊢v V val : Cv

x x

true 〈#l, 〈 〉〉
false 〈#r, 〈 〉〉
inl V 〈#l, V val〉
inr V 〈#r, V val〉
λx.M thunk λx.Mv

rec f λx.M thunk rec f. λx.Mv

Fig. 9 Translation of CBV types, terms and values

Proposition 8 The relations satisfy the following basic properties.

1. If V 7→val V ′ then V 7→v return V ′.

2. If M 7→v M ′ and V 7→val V ′ then M [V/x] 7→v M ′[V ′/x].

3. If W 7→val W ′ and V 7→val V ′ then W [V/x] 7→val W ′[V ′/x].

The relation from CBV to CBPV terms is a bisimulation, in the following sense.

Proposition 9 Suppose M 7→v M ′.

1. If M ⇓CBV V , then there exists V ′ such that M ′ ⇓ return V ′ and V 7→val V ′.

2. If M ′ ⇓ return V ′ there exists V such that M ⇓CBV V and V 7→val V ′.

Hence the translation reflects observational inequality: if Mv . Nv then M .CBV N .

To prove this, we introduce the following.

Definition 3 We define two classes of safe terms.

1. In CBV, the following terms are safe:

S ::= x | let S be x. S | inl S | inr S

| true | false | if S then S else S

| pm S as {inl x.S, inr x.S} | λx.M

2. In CBPV the following terms (all computations of F type) are safe:

S ::= return V | let V be x. S | S to x. S

| pm V as {〈i, x〉.Si}i∈I | pm V as 〈x, y〉.S
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Lemma 1 Suppose x0 : A0, . . . , xn−1 : An−1 ⊢ M : B and M 7→v M ′. Then

1. M is safe iff M ′ is safe.

2. Suppose that M is safe and that U0 7→val U ′
0, . . . , Un−1 7→val U ′

n−1.

– If M [
−−−→
Ui/xi] ⇓CBV V , then, for some V ′, we have M ′[

−−−→
U ′

i/xi] ⇓ return V ′ and

V 7→val V ′.

– If M ′[
−−−→
U ′

i/xi] ⇓ return V ′, then, for some V , we have M [
−−−→
Ui/xi] ⇓CBV V and

V 7→val V ′.

We prove Lemma 1 by induction on M 7→v M ′.

Because of Lemma 1, we have the case M ′ = return V ′ of Prop. 9. Using this

fact, we prove Prop. 9(1) by induction on M ⇓CBV V , and (2) by induction on M ′ ⇓

return V ′.

7.4 Preservation of Denotational Semantics

As we stated in the Introduction, the most important results about CBPV are the

most trivial ones:

Proposition 10 The translations we have seen, from CBN and from CBV to CBPV

preserve cpo semantics, and more generally monad/algebra semantics, up to isomor-

phism. In other words, the semantics of CBN and CBV obtained from the monad/algebra

semantics of CBPV are the monad/algebra semantics described in Sect. 2.

In particular, the monad semantics5 of U(A → FB) is an exponential from [[A]] to

T [[B]].

Proposition 11 The CBV storage semantics obtained from the storage semantics of

CBPV is the traditional one, up to isomorphism, while the CBN storage semantics

obtained from the storage semantics of CBPV is that of (O’H93).

In particular, we have

[[A →CBV B]] = S → ([[A]] → (S × [[B]]))

[[A →CBN B]] = (S → [[A]]) → [[B]]

7.5 Full Abstraction

A frequently asked question is whether the translations from CBV and CBN to CBPV

are fully abstract. This is not one but many questions: its meaning depends not only

on the set of effects available, but also on the set of connectives provided in the source

language. As illustration of this latter point, recall that the CBN language we have

considered so far contains binary sum, but not ternary sum, which is not isomorphic

to (A + B) + C in CBN. Yet a CBN ternary sum can be represented in CBPV. So the

question of whether the translation to CBPV is fully abstract incorporates the question

of whether adding ternary sum to CBN is fully abstract; and this is non-trivial.

To avoid this problem, we want to suppose the CBV/CBN source languages to

provide a “complete” range of connectives. It is argued in (Lev06) that the canonical

5 This in fact is true for any semantics of CBPV—this follows from Prop. 17 below.
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way of doing this is to provide two general connectives:
∑

(a kind of sum of products),

and
∏

(a kind of products of multi-ary function types).

An example of
∑

is the following. If A, B, C are types, then
∑

{#l.A, B;#r.C}

is the type of

– tuples 〈#l, M, M ′〉, where M has type A and M ′ has type B, and

– tuples 〈#r, M〉, where M has type C.

This type has two introduction rules

Γ ⊢ M : A Γ ⊢ M ′ : B

Γ ⊢ 〈#l, M, M ′〉 :
∑

{#l.A, B;#r.C}

Γ ⊢ M : C

Γ ⊢ 〈#r, M〉 :
∑

{#l.A, B;#r.C}

and one elimination rule that pattern-matches a tuple

Γ ⊢ M :
∑

{#l.A, B; #r.C} Γ, x : A, y : B ⊢ N : D Γ, x : C ⊢ N ′ : D

Γ ⊢ pm M as {〈#l, x, y〉. N, 〈#r, x〉. N ′} : D

An example of
∏

is the following. If A,B,C,D,E are types, then
∏

{#l.A, B ⊢

C; #r.D ⊢ E} is the type of functions that

– map arguments (#l, M, M ′), where M has type A and M ′ has type B, to something

of type C, and

– map arguments (#r, M), where M has type D, to something of type E.

This type has one introduction rule, a λ-abstraction that must provide two bodies:

Γ, x : A, y : B ⊢ M : C Γ, x : D ⊢ M ′ : E

Γ ⊢ λ{(#l, x, y).M, (#r, x).M ′} :
∏

{#l.A, B ⊢ C;#r.D ⊢ E}

and two elimination rules for application:

Γ ⊢ M :
∏

{#l.A, B ⊢ C;#r.D ⊢ E} Γ ⊢ N : A Γ ⊢ N ′ : B

Γ ⊢ M(#l, N, N ′) : C

Γ ⊢ M :
∏

{#l.A, B ⊢ C; #r.D ⊢ E} Γ ⊢ N : D

Γ ⊢ M(#r, N) : E

It is straightforward to give CBV and CBN operational semantics for all these terms.

For recursion, we follow Fig. 7; in the case of CBV, we allow recursive λ-abstractions

of type
∏

{#l.A, B ⊢ C; #r.D ⊢ E}.

In the absence of effects,
∑

and
∏

could be seen as mere syntactic sugar, built

up from the connectives 0, +, 1,×,→. But it is argued in (Lev06) that this viewpoint

falls down in the effectful setting, because many isomorphisms cease to hold.

It is easy to see how to generalize these two prototypical examples to arbitrary

tuple types and arbitrary function types; the details are given in (Lev06), and the

resulting form of λ-calculus is called jumbo λ-calculus. We accordingly assume the

CBV and CBN source languages to be jumbo λ-calculus extended with effects. All the

connectives we have seen so far, viz. bool, +,→, as well as the n-ary function types

mentioned in Sect. 2.2, are instances of these connectives.

The translation of our two example connectives into CBPV is shown in Fig. 10.

We translate the general connectives into CBPV in the same way we translated the

two examples, and adapt the proofs of Prop. 7–11 accordingly.
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CBN

C Cn (a computation type)∑
{#l.A, B;#r.C} F

∑
{#l.(UAn × UBn), #r.UCn}∏

{#l.A, B ⊢ C;#r.D ⊢ E}
∏

{#l.(UAn → UBn → Cn), #r.(UDn → En)}

A0, . . . , An−1 ⊢ M : C UAn
0
, . . . , UAn

n−1
⊢c Mn : Cn

〈#l, M, M ′〉 return 〈#l, 〈thunk Mn, thunk M ′n〉〉
〈#r, M〉 return 〈#r, thunk Mn〉

pm M as {〈#l, x, y〉. N, 〈#r, x〉. N ′} Mn to z. pm z as {〈#l, w〉.(pm w as 〈x, y〉.Nn), 〈#r, x〉.N ′n}
λ{(#l, x, y).M, (#r, x).M ′} λ{#l.λx.λy.Mn, #r.λx.M ′n}

M(#l, N, N ′) thunk N ′n‘thunk Nn‘#l‘Mn

M(#r, N) thunk Nn‘#r‘Mn

CBV

C Cv (a value type)∑
{#l.A, B;#r.C}

∑
{#l.(Av × Bv), #r.Cv}∏

{#l.A, B ⊢ C;#r.D ⊢ E} U
∏

{#l.(Av → Bv → FCv), #r.(Dv → FEv)}

A0, . . . , An−1 ⊢ M : C Av
0
, . . . , Av

n−1
⊢c Mv : FCv

〈#l, M, M ′〉 Mv to x. M ′v to y. return 〈#l, 〈x, y〉〉
〈#r, M〉 Mv to x. return 〈#r, x〉

pm M as {〈#l, x, y〉. N, 〈#r, x〉. N ′} Mv to z. pm z as {〈#l, w〉.(pm w as 〈x, y〉.Nv), 〈#r, x〉.N ′v}
λ{(#l, x, y).M, (#r, x).M ′} return thunk λ{#l.λx.λy.Mv, #r.λx.M ′v}

M(#l, N, N ′) Mv to f. Nv to x. N ′v to y. y‘x‘#l‘force f

M(#r, N) Mv to f. Nv to x. x‘#r‘force f

rec f λ{(#l, x, y).M, (#r, x).M ′} return thunk rec f. λ{#l.λx.λy.Mv, #r.λx.M ′v}

A0, . . . , An−1 ⊢ V : C (value) Av
0
, . . . , Av

n−1
⊢v V val : Cv

〈#l, V, V ′〉 〈#l, 〈V val, V ′val〉〉
〈#r, V 〉 〈#r, V val〉

λ{(#l, x, y).M, (#r, x).M ′} thunk λ{#l.λx.λy.Mv, #r.λx.M ′v}
rec f λ{(#l, x, y).M, (#r, x).M ′} thunk rec f λ{#l.λx.λy.Mv, #r.λx.M ′v}

Fig. 10 Translating example connectives from CBN and CBV into CBPV

Proposition 12 (junk-freeness and full abstraction)

1. The translation from CBN jumbo λ-calculus with any of our effects (divergence,

printing or storage) to CBPV with the same effects is

junk-free i.e. for each computation UAn
0, . . . , UAn

n−1 ⊢ M : Bn in the target

language, there is a term A0, . . . , An−1 ⊢ N : B in the source language such

that Nn = M is provable in the CBPV theory

fully abstract i.e. M .CBN N iff Mn . Nn.

2. The translation from CBV jumbo λ-calculus with any of our effects (divergence,

printing or storage) to CBPV with the same effects is

junk-free i.e. for each computation Av
0, . . . , Av

n−1 ⊢ M : FBv in the target lan-

guage, there is a term A0, . . . , An−1 ⊢ N : B in the source language such that

Nv = M is provable in the CBPV theory

fully abstract i.e. M .CBV N iff Mv . Nv.

We omit the proof of junk-freeness, which uses a reverse translation from CBPV to

CBN and from CBPV to CBV, and is given in detail in (Lev04). Full abstraction

follows from junk-freeness in the standard manner (Plo77).
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The question remains whether these results hold for smaller source languages. In

some cases, affirmative results can be obtained by showing that the smaller source

languages provide enough connectives to define the general connectives of jumbo λ-

calculus. In other cases—such as the one mentioned above, where the source language

is CBN without ternary sum—the answer is unknown. But it seems likely affirma-

tive answers for various effects can be obtained from junk-freeness results for suitable

denotational semantics, such as game semantics.

7.6 Untyped Languages

The simulation results Prop. 6–9 do not make any use of types, and could be transferred

to an untyped setting. However, this appears to be of little interest. After all, an

essential part of the motivation we presented for CBPV was the idea of observing

convergence at ground type only, and this makes no sense in an untyped language.

Instead, the traditional observation in untyped CBN λ-calculus, if one wishes the η-

law to be valid, is reduction to head normal form (Bar80). That is unsuited to typed

languages, e.g. it would distinguish the CBN terms λx.x and λx.diverge of type 1 → 1,

even though they have the same denotation.

8 Complex Values and the CBPV Equational Theory

8.1 The CBPV Equational Theory

In this section, we give the CBPV equational theory, which will allow us to prove

correspondence with the categorical semantics, and to relate CBPV to Filinski’s Effect-

PCF (Fil96).

The CBPV equational theory is the minimal congruence containing the laws in

Fig. 11 (with R ranging over computations). The laws given for print and diverge

are of course effect-specific, but there are similar laws for other effects.

The push/pop reading of CBPV sheds light on may of these laws. For example,

the β-law for functions says: “if we push V , then pop x, then do M , that is the same

as doing M with x bound to V ”. Similarly the η-law for functions says: “if we pop x,

then push x, then do M which ignores x, that is the same as doing M”.

Proposition 13 (soundness of equational theory) The equations in Fig. 11 are

validated by our denotational models for divergence, printing and storage, and hence

are observational equivalences in the presence of any one of these effects.

8.2 Complex Values

The CBPV typing rules presented in Fig. 2 allow computations to be formed by pattern-

matching, but not values. As stated for fine-grain CBV in Sect. 2.2, this keeps the

operational semantics simple. On the other hand, certain desirable values and equations

between values are missing. For example, we can see that

1. there is no value x : 0 × 0 ⊢v V : 0
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We omit the assumptions necessary to make each equation well-typed. Given a
term Γ ⊢ R : B we write xR for the weakened term in the context Γ, x : A where
A is some suitable type. This implies that x is not in Γ, because the identifiers
in a context must be distinct. We thereby obviate the need for the traditional
x 6∈ FV(R) conditions.

β-laws

let V be x. R = R[V/x]
(return V ) to x. M = M [V/x]

force thunk M = M
pm 〈ı̂, V 〉 as {〈i, x〉.Ri}i∈I = Rı̂[V/x]
pm 〈V, V ′〉 as 〈x, y〉.R = R[V/x, V ′/y]

ı̂‘λ{i.Mi}i∈I = Mı̂
V ‘λx.M = M [V/x]

η-laws

M = M to x. return x

V = thunk force V
R[V/z] = pm V as 〈i, x〉.{ xR[〈i, x〉/z]}i∈I

R[V/z] = pm V as 〈x, y〉. xyR[〈x, y〉/z]
M = λ{i.i‘M}i∈I

M = λx.(x‘ xM)

sequencing laws

(P to x. M) to y. N = P to x. (M to y. xN)
P to x. λ{i.Mi}i∈I = λ{i.(P to x. Mi)}i∈I

P to x. λy.M = λy.( yP to x. M)

print laws

(print c. M) to x. N = print c. (M to x. N)
print c. λ{i.Mi}i∈I = λ{i.print c. M}i∈I

print c. λx.M = λx.print c. M

diverge laws

diverge to x. N = diverge

diverge = λ{i.diverge}i∈I

diverge = λx.diverge

Fig. 11 CBPV equations

2. the equation x : 0 ⊢v true = false : 1 + 1 (where true and false abbreviate

〈#l, 〈〉〉 and 〈#r, 〈〉〉 respectively) cannot be proved using the laws of Fig. 11.

In the remainder of the paper, we wish to prove the correspondence of CBPV with a

categorical semantics and with Effect-PCF, and, for these purposes, we have to rectify

these problems. To do so, we add complex values, whose syntax is displayed in Fig. 12.

The equational theory on CBPV with complex values is the least congruence containing

the laws of Fig. 11, with R ranging over all terms (values and computations).

More generally, we define a theory on CBPV with complex values to be a substitu-

tive congruence containing these laws. (The least congruence is automatically substi-

tutive.) In the sequel, τ ranges over theories with complex values, and σ over theories

without complex values. In the latter case, we write σ+CV for the least extension of σ

to a theory with complex values. We also write ⊢c

+CV
and ⊢v

+CV
to indicate the syntax

and least theory of CBPV with complex values, and ⊢c

−CV
and ⊢v

−CV
to indicate the

syntax and least theory of CBPV without complex values.
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Γ ⊢v V : A Γ, x : A ⊢v W : B

Γ ⊢v let V be x. W : B

Γ ⊢v V :
∑

i∈I
Ai Γ, x : Ai ⊢v Wi : B (∀i ∈ I)

Γ ⊢v pm V as {〈i, x〉.Wi}i∈I : B

Γ ⊢v V : A × A′ Γ, x : A, y : A′ ⊢v W : B

Γ ⊢v pm V as 〈x, y〉.W : B

Fig. 12 Complex values

Complex values can be regarded as a minor addition to the language, in the sense

that they have no impact on computations:

Proposition 14 (complex values do not affect computations)

1. (definability) For any computation Γ ⊢c

+CV
M : B, there is a computation Γ ⊢c

−CV

N : B such that Γ ⊢c

+CV
M = N : B.

2. (conservativity) Let σ be an equational theory on CBPV without complex values

(i.e. a congruence containing all the laws of Fig. 11). Let Γ ⊢c

−CV
N, N ′ : B be

computations. Then N = N ′ is in σ+CV iff N = N ′ in σ.

Examples (1)–(2) show that these results do not hold for values.

Proof Following (Füh99), we define a thunkable from Γ to B to be a computation

Γ ⊢c

−CV
M : FB such that

Γ ⊢c

−CV return thunk M = M to x. return thunk return x : FUFB (9)

Condition (9) is equivalent to the following: for any context Γ ⊢c

−CV
C[·] : B that does

not bind any identifiers, we have

Γ ⊢c

−CV C[M ] = M to x. C[return x] : B (10)

The equivalence follows from the fact that

Γ ⊢c

−CV C[M ] = (return thunk M) to y. C[force y] : B

It is easy to show that every safe computation, in the sense of Def. 3, is thunkable.

In Fig. 13, we define compositionally

– for each computation Γ ⊢c

+CV
M : B, a computation Γ ⊢c

−CV
M̃ : B such that

Γ ⊢c

+CV
M̃ = M : B is provable.

– for each value Γ ⊢v

+CV
V : B in CBPV, a safe (and hence thunkable) computation

Γ ⊢c

−CV
Ṽ : FB such that Γ ⊢c

+CV
Ṽ = return V : FB is provable.

This proves definability. For conservativity, we first show that if Γ ⊢v

+CV
W : A then

Γ ⊢c

−CV
·�M [W/x] = W̃ to x. M̃ : B

Γ ⊢c

−CV
·�V [W/x] = W̃ to x. Ṽ : FB

by mutual induction on Γ, x : A ⊢c

+CV
M : B and Γ, x : A ⊢v

+CV
V : B. We deduce, by

induction, that
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Γ ⊢c

+CV
M : B Γ ⊢c

−CV
M̃ : B

let V be x. M Ṽ to z. let z be x. M̃

return V Ṽ to z. return z

M to x. N M̃ to x. Ñ

pm V as {〈i, x〉.Mi}i∈I Ṽ to z. pm z as {〈i, x〉.M̃i}i∈I

pm V as 〈x, y〉.M Ṽ to z. pm z as 〈x, y〉.M̃

λ{i.Mi}i∈I λ{i.M̃i}i∈I

ı̂‘M ı̂‘M̃

λx.M λx.M̃

V ‘M Ṽ to z. z‘M̃

Γ ⊢v

+CV
V : B Γ ⊢c

−CV
Ṽ : FB

x return x

〈ı̂, V 〉 Ṽ to z. return 〈ı̂, z〉

〈V, V ′〉 Ṽ to z. Ṽ ′ to z′. return 〈z, z′〉

thunk M return thunk M̃

let V be x. W Ṽ to z. let z be x. W̃

pm V as {〈i, x〉.Wi}i∈I Ṽ to z. pm z as {〈i, x〉.W̃i}i∈I

pm V as 〈x, y〉.W Ṽ to z. pm z as 〈x, y〉.W̃

Fig. 13 Definitions used in the proof of Prop. 14

– if Γ ⊢c

+CV
M = M ′ : B then Γ ⊢c

−CV
M̃ = M̃ ′ : B

– if Γ ⊢v

+CV
V = V ′ : B then Γ ⊢c

−CV
Ṽ = Ṽ ′ : FB

We also show that

– if Γ ⊢c

−CV
N : B then Γ ⊢c

−CV
Ñ = N : B is provable

– if Γ ⊢v

−CV
W : B then Γ ⊢c

−CV
W̃ = return W : FA is provable.

Given σ, we prove

– if M = M ′ in σ+CV then M̃ = M̃ ′ in σ

– if V = V ′ in σ+CV then Ṽ = Ṽ ′ in σ

by induction, and the result follows.

Prop. 14(1) enables us to “evaluate” a computation with complex values, by first

removing the complex values and then evaluating. But it should be noted that the algo-

rithm for removal of complex values that we gave in the proof involves some arbitrary

choices, and is certainly not canonical. This is essentially the problem with complex

values, from the operational perspective: they detract from the rigid sequential nature

of the language, because they can be evaluated at any time.

Although Prop. 14 does not apply to values, we have some limited results as follows.

Proposition 15 Let Γ be a context that is tuple-free, i.e. no identifier in it has
∑

, 1,×

type. For any value Γ ⊢v

+CV
V : B, there exists Γ ⊢v

−CV
W : B such that Γ ⊢v

+CV
V =

W : B is provable.

Proof Fix Γ. Given a value Γ, ∆ ⊢v

+CV
V : B, and, for each identifier (yi : B) ∈ ∆, a

value Γ ⊢v

−CV
Wi : B, we define, in Fig. 14, a “pseudo-substitution” Γ ⊢v

−CV
V́ (

−−→
W/y) : B

such that Γ ⊢v

−CV
V́ (

−−→
W/y) = V [

−−→
W/y] : B is provable. (The penultimate clause exploits

the fact that any value Γ ⊢v

−CV
V :

∑
i∈IAi must be of the form 〈̂ı, W 〉, rather than an
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identifier, because Γ is tuple-free. Similarly for the last clause.) Finally, given Γ ⊢v

+CV

V : B, we define W to be V́ applied to the empty pseudo-substitution.

Γ, ∆ ⊢v

+CV
V : B Γ ⊢v

−CV
V́ (

−−→
W/y) : B

x declared in Γ x

yi declared in ∆ Wi

〈ı̂, V 〉 〈ı̂, V́ (
−−→
W/y)〉

〈V, V ′〉 〈V́ (
−−→
W/y), V́ ′(

−−→
W/y)〉

thunk M
·�
M [

−−→
W/y]

let V be x. V ′ where V́ (
−−→
W/y) = W V́ ′(

−−→
W/y, W/x)

pm V as {〈i, x〉.Vi}i∈I where V́ (
−−→
W/y) = 〈ı̂, W 〉 V́ı̂(

−−→
W/y, W/x)

pm V as 〈x, x′〉.V ′ where V́ (
−−→
W/y) = 〈W, W ′〉 V́ ′(

−−→
W/y, W/x, W ′/x′)

Fig. 14 Definitions used in the proof of Prop. 15

Definition 4 A theory σ (with or without complex values) is inconsistent when ⊢c

return true = return false : F (1 + 1) in σ, or, equivalently, when Γ ⊢c M = N : B

is in σ for all Γ ⊢c M, N : B. (Thus values are not necessarily equated.) Otherwise it

is consistent.

Proposition 16 Closed values within a consistent theory have the following properties.

1. Let σ be a consistent theory without complex values. For closed values ⊢c

−CV
W, W ′ :

B, if return W = return W ′ is in σ, then W = W ′ is in σ.

2. Let σ be a consistent theory without complex values. For closed values ⊢v

−CV
W, W ′ :

B, if W = W ′ is in σ+CV, then it is in σ.

3. Let τ be a consistent theory with complex values. For closed values ⊢c

+CV
V, V ′ : B,

if return V = return V ′ is in τ , then V = V ′ is in τ .

Proof We prove these in the stated order.

1. This is by induction on W . If W has type UB, it follows from

W = thunk (return W to x. force x)

If W is 〈̂ı, V 〉 and W ′ is 〈̂ı′, V ′〉 then, firstly we apply the context

[·] to z. pm z as

ß
〈̂ı, x〉. return true

〈i, x〉. return false (i 6= ı̂)

™

to return W = return W ′, which if ı̂ 6= ı̂′ gives return true = return false in

σ. Since σ is consistent, we have ı̂ = ı̂′. Then we apply the context

[·] to z. pm z as

ß
〈̂ı, x〉. return x

〈i, x〉. return v (i 6= ı̂)

™

to return W = return W ′, giving return V = return V ′ in σ, so V = V ′ is in σ

by the inductive hypothesis. Hence W = W ′ is in σ. The case where W is 〈V, V ′〉

is similar.
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2. We have return W = return W ′ in σ+CV, and hence also, by Prop. 14(2), in σ.

By Prop. 16(1), we deduce that W = W ′ is in σ.

3. Using Prop. 15, we obtain ⊢v

−CV
W, W ′ : B such that ⊢v

+CV
V = W : B and

⊢v

+CV
V ′ = W ′ : B are provable. Then return W = return W ′ is in τ . Since the

restriction of τ to complex-value-free terms is consistent, Prop. 16(1) tells us that

W = W ′ is in τ , and so V = V ′ is in τ .

9 Every Model Is Equivalent to an Algebra Model

In Sect. 3, we saw how to model CBPV in an algebra-building structure, where all

exponentials to carriers are required to exist. But this requirement is too strong. If there

is a family of algebras containing all free algebras and closed under exponentiation and

finite product, then it suffices to require exponentials to carriers of algebras in this

family. We make this precise as follows.

Definition 5 A CBPV algebra-family consists of a distributive category C equipped

with a strong monad T and a (not necessarily small) family of T -algebras {KY }Y ∈J—

we write KY = (UY , βY )—together with

free algebras for each X ∈ ob C, an index FX ∈ I mapped by K to the free algebra

on X

exponential algebras for each X ∈ ob C and index Y ∈ J, an exponential E from

X to UY in C, and an index X → Y ∈ J mapped by K to the exponential algebra

from X to KY constructed using E

product algebras for each finite family {Y i}i∈I of indices, a product P for {UY i}i∈I

in C, and an index
∏

i∈IY i ∈ J mapped by K to the product algebra of {KY i}i∈I

constructed using P .

Clearly this gives us a model of CBPV, where a computation type denotes an index

in I, and a computation Γ ⊢c M : B denotes a C-morphism from [[Γ]] to U [[B]]. Again,

thunk and force are invisible in all such models.

Remark 2 It is possible to define a “weak” notion of CBPV algebra-family where all

the algebra equations in Def. 5 are replaced by algebra isomorphisms (no coherence

conditions required). But it can be shown that every such weak model is equivalent to

a model in the sense of Def. 5.

We now show that every model of CBPV is an algebra-family. More precisely, we

construct a category of CBPV models and a category of CBPV algebra-families and

prove them equivalent. Strictly speaking, these should be 2-categories, but to skirt

2-categorical issues, we fix the object structure6.

Definition 6 (object structures)

1. A CBPV object structure τ is a (not necessarily small) algebra for the 2-sorted

signature defining CBPV types. Thus it consists of 2 sets valtypes τ of val-objects

and comptypes τ of comp-objects, equipped with a binary operation × on valtypes τ ,

and with similar operations for all the other CBPV connectives.

6 The price we pay for this is that the method is not at all robust. We leave to future
work the development of a robust 2-categorical treatment, where structure is preserved only
up to isomorphism. But this is a general concern in the categorical semantics of simply typed
languages, not specific to CBPV.
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2. We write RestrAlgτ for the category of CBPV algebra-families with object struc-

ture τ , where morphisms are identity on both val-objects and comp-objects, and

preserve all structure on the nose.

Defining the category of CBPV models, purely from the equational theory, is more

difficult. The following is a method formulated independently in (Jef99; Lev96), which

is applicable to many simply typed calculi.

Definition 7 Let τ be a CBPV object structure.

1. A τ -sequent Q is either

A0, . . . , An−1 ⊢v B or A0, . . . , An−1 ⊢c B

where A0, . . . , An−1 and B are value objects in τ and B is a computation object

in τ .

2. A τ -signature s is a function from τ -sequents to sets.

3. We write Sigτ for the category of τ -signatures, where a morphism from s to s′

provides a function from s(Q) to s′(Q) for each τ -sequent Q.

It is clear that, to model CBPV, one must first give a CBPV object structure τ and then

a τ -multigraph s. This much allows us to interpret types and judgements, although it

still remains to describe the semantics of term constructors.

Definition 8 Let τ be a CBPV object structure. We define a monad T on Sigτ as

follows. Let s be a τ -signature. We inductively define another τ -signature called the

terms built from the signature s, using the rules of Fig. 2 and Fig. 12 together with the

rules
Γ ⊢v V0 : A0 · · · Γ ⊢v Vr−1 : Ar−1

Γ ⊢v f(V0, . . . , Vr−1) : B
f ∈ s (A0, . . . , Ar−1 ⊢v B)

Γ ⊢v V0 : A0 · · · Γ ⊢v Vr−1 : Ar−1

Γ ⊢c f(V0, . . . , Vr−1) : B
f ∈ s (A0, . . . , Ar−1 ⊢c B)

We define T s to be this signature (mapping each sequent to the terms inhabiting

it) quotiented by the congruence generated by the equations of Fig. 11. The unit ηs

takes each operation f ∈ s (A0, . . . , Ar−1 ⊢v B) to f(x0, . . . , xr−1), and similarly for

values. The multiplication µs is defined by induction over terms in T 2s. In particular,

it maps M(V0, . . . , Vn−1), where M is a term in T s and hence an operation in T 2s, to

M [
−−−−−−−→
(µs)Vj/xj ], and it preserves all other term constructors.

Definition 9 A direct model of CBPV consists of a CBPV object structure τ together

with an algebra (s, θ) for the monad T on Sigτ . If τ is a CBPV object structure, we

write Directτ for the category of T -algebras and algebra homomorphisms.

We can now state our main theorem.

Proposition 17 Let τ be a CBPV object structure. Then the categories Directτ and

RestrAlgτ are equivalent.

We omit the detailed proof of this, but give an overview. Mapping RestrAlgτ to

Directτ essentially says that a CBPV algebra family gives a model of CBPV, validating

all the laws. In the other direction, if we have a model of CBPV, then the semantics
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of values is a model of the simply typed λ-calculus with × and
∑

types, hence a

distributive category C. We obtain a monad by setting T to be UF , and the unit of

the monad ηA is given by

x : A ⊢v
thunk return x : UFA

For each comp-object B, the algebra KB is defined to have carrier UB and structure

βB, defined by the term

x : UFUB ⊢v
thunk (force x to y. force y) : UB

and this determines the multiplication: µA = βFA.

As an instance of this construction, the behaviour semantics of storage (Sect. 6.2)

is equivalent to a CBPV algebra family, which is a sub-model of the algebra semantics

in Sect. 6.1. This fact enables us to deduce Prop. 4 from Prop. 5.

10 Comparison with Filinski’s Monadic Metalanguage and Marz’s SFPL

Having treated complex values in some detail, we are in a position to look closely at

the relationship between

– CBPV

– Effect-PCF, a version of the monadic metalanguage appearing in (Fil96)

– SFPL (Mar00), a variant of the earlier language SFL (Mar98).

We treat Effect-PCF in detail, because the relationship between CBPV and monads

is a central theme of this paper; but we treat SFPL in outline only. We omit recursive

types, as these are beyond the scope of this paper. The non-recursive types and the

judgements of the two languages are given7 in Fig. 15. The syntax of Effect-PCF is

given in Fig. 16. We have modified syntax slightly to agree with CBPV, in particular

using M to x. N for sequencing in Effect-PCF.

It is quite easy to see that if we take the types of CBPV and erase U , so that

computation types are a subset of value types, we obtain the types of Effect-PCF. On

the other hand, if we erase F , so that value types are a subset of computation types, we

obtain the types of SFPL. This erasure can be explained by the denotational semantics

each author was considering:

– Filinski was considering carrier semantics where a computation type B denotes a

carrier of an algebra, rather than the whole algebra, and therefore U is invisible.

– Marz was considering lifted cpo semantics where a value type A denotes a pointed

cpo, the lift of what A denotes in our cpo semantics. Thus a computation A0, . . . , An−1 ⊢c

M : B denotes a strict function from [[A0]] ⊗ · · · ⊗ [[An−1]] to [[B]]. This semantics

uses smash product and coalesced sum of cppos, and strict function spaces. Most

importantly, F is invisible.

The translation − from CBPV value (resp. computation) types to Effect-PCF value

(resp. computation) types are defined by induction:

UB = B

FA = TA

7 Caution: (Mar00) uses the phrase “computational types” for what we have called the
“value types” of SFPL.
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Effect-PCF

value types A ::= B |
∑

i∈I
Ai | 1 | A × A

computation types B ::= TA |
∏

i∈I
B

i
| A → B

judgement A0, . . . , An−1 ⊢ B

SFPL

value types A ::= B
⊥

|
⊕

i∈I
Ai | 1⊗ | A ⊗ A

computation types B ::= A |
∏

i∈I
B

i
| A −◦B

judgement A0, . . . , An−1 ⊢ B

Fig. 15 Types and judgements of Effect-PCF and SFPL

Primitives

Γ, x : A, Γ′ ⊢ x : A

Γ ⊢ M : A Γ, x : A ⊢ N : B

Γ ⊢ let M be x. N : B

Γ ⊢ M : A

Γ ⊢ return M : TA

Γ ⊢ M : TA Γ, x : A ⊢ N : TB

Γ ⊢ M to x. N : TB

Γ ⊢ M : Aı̂

Γ ⊢ 〈ı̂, M〉 :
∑

i∈I
Ai

Γ ⊢ M :
∑

i∈I
Ai Γ, x : Ai ⊢ Ni : B (∀i ∈ I)

Γ ⊢ pm M as {〈i, x〉.Ni}i∈I : B

Γ ⊢ M : A Γ ⊢ M ′ : A′

Γ ⊢ 〈M, M ′〉 : A × A′

Γ ⊢ M : A × A′ Γ, x : A, y : A′ ⊢ N : B

Γ ⊢ pm M as 〈x, y〉.N : B

Γ ⊢ Mi : B
i

(∀i ∈ I)

Γ ⊢ λ{i.Mi}i∈I :
∏

i∈I
B

i

Γ ⊢ N :
∏

i∈I
B

i

Γ ⊢ ı̂‘N : Bı̂

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

Γ ⊢ M : A Γ ⊢ N : A → B

Γ ⊢ M ‘N : B

Derived
Γ ⊢ M : TA Γ, x : A ⊢ N : B

Γ ⊢ M to x.B N : B

This is defined by induction on B.

M to x.TA N = M to x. N

M to x.

∏
i∈I

B
i N = λ{i.(M to x.Bi (i‘N))}i∈I

M to x.A→B N = λy.(M to x.B (y‘N))

Fig. 16 Terms of Effect-PCF (slightly modified)
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and all the other clauses are trivial. The translations −̃ from Effect-PCF value types to

CBPV value types, and −̂ from Effect-PCF computation types to CBPV computation

types are defined by mutual induction:

B̃ = UB̂

”TA = FÃ

and all the other clauses are trivial. It is obvious that − on value types is inverse to −̃,

and − on computation types is inverse to −̂. In the same way, we can define a bijection

between CBPV value (resp. computation) types and SFPL value (resp. computation)

types.

A0, . . . , An−1 ⊢ M : B Ã0, . . . , fiAn−1 ⊢v

+CV
‹M : B̃

x x

let M be x. N let ‹M be x. Ñ

〈ı̂, M〉 〈ı̂, ‹M〉

pm M as {〈i, x〉.Ni}i∈I pm ‹M as {〈i, x〉.‹Ni}i∈I

〈M, M ′〉 〈‹M, M̃ ′〉

pm M as 〈x, y〉. N pm ‹M as 〈x, y〉. Ñ

return M thunk return ‹M
M to x. N thunk ((force ‹M) to x. force Ñ)

λx.M thunk λx. force ‹M
N ‘M thunk (Ñ ‘force ‹M)

λ{i.Mi}i∈I thunk λ{i. force M̃i}i∈I

ı̂‘M thunk (ı̂‘force ‹M)

Fig. 17 Translation from Effect-PCF terms to CBPV values

Proceeding to terms, the sole judgement of Effect-PCF corresponds to ⊢v in CBPV.

Hence we translate every Effect-PCF term into a CBPV value, as shown in Fig. 17.

This translation preserves provable equality. Moreover, the equation

Â�M to x.B N = thunk ((force ‹M) to x. force ‹N)

is provable in the equational theory with complex values; this is shown by induction

on the type B of N .

In the opposite direction, we define a translation − taking

– a value A0, . . . , An−1 ⊢v V : B in CBPV with complex values to a term A0, . . . , An−1 ⊢

V : B in Effect-PCF

– a computation A0, . . . , An−1 ⊢c M : B in CBPV with complex values to a term

A0, . . . , An−1 ⊢ M : B in Effect-PCF

by induction:

thunk M = M

force V = V

M to x. N = M to x.B N where B is the type of N
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and all the other clauses are trivial. This preserves provable equality, because the

analogues of all the CBPV laws are provable in Effect-PCF (using induction over types

for the sequencing laws).

Finally we prove

– for any Effect-PCF term Γ ⊢ M : B, the equation Γ ⊢ ‹M = M : B is provable

– for any CBPV value Γ ⊢v

+CV
V : A, the equation Γ ⊢v

+CV
Ṽ = V : B is provable

– for any CBPV computation Γ ⊢c

+CV
M : B, the equation Γ ⊢c

+CV
force ‹M = M : B

is provable.

by induction on the terms. Hence the translations reflect provable equality.

As for SFPL, its sole judgement corresponds to ⊢c in CBPV. The relationship

between CBPV and SFPL terms is somewhat similar to the above, although not as

tight. We omit details.

11 Conclusions

We summarize the advances represented by call-by-push-value.

Firstly, the explicit writing of U allows us to give a compositional account of CBN,

because a computation type denotes an algebra.

Secondly, CBPV makes explicit the thunking isomorphism, which is invisible from

the monadic viewpoint, but apparent in the behaviour semantics of Sect. 6.2.

Thirdly, we see a simple decomposition of CBN and CBV models for the first time.

In particular, O’Hearn’s behaviour semantics of CBN (O’H93), where A →CBN B

denotes (S → [[A]]) → [[B]] previously appeared strange, but now can be understood

using the decomposition of A →CBN B into UA → B and the behaviour semantics

of CBN. A similar example is the continuation semantics of (SR98), although we have

not treated it in this paper.

Fourthly, we have a straightforward operational semantics for CBPV (unlike Effect-

PCF, but like MIL-lite), and the translations from CBN and CBV into it are fully

abstract. Admittedly, the operational semantics is defined only for complex-value-free

terms, but we proved that every computation is equal (in the theory) to one of this

form.

Fifthly, we have a machine reading of CBPV (the CK-machine) that makes it clear

why a function type should be regarded as a computation type, a classification that

was present in Effect-PCF but not understood in a computational way.

As stated in Sect. 1.1, this paper is an introduction to CBPV, not an exhaustive

study. In particular, the relationship between CBPV and adjunctions (Lev03; Lev05)

is not investigated in this paper. However, in the particular models we have studied, it

is quite apparent that U and F represent an adjunction.

– The monad/algebra semantics uses an Eilenberg-Moore adjunction between C and

CT (algebras and algebra homomorphisms).

– The behaviour semantics uses the adjunction between Set and Set with left adjoint

S ×− and right adjoint S → −.

We leave to future work the development of this theory—much more can be found

in (Lev04). Furthermore, it remains to compare this work to the line of research

in (Lau99; Sel01); this is closely related to continuation semantics, which we have

not included in this paper.
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Kri85. J.-L. Krivine. Un interpréteur de λ-calcul. Unpublished, 1985.
Lai98. J. Laird. A Semantic Analysis of Control. PhD thesis, University of Edinburgh,

1998.
Lau99. Olivier Laurent. Polarized proof-nets: proof-nets for LC (extended abstract). In

Jean-Yves Girard, editor, Typed Lambda Calculi and Applications ’99, L’Aquila,
Italy, volume 1581 of Lecture Notes in Computer Science, pages 213–227. Springer,
April 1999.

Lev96. P. B. Levy. λ-calculus and cartesian closed categories. Essay for Part III of the
Mathematical Tripos, Cambridge University, 1996.

Lev99. P. B. Levy. Call-by-push-value: a subsuming paradigm (extended abstract). In J.-Y
Girard, editor, Proceedings, Typed Lambda-Calculi and Applications, L’Aquila, Italy,
volume 1581 of LNCS, pages 228–242. Springer, 1999.

Lev02. P. B. Levy. Possible world semantics for general storage in call-by-value. In J. Brad-
field, editor, Proceedings, 16th Annual Conference of the European Assocation for
Computer Science Logic (CSL), volume 2471 of LNCS, pages 232–246. Springer,
2002.

Lev03. P. B. Levy. Adjunction models for call-by-push-value with stacks. In R. Blute and
P. Selinger, editors, Proceedings, 9th Conference on Category Theory and Computer



35

Science, Ottawa, 2002, volume 69 of Electronic Notes in Theoretical Computer Sci-
ence, 2003.

Lev04. P. B. Levy. Call-By-Push-Value. A Functional/Imperative Synthesis. Semantic
Structures in Computation. Springer, 2004.

Lev05. P. B. Levy. Adjunction models for call-by-push-value with stacks. Theory and Ap-
plications of Categories, 14:75–110, 2005.

Lev06. P. B. Levy. Jumbo λ-calculus. In Proceedings, 33rd International Colloquium on
Automata, Languages and Programming, volume 4052 of LNCS, pages 444–455.
Springer, 2006.

Mar98. Michael Marz. A fully abstract model for sequential computation. Technical Report
CSR-98-6, University of Birmingham, School of Computer Science, September 1998.

Mar00. M. Marz. A Fully Abstract Model for Sequential Computation. PhD thesis, Technis-
che Universität Darmstadt, 2000. published by Logos-Verlag, Berlin.

Mog89. E. Moggi. Computational lambda-calculus and monads. In Proceedings, 4th Annual
Symposium on Logic in Computer Science, Pacific Grove, California, pages 14–23.
IEEE, 1989.

Mog91. E. Moggi. Notions of computation and monads. Information and Computation,
93:55–92, 1991.

O’H93. P. W. O’Hearn. Opaque types in algol-like languages. Manuscript, 1993.
Ong88. C. H. L. Ong. The Lazy Lambda Calculus: An Investigation into the Foundations of

Functional Programming. PhD thesis, Imperial College of Science and Technology,
1988.

Plo75. G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1(1):125–159, 1975.

Plo77. G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223–255, 1977.

PS98. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state.
In A. D. Gordon and A. M. Pitts, editors, Higher Order Operational Techniques in
Semantics, Publications of the Newton Institute, pages 227–273. Cambridge Univer-
sity Press, 1998.

Sel01. P. Selinger. Control categories and duality: On the categorical semantics of the
λµ-calculus. Mathematical Structures in Computer Science, 11(2):207–260, 2001.

SR98. Th. Streicher and B. Reus. Classical logic, continuation semantics and abstract
machines. Journal of Functional Programming, 8(6):543–572, 1998.

Tai67. W. W. Tait. Intensional interpretation of functionals of finite type I. Journal of
Symbolic Logic, 32(2):198–212, June 1967.

Win93. G. Winskel. Formal Semantics of Programming Languages. MIT Press, 1993.

Appendix

We give here the proof of termination (for CBPV without recursion) and that compu-

tations denoting ⊥ diverge (for CBPV with recursion). Both of these are adaptations

of standard arguments based on the method of (Tai67).

Here is the proof of Prop. 1.

Proof Determinism is trivial in every case. For termination, we use a Tait-style proof.

Here it is for storage; the other proofs are similar. We define

– for each value type A, a set redA of closed values of type A

– for each computation type B, a set redB of pairs s, M where s ∈ S and M is a

closed computation of type B
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The definition of these subsets proceeds by induction over types:

thunk M ∈ redUB iff s, M ∈ redB for all s ∈ S

〈̂ı, V 〉 ∈ red∑
i∈IAi

iff V ∈ redAı̂
〈V, V ′〉 ∈ redA×A′ iff V ∈ redA and V ′ ∈ redA′

s, M ∈ redFA iff s, M ⇓ s′, return V where V ∈ redA

s, M ∈ red∏
i∈IBi

iff s, M ⇓ s′, λ{i.Mi}i∈I where i ∈ I implies s′, Mi ∈ redB
i

s, M ∈ redA→B iff s, M ⇓ s′, λx.N where V ∈ redA implies s′, M [V/x] ∈ redB

We note that s, M ∈ redB iff s, M ⇓ s′, T for some s′, T ∈ redB .

Finally we show that for any computation A0, . . . , An−1 ⊢c M : B, if s ∈ S and

Wi ∈ redAi
for i = 0, . . . , n − 1 then s, M [

−−−−→
Wi/xi] ∈ redB ; and similarly for any value

A0, . . . , An−1 ⊢v V : A. This is shown by mutual induction on M and V , and gives the

required result.

Here is the proof of Prop. 2.

Proof These are all proved by induction on ⇓, except the clause about divergence which

requires a Tait-style proof. We define

– for each value type A, a relation 6A between [[A]] and closed values of type A such

that, for each V , the set {a | a 6A V } is admissible and down-closed

– for each computation type B a relation 6B between [[B]] and closed computations

of type B, such that, for each M , the set {a | a 6B M} is admissible, down-closed

and ⊥-containing.

(Our proof does not make use of the down-closure property.) The definition of these

relations proceeds by induction over types:

a 6UB thunk M iff a 6B M

a 6∑
i∈IAi

〈̂ı, V 〉 iff a = 〈̂ı, b〉 for some b 6Aı̂
V

a 6A×A′ 〈V, V ′〉 iff a = 〈b, b′〉 for some b 6A V and b′ 6A′ V ′

b 6FA M iff b = ⊥ or

b = up a and M ⇓ return V and a 6A V

f 6∏
i∈IBi

M iff f = ⊥ or

M ⇓ λ{i.Ni}i∈I , and i ∈ I implies fı̂ 6B
i

Ni

f 6A→B M iff f = ⊥ or

M ⇓ λx.N, and a 6A V implies fa 6B N [V/x]

We note that b 6B M iff either b = ⊥ or M ⇓ T for some terminal T such that b 6B T .

Finally, we show that for any computation A0, . . . , An−1 ⊢c M : B, if ai 6Ai

Wi for i = 0, . . . , n − 1 then [[M ]]−−−−−→xi 7→ ai 6B M [
−−−−→
Wi/xi]; and similarly for any value

A0, . . . , An−1 ⊢v V : A. This is shown by mutual induction on M and V , and gives the

required result.


