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Abstract. We consider the problem of labeling a partially labeled graph.
This setting may arise in a number of situations from survey sampling
to information retrieval to pattern recognition in manifold settings. It is
also of potential practical importance, when the data is abundant, but
labeling is expensive or requires human assistance.

Our approach develops a framework for regularization on such graphs.
The algorithms are very simple and involve solving a single, usually
sparse, system of linear equations. Using the notion of algorithmic sta-
bility, we derive bounds on the generalization error and relate it to struc-
tural invariants of the graph. Some experimental results testing the per-
formance of the regularization algorithm and the usefulness of the gen-
eralization bound are presented.

1 Introduction

In pattern recognition problems, there is a probability distribution P according
to which labeled and possibly unlabeled examples are drawn and presented to
a learner. This P is usually far from uniform and therefore might have some
non-trivial geometric structure. We are interested in the design and analysis of
learning algorithms that exploit this geometric structure. For example, P may
have support on or close to a manifold. In discrete settings, it may have support
on a graph. In this paper we consider the problem of predicting the labels on
vertices of a partially labeled graph. Our goal is to design algorithms that are
adapted to the structure of the graph. Our analysis shows that the generalization
ability of such algorithms is controlled by geometric invariants of the graph.

Consider a weighted graph G = (V,E) where V = {x1, . . . ,xn} is the vertex
set and E is the edge set. Associated with each edge eij ∈ E is a weight Wij .
If there is no edge present between xi and xj , Wij = 0. Imagine a situation
where a subset of these vertices are labeled with values yi ∈ R. We wish to
predict the values of the rest of the vertices. In doing so, we would like to exploit
the structure of the graph. In particular, in our approach we will assume that
the weights are indications of the affinity of nodes with respect to each other
and consequently are related to the potential similarity of the y values these
nodes are likely to have. Ultimately we propose an algorithm for regularization
on graphs.



This general problem arises in a number of different settings. For example, in
survey sampling, one has a database of individuals along with their preference
profiles that determines a graph structure based on similarity of preferences.
One wishes to estimate a survey variable (e.g. hours of TV watched, amount of
cheese consumed, etc.). Rather than survey the entire set of individuals every
time, which might be impractical, one may sample a subset of the individuals
and then attempt to infer the survey variable for the rest of the individuals.
In Internet and information retrieval applications, one is often in possession of
a database of objects that have a natural graph structure (or more generally
affinity matrix). One may wish to categorize the objects into various classes but
only a few (object, class) pairs may be obtained by access to a supervised or-
acle. In the Finite Element Method for solving PDEs, one sometimes evaluates
the solution at some of the points of the finite element mesh and one needs to
estimate the value of the solution at all other points. A final example arises
when data is obtained by sampling an underlying manifold embedded in a high
dimensional space. In recent approaches to dimensionality reduction, clustering
and classification in this setting, a graph approximation to the underlying man-
ifold is computed. Semi-supervised learning in this manifold setting reduces to
a partially labeled classification problem of the graph. This last example is an
instantiation of transductive learning where other approaches include the Naive
Bayes for text classification in [11], transductive SVM [14, 9], the graph mincut
approach in [2], and the random walk on the adjacency graph in [13]. We also
note the closely related work [10], which uses kernels and in particular diffusion
kernels on graphs for classification.

In the manifold setting the graph is easily seen to be an empirical object. It
is worthwhile to note that in all applications of interest, even those unrelated to
the manifold setting, the graph reflects pairwise relationships on the data, and
hence is an empirical object whenever the data consists of random samples.

We consider this problem in some generality and introduce a framework for
regularization on graphs. Two algorithms are derived within this framework. The
resulting optima have simple analytical expressions. If the graph is sparse, the
algorithms are fast and, in particular, do not require the computation of multiple
eigenvectors as is common in many spectral methods (including our previous
approach [1]). Another advantage of the current framework is that it is possible
to provide theoretical guarantees for generalization error. Using techniques from
algorithmic stability we show that generalization error is bounded in terms of
the smallest nontrivial eigenvalue (Fiedler number) of the graph. Interestingly,
it suggests that generalization performance depends on the geometry of the
graph rather than on its size. Finally some experimental evaluation is conducted
suggesting that this approach to partially labeled classification is competitive.

Several groups of researchers have been investigating related ideas. In partic-
ular, [12] also proposed algorithms for graph regularization. In [16] the authors
propose the Label Propagation algorithm for semi-supervised learning, which
is similar to our Interpolated Regularization when S = L. In [15] a somewhat
different regularizer together with the normalized Laplacian is used for semi-



supervised learning. The ideas of spectral clustering motivated the authors of [4]
to introduce Cluster Kernels for semi-supervised learning. The authors suggest
explicitly manipulating eigenvalues of the kernel matrix.

2 Regression on Graphs

2.1 Regularization and Regression on Graphs

To approximate a function on a graph G, with the weight matrix Wij we need
a notion of a “good” function. One way to think about such a function is that
is that it does not make too many “jumps”. We formalize that notion (see also
our earlier paper [1]), by the smoothness functional

S(f) =
∑

i∼j

Wij(fi − fj)
2

where the sum is taken over the adjacent vertices of G. For “good” functions f
the functional S takes small values.

It is important to observe that
∑

i∼j

Wij(fi − fj)
2 = fT Lf

where L is the Laplacian L = D −W , D = diag(
∑

i W1i, . . . ,
∑

i Wni). This is a
basic identity in the spectral graph theory and provides some intuition for the
remarkable properties of the graph Laplacian L.

Other smoothness matrices, such as Lp, p ∈ N, exp(−tL), t ∈ R are also
possible. In particular, L2 often seems to work well in practice.

2.2 Algorithms for Regression on Graphs

Let G = (V,E) be a graph with n vertices and the weight matrix Wij . For the
purposes of this paper we will assume that G is connected and that the vertices
of the graph are numbered. We would like to regress a function f : V → R. f
is defined on vertices of G, however we have only partial information, say for
the first k vertices. That is f(xi) = yi, 1 ≤ i ≤ k. The labels can potentially
be noisy. We also allow data points to have multiplicities, i.e. each vertex of the
graph may appear more than once with same or different y value.

We precondition the data by mean subtracting first. That is we take

ỹ = (y1 − ȳ, . . . , yk − ȳ)

where ȳ = 1
k

∑

yi. This is needed for stability of the algorithms as will be seen
in the theoretical discussion.

Algorithm 1: Tikhonov regularization (parameter γ ∈ R). The objec-
tive is to minimize the square loss function plus the smoothness penalty.

f̃ = argmin
f=(f1,...,fn)

P

fi=0

1

k

∑

i

(fi − ỹi)
2 + γf tSf t



S here is a smoothness matrix, e.g. S = L or S = Lp, p ∈ N. The condition
∑

fi = 0 is needed to make the algorithm stable. It can be seen by following the
proof of Theorem 1 that necessary stability and the corresponding generalization
bound cannot be obtained unless the regularization problem is constrained to
functions with mean 0.

Without the loss of generality we can assume that the first l points on the
graph are labeled. l might be different from the number of sample points k, since
we allow vertices to have different labels (or the same label several times).

The solution to the quadratic problem above is not hard to obtain by stan-
dard linear algebra considerations. If we denote by 1 = (1, 1, . . . , 1) the vector
of all ones, the solution can be given in the form

f̃ = (kγS + Ik)−1(ỹ + µ1)

Here ỹ is the n-vector y = (
∑

i y1i,
∑

i y2i, . . . ,
∑

i ymi, 0, . . . , 0), where we sum
the labels corresponding to the same vertex on the graph.

Ik is a diagonal matrix of multiplicities

Ik = diag (n1, n2, . . . , nl, 0, . . . , 0)

where ni is the number of occurences of vertex i among the labeled point in the
sample. µ is chosen so that the resulting vector f is ortogonal to 1. Denote by
s(f) the functional

s : f →
∑

i

fi

Since s is linear, we obtain 0 = s(f̃) = s
(

(kγS + Ik)−1ỹ
)

+ s
(

(kγS + Ik)−11
)

.
Therefore we can write

µ = −s ((kγS + Ik)
−1

ỹ)

s ((kγS + Ik)
−1

1)

Note that dropping the condition f ⊥ 1 is equvalent to putting µ = 0.

Algorithm 2: Interpolated Regularization (no parameters).
Here we assume that the values y1, . . . , yk have no noise. Thus the optimiza-

tion problem is to find a function of maximum smoothness satisfying f(xi) = ỹi,
1 ≤ i ≤ k:

f̃ = argmin
f=(ỹ1,...,ỹk,fk+1,...,fn)

P

fi=0

f tSf

As before S is a smoothness matrix, e.g. L or L2. However, here we are not
allowing multiple vertices in the sample. We partition S as

S =

(

S1 S2

ST
2 S3

)

where S1 is a k × k matrix, S2 is k × n− k and S3 is (n− k)× (n− k). Let f̃ be
the values of f , where the function is unknown, f̃ = (fk+1, . . . , fn).



Straightforward linear algebra yields the solution:

f̃ = S−1
3 ST

2 ((ỹ1, . . . , ỹk)T + µ1)

µ = −s (S−1
3 ST

2 ỹ)

s (S−1
3 ST

2 1)

The regression formula is very simple and has no free parameters. However,
the quality of the results depends on whether S3 is well conditioned.

It can be shown that Interpolated Regularization is the limit case of Tikhonov
regularization when γ tends to 0. That is, given a function f , and denoting
by Regγ and Regint, Tikhonov regularization and Interpolated regularization,
respectively, we have

lim
γ→0

Regγ(f) = Regint(f)

That correspondence suggests using the condition f ⊥ 1 for interpolated regu-
larization as well, even though no stability-based bounds are available in that
case.

It is interesting to note that this condition, imosed for purely theoretical
reasons, seems similar to class mass normalization step in [16].

3 Theoretical Analysis

In this section we investigate some theoretical guarantees for the generalization
error of regularization on graphs. We use the notion of algorithmic stability,
first introduced by Devroye and Wagner in [6] and later used by Bousquet and
Elisseeff in [3] to prove generalization bounds for regularization networks.

The goal of a learning algorithm is to learn a function on some space V from
examples. Given a set of examples T the learning algorithm produces a function
fT : V → R. Therefore a learning rule is a map from data sets into functions on
V . We will be interested in the case where V is a graph.

The empirical risk Rk(f) (with the square loss function) is a measure of how
well we do on the training set:

Rk(f) =
1

k

k
∑

1

(f(xi) − yi)
2

The generalization error R(f) is the expectation of how well we do on all
points, labeled or unlabeled.

R(f) = Eµ (f(x) − y(x))
2

where the expectation is taken over an underlying distribution µ on V × R

according to which the labeled examples are drawn.
As before denote the smallest nontrivial eigenvalue of the smoothness matrix

S by λ1. If S is the Laplacian of the graph, this value,first introduced by Fiedler



in [7] as algebraic connectivity and is sometimes known as the Fiedler constant,
plays a key role in spectral graph theory. One interpretation of λ1 is that it gives
an estimate of how well V can be partitioned. We expect λ1 to be relatively
large, say λ1 > O

(

1
nr

)

, 0 ≤ r ¿ 1. For example for an n-dimensional hypercube
λ1 = 2. If λ1 is very small, a sensible possibility would be to cut the graph in
two, using the eigenvector corresponding to λ1 and proceed with regularization
separately for the two parts.

The theorem below states that as long as k is large and the values of the
solution to the regularization problem are bounded, we get good generalization
results. We note that the constant K can be bounded using the properties of
the graph. See the propositions below for the details. We did not make these
estimates a part of the Theorem 1 as it would make the formulas even more
cumbersome.

Theorem 1 (Generalization Performance of Graph Regularization).
Let γ be the regularization parameter, T be a set of k ≥ 4 vertices x1, . . . ,xk,
where each vertex occurs no more than t times, together with values y1, . . . , yk,
|yi| ≤ M . Let fT be the regularization solution using the smoothness functional
S with the second smallest eigenvalue λ1. Assuming that ∀x|fT (x)| ≤ K we have
with probability 1 − δ (conditional on the multiplicity being no greater than t):

|Rk(fT ) − R(fT )| ≤ β +

√

2 log(2/δ)

k

(

kβ + (K + M)2
)

where

β =
3M

√
tk

(kγλ1 − t)2
+

4M

kγλ1 − t

Proof. The theorem is obtained by rewriting the formula in the Theorem 4 in
terms of k and then applying the Theorem 5.

We see that as usual in the estimates of the generalization error it decreases
at a rate 1√

k
. It is important to note that the estimate is nearly independent of

the total number of vertices n in the graph. We say “nearly” since the probability
of having multiple points increases as k becomes close to n and since the value
of λ1 may (or may not) implicitly depend on the number of vertices.

The only thing that is missing is an estimate for K. Below we give two such
estimates, one for the case of general S and the other, possibly sharper, when
the smoothness matrix is the Laplacian S = L.

Proposition 1. With λ1, M and γ as above we have the following inequality:

‖f‖∞ ≤ M√
λ1γ

Proof. Let’s first denote the quantity we are trying to minimize by P (f):

P (f) =
1

k

∑

i

(fi − yi)
2 + γf tLf t



The first observation we make is that when f = 0, P (f) = 1
k

∑

i y2
i ≤ M2. Thus,

if f̃ minimizes P (f), we have 0 ≤ γ f̃ tLf̃ ≤ M2. Recall that f ∈ H, where H is
the linear space of vectors with mean 0 and that the smallest eigenvalue of S
restricted to H is λ1. Therefore, recalling that ‖f‖2 ≥ ‖f‖∞, we obtain

f̃ tLf̃ ≥ λ1‖f‖2 ≥ λ1‖f‖2
∞

Thus

‖f‖∞ ≤

√

f̃ tLf̃

λ1
≤ M√

λ1γ

A different inequality can be obtained when S = L. Note the the diameter
of the graph is typically far smaller than the number of vertices. For example,
when G is a n-cube, the number of vertices is 2n, while the diameter is n.

Proposition 2. Let W = mini∼j wij be the smallest nonzero weight of the graph
G. Assume G is connected. Let D be the unweighted diameter of the graph, i.e.
the maximum length of the shortest path between two points on the graph. Then
the maximum entry K of the solution to the γ-regularizaton problem with y’s
bounded by M satisfies the following inequality:

K ≤ M

√

D

γW

A useful special case is

Corollary 2 If all weights of G are either 0 or 1, then

K ≤ M

√

D

γ

Proof. Using the same notation as above, we see by substituting the 0 vector
that if f̃ minimizes P (f), then P f̃ ≤ M2.

Let K be the biggest entry of f with the corresponding vertex v1. Take any
vertex v2 for which there is a y ≤ 0. Such vertex exists, since the data has mean
0. Now let e1, e2, . . . , em be a sequence of edges on the graph connecting the
vertices v1 and v2. We put w1, . . . , wm to be the corresponding weights and let
g0, g1, . . . , gm be the values of f̃ corresponding to the consecutive vertices of that
sequence. Now let hi = gi−gi−1 be the differences of values of f̃ along that path.
We have

∑

i hi = gm − g0 ≥ K.
Consider the minimum value Z of

∑

i wih
2
i , given that

∑

i hi ≥ K. Using
Lagrangian multipliers, we see that the solution is given by hi = α

wi
. We find α

using the condition
∑

i hi = α
∑

i
1

wi
= K. Therefore

∑

i

wih
2
i =

∑

i

α2

wi

=
K2

∑

i
1

wi



Recall that m
P

m
i=1

1
wi

is the harmonic mean of numbers wi and is therefore greater

than min(w1, . . . , wm). Thus we obtain

∑

i

wih
2
i ≥ K2

m
min(w1, . . . , wm)

On the other hand, we see that

f̃ tLf̃ t =
∑

i<j, i∼j

wij(f̃i − f̃j)
2 ≥

∑

i

wih
2
i

since the right-hand sight of the inequality is a partial sum of the terms of the
left-hand side.

Hence

P (f̃) ≥ K2

m
min(w1, . . . , wm)

Recalling that P (f̃) ≤ M2, we finally obtain:

K ≤ M
√

m
√

γ min(w1, . . . , wm)

Since the path between those points can be chosen arbitrarily, we can chose it
so that the length of the path m does not exceed the unweighted diameter D of
the graph, which proves the theorem.

In particular, if all weights of G are either zero or one, we have:

K ≤ M
√

D√
γ

assuming, of course, that G is connected.

To prove the main theorem we will use a result of Bousquet and Elisseeff
([3]). First we need the following

Definition 3 A learning algorithm is said to be uniformly (or algorithmically)
β-stable, if for any two training sets T1, T2 different at no more than one point,

∀x |fT1
(x) − fT2

(x)| ≤ β

The stability condition can be thought of as the Lipschitz property for maps from
the set of training samples endowed with the Hamming distance into L∞(V ).

Theorem 4 (Bousquet, Elisseeff). For a β-stable algorithm T → fT we have:

∀ε > 0 Prob (|Rk(fT ) − R(fT )| > ε + β) ≤ 2 exp

(

− kε2

2(kβ + (K + M))2

)



The above theorem1 together with the appropriate stability of graph regular-
ization algorithm yields Theorem 1. We now proceed to show that regularization
on graphs using the smoothness functional S is β-stable, with β as in Theorem
1.

Theorem 5 (Stability of Regularization on Graphs). For data samples
of size k ≥ 4 with multiplicity of at most t, γ-regularization using the smooth-

ness functional S is a
(

3M
√

tk
(kγλ1−t)2 + 4M

kγλ1−t

)

-stable algorithm, assuming that the

denominator kγλ1 − t is positive.

Proof. Let H be the hyperplane orthogonal to the vector 1 = (1, . . . , 1). We will
denote by PH the operator corresponding to the orthogonal projection on H.
Recall that the solution to the regularization problem is given by

(kγS + Ik)f = ỹ + µ1

where µ is chosen so that f belongs to H. We order the graph so that the labeled
points come first Then the diagonal matrix Ik can be written as

Ik = diag(n1, . . . , nl, 0, . . . , 0)

where l is the number of distinct labeled vertices of the graph and ni ≤ t is the
multiplicity of the ith data point. The spectral radius of Ik is max(n1, . . . , nl)
and is therefore no greater than t. Note that l ≤ k.

On the other hand, the smallest eigenvalue of S restricted to H is λ1. Noticing
that H is invariant under S and that for any vector v, ‖PH(v)‖ ≤ ‖v‖, since
PH is an orthogonal projection operator, and using the triangle inequality, we
immediately obtain that for any f ∈ H

‖PH(kγS + Ik)f‖ ≥ ‖PHkγSf‖ − ‖PHIkf‖ ≥ (λ1γk − t)‖f‖

It follows that the spectral radius of the inverse operator (PH(kγS + Ik))−1

does not exceed 1
λ1γk−t

, when restricted to H (of course, the inverse is not even

defined outside of H).
To demonstrate stability we need to show that the output of the algorithm

does not change much when we change the input at exactly one data point.
Suppose that y, y′ are the data vectors different in at most one entry. We can
assume that y′ contains a new point. The other case, when only the multiplicities
differ, follows easily from the same considerations. Thus we write:

y = (
∑

i

yi1,
∑

i

yi2, . . . ,
∑

i

yil, 0, . . . , 0)

y′ = (
∑

i

yi1,
∑

i

yi2, . . . ,
∑

i

′
yil, yl+1, 0 . . . , 0)

1 Which is, actually, a special case of the original theorem, when the cost function is
quadratic.



The sums are taken over all values of y corresponding to a node on a graph. The
last sum

∑′
contains one fewer term than the corresponding sum for y.

Put ȳ, ȳ′ to be the averages for y,y′ respectively. We note that |ȳ− ȳ′| ≤ 2M
k

and that the entries of ỹ, ỹ′ differ by no more than that except for the last two
entries, which differ by at most 2M + 2M

k
. Of course, the last n − l − 1 entries

of both vectors are equal to zero. Therefore

‖ỹ − ỹ′‖ ≤

√

2

(

2M +
2M

k

)2

+ k

(

2M

k

)2

< 4M

assuming that k ≥ 4.
The solutions to the regularization problem f , f ′ are given by the equations

f = (PH(γkS + Ik))
−1

ỹ

f ′ = (PH(γkS + I ′
k))−1ỹ′

where Ik and I ′k are n × n diagonal matrices, Ik = diag(n1, n2, . . . , nl, 0, . . . , 0),
I ′k = diag(n1, n2, . . . , nl − 1, 1, 0, . . . , 0) and the operators are restricted to the
hyperplane H.

In order to ascertain stability, we need to estimate the maximum difference
between the entries of f and f ′, ‖f − f ′‖∞. We will use the fact that ‖ ‖∞ ≤ ‖ ‖.

Put A = PH(γkS + Ik), B = PH(γkS + I ′
k) restricted to the hyperplane H.

We have

f − f ′ = A−1ỹ − B−1ỹ′ = A−1(ỹ − ỹ′) + A−1ỹ′ − B−1ỹ′

Therefore

‖f − f ′‖∞ ≤ ‖f − f ′‖ ≤ ‖A−1(ỹ − ỹ′)‖ + ‖A−1ỹ′ − B−1ỹ′‖

Since the spectral radius of A−1 and B−1 is at most 1
kγλ1−t

and ‖ỹ − ỹ′‖ ≤
4M ,

‖A−1(ỹ − ỹ′)‖ ≤ 4M

kγλ1 − t

On the other hand, it can be checked that ‖ỹ′‖ ≤ 2
√

tkM . Indeed, it can
be easily seen that the length is maximized, when the multiplicity of each point
is exactly t. Noticing that the spectral radius of PH(Ik − I ′k) cannot exceed√

2 < 1.5, we obtain:

‖A−1ỹ′ − B−1ỹ′‖ = ‖B−1(B − A)A−1ỹ′‖ = ‖B−1PH(Ik − I ′k)A−1ỹ′)‖ ≤

≤ 3M
√

tk

(kγλ1 − t)2

Putting it all together

‖f − f ′‖∞ ≤ 3M
√

tk

(kγλ1 − t)2
+

4M

kγλ1 − t



Of course, we would typically expect 2M
√

tk
(kγλ1−t)2 ¿ 4M

kγλ1−t
.

However one issue still remains unresolved. Just how likely are we to have
multiple points in a sample. Having high multiplicities is quite unlikely as long
as k ¿ n and the distribution is reasonably close to the uniform.

We make a step in the direction with the following simple combinatorial
estimate to show that for the uniform distribution on the graph, data samples,
where point occur with high multiplicities (and, in fact, with any multiplicity
greater than 1) are unlikely as long as k is relatively small compared to n.

It would be easy to give a similar estimate for a more general distribution,
where probability of each point is bounded from below by, say, α

n
, 0 < α ≤ 1.

Proposition 3. Assuming the uniform distribution on the graph, the probability
P of a sample that contains some data point with multiplicity more than t can
be estimated as follows:

P <
2n

(t + 1)!

(

k

n

)t+1

Proof. Let us first estimate the probability Pl that the lth point will occur more
than t times, when choosing k points at random from a dataset of n points with
replacement.

Pl =

k
∑

i=t+1

(

k

i

)

1

ni

(

1 − 1

n

)k−i

<

k
∑

i=t+1

(

k

i

)

1

ni

Writing out the binomial coefficients and using an estimate via the sum of a
geometric progression yields:

k
∑

i=t+1

(

k

i

)

1

ni
<

1

(t + 1)!

∑

i=t+1

(

k

n

)i

=
1

(t + 1)!

(

k

n

)t+1
1

1 − k
n

Assuming that k ≤ n
2 , we finally obtain

Pl <
2

(t + 1)!

(

k

n

)t+1

Applying the union bound, we see that the probability P of some point being
chosen more than t times is bounded as follows:

P ≤
n
∑

i=1

Pi <
2n

(t + 1)!

(

k

n

)t+1

By rewriting k in terms of the probability, we immediately obtain the follow-
ing

Corollary 6 With probability at least 1 − ε the multiplicity of the sample does

not exceed t, given that k ≤ t+1

√

ε (t+1)!
2 nt− 1

t+1 . In particular, the multiplicity

of the sample is exactly 1 with probability at least 1 − ε, as long as k ≤ √
εn.



4 Experiments and Discussion

An interesting aspect of the generalization bound derived in the previous section
is that it depends on certain geometric aspects of the graph. The size of the
graph seems relatively unimportant. For example consider the edge graph of
a d-dimensional hypercube. Such a graph has n = 2d vertices. However, the
spectral gap is always λ1 = 2. Thus the generalization bound on such graphs
is independent of the size n. For other kinds of graphs, it may be the case that
λ1 depends weakly on n. For such graphs, we may hope for good generalization
from a small number of labeled examples relative to the size of the graph.

To evaluate the performance of our regularization algorithms and the insights
from our theoretical analysis, we conducted a number of experiments. For ex-
ample, our experimental results indicate that both Tikhonov and interpolated
regularization schemes are generally competitive and often better than other
semi-supervised algorithms. However, in this paper we do not discuss these per-
formance comparisons. Instead, we focus on the performance of our algorithm
and the usefulness of our bounds.

We present results on two data sets of different sizes.

4.1 Ionosphere Data Set

The Ionosphere data set has 351 examples of two classes in a 34 dimensional
space. A graph is made by connecting nearby (6) points to each other. This
graph therefore has 351 vertices. We computed the value of the spectral gap of
this graph and the corresponding bound using different values of γ for different
numbers of labelled points (see table 4). We also computed the training error
(see table 2), the test error (see table 1), and the generalization gap (see table 3),
to compare it with the value of the bound.

For γ ≥ 1, the value of the bound is reasonable and the difference between
the training and the test error is small, as can be seen in the last columns of
these tables. However, both the training and the test error for γ = 1 were high.
In regimes where training and test errors were smaller, we find that our bound
becomes vacuous.

4.2 Mnist Data Set

We also tested the performance of the regularization algorithm on the MNIST
data set. We used a training set with 11, 800 examples corresponding to a two
class problem with digits 8 and 9.

We computed the training and the test error as well as the bound for this
two-class problem. We report the results for the digits 8 and 9, averaged over
10 random splits. Table 5 and table 6 show the error on the test and on the
training set, respectively. The regularization algorithm achieves a very low error
rate on this data set even with a small number of labelled points. The difference
between the training and the test error is shown in table 7 and can be compared
to the value of the bound in table 8.



#L γ=0.001 γ=0.01 γ=0.1 γ=1

10 0.36 0.40 0.38 0.36
20 0.29 0.35 0.38 0.36
40 0.22 0.36 0.37 0.36
60 0.20 0.36 0.36 0.36
80 0.17 0.35 0.39 0.36
100 0.18 0.30 0.36 0.36
200 0.20 0.36 0.35 0.36
300 0.13 0.40 0.36 0.34

Table 1. Ionosphere data set. Classifica-
tion error rates on the test set. #L is the
number of labelled examples.

#L γ=0.001 γ=0.01 γ=0.1 γ=1

10 0.00 0.09 0.26 0.30
20 0.01 0.22 0.29 0.33
40 0.01 0.25 0.31 0.35
60 0.08 0.28 0.36 0.34
80 0.09 0.30 0.35 0.36
100 0.10 0.31 0.36 0.37
200 0.14 0.35 0.36 0.36
300 0.15 0.35 0.36 0.36

Table 2. Ionosphere data set. Classifica-
tion error rates on the training set. #L is
the number of labelled examples.

#L γ=0.001 γ=0.01 γ=0.1 γ=1

10 0.36 0.31 0.12 0.06
20 0.28 0.13 0.09 0.03
40 0.21 0.11 0.06 0.01
60 0.12 0.08 0.00 0.02
80 0.08 0.05 0.04 0.00
100 0.08 0.01 0.00 0.01
200 0.06 0.01 0.01 0.00
300 0.02 0.05 0.00 0.02

Table 3. Ionosphere data set. Difference
between error rates on the test set and on
the training set.

#L γ=0.001 γ=0.01 γ=0.1 γ=1

10 173.59 32.87 2.92 1.16
20 1641.55 16.38 2.02 0.82
40 2138.57 9.73 1.40 0.58
60 469.07 7.44 1.14 0.47
80 251.67 6.22 0.98 0.41
100 173.02 5.43 0.87 0.36
200 72.72 3.64 0.61 0.26
300 48.97 2.90 0.50 0.21

Table 4. Ionosphere data set, λ1 =
34.9907. Generalization bound for confi-
dence (1 − δ), δ = 0.1.

Here again, we observe that the value of the bound is reasonable for γ = 0.1
and γ = 1 but the test and training errors for these values of γ are rather high.
Note, however, that with 2000 labelled points, the error rate for γ = 0.1 is very
similar to the error rates achieved with smaller values of γ.

Interestingly, the regularization algorithm has very similar gaps between the
training and the test error for these two data sets although the number of points
in their graphs is very different (351 for the Ionosphere and 11, 800 for the MNIST
two-class problem). The value of the smallest non-zero eigenvalue for these two
graphs is, however, similar. Therefore the similarity in the generalization gaps is
consistent with our analysis.

5 Conclusions

In a number of different settings, the need arises to fill in the labels (values) of a
partially labeled graph. We have provided a principled framework within which
one can meaningfully formulate regularization for regression and classification on
such graphs. Two different algorithms were then derived within this framework
and have been shown to perform well on different data sets.



#L γ=0.001 γ=0.01 γ=0.1 γ=1

20 0.04 0.03 0.45 0.50
40 0.02 0.03 0.42 0.40
100 0.02 0.03 0.37 0.40
200 0.02 0.02 0.28 0.41
400 0.02 0.02 0.09 0.46
800 0.02 0.02 0.11 0.44
2000 0.02 0.02 0.03 0.41

Table 5. Mnist data set, two-class classi-
fication problem for digits 8 and 9. Clas-
sification error rates on the test set.

#L γ=0.001 γ=0.01 γ=0.1 γ=1

20 0.00 0.01 0.33 0.40
40 0.00 0.01 0.36 0.36
100 0.01 0.02 0.32 0.38
200 0.02 0.02 0.24 0.39
400 0.02 0.02 0.09 0.45
800 0.02 0.02 0.10 0.42
2000 0.02 0.02 0.03 0.40

Table 6. Mnist data set, two-class classi-
fication problem for digits 8 and 9. Clas-
sification error rates on the training set.

#L γ=0.001 γ=0.01 γ=0.1 γ=1

20 0.04 0.02 0.12 0.10
40 0.02 0.02 0.06 0.04
100 0.01 0.01 0.05 0.02
200 0.00 0.00 0.04 0.02
400 0.00 0.00 0.00 0.01
800 0.00 0.00 0.01 0.02
2000 0.00 0.00 0.00 0.01

Table 7. Mnist data set, two-class clas-
sification problem for digits 8 and 9. Dif-
ference between error rates on the test set
and the on the training set.

#L γ=0.001 γ=0.01 γ=0.1 γ=1

20 1774.43 16.04 2.00 0.81
40 1928.94 9.55 1.39 0.57
100 166.74 5.34 0.87 0.36
200 70.69 3.58 0.61 0.26
400 37.13 2.44 0.43 0.18
800 21.60 1.69 0.30 0.13
2000 11.50 1.04 0.19 0.08

Table 8. Mnist data set, two-class clas-
sification problem for digits 8 and 9,
λ1=35.5460. Generalization bound for
confidence (1-δ), δ=0.1.

The regularization framework offers several advantages.

1. It eliminates the need for computing multiple eigenvectors or complicated
graph invariants (min cut, max flow etc.). Unlike some previously proposed
algorithms, we obtain a simple closed form solution for the optimal regressor.
The problem is reduced to a single, usually sparse, linear system of equations
whose solution can be computed efficiently. One of the algorithms proposed
(interpolated regularization) is extremely simple with no free parameters.

2. We are able to bound the generalization error and relate it to properties of
the underlying graph using arguments from algorithmic stability.

3. If the graph arises from the local connectivity of data obtained from sam-
pling an underlying manifold, then the approach has natural connections to
regularization on that manifold.

The experimental results presented here suggest that the approach has empir-
ical promise. Our future plans include more extensive experimental comparisons
and investigating potential applications to survey sampling and other areas.
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