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I. INTRODUOTION 

T h e  t e s t i ng  p h a s e  o f  t h e  s o f t w a r e  d e v e l o p m e n t  cyc le  a t t e m p t s  to  expose  t h e  
p r e s e n c e  o f  as  m a n y  e r ro r s  as  pos s ib l e  in  a p r o g r a m  a n d  u l t i m a t e l y  p r o v i d e  t h e  
d e v e l o p e r  a n d  u se r  w i t h  a be l i e f  t h a t  t h e  p r o g r a m  is l i ke ly  to  be  cor rec t .  T h e  
idea l  goa l  is to  g u a r a n t e e  co r rec tnes s ,  b u t  in  a l l  e x c e p t  v e r y  s i m p l e  ca ses  th i s  is  
i mposs ib l e  to  a c c o m p l i s h  t h r o u g h  t e s t i ng  on  a f in i te  se t  o f  d a t a  [13, 23]. I t  is 
c o m m o n  for  c o m m e r c i a l l y  p r o d u c e d  p r o g r a m s ,  w h i c h  h a v e  a p p a r e n t l y  b e e n  
t h o r o u g h l y  t e s t ed ,  to  exh ib i t  i n c o r r e c t  b e h a v i o r  long  a f t e r  t h e y  h a v e  b e e n  r e l e a s e d  
a n d  used .  

T e s t i n g  can  be  v i e w e d  as  a n  in fe rence  p r o c e s s  in  t h e  cou r se  o f  w h i c h  t h e  t e s t e r  
a t t e m p t s  to  d e d u c e  p r o p e r t i e s  o f  a p r o g r a m  b y  o b s e r v i n g  i ts  b e h a v i o r  on  s e l e c t e d  
inpu ts .  W h e n  t h e  p r o p e r t y  one  des i r e s  to  in fe r  is c o r r e c tne s s ,  t h e  i n p u t s  a r e  
u sua l ly  s e l e c t e d  to  cause  t h e  p r o g r a m  to  e x h i b i t  a l l  p o t e n t i a l  a s p e c t s  o f  i t s  
b e h a v i o r  or  to  cove r  a l l  f ace t s  of  t h e  spec i f i ca t ion .  I f  t h e  s e l e c t e d  i n p u t s  a r e  
p r o c e s s e d  co r rec t ly ,  one  t h e n  infers  t h a t  t h e  p r o g r a m  wil l  c o r r e c t l y  p r o c e s s  i t s  
en t i r e  i n p u t  d o m a i n .  
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Two key problems of program testing are 

(1) given a program and specification, how to select data which test the program 
most effectively; 

(2) given a program, specification, and test data which are processed correctly, 
how to determine whether or not the testing has been sufficient to justify a 
claim that  the program has been adequately tested. 

A good survey of theoretical work on the first problem can be found in [8]. The 
purpose of this paper is to consider the second problem. Myers states: 

The completion criteria typically used in practice are both meaningless and counterproduc- 
tive. The two most common criteria are 

1. Stop when the scheduled time for testing expires. 
2. Stop when all the test cases execute without detecting errors. [16, p. 122] 

In this paper we examine other proposals for criteria for test data adequacy 
and discuss problems associated with their use as practical guides to whether or 
not testing is complete. In the spirit of [7], we first propose an ideal criterion for 
adequacy and discuss its practical limitations. We then consider approximations 
to this adequacy criterion. 

It is important to consider what the relationship should be between adequacy 
and test data selection criteria. One might argue that  every test data selection 
criterion is automatically an adequacy criterion, for we could simply say that  the 
program has been adequately tested if and only if the given selection criterion 
has been satisfied. However, most currently proposed adequacy and test data 
selection criteria represent conditions which are necessary for a program to be 
tested completely, but certainly are not sufficient. Usually they are not even 
"nearly sufficient," as it tends to be easy to construct programs containing errors 
which nonetheless fulfill each of these criteria. In spite of this, it is not uncommon 
for an adequacy criterion to be defined in terms of a test data selection criterion. 
For example, Huang [14] advocates the selection of data to traverse each branch 
of a flow graph; once this, or a reasonable approximation to it, is accomplished, 
the program is considered adequately tested. 

Owing to the crudeness of presently available adequacy notions, we believe 
that  test case selection should not be directed toward the fulfillment of the 
criterion used as the adequacy notion. Rather, test data should be generated by 
some appropriate independent method, and only when the tester feels that  the 
program has been tested on sufficient data should an (independent) adequacy 
criterion be invoked. If the adequacy criterion is fulfilled, then the program is 
deemed thoroughly tested; otherwise, additional test data must be generated and 
the process repeated. Note that  even at this stage, test data selection should not 
be driven by adequacy criteria. In short, we should  test to locate errors, not  to 
fulfill some (imperfect) criterion. 

Another important question to consider is the desired relationship between the 
correctness of the program being tested and the adequacy of the test data. Should 
the adequate testing of a program guarantee its correctness? We argue that  even 
though in the ideal case testing stops only after all the errors have been located 
and removed, in practice such a requirement of correctness is not realistic. 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983. 
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On the other hand, it is clear that  the correctness of a program should not 
automatically guarantee that  an arbitrary test set is adequate. One of the 
weaknesses of the notion of a reliable and valid criterion as defined in [7] is that  
for a correct program any criterion is reliable and valid, and hence any set of test 
data is ideal. It  is crucial that the properties which determine the adequacy of a 
set of test data depend on the quality of the test data rather than rely solely on 
the qualities of the program. 

With these concerns in mind, we introduce in Section 3 an abstract notion of 
adequacy which has the property that  if a program has been adequately tested, 
then it is correct, but the correctness of the program does not imply that  it has 
been adequately tested. In Section 4 we compare this notion to other adequacy 
criteria, and in Section 5 we consider pragmatic approximations to this ideal 
notion of adequacy. Section 6 demonstrates the use of these notions on some 
examples. 

2. EXISTING NOTIONS OF TEST DATA ADEQUACY 

Ooodenough and Oerhart [7] define an ideal set of tests to have properties that  
imply that  the tests are capable of exposing all errors in a program. Thus, if a 
program produces correct results on a set of ideal tests, it must be correct. 
However, these properties are nonconstructive in the sense that  they do not tell 
us how to produce ideal tests for a given program. In addition, it is generally 
impossible to determine whether a given set of tests for a program is ideal. 

Lacking a guaranteed way to create tests that  can conclusively demonstrate 
correctness, software test developers need a method of determining when suffi- 
cient testing has been done. Such an adequacy criterion for test data should 
reflect the test's ability to expose errors in the program. Many of the adequacy 
criteria which have been proposed and are in use today approach this natural 
goal only indirectly. It is common, for example, to require that  every statement, 
branch, or path fulfilling some condition be traversed in order that  test data be 
deemed adequate [14, 24], even though it has been pointed out [3, 7, 23] that  
these notions of adequacy suffer from deficiencies. In particular, it is easy to 
devise simple programs and test data such that, even though the program contains 
errors, the requirements of each of these criteria are fulfilled. Since the goal of 
testing is to detect the presence of errors, and these notions of adequacy measure 
code traversal, it is not too surprising that they are not really satisfactory 
indicators of how thoroughly the program has been tested. Furthermore, these 
criteria are themselves untestable in general, in the sense that  there can be no 
algorithm to decide for an arbitrary program whether there exist test data that  
will cause a given statement, branch, or path to be traversed, or whether every 
statement, branch, or path can be traversed [21]. 

Several other criteria for test data adequacy have been proposed and discussed. 
Error seeding [16] consists of the deliberate implantation of bugs in the program 
being tested. The buggy version of the program is then run on the set of test data 
which has been proposed as adequate to see how many of the implanted bugs are 
exposed. If k percent of the implanted bugs are located, it is then assumed that  
k percent of the original bugs have been found. This technique assumes that  the 
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types and distribution of bugs which occur unintentionally are the same as those 
implanted, a convenient, but usually inaccurate, assumption. 

Another proposed adequacy criterion is known as the program mutation 
method [1, 3]. This system makes a series of minor changes to the program being 
tested, creating a set of programs known as mutations. Some of these modifica- 
tions cause program errors, while others simply yield equivalent programs. A 
proposed set of test data is considered adequate if it causes every inequivalent 
mutation to give an incorrect answer on some input in the set. What the authors 
have done is to define implicitly what they consider to be the class of most likely 
simple errors. By showing that  these errors do not occur, they have not guaranteed 
the absence of all errors, but rather that  the program is either correct or radically 
incorrect. Since the authors assume that  the program being tested was written by 
a "competent programmer," that  is, a person who writes programs which are 
"close" to being correct, the second alternative can be eliminated. A closely 
related system was implemented by Hamlet and is described in [9]. 

All the proposed criteria for test data adequacy discussed above are program- 
based. That  is, they rely solely on the written code of the program being tested. 
It is now being recognized that  program testing techniques should be based on 
both the specification and the program [6, 7, 16, 17, 22, 23]. It is certainly 
important to develop test data based on all sources of information, but we believe 
it is even more important to develop criteria for adequacy which judge the test 
data's quality by considering all information sources. After all, test data derived 
from one source may coincidentally reflect characteristics of other sources. But 
an adequacy criterion is being used to judge the test data's quality, and therefore 
m u s t  assess that  quality against all sources. 

3. AN ABSTRACT NOTION OF ADEQUACY 

Goodenough and Gerhart [7] use the concept of an ideal test as the basis of their 
theory of program testing. The theory which they propose describes character- 
istics, or sufficient conditions, for a set of tests to be ideal, but does not provide 
a means of determining whether the conditions are fulfilled. 

Informally, we expect a test set to be adequate or to test a program thoroughly 
relative to a given specification, if the tests cover all aspects of the actual 
computation performed by the program, as well as the computation intended by 
the specification. Goodenough and Gerhart suggest that  a test set is more likely 
to be ideal if it takes account of each of the following factors: 
(1) every individual branching condition in the program is represented in the 

tests; 
(2) every potential termination condition in the program is represented in the 

tests; 
(3) every variable mentioned in a program decision is partitioned correctly into 

classes that  are "treated the same" by the program; 
(4) every condition relevant to the correct operation of the program that  is 

implied by the specification, knowledge of the program's data structures, or 
knowledge of the general method being implemented by the program is 
represented in the tests. 
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To capture precisely the notion of test set adequacy, we use the concept of 
program inference, the derivation of a program from a sample of its input /output  
behavior. Program testing and program inference can be thought of as being 
inverse processes. The testing process begins with a program and specification, 
and looks for input /output  pairs that  characterize every aspect of both the 
intended and actual computations. Program inference starts with a set of input /  
output pairs and specification, and derives a "simplest" program to fit this given 
behavior. 

In order to infer a program from test data, one would almost certainly need 
several "central" examples to indicate the general pattern. In contrast, we might 
well consider it sufficient to test a program on only one or two such central test 
cases. For both testing and inference, however, boundary points have to be 
explicitly described. For program inference, it is clearly necessary to identify 
where each type of computation begins and ends. In the case of testing, we know 
that these boundary points, and points near them, are particularly error prone 
and thus must be included in the test set. 

For program P, we let P(x) denote the result of P executing on input x. We let 
IT denote the program inferred from the set of input /output  pairs T, using some 
fixed (but unspecified) inference procedure. 

Several inference systems have been implemented [2, 18-20], but the precise 
algorithm used to infer the program is not central to our discussion. In the 
examples of Section 6, we use the system developed by Summers to demonstrate 
our ideas. 

For programs P and Q we write P =- Q (P is equivalent to Q) to mean that  
P(x) = Q (x) for every input x (and hence P(x) is defined if and only if Q (x) is 
defined). 

The specification S for a program P need not be executable; in particular, S 
may well be written in a natural language. Since people run programs on illegal 
input data (i.e., values not included in the input domain of S), and, in fact, one 
might deliberately want to include examples of such data in a test set, we have to 
be able to talk about S(x) for any input x. For x in the domain of the specification, 
S(x) is the value which a program intended to fulfill S should produce on input 
x. For x not in the domain of S, we say that S(x) is undefined. It thus makes 
sense to extend our notion of equivalence to speak of the equivalence of a program 
and a specification. In certain situations one is willing to accept as both a 
necessary and sufficient condition for specification S being fulfilled, that  the 
program P produce the correct result on every element of the input domain given 
by the specification. In that case it does not matter  whether the program produces 
output on some illegal input, and we consider S(x) = P(x) provided that  both are 
defined and equal, both are undefined, or P(x) is defined and S(x) is undefined. 
Under different circumstances, one might take the position that  not only must 
the program behave correctly on data in the domain, but also it must not produce 
"normal" output for inputs outside the domain. (It may, of course, produce an 
error message indicating illegal input.) In that  case we would consider S(x) = 
P(x) provided either both are def'med and equal or both are undefined. We might 
be willing to similarly weaken our notion of equivalence for two programs. 
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Although T is a set of input/output pairs, we frequently speak of an input t of 
T. By this we mean that  t is an input value such that  there exists a t', with (t, t') 
a member of T. 

A set of input/output pairs T is an inference adequate  test set for program P 
intended to fulfill specification S if and only if 

(1) I T -  P and 
(2) Irf-  S. 

That  is, T is adequate if and only if T contains sufficient data to infer the 
computations defined by both P and S. 

Note that  we only check the adequacy of a test set after it fails to expose errors. 
This is consistent with our view that  the role of testing is to expose errors. As 
long as there is a t in T such that  P(t)  ~ S(t), there is no question that  the test 
data are doing their job. It is only once P(t)  = S( t )  for every t in T that  we have 
to determine whether or not it is time to stop testing. Ideally the process ends 
when the program is correct and the test data are sufficient to determine this. 

If a set of test data is to be inference adequate as defined above, then the test 
data must truly test each portion of the program code as well as the specification. 
Furthermore, the fact that  T is adequate means that  IT is equivalent to both P 
and S, and hence P is correct. We thus have a definition of test adequacy which 
implies program correctness but which is not implied by the correctness of P. 
This is consistent with our position stated in Section 1 regarding the desired 
relationship between correctness and test data adequacy. 

Since the determination of inference adequacy depends on the determination 
of equivalence, and equivalence is, in general, undecidable, we must be willing to 
consider approximations in order to make this theoretical adequacy criterion 
usable. This is discussed in Section 5 and illustrated with examples in Section 6. 

A related idea has been recently proposed by Hamlet [11]. His notion of a 
determining test set is intended to capture the idea of a finite amount of test data 
being sufficient to distinguish a program from all other programs, both equivalent 
and inequivalent. Instead of considering only the input/output  behavior of a 
program, Hamlet includes a record of how a computation was performed in his 
notion of equality. Thus, in order to be determining, there must be enough data 
to allow any program with an identical computation to be identified, given the 
computation details for each of the inputs in the test set. In Section 4, we compare 
a similar restricted form of inference adequacy to branch adequacy. 

There are three distinct types of difficulties that  need to be considered in 
connection with a proposed definition of test data adequacy. The first type 
involves unsolvability problems. Our proposal requires the ability to infer a 
program from data and to determine whether or not it is equivalent to the original 
program, even though program equivalence is not, in general, a recursively 
solvable problem. Note, however, that  similar unsolvable problems must be faced, 
although not always as directly, when using each of the other adequacy proposals 
discussed above. In Section 5 we consider approximations to our adequacy 
definition, since the determination of equivalence is so central to the criterion. 

The second type of problem concerns usability: Is it reasonable to require the 
fulfillment of the criterion? In the case of the code traversal measures, for 
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example, there are frequently too many paths to be able to traverse all of them. 
With the mutation method, an n line program produces on the order of n 2 
mutants, each of which must be distinguished from, or shown to be equivalent to, 
the original. For a moderate-sized program this can require that  far too many 
programs be run. Our proposed criterion for adequacy encounters a different type 
of intractability. In particular, the state of the art of program inference systems 
is currently not well developed. In addition, if we could really show that  a program 
inferred from data were equivalent to the specification, we would not have to 
write the program to begin with. Why not simply rely on such "automatic 
programming" systems? Although this is a possible methodology for program 
production in the future, it does not appear realistic today. 

The third point to examine is whether the definition is really appropriate. We 
have discussed this for other proposed criteria and claim that  our definition 
reflects what is meant intuitively by test data adequacy, since the goal is to 
completely characterize by test data, all portions of both the intended and actual 
computations. 

In the next section we consider relationships among various adequacy criteria. 
In particular, we are interested in studying the relative strength of these proposals. 

4. RELATIONS AMONG ADEQUACY CRITERIA 

One would like to be able to formally compare the inference criterion with the 
other adequacy criteria discussed earlier. It has been shown [21] that  branch 
adequacy implies statement adequacy. We would like to be able to show that  
inference adequacy implies branch adequacy. Unfortunately, however, this is not 
true. Let P be a program containing a branch which is nontraversable (i.e., for 
which there is no input value such that  the branch is traversed). The program of 
Figure 1 is an example. Then no set of test data can be branch adequate for P. 
Nonetheless, it is certainly possible to infer from some set of test data T a 
program P '  which is equivalent to both S and P. Then T is inference adequate 
but not branch adequate for P. A similar argument can be made for programs P 
which have inessential branches. An inessential branch is one which is travers- 
able but preceded by a decision which is not necessary. 

As a simple example consider the flowchart fragment of Figure 2. Precisely 
because the decision is not necessary for the computation, data can be selected 
which do not traverse both the T and F branches, yet which sufficiently charac- 
terize the computation to enable the inference of a different, but equivalent, 
program. These data would be inference adequate, but not branch adequate. 

But it is not only these "anomalous" cases that  prevent the implication from 
being true. Suppose, for example, we were asked to write a program which 
performs some actions whenever the input string is of even length. For some 
reason, the program written and being tested checks explicitly for the cases of 
length 0, 2, 4, 6, and 8 and then has a loop to test for all other cases. One might 
say that in this implementation, the loop has been unwound five times. Now 
assume that a test set including inputs of length 0, 2, and 4 is sufficient to infer 
the program which performs the action with just a single test (i.e., without the 
loop unwound). Then the test set would be inference adequate for the given 
program, but not branch adequate. If instead of requiring the inference of a 
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program equivalent to P, we required the program P itself to be inferred, this 
problem would be solved. But that  would eliminate from consideration programs 
containing unreachable code or inessential branches, even though we know that  
people do include (presumably unintentionally) such code in their programs. A 
more important problem is that  since the goal of most implemented inference 
systems is to infer the simplest program consistent with the data, such a system 
would only be usable to test the adequacy of "optimal" programs, and we know 
that  most programs do not represent the simplest possible implementation of a 
specification. 

Clearly, without a precise definition of inference, it is not possible to prove the 
desired theorems formally. Although the intuition behind our inference adequacy 
proposal is independent of the particular program inference system used, dem- 
onstrating our ideas with examples requires the use of some specific inference 
system. In Section 6, we present four examples of the use of inference adequacy, 
using the inference system developed by Summers [20]. This system allows us to 
make a precise comparison between inference adequacy and branch adequacy. 

Summers states that  "what the system is to do is to produce the simplest 
program which satisfies the examples." Unfortunately, he does not formally 
define the term "simplest"; we shall assume that  such a program contains neither 
nontraversable nor inessential branches, and that  ff some statements of a program 
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P are deleted to yield a new program P' ,  then P '  is "simpler" than P. We then 
have the following theorem which relates a restricted form of inference adequacy 
and branch adequacy. 

THEOREM. I f  P can be inferred from T, then T is branch adequate for P. 

PROOF. If P is inferred from T, then P is the simplest program which is 
consistent with the input/output pairs of T. Assume T is not branch adequate for 
P. Then there exists a branch b which is not traversed by any t in T. Thus the 
removal of the decision preceding b leads to a program P '  such that  P( t )  = P ' ( t )  
for all t in T and P '  is simpler than P. [] 

The next result is an immediate consequence of this theorem: 

COROLLARY. Let P be a "simplest" program to fulfill specification S and let 
T be a set of  inference-adequate test data for P relative to S. Then T is branch 
adequate for P. 

It is easier to compare inference adequacy to Goodenough and Gerhart's notion 
of an ideal test. The following two theorems show that  inference adequacy is 
strictly stronger than idealness. 

THEOREM. Let P be a program intended to fulfill specification S. I f  test set T 
is inference adequate for P relative to S, then T is an ideal test set for P. 

PROOF. Since T is inference adequate for P, it follows that  P is correct and 
hence any test set is ideal for P. [] 

THEOREM. Let P be a program intended to fulfill specification S. There exists 
a test set T which is ideal for P but is not inference adequate for P relative to S. 

PROOF. If P is not correct, then no test set is inference adequate for P relative 
to S. Hence let P be a correct program. Then any test set, including the empty 
set, is ideal for P. But clearly the empty set, and many nonempty sets, are not 
inference adequate for the given program. [] 

It is interesting to compare the philosophy underlying inference adequacy with 
that of the program mutation method which is outlined in Section 2. A primary 
difference is that using our definition of adequacy, a test set is always considered 
to be adequate or inadequate for a given program relative to a given specification. 
In contrast, as indicated previously, the mutation method is a program-based 
strategy. Still, the basic philosophies are similar. Our definition requires that  
sufficient test data be generated to distinguish both the computation intended by 
the specification and the computation actually performed by the program from 
those produced by all nonequivalent programs. The mutation method, in contrast, 
requires that the test data be sufficient to distinguish the program from only 
some nonequivalent programs, namely, the programs which the authors have 
deemed most likely to have been written as the result of errors in the original 
program. In that sense, mutation testing may be thought of as an approximation 
to our definition of adequacy. 

In the next section we consider other ways of approximating inference adequacy 
more directly, while addressing the practical difficulties. 
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5. APPROXIMATIONS TO THE INFERENCE CRITERION 

The preceding discussion of the general difficulties of using inference adequacy 
as a pragmatic criterion, coupled with the knowledge that  it is even stronger than 
criteria which we have previously argued are not pragmatically usable, makes it 
clear that  our notion can at best be used as a guide. The next task, therefore, is 
to consider practically attainable approximations to inference adequacy. There 
are several ways of proceeding. 

The first possibility is to place sufficient restrictions on the programs to be 
considered so that  questions that  are unsolvable or intractable in general are 
possible for programs in the restricted class. For example, inference is feasible in 
many cases for programs whose behavior may be modeled by a finite-state 
machine. Inference for such machines can be accomplished by performing check- 
ing experiments. In addition, equivalence is decidable for finite-state machines, 
and hence for such programs. Nevertheless, serious practical limitations and 
difficulties are associated with such experiments, and there is an extensive 
discussion of these problems in Hennie's book [12]. Hamlet [10] has discussed 
these limitations vis ~ vis testing. We concur with Hamlet's assessment that  this 
direction is not likely to be productive. 

A second way to proceed would be to look directly for practical approximations 
to program inference and equivalence, and consider the relaxation of some of the 
requirements. One might, for example, remove the requirement that  the inferred 
program be equivalent to both the specification and the program being tested. 
Such a relaxation would eliminate the guarantee that  an adequately tested 
program is correct. If IT --- P, we say that  T is program-adequate ,  and if IT =-- S, 
T is specification-adequate.  

The decision as to which of these two requirements to relax might depend 
heavily on the type of test data selection criterion used. In general, if a program- 
based selection criterion were used, then we would be more willing to eliminate 
the requirement that  IT be shown equivalent to P. Similarly, if a specification- 
based selection criterion were used, then the IT =-- S requirement might reasonably 
be eased. In either case we are left with determining at least one equivalence. 

The assessment of specification-adequacy can be made easier by producing IT 
in a very-high-level language such as SETL [4] or Prolog [15]. Although the 
general equivalence problem is still undecidable, a major virtue of considering 
programs in such languages is that  the programs look very much like the 
specifications, and hence as a practical matter it is easier to determine equiva- 
lence. 

In the case of determining program-adequacy, we can approximate checking 
for equivalence by the following technique, which is essentially an extension of 
testing to IT and has the benefit of suggesting additional tests for the original 
program if T is not adequate. It may also indicate the type of error present if the 
program is incorrect. 

Suppose we have specification S, program P, and test set T such that  P ( t )  = 
S (t) for every t in T. IT is the program inferred from T. To judge whether T is an 
adequate test set, we generate an additional set of tests R by some means, 
possibly by random selection. (For an interesting discussion of the effectiveness 
of random testing, see [5].) We require only that  the tests in R be independent of 
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those in T. If random selection is used to create R, one might well want to 
augment this set by requiring that  certain special or boundary cases be included. 
The next step is to test P on R. 

It  is worthwhile considering the implications of the possible outcomes of the 
additional tests R. If P(r)  ~ S(r) for some r in R, then P is not correct and 
testing must continue. This is illustrated in Example 2. Assuming P (r) = S(r) for 
every r in R, we now test IT on R. If IT(r) = P(r)  for every r in R, then T is 
accepted as an adequate test set for P and S. This may be thought of as 
approximating the equivalence of IT and P, and is illustrated in Example 4. If 
IT(r) ~ P(r)  for some r in R, then IT is incorrect on some elements of R, since 
P(r)  = S(r) for all r in R. This indicates that we have not tested P sufficiently, 
since IT ~ P. Thus we must continue testing. In particular, test data should be 
similar to the elements of R where IT was incorrect, since that  part  of the 
problem's domain was not characterized sufficiently well by the original tests. A 
new program IT, must then be inferred from the augmented test set T' and the 
process repeated. Example 3 illustrates this case. 

Note that we have suggested here~that the inadequacy of a test set relative to 
the inference adequacy criterion be used as a guide for the generation of additional 
test data. Although we stated strongly in the introduction that  such a strategy is 
ill advised in the case of most adequacy criteria, we feel that, since inference 
adequacy so directly describes what is intended when we call a test set "adequate," 
this type of iterative procedure is reasonable in this case. In addition, we require 
that a new program IT, be inferred and shown to be equvalent to P and S. This 
requires the generation of a new test set R '  whose elements are independent from 
those of T' = T U R. 

An interesting and important question to consider is what is a reasonable size 
for R. Obviously if R contains only one piece of test data, we feel far less assured 
than if R contains many pieces of test data. We suggest the requirement that  
] R ] _ ] T ] .  

6. EXAMPLES 

In this section we demonstrate the application of our adequacy notion using an 
example drawn from Summers [20] with some simple variations. The system 
developed by Summers was selected because it is a real, implemented inference 
system which infers programs in a subset of LISP. The programs being tested are 
written in PL/I .  

Since LISP and PL/ I  have different input and output format conventions, we 
require that the same input (up to formatting differences) be given to both 
programs and that they produce the same output (up to formatting differences). 
In particular, in our examples, the input to the PL/ I  program will be a string of 
letters with no embedded blanks, surrounded by parentheses, whereas the input 
to the LISP program will be a list of single-letter atoms, separated by blanks. 
Thus, if the input to the PL/ I  program is (ABCD), the input to the LISP program 
is (A B C D). Similar formatting differences hold for the outputs of the programs. 

Example 1 
S: The program accepts as input a list X of length n _ 78, each of whose elements is a 
single letter. Parentheses surround the list. The program prints the input and the first haft 
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of X surrounded by parentheses if n is even or the first (n + 1)/2 elements of X surrounded 
by parentheses if n is odd. For all other inputs, the program's output is undefined. 

PI: halfeven: procedure  options (main); 
dcl instring char  (80) varying,  outstring char  (80) varying;  
dcl halflength fixed; 
pu t  list('input:'); 
get list( instring); 
put  list( instring); 
halflength = (length( instring) - 1)/2; 
i f  length(instring) - 2 = (2 * halflength) 

then  do; 
outstring = subs tr (  instring, 2, halflength ); 
outstring = "(' [] outstring [[ ')'; 
pu t  list( outstring); 

end; 
end halfeven; 

T: {((), ()), ((A), (A)), ((AB), (A)), ((ABC), (AB)), ((ABCD), (AB)), ((ABCDE), (ABC)), 
((ABCDEF), (ABC)) } 

The program P1 is shown to be incorrect by the test set. In particular, P1 does 
not produce the required output on inputs (A), (ABC), and (ABCDE). Thus, no 
program is inferred. 

E x a m p l e  2 
S: As in Example 1 

P2: P1 of Example 1 

T: {((), ()), ((AB), (A)), ((ABCD), (AB)), ((ABCDEF), (ABC))} 

IT: half[x] <-- h[x; x] 

h[x; y] <-- [atom[y] --* nil; 
T--~ cons[car[x]; h[cdr[x]; cddr[y]]]] 

Since S ( t )  -- P2 ( t )  for all t in T, IT w a s  inferred. In order  to approximate  the 
determinat ion of the equivalence of IT to S and P,  we generate  a set of r andom 
input test  da ta  R. The  values {7, 1, 6, 8}, to be used as lengths of input  strings, 
were generated by using the S E T L  [4] r andom number  generator,  request ing four 
integers between 1 and 15. 

If  an input  to P 2  is not  of even length, P 2  prints  the input  and terminates ,  
producing no other  output .  Thus  P2((A))  ~ S((A)) and P 2 ( ( A B C D E F G ) )  # 
S( (ABCDEFG)) .  Some of the randomly generated data  indicate, therefore,  tha t  
the program P 2  is incorrect.  Note  tha t  in addition, IT((ABCDEFG))  and IT((A)) 
are undefined (car is applied to an atom).  This  indicates tha t  the tes t  da ta  did 
not  sufficiently characterize the in tended computat ion.  Since the  program does 
not  agree with the specification on odd length lists, it mus t  be corrected and 
retested. 

E x a m p l e  3 
S: As in Example 1 

P3: halfall: procedure  options (main); 
dcl instring char  (80) varying,  outstring char  (80) varying;  
dcl halflength fixed; 
pu t  list('input:'); 
get list (instring); 
put list (instring); 
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halflength = ( length(  instring) - 1)/2; 
outstring = subs t r (  instring, 2, halflength ); 
outstring = "(' II outstring II ')'; 
pu t  list (outstring); 
end halfaU; 

T: {((), ()), ((AB), (A)), ((ABCD), (AB)), ((ABCDEF), (ABC))} 
IT: AS in Example 2 

Using the same set of r andom data  R as in the previous example, we see tha t  
S ( r )  = P 3( r )  for all r in R, but  IT((ABCDEFG))  and IT((A)) are undefined. This  
indicates tha t  T is not  sufficient to adequate ly  test  P 3  relative to S. Unlike the 
situation in Example  2, the additional test  da ta  of R do not  indicate an error  in 
P3.  (P3  is in fact equivalent  to S.) We note  tha t  whereas all the  input  lists in T 
were of even length, two of  the lists of R were odd, and IT  produced the incorrect  
output  for these inputs. This  indicates to us tha t  our  tes t  set T must  be augmented  
by some lists of odd length. Our new test  set T '  is 

T': {((), ()), ((A), (A)), ((AB), (A)), ((ABC), (AB)), 
((ABCD), (AB)), ((ABCDE), (ABC)), ((ABCDEF), (ABC))} 

A new program IT, must  now be inferred. Th e  system would then  infer the 
program IT,: 

half[x] *-- h[x; x] 
h[x;y] *- [atom[y] ~ nil; 

atom[cdr[y]] --> cons[car[x]; nil]; 
T --, cons[ car[ x ]; h [ cdr[ x ]; cddr[ y ]]]] 

We must  now generate a new set of random test  data  R' .  Since [ T ' [  -- 7, we 
generate seven random numbers  between 1 and 15 to use as our  tes t  set to 
approximate equivalence. The  set of numbers  generated was (15, 9, 14, 5, 6, 4, 
13}. P 3 ( r )  = S ( r )  --- IT,(r) for each r in R' .  P 3  is thus  considered adequate ly  
tested by T '  relative to the specification. 

E x a m p l e  4 
S: As in Example 1 
P 4 : P 3  of Example 3 
T: {((), ()), ((A), (A)), ((AB), (A)), ((ABC), (AB)), ((ABCD), (AB)), 

((ABCDE), (ABC)), ((ABCDEF), (ABC))} 
IT: half[x] ~ h[x;x] 

h[x;y] *-- [atom[y]-* nil; 
atom[cdr[y]] ~ cons[car[x];nil]; 
T --* cons[ car[ x ]; h[ cdr[ x ]; cddr[y]]]] 

P 4 ( t )  -- S ( t )  = IT( t )  for all t in T. Since [ T[ = 7, a set R of 7 r andom inputs  
was generated, as in Example  3. P 4 ( r )  = S ( r )  = IT(r )  for every  r in R. Th u s  P 4  
is considered adequate ly  tested by  T relative to the specification. 

7. CONCLUSIONS 

We have int roduced a definition of tes t  data  adequacy which requires tha t  the  
test  data  be sufficient to infer both  the intended and actual computat ions.  We 
have pointed out  pragmatic l imitations of this definition and considered plausible 
approximations to the requirements .  In particular,  we have considered ways of 
approximating the determinat ion of equivalence of programs. 
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Although there exist several implemented inference systems, and we in fact 
have demonstrated our adequacy criterion using one, it is not clear that such 
systems will ever be practically available. Therefore, just as we have used testing 
with random data as an approximation to the {unsolvable) problem of determining 
equivalence, it would be both interesting and useful to attempt to develop 
practical approximations to program inference. 
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