
Assessing Test Data Adequacy
through Program Inference

ELAINE J. WEYUKER

Courant Institute of Mathematical Sciences

Despite the almost universal reliance on testing as the means of locating software errors and its long
history of use, few criteria have been proposed for deciding when software has been thoroughly tested.
As a basis for the development of usable notions of test data adequacy, an abstract definition is
proposed and examined, and approximations to this definition are considered.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging. F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs;
1.2.2 [Artificial Intelligence]: Automatic Programming--program synthesis; 1.2.6 [Artificial Intel-
ligence]: Learning--induction

General Terms: Reliability, Verification

Additional Key Words and Phrases: Program testing, software testing, test data adequacy, program
inference, inductive inference

I. INTRODUOTION

T h e t e s t i ng p h a s e o f t h e s o f t w a r e d e v e l o p m e n t cyc le a t t e m p t s to expose t h e
p r e s e n c e o f as m a n y e r ro r s as pos s ib l e in a p r o g r a m a n d u l t i m a t e l y p r o v i d e t h e
d e v e l o p e r a n d u se r w i t h a be l i e f t h a t t h e p r o g r a m is l i ke ly to be cor rec t . T h e
idea l goa l is to g u a r a n t e e co r rec tnes s , b u t in a l l e x c e p t v e r y s i m p l e ca ses th i s is
i mposs ib l e to a c c o m p l i s h t h r o u g h t e s t i ng on a f in i te se t o f d a t a [13, 23]. I t is
c o m m o n for c o m m e r c i a l l y p r o d u c e d p r o g r a m s , w h i c h h a v e a p p a r e n t l y b e e n
t h o r o u g h l y t e s t ed , to exh ib i t i n c o r r e c t b e h a v i o r long a f t e r t h e y h a v e b e e n r e l e a s e d
a n d used .

T e s t i n g can be v i e w e d as a n in fe rence p r o c e s s in t h e cou r se o f w h i c h t h e t e s t e r
a t t e m p t s to d e d u c e p r o p e r t i e s o f a p r o g r a m b y o b s e r v i n g i ts b e h a v i o r on s e l e c t e d
inpu ts . W h e n t h e p r o p e r t y one des i r e s to in fe r is c o r r e c tne s s , t h e i n p u t s a r e
u sua l ly s e l e c t e d to cause t h e p r o g r a m to e x h i b i t a l l p o t e n t i a l a s p e c t s o f i t s
b e h a v i o r or to cove r a l l f ace t s of t h e spec i f i ca t ion . I f t h e s e l e c t e d i n p u t s a r e
p r o c e s s e d co r rec t ly , one t h e n infers t h a t t h e p r o g r a m wil l c o r r e c t l y p r o c e s s i t s
en t i r e i n p u t d o m a i n .

This research was supported in part by the National Science Foundation under grant MCS-82-01167.
Author's address: Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University, 251 Mercer Street, New York, NY 10012.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for ComputingMachinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0164-0925/83/1000-0641 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983, Pages 641-655.

642 Elaine J. Weyuker

Two key problems of program testing are

(1) given a program and specification, how to select data which test the program
most effectively;

(2) given a program, specification, and test data which are processed correctly,
how to determine whether or not the testing has been sufficient to justify a
claim that the program has been adequately tested.

A good survey of theoretical work on the first problem can be found in [8]. The
purpose of this paper is to consider the second problem. Myers states:

The completion criteria typically used in practice are both meaningless and counterproduc-
tive. The two most common criteria are

1. Stop when the scheduled time for testing expires.
2. Stop when all the test cases execute without detecting errors. [16, p. 122]

In this paper we examine other proposals for criteria for test data adequacy
and discuss problems associated with their use as practical guides to whether or
not testing is complete. In the spirit of [7], we first propose an ideal criterion for
adequacy and discuss its practical limitations. We then consider approximations
to this adequacy criterion.

It is important to consider what the relationship should be between adequacy
and test data selection criteria. One might argue that every test data selection
criterion is automatically an adequacy criterion, for we could simply say that the
program has been adequately tested if and only if the given selection criterion
has been satisfied. However, most currently proposed adequacy and test data
selection criteria represent conditions which are necessary for a program to be
tested completely, but certainly are not sufficient. Usually they are not even
"nearly sufficient," as it tends to be easy to construct programs containing errors
which nonetheless fulfill each of these criteria. In spite of this, it is not uncommon
for an adequacy criterion to be defined in terms of a test data selection criterion.
For example, Huang [14] advocates the selection of data to traverse each branch
of a flow graph; once this, or a reasonable approximation to it, is accomplished,
the program is considered adequately tested.

Owing to the crudeness of presently available adequacy notions, we believe
that test case selection should not be directed toward the fulfillment of the
criterion used as the adequacy notion. Rather, test data should be generated by
some appropriate independent method, and only when the tester feels that the
program has been tested on sufficient data should an (independent) adequacy
criterion be invoked. If the adequacy criterion is fulfilled, then the program is
deemed thoroughly tested; otherwise, additional test data must be generated and
the process repeated. Note that even at this stage, test data selection should not
be driven by adequacy criteria. In short, we should test to locate errors, not to
fulfill some (imperfect) criterion.

Another important question to consider is the desired relationship between the
correctness of the program being tested and the adequacy of the test data. Should
the adequate testing of a program guarantee its correctness? We argue that even
though in the ideal case testing stops only after all the errors have been located
and removed, in practice such a requirement of correctness is not realistic.
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Assessing Test Data Adequacy through Program Inference ° 643

On the other hand, it is clear that the correctness of a program should not
automatically guarantee that an arbitrary test set is adequate. One of the
weaknesses of the notion of a reliable and valid criterion as defined in [7] is that
for a correct program any criterion is reliable and valid, and hence any set of test
data is ideal. It is crucial that the properties which determine the adequacy of a
set of test data depend on the quality of the test data rather than rely solely on
the qualities of the program.

With these concerns in mind, we introduce in Section 3 an abstract notion of
adequacy which has the property that if a program has been adequately tested,
then it is correct, but the correctness of the program does not imply that it has
been adequately tested. In Section 4 we compare this notion to other adequacy
criteria, and in Section 5 we consider pragmatic approximations to this ideal
notion of adequacy. Section 6 demonstrates the use of these notions on some
examples.

2. EXISTING NOTIONS OF TEST DATA ADEQUACY

Ooodenough and Oerhart [7] define an ideal set of tests to have properties that
imply that the tests are capable of exposing all errors in a program. Thus, if a
program produces correct results on a set of ideal tests, it must be correct.
However, these properties are nonconstructive in the sense that they do not tell
us how to produce ideal tests for a given program. In addition, it is generally
impossible to determine whether a given set of tests for a program is ideal.

Lacking a guaranteed way to create tests that can conclusively demonstrate
correctness, software test developers need a method of determining when suffi-
cient testing has been done. Such an adequacy criterion for test data should
reflect the test's ability to expose errors in the program. Many of the adequacy
criteria which have been proposed and are in use today approach this natural
goal only indirectly. It is common, for example, to require that every statement,
branch, or path fulfilling some condition be traversed in order that test data be
deemed adequate [14, 24], even though it has been pointed out [3, 7, 23] that
these notions of adequacy suffer from deficiencies. In particular, it is easy to
devise simple programs and test data such that, even though the program contains
errors, the requirements of each of these criteria are fulfilled. Since the goal of
testing is to detect the presence of errors, and these notions of adequacy measure
code traversal, it is not too surprising that they are not really satisfactory
indicators of how thoroughly the program has been tested. Furthermore, these
criteria are themselves untestable in general, in the sense that there can be no
algorithm to decide for an arbitrary program whether there exist test data that
will cause a given statement, branch, or path to be traversed, or whether every
statement, branch, or path can be traversed [21].

Several other criteria for test data adequacy have been proposed and discussed.
Error seeding [16] consists of the deliberate implantation of bugs in the program
being tested. The buggy version of the program is then run on the set of test data
which has been proposed as adequate to see how many of the implanted bugs are
exposed. If k percent of the implanted bugs are located, it is then assumed that
k percent of the original bugs have been found. This technique assumes that the

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

644 Elaine J. Weyuker

types and distribution of bugs which occur unintentionally are the same as those
implanted, a convenient, but usually inaccurate, assumption.

Another proposed adequacy criterion is known as the program mutation
method [1, 3]. This system makes a series of minor changes to the program being
tested, creating a set of programs known as mutations. Some of these modifica-
tions cause program errors, while others simply yield equivalent programs. A
proposed set of test data is considered adequate if it causes every inequivalent
mutation to give an incorrect answer on some input in the set. What the authors
have done is to define implicitly what they consider to be the class of most likely
simple errors. By showing that these errors do not occur, they have not guaranteed
the absence of all errors, but rather that the program is either correct or radically
incorrect. Since the authors assume that the program being tested was written by
a "competent programmer," that is, a person who writes programs which are
"close" to being correct, the second alternative can be eliminated. A closely
related system was implemented by Hamlet and is described in [9].

All the proposed criteria for test data adequacy discussed above are program-
based. That is, they rely solely on the written code of the program being tested.
It is now being recognized that program testing techniques should be based on
both the specification and the program [6, 7, 16, 17, 22, 23]. It is certainly
important to develop test data based on all sources of information, but we believe
it is even more important to develop criteria for adequacy which judge the test
data's quality by considering all information sources. After all, test data derived
from one source may coincidentally reflect characteristics of other sources. But
an adequacy criterion is being used to judge the test data's quality, and therefore
m u s t assess that quality against all sources.

3. AN ABSTRACT NOTION OF ADEQUACY

Goodenough and Gerhart [7] use the concept of an ideal test as the basis of their
theory of program testing. The theory which they propose describes character-
istics, or sufficient conditions, for a set of tests to be ideal, but does not provide
a means of determining whether the conditions are fulfilled.

Informally, we expect a test set to be adequate or to test a program thoroughly
relative to a given specification, if the tests cover all aspects of the actual
computation performed by the program, as well as the computation intended by
the specification. Goodenough and Gerhart suggest that a test set is more likely
to be ideal if it takes account of each of the following factors:
(1) every individual branching condition in the program is represented in the

tests;
(2) every potential termination condition in the program is represented in the

tests;
(3) every variable mentioned in a program decision is partitioned correctly into

classes that are "treated the same" by the program;
(4) every condition relevant to the correct operation of the program that is

implied by the specification, knowledge of the program's data structures, or
knowledge of the general method being implemented by the program is
represented in the tests.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Assessing Test Data Adequacy through Program Inference 645

To capture precisely the notion of test set adequacy, we use the concept of
program inference, the derivation of a program from a sample of its input /output
behavior. Program testing and program inference can be thought of as being
inverse processes. The testing process begins with a program and specification,
and looks for input /output pairs that characterize every aspect of both the
intended and actual computations. Program inference starts with a set of input /
output pairs and specification, and derives a "simplest" program to fit this given
behavior.

In order to infer a program from test data, one would almost certainly need
several "central" examples to indicate the general pattern. In contrast, we might
well consider it sufficient to test a program on only one or two such central test
cases. For both testing and inference, however, boundary points have to be
explicitly described. For program inference, it is clearly necessary to identify
where each type of computation begins and ends. In the case of testing, we know
that these boundary points, and points near them, are particularly error prone
and thus must be included in the test set.

For program P, we let P(x) denote the result of P executing on input x. We let
IT denote the program inferred from the set of input /output pairs T, using some
fixed (but unspecified) inference procedure.

Several inference systems have been implemented [2, 18-20], but the precise
algorithm used to infer the program is not central to our discussion. In the
examples of Section 6, we use the system developed by Summers to demonstrate
our ideas.

For programs P and Q we write P =- Q (P is equivalent to Q) to mean that
P(x) = Q (x) for every input x (and hence P(x) is defined if and only if Q (x) is
defined).

The specification S for a program P need not be executable; in particular, S
may well be written in a natural language. Since people run programs on illegal
input data (i.e., values not included in the input domain of S), and, in fact, one
might deliberately want to include examples of such data in a test set, we have to
be able to talk about S(x) for any input x. For x in the domain of the specification,
S(x) is the value which a program intended to fulfill S should produce on input
x. For x not in the domain of S, we say that S(x) is undefined. It thus makes
sense to extend our notion of equivalence to speak of the equivalence of a program
and a specification. In certain situations one is willing to accept as both a
necessary and sufficient condition for specification S being fulfilled, that the
program P produce the correct result on every element of the input domain given
by the specification. In that case it does not matter whether the program produces
output on some illegal input, and we consider S(x) = P(x) provided that both are
defined and equal, both are undefined, or P(x) is defined and S(x) is undefined.
Under different circumstances, one might take the position that not only must
the program behave correctly on data in the domain, but also it must not produce
"normal" output for inputs outside the domain. (It may, of course, produce an
error message indicating illegal input.) In that case we would consider S(x) =
P(x) provided either both are def'med and equal or both are undefined. We might
be willing to similarly weaken our notion of equivalence for two programs.

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

646 Elaine J. Weyuker

Although T is a set of input/output pairs, we frequently speak of an input t of
T. By this we mean that t is an input value such that there exists a t', with (t, t')
a member of T.

A set of input/output pairs T is an inference adequate test set for program P
intended to fulfill specification S if and only if

(1) I T - P and
(2) Irf- S.

That is, T is adequate if and only if T contains sufficient data to infer the
computations defined by both P and S.

Note that we only check the adequacy of a test set after it fails to expose errors.
This is consistent with our view that the role of testing is to expose errors. As
long as there is a t in T such that P(t) ~ S(t), there is no question that the test
data are doing their job. It is only once P(t) = S(t) for every t in T that we have
to determine whether or not it is time to stop testing. Ideally the process ends
when the program is correct and the test data are sufficient to determine this.

If a set of test data is to be inference adequate as defined above, then the test
data must truly test each portion of the program code as well as the specification.
Furthermore, the fact that T is adequate means that IT is equivalent to both P
and S, and hence P is correct. We thus have a definition of test adequacy which
implies program correctness but which is not implied by the correctness of P.
This is consistent with our position stated in Section 1 regarding the desired
relationship between correctness and test data adequacy.

Since the determination of inference adequacy depends on the determination
of equivalence, and equivalence is, in general, undecidable, we must be willing to
consider approximations in order to make this theoretical adequacy criterion
usable. This is discussed in Section 5 and illustrated with examples in Section 6.

A related idea has been recently proposed by Hamlet [11]. His notion of a
determining test set is intended to capture the idea of a finite amount of test data
being sufficient to distinguish a program from all other programs, both equivalent
and inequivalent. Instead of considering only the input/output behavior of a
program, Hamlet includes a record of how a computation was performed in his
notion of equality. Thus, in order to be determining, there must be enough data
to allow any program with an identical computation to be identified, given the
computation details for each of the inputs in the test set. In Section 4, we compare
a similar restricted form of inference adequacy to branch adequacy.

There are three distinct types of difficulties that need to be considered in
connection with a proposed definition of test data adequacy. The first type
involves unsolvability problems. Our proposal requires the ability to infer a
program from data and to determine whether or not it is equivalent to the original
program, even though program equivalence is not, in general, a recursively
solvable problem. Note, however, that similar unsolvable problems must be faced,
although not always as directly, when using each of the other adequacy proposals
discussed above. In Section 5 we consider approximations to our adequacy
definition, since the determination of equivalence is so central to the criterion.

The second type of problem concerns usability: Is it reasonable to require the
fulfillment of the criterion? In the case of the code traversal measures, for

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Assessing Test Data Adequacy through Program Inference • 647

example, there are frequently too many paths to be able to traverse all of them.
With the mutation method, an n line program produces on the order of n 2
mutants, each of which must be distinguished from, or shown to be equivalent to,
the original. For a moderate-sized program this can require that far too many
programs be run. Our proposed criterion for adequacy encounters a different type
of intractability. In particular, the state of the art of program inference systems
is currently not well developed. In addition, if we could really show that a program
inferred from data were equivalent to the specification, we would not have to
write the program to begin with. Why not simply rely on such "automatic
programming" systems? Although this is a possible methodology for program
production in the future, it does not appear realistic today.

The third point to examine is whether the definition is really appropriate. We
have discussed this for other proposed criteria and claim that our definition
reflects what is meant intuitively by test data adequacy, since the goal is to
completely characterize by test data, all portions of both the intended and actual
computations.

In the next section we consider relationships among various adequacy criteria.
In particular, we are interested in studying the relative strength of these proposals.

4. RELATIONS AMONG ADEQUACY CRITERIA

One would like to be able to formally compare the inference criterion with the
other adequacy criteria discussed earlier. It has been shown [21] that branch
adequacy implies statement adequacy. We would like to be able to show that
inference adequacy implies branch adequacy. Unfortunately, however, this is not
true. Let P be a program containing a branch which is nontraversable (i.e., for
which there is no input value such that the branch is traversed). The program of
Figure 1 is an example. Then no set of test data can be branch adequate for P.
Nonetheless, it is certainly possible to infer from some set of test data T a
program P ' which is equivalent to both S and P. Then T is inference adequate
but not branch adequate for P. A similar argument can be made for programs P
which have inessential branches. An inessential branch is one which is travers-
able but preceded by a decision which is not necessary.

As a simple example consider the flowchart fragment of Figure 2. Precisely
because the decision is not necessary for the computation, data can be selected
which do not traverse both the T and F branches, yet which sufficiently charac-
terize the computation to enable the inference of a different, but equivalent,
program. These data would be inference adequate, but not branch adequate.

But it is not only these "anomalous" cases that prevent the implication from
being true. Suppose, for example, we were asked to write a program which
performs some actions whenever the input string is of even length. For some
reason, the program written and being tested checks explicitly for the cases of
length 0, 2, 4, 6, and 8 and then has a loop to test for all other cases. One might
say that in this implementation, the loop has been unwound five times. Now
assume that a test set including inputs of length 0, 2, and 4 is sufficient to infer
the program which performs the action with just a single test (i.e., without the
loop unwound). Then the test set would be inference adequate for the given
program, but not branch adequate. If instead of requiring the inference of a

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

648 Elaine J. Weyuker

I PRINT
'TRUE'

I .,,ox I

T < ~ F F

'TRUE' 'FALSE'
I I

I

(.ALT)

Figure 1

Figure 2

program equivalent to P, we required the program P itself to be inferred, this
problem would be solved. But that would eliminate from consideration programs
containing unreachable code or inessential branches, even though we know that
people do include (presumably unintentionally) such code in their programs. A
more important problem is that since the goal of most implemented inference
systems is to infer the simplest program consistent with the data, such a system
would only be usable to test the adequacy of "optimal" programs, and we know
that most programs do not represent the simplest possible implementation of a
specification.

Clearly, without a precise definition of inference, it is not possible to prove the
desired theorems formally. Although the intuition behind our inference adequacy
proposal is independent of the particular program inference system used, dem-
onstrating our ideas with examples requires the use of some specific inference
system. In Section 6, we present four examples of the use of inference adequacy,
using the inference system developed by Summers [20]. This system allows us to
make a precise comparison between inference adequacy and branch adequacy.

Summers states that "what the system is to do is to produce the simplest
program which satisfies the examples." Unfortunately, he does not formally
define the term "simplest"; we shall assume that such a program contains neither
nontraversable nor inessential branches, and that ff some statements of a program

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Assessing Test Data Adequacy through Program Inference 649

P are deleted to yield a new program P' , then P ' is "simpler" than P. We then
have the following theorem which relates a restricted form of inference adequacy
and branch adequacy.

THEOREM. I f P can be inferred from T, then T is branch adequate for P.

PROOF. If P is inferred from T, then P is the simplest program which is
consistent with the input/output pairs of T. Assume T is not branch adequate for
P. Then there exists a branch b which is not traversed by any t in T. Thus the
removal of the decision preceding b leads to a program P ' such that P(t) = P ' (t)
for all t in T and P ' is simpler than P. []

The next result is an immediate consequence of this theorem:

COROLLARY. Let P be a "simplest" program to fulfill specification S and let
T be a set of inference-adequate test data for P relative to S. Then T is branch
adequate for P.

It is easier to compare inference adequacy to Goodenough and Gerhart's notion
of an ideal test. The following two theorems show that inference adequacy is
strictly stronger than idealness.

THEOREM. Let P be a program intended to fulfill specification S. I f test set T
is inference adequate for P relative to S, then T is an ideal test set for P.

PROOF. Since T is inference adequate for P, it follows that P is correct and
hence any test set is ideal for P. []

THEOREM. Let P be a program intended to fulfill specification S. There exists
a test set T which is ideal for P but is not inference adequate for P relative to S.

PROOF. If P is not correct, then no test set is inference adequate for P relative
to S. Hence let P be a correct program. Then any test set, including the empty
set, is ideal for P. But clearly the empty set, and many nonempty sets, are not
inference adequate for the given program. []

It is interesting to compare the philosophy underlying inference adequacy with
that of the program mutation method which is outlined in Section 2. A primary
difference is that using our definition of adequacy, a test set is always considered
to be adequate or inadequate for a given program relative to a given specification.
In contrast, as indicated previously, the mutation method is a program-based
strategy. Still, the basic philosophies are similar. Our definition requires that
sufficient test data be generated to distinguish both the computation intended by
the specification and the computation actually performed by the program from
those produced by all nonequivalent programs. The mutation method, in contrast,
requires that the test data be sufficient to distinguish the program from only
some nonequivalent programs, namely, the programs which the authors have
deemed most likely to have been written as the result of errors in the original
program. In that sense, mutation testing may be thought of as an approximation
to our definition of adequacy.

In the next section we consider other ways of approximating inference adequacy
more directly, while addressing the practical difficulties.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

650 Elaine J. Weyuker

5. APPROXIMATIONS TO THE INFERENCE CRITERION

The preceding discussion of the general difficulties of using inference adequacy
as a pragmatic criterion, coupled with the knowledge that it is even stronger than
criteria which we have previously argued are not pragmatically usable, makes it
clear that our notion can at best be used as a guide. The next task, therefore, is
to consider practically attainable approximations to inference adequacy. There
are several ways of proceeding.

The first possibility is to place sufficient restrictions on the programs to be
considered so that questions that are unsolvable or intractable in general are
possible for programs in the restricted class. For example, inference is feasible in
many cases for programs whose behavior may be modeled by a finite-state
machine. Inference for such machines can be accomplished by performing check-
ing experiments. In addition, equivalence is decidable for finite-state machines,
and hence for such programs. Nevertheless, serious practical limitations and
difficulties are associated with such experiments, and there is an extensive
discussion of these problems in Hennie's book [12]. Hamlet [10] has discussed
these limitations vis ~ vis testing. We concur with Hamlet's assessment that this
direction is not likely to be productive.

A second way to proceed would be to look directly for practical approximations
to program inference and equivalence, and consider the relaxation of some of the
requirements. One might, for example, remove the requirement that the inferred
program be equivalent to both the specification and the program being tested.
Such a relaxation would eliminate the guarantee that an adequately tested
program is correct. If IT --- P, we say that T is program-adequate , and if IT =-- S,
T is specification-adequate.

The decision as to which of these two requirements to relax might depend
heavily on the type of test data selection criterion used. In general, if a program-
based selection criterion were used, then we would be more willing to eliminate
the requirement that IT be shown equivalent to P. Similarly, if a specification-
based selection criterion were used, then the IT =-- S requirement might reasonably
be eased. In either case we are left with determining at least one equivalence.

The assessment of specification-adequacy can be made easier by producing IT
in a very-high-level language such as SETL [4] or Prolog [15]. Although the
general equivalence problem is still undecidable, a major virtue of considering
programs in such languages is that the programs look very much like the
specifications, and hence as a practical matter it is easier to determine equiva-
lence.

In the case of determining program-adequacy, we can approximate checking
for equivalence by the following technique, which is essentially an extension of
testing to IT and has the benefit of suggesting additional tests for the original
program if T is not adequate. It may also indicate the type of error present if the
program is incorrect.

Suppose we have specification S, program P, and test set T such that P (t) =
S (t) for every t in T. IT is the program inferred from T. To judge whether T is an
adequate test set, we generate an additional set of tests R by some means,
possibly by random selection. (For an interesting discussion of the effectiveness
of random testing, see [5].) We require only that the tests in R be independent of

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Assessing Test Data Adequacy through Program Inference 651

those in T. If random selection is used to create R, one might well want to
augment this set by requiring that certain special or boundary cases be included.
The next step is to test P on R.

It is worthwhile considering the implications of the possible outcomes of the
additional tests R. If P(r) ~ S(r) for some r in R, then P is not correct and
testing must continue. This is illustrated in Example 2. Assuming P (r) = S(r) for
every r in R, we now test IT on R. If IT(r) = P(r) for every r in R, then T is
accepted as an adequate test set for P and S. This may be thought of as
approximating the equivalence of IT and P, and is illustrated in Example 4. If
IT(r) ~ P(r) for some r in R, then IT is incorrect on some elements of R, since
P(r) = S(r) for all r in R. This indicates that we have not tested P sufficiently,
since IT ~ P. Thus we must continue testing. In particular, test data should be
similar to the elements of R where IT was incorrect, since that part of the
problem's domain was not characterized sufficiently well by the original tests. A
new program IT, must then be inferred from the augmented test set T' and the
process repeated. Example 3 illustrates this case.

Note that we have suggested here~that the inadequacy of a test set relative to
the inference adequacy criterion be used as a guide for the generation of additional
test data. Although we stated strongly in the introduction that such a strategy is
ill advised in the case of most adequacy criteria, we feel that, since inference
adequacy so directly describes what is intended when we call a test set "adequate,"
this type of iterative procedure is reasonable in this case. In addition, we require
that a new program IT, be inferred and shown to be equvalent to P and S. This
requires the generation of a new test set R ' whose elements are independent from
those of T' = T U R.

An interesting and important question to consider is what is a reasonable size
for R. Obviously if R contains only one piece of test data, we feel far less assured
than if R contains many pieces of test data. We suggest the requirement that
] R] _] T] .

6. EXAMPLES

In this section we demonstrate the application of our adequacy notion using an
example drawn from Summers [20] with some simple variations. The system
developed by Summers was selected because it is a real, implemented inference
system which infers programs in a subset of LISP. The programs being tested are
written in PL/I .

Since LISP and PL/ I have different input and output format conventions, we
require that the same input (up to formatting differences) be given to both
programs and that they produce the same output (up to formatting differences).
In particular, in our examples, the input to the PL/ I program will be a string of
letters with no embedded blanks, surrounded by parentheses, whereas the input
to the LISP program will be a list of single-letter atoms, separated by blanks.
Thus, if the input to the PL/ I program is (ABCD), the input to the LISP program
is (A B C D). Similar formatting differences hold for the outputs of the programs.

Example 1
S: The program accepts as input a list X of length n _ 78, each of whose elements is a
single letter. Parentheses surround the list. The program prints the input and the first haft

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

652 Elaine J. Weyuker

of X surrounded by parentheses if n is even or the first (n + 1)/2 elements of X surrounded
by parentheses if n is odd. For all other inputs, the program's output is undefined.

PI: halfeven: procedure options (main);
dcl instring char (80) varying, outstring char (80) varying;
dcl halflength fixed;
pu t list('input:');
get list(instring);
put list(instring);
halflength = (length(instring) - 1)/2;
i f length(instring) - 2 = (2 * halflength)

then do;
outstring = subs tr (instring, 2, halflength);
outstring = "(' [] outstring [[')';
pu t list(outstring);

end;
end halfeven;

T: {((), ()), ((A), (A)), ((AB), (A)), ((ABC), (AB)), ((ABCD), (AB)), ((ABCDE), (ABC)),
((ABCDEF), (ABC)) }

The program P1 is shown to be incorrect by the test set. In particular, P1 does
not produce the required output on inputs (A), (ABC), and (ABCDE). Thus, no
program is inferred.

E x a m p l e 2
S: As in Example 1

P2: P1 of Example 1

T: {((), ()), ((AB), (A)), ((ABCD), (AB)), ((ABCDEF), (ABC))}

IT: half[x] <-- h[x; x]

h[x; y] <-- [atom[y] --* nil;
T--~ cons[car[x]; h[cdr[x]; cddr[y]]]]

Since S (t) -- P2 (t) for all t in T, IT w a s inferred. In order to approximate the
determinat ion of the equivalence of IT to S and P, we generate a set of r andom
input test da ta R. The values {7, 1, 6, 8}, to be used as lengths of input strings,
were generated by using the S E T L [4] r andom number generator, request ing four
integers between 1 and 15.

If an input to P 2 is not of even length, P 2 prints the input and terminates ,
producing no other output . Thus P2((A)) ~ S((A)) and P 2 ((A B C D E F G)) #
S((ABCDEFG)) . Some of the randomly generated data indicate, therefore, tha t
the program P 2 is incorrect. Note tha t in addition, IT((ABCDEFG)) and IT((A))
are undefined (car is applied to an atom). This indicates tha t the tes t da ta did
not sufficiently characterize the in tended computat ion. Since the program does
not agree with the specification on odd length lists, it mus t be corrected and
retested.

E x a m p l e 3
S: As in Example 1

P3: halfall: procedure options (main);
dcl instring char (80) varying, outstring char (80) varying;
dcl halflength fixed;
pu t list('input:');
get list (instring);
put list (instring);

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Assessing Test Data Adequacy through Program Inference ° 653

halflength = (length(instring) - 1)/2;
outstring = subs t r (instring, 2, halflength);
outstring = "(' II outstring II ')';
pu t list (outstring);
end halfaU;

T: {((), ()), ((AB), (A)), ((ABCD), (AB)), ((ABCDEF), (ABC))}
IT: AS in Example 2

Using the same set of r andom data R as in the previous example, we see tha t
S (r) = P 3(r) for all r in R, but IT((ABCDEFG)) and IT((A)) are undefined. This
indicates tha t T is not sufficient to adequate ly test P 3 relative to S. Unlike the
situation in Example 2, the additional test da ta of R do not indicate an error in
P3. (P3 is in fact equivalent to S.) We note tha t whereas all the input lists in T
were of even length, two of the lists of R were odd, and IT produced the incorrect
output for these inputs. This indicates to us tha t our tes t set T must be augmented
by some lists of odd length. Our new test set T ' is

T': {((), ()), ((A), (A)), ((AB), (A)), ((ABC), (AB)),
((ABCD), (AB)), ((ABCDE), (ABC)), ((ABCDEF), (ABC))}

A new program IT, must now be inferred. Th e system would then infer the
program IT,:

half[x] *-- h[x; x]
h[x;y] *- [atom[y] ~ nil;

atom[cdr[y]] --> cons[car[x]; nil];
T --, cons[car[x]; h [cdr[x]; cddr[y]]]]

We must now generate a new set of random test data R' . Since [T ' [-- 7, we
generate seven random numbers between 1 and 15 to use as our tes t set to
approximate equivalence. The set of numbers generated was (15, 9, 14, 5, 6, 4,
13}. P 3 (r) = S (r) --- IT,(r) for each r in R' . P 3 is thus considered adequate ly
tested by T ' relative to the specification.

E x a m p l e 4
S: As in Example 1
P 4 : P 3 of Example 3
T: {((), ()), ((A), (A)), ((AB), (A)), ((ABC), (AB)), ((ABCD), (AB)),

((ABCDE), (ABC)), ((ABCDEF), (ABC))}
IT: half[x] ~ h[x;x]

h[x;y] *-- [atom[y]-* nil;
atom[cdr[y]] ~ cons[car[x];nil];
T --* cons[car[x]; h[cdr[x]; cddr[y]]]]

P 4 (t) -- S (t) = IT(t) for all t in T. Since [T[= 7, a set R of 7 r andom inputs
was generated, as in Example 3. P 4 (r) = S (r) = IT(r) for every r in R. Th u s P 4
is considered adequate ly tested by T relative to the specification.

7. CONCLUSIONS

We have int roduced a definition of tes t data adequacy which requires tha t the
test data be sufficient to infer both the intended and actual computat ions. We
have pointed out pragmatic l imitations of this definition and considered plausible
approximations to the requirements . In particular, we have considered ways of
approximating the determinat ion of equivalence of programs.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

654 Elaine J. Weyuker

Although there exist several implemented inference systems, and we in fact
have demonstrated our adequacy criterion using one, it is not clear that such
systems will ever be practically available. Therefore, just as we have used testing
with random data as an approximation to the {unsolvable) problem of determining
equivalence, it would be both interesting and useful to attempt to develop
practical approximations to program inference.

ACKNOWLEDGMENTS

I am grateful to Tom Ostrand, Martin Davis, and Dick Hamlet for their many
helpful comments and suggestions.

REFERENCES
i. ACREE, A.T., DEMILLO, R.A., BUDD, T.J., LIPTON, R.J., AND SAYWARD, F.G. Mutation analysis.

Tech. Rep. GIT-ICS-79/08, Georgia Inst. of Technology, Sept. 1979.
2. BIERMANN, A.W., AND KRISHNASWAMY, R. Constructing programs from example computations.

IEEE Trans. Softw. Eng. SE-2 (Sept. 1976), 141-153.
3. DEMmLo, R.A., LIPTON, R.J., AND SAYWARD, F.G. Hints on test data selection: Help for the

practicing programmer. Computer 11, 4 (Apr. 1978), 34-41.
4. DEWAR, R.B.K., GRAND, A., LIU, S-C., AND SCHWARTZ, J.T. Programming by refinement, as

exemplified by the SETL representation sublanguage. ACM Trans. Program. Lang. Syst. 1, 1
(July 1979), 27-49.

5. DURAN, J.W., AND NTAFOS, S. A Report on Random Testing. In Proceedings 5th International
Conference on Software Engineering (San Diego, Calif., Mar. 9-12, 1981), ACM, New York, 1981,
pp. 179-183.

6. GANNON, J., McMULLIN, P., AND HAMLET, R. Data-abstraction implementation, specification,
and testing. ACM Trans. Program. Lang. Syst. 3, 3 (July 1981), 211-223.

7. GOODENOU~H, J.B., AND GERHART, S.L. Toward a theory of testing: Data selection criteria. In
Current Trends in Programming Methodology, vol. 2, R.T. Yell (Ed.). Prentice-Hall, Englewood
Cliffs, N.J., 1977, pp. 44-79.

8. GOURLAY, J.S. Theory of testing computer programs. Ph.D. dissertation, Dept. of Computer
and Communication Sciences, Univ. of Michigan, Ann Arbor, Mich., 1981.

9. HAMLET, R.G. Testing programs with the aid of a compiler. IEEE Trans. Softw. Eng. SE-3
(July 1977), 279-290.

10. HAMLET, R.G. Critique of reliability theory. In Proceedings IEEE Workshop on Software
Testing and Test Documentation (Fort Lauderdale, Fla., Dec. 1978), IEEE, New York, 1978, pp.
57-69.

11. HAMLET, R.G. Reliability theory of program testing. Acta Inf. 16 (1981), 31--43.
12. HENNIE, F.C. Finite-State Models for Logical Machines. Wiley, New York, 1968.
13. HOWDEN, W.E. Reliability of the path analysis testing strategy. IEEE Trans. Softw. Eng. SE-

2 (Sept. 1976), 208-215.
14. HUANG, J.C. An approach to program testing. Comput. Surv. 7 (ACM), 3 (Sept. 1975), 113-128.
15. KOWALSKI, R.A. Logic for Problem Solving. Elsevier North-Holland, New York, 1979.
16. MYERS, G.J. The Art of Software Testing. Wiley, New York, 1979.
17. RICHARDSON, D.J., AND CLARKE, L.A. A partition analysis method to increase program reliabil-

ity. In Proceedings 5th International Conference on Software Engineering (San Diego, Calif.,
Mar. 9-12, 1981), ACM, New York, 1981, pp. 244-253.

18. SHAW, D.E., SWARTOUT, W.R., AND GREEN, C.C. Inferring LISP programs from examples. In
Proceedings 4th International Joint Conference on Artificial Intelligence (Tbilisi, USSR, 1975),
pp. 260-267.

19. SIKLOSSY, L. AND SYKES, D.A. Automatic program synthesis from example problems. In Pro-
ceedings 4th International Joint Conference on Artificial Intelligence (Tbilisi, USSR, 1975),
268-273.

20. SUMMERS, P.D. A methodology for LISP program construction from examples. J. ACM 24, 1
(Jan. 1977), 161-75.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Assessing Test Data Adequacy through Program Inference 655

21. WEYUKER, E.J. The applicability of program schema results to programs. Int. J. Comput. Inf.
Sci. 8, 5 (Nov. 1979), 387--403.

22. WEYUKER, E.J. An error-based testing strategy. Tech. Rep. 027, Dept. of Computer Science,
Courant Institute of Mathematical Sciences, New York Univ., New York, Jan. 1981.

23. WEYUKER, E.J., AND OSTRAND, T.J. Theories of program testing and the application of revealing
subdomains. IEEE Trans. Softw. Eng. SE-6 (May 1980), 236-246.

24. WOODWARD, M.R., HEDLEY, D., AND HENNELL, M.A. Experience with path analysis and testing
of programs. IEEE Trans. Softw. Eng. SE-6 (May 1980), 278-286.

Received September 1981; revised March 1982, January 1983; accepted February 1983

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

