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Abstract. The condition based approach identifies sets of input
vectors, called conditions, for which it is possible to design a protocol
solving a distributed problem despite process crashes. This paper
investigates three related agreement problems, namely consensus,
interactive consistency, and k-set agreement, in the context of the
condition-based approach. In consensus, processes have to agree on one
of the proposed values; in interactive consistency, they have to agree
on the vector of proposed values; in k-set agreement, each process
decides on one of the proposed values, and at most k different values
can be decided on. For both consensus and interactive consistency, a
direct correlation between these problems and error correcting codes
is established. In particular, crash failures in distributed agreement
problems correspond to erasure failures in error correcting codes, and
Byzantine and value domain faults correspond to corruption errors.
It is also shown that less restrictive codes can be used to solve k-set
agreement, but without a necessity proof, which is still an open problem.

Keywords: Asynchronous Distributed System, Code Theory, Condition,
Consensus, Crash Failure, Distributed Computing, Erroneous Value,
Error-Correcting Code, Fault-Tolerance, Hamming Distance, Interactive
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1 Introduction

Context of the paper. Agreement problems are among the most fundamental
problems in designing and implementing reliable applications on top of an asyn-
chronous distributed environment prone to failures [3,21]. Among these prob-
lems, consensus has been the most widely studied. Specifically, in consensus,
each process proposes a value, and all processes have to agree on the same pro-
posed value. In the interactive consistency problem (initially stated in [30] for
the case of Byzantine failures) each process proposes a value, and processes have
to agree on the same vector, such that the i-th entry of the vector contains the
� As decided by the program committee, this paper results from the merging of [17]
and [24], which were developed separately.
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value proposed by process pi if it is correct. Interactive consistency is at least as
difficult as consensus: a solution to interactive consistency can be used to solve
consensus.

Given the importance of agreement problems in distributed computing, it is
remarkable that they cannot be solved in an asynchronous system if only one
process can fail, and only by crashing. More precisely, it can be shown that for
any protocol that tries to ensure agreement, there is an infinite run in which no
process can decide. The first such result is the FLP impossibility for consensus in
a message passing system [15], which has been extended to many other agreement
problems and distributed models [3,21].

Over the years, researchers have investigated ways of circumventing these
impossibility results. The first approach for overcoming the impossibility result
considers weaker agreement problems, such as approximate agreement [13], set
agreement [10], and randomized solutions [5]. The second approach considers
stronger environments that are only partially asynchronous [12,14] and/or have
access to failure detectors [11,18]. The third, condition based approach, is the
focus of this paper [23,25,26,27,34,35]. This approach consists of restricting the
set of possible input configurations to a distributed problem. An input configu-
ration can be represented by a vector whose entries are the individual processes’
input values in an execution. It has been shown [23] that in asynchronous envi-
ronments, consensus is solvable despite f failures when the set of allowed input
vectors obey certain conditions, which are shown to be necessary and sufficient.
This area is also related to the work of [8], which developed an approach for de-
signing algorithms that can utilize some information about the typical conditions
that are likely to hold when they are invoked.

The condition based approach can serve two complementary purposes. It can
first be viewed as an optimization tool. That is, it allows to identify scenarios
where it is always possible to guarantee termination of agreement protocols, yet
design the protocols in a way that will prevent them from reaching unsafe deci-
sions even if these scenarios (conditions) where not met. As can be seen from [23,
25,26,27], such scenarios or conditions, are likely to be common in practical sys-
tems. Second, as it becomes evident from this work (Section 5), one can utilize
the conditions as a guideline to augmenting the environment with optimal levels
of synchrony that are cheap enough to support, yet guarantee the solvability
of the corresponding agreement problem. In these cases, it is then possible to
employ highly efficient protocols that terminate in at most two communication
steps even when there are failures. Thus, in comparing this approach to failure
detectors, the latter can be viewed as an abstraction that encapsulates the mini-
mal synchrony assumptions on the environment in terms of the ability to detect
failures in order to solve agreement problems. On the other hand, a result of
this paper shows that the condition based approach can be viewed as capturing
minimal requirements on the number of synchronous communication links to
solve these problems.

Content of the paper. This paper takes the condition based approach a step fur-
ther, and establishes a direct relation between error-correcting codes and agree-
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ment problems, based on the notion of condition based agreement. In particular,
in this paper we obtain the following results. First, we show that the conditions
that allow interactive consistency to be solved despite fc crashes and fe value
domain faults is exactly the set of error correcting codes capable of recovering
from fc erasures and fe corruptions. Second, we prove that consensus can be
solved despite fc crash failures iff the condition corresponds to a code whose
Hamming distance is fc + 1 and Byzantine consensus can be solved despite fb
Byzantine faults iff the Hamming distance of the code is 2fb + 1. (There is in
fact an additional requirement needed to satisfy the validity property of consen-
sus, as discussed later in the paper.) Third, we show a code that allows solving
k-set agreement in both the benign and Byzantine failure models using a simple
protocol, but were not able to prove the necessity of the code.

The paper also presents several interesting results that are derived from the
main results mentioned above. Namely, we show that by exploring error correct-
ing codes, we can find the parameters needed by our protocols to solve interactive
consistency and consensus. On the other hand, coding theory may benefit from
this connection. As a simple example, we show that there are no perfect codes
that tolerate erasure failures, for otherwise it would have violated the consen-
sus impossibility results. Moreover, we discuss the practical implications of our
work to the design choices of distributed consensus algorithms in mixed environ-
ments, and introduce the notion of cluster-based failure detectors. Furthermore,
our results imply that coding theory can serve as a guideline to efficient deploy-
ment and utilization of sparse synchronous communication lines, as promoted,
for example, by the wormholes approach [36].

The fact that agreement problems are solvable when the input vectors are
limited to error correcting codes is not surprising. In particular, error correcting
techniques were used in [6] as basic building blocks in constructions for comput-
ing arbitrary functions in synchronous systems. Thus, the main challenges of this
work include finding algorithms that provide safety always and termination in
all favorable circumstances. Additionally, the discussion of the cost of providing
agreement, validity, and termination in all possible scenarios shed an important
insight into these problems. Finally, the fact that these conditions are necessary
for consensus is somewhat surprising, since the problem definition of consensus
allows for initial bi-valent configurations. The interesting insight that comes out
of the proofs is that these conditions are the minimal requirement to avoid initial
bi-valent configurations, and this is exactly why they are required.

Road map. The paper is made up of six sections. Section 2 introduces the com-
putation model and defines the main agreement problems we are interested in
(namely, consensus and interactive consistency). Section 3 addresses condition-
based interactive consistency and shows that the conditions that allow to solve
this problem are exactly error-correcting codes. Section 4 provides a code-based
characterization of the conditions that allow to solve consensus. Then, Section
5 focuses on the practical implications of the previous results. Finally, Section 6
concludes the paper. More details and proofs of theorems can be found in [17,
24].
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2 Model and Problem Statement

In this paper we assume a standard asynchronous shared memory model or
message passing model [3,21] according to our needs, and consider the typical
notions of processes, local histories, executions, and protocols. We also assume
a fixed set of n processes trying to solve an agreement problem. In agreement
problems, each process has an initial input value, and must decide on an output
value. In our model, in each execution at most fc < n processes can fail by
crashing. Additionally, up to fe < n/2 processes may suffer value domain errors
[32] and up to fb < n/3 incur Byzantine errors, depending on the circumstances.
We sometimes simply write f to denote the total number of failures. A process
that suffers a value domain error, also known as value-faulty, behaves as if it
had a different input value than the one actually given to it, but must otherwise
obey the protocol. On the other hand, a process that suffers a Byzantine error,
also known as Byzantine process, behaves in an arbitrary manner. A process
that does not crash and does not suffer any error is called correct; otherwise, it
is faulty.

A universe of values V is assumed, together with a default value ⊥ not in V.
In the consensus problem, each process pi proposes a value vi ∈ V (the input
value of that process), and has to decide on a value (the output value), such that
the following properties are satisfied:

– C-Agreement. No two different values are decided.
– C-Termination. A process that does not crash decides.
– C-Validity. A decided value v is a proposed value.

For Byzantine failures, we modify the requirements to be:

– BC-Agreement. No two different values are decided by correct processes.
– BC-Termination. A correct process decides.
– BC-Validity. If all proposed values are the same value v, then the value de-

cided by correct processes is v.

The interactive consistency (IC) problem is defined as follows. Each process
pi proposes a value vi ∈ V (the input value), and has to decide a vector Di (the
output value), such that the following properties are satisfied:

– IC-Agreement. No two different vectors are decided.
– IC-Termination. A process that does not crash decides.
– IC-Validity. Any decided vector D is such that D[i] ∈ {vi,⊥}, and is vi if pi

does not crash.

It is easy to see that, as noted in the Introduction, the IC problem is at least
as hard as consensus, and hence unsolvable even if at most one process can crash.
Also, it is possible to view the collection of input values to each of these problems
as an input vector to the problem. We are interested in conditions on these input
vectors that allow the IC and consensus problems to be solved despite process
failures.
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3 Condition-Based Interactive Consistency

3.1 Notation

Let the input vector associated with an execution be a vector J , such that J [i]
contains the value vi ∈ V proposed by pi or ⊥ if pi crashes initially and does
not take any steps. Let Vn be the set of all possible vectors (of size n) with all
entries in V. We typically denote by I a vector in Vn and by J a vector that
may have some entries equal to ⊥, and hence in Vn

fc
, the set of all the n-vectors

over V with at most fc entries equal to ⊥. For vectors J1, J2 ∈ Vn
fc
, J1 ≤ J2 if

∀k : J1[k] �= ⊥ ⇒ J1[k] = J2[k]. We define two functions:

– #x(J) = number of entries of J whose value is x, with x ∈ V ∪ {⊥}.
– d �⊥(I, J) = number of corresponding non-⊥ entries that differ in I and J .

When I has no entry equal to ⊥, we have d(I, J) = #⊥(J) + d �⊥(I, J). Where
d(I, J) is the Hamming distance, i.e., total number of entries where I and J
differ. Given a vector I ∈ Vn,

Ifc,fe = {J | #⊥(J) ≤ fc ∧ d �⊥(I, J) ≤ fe }
and for a subset C of Vn,

Cfc,fe =
⋃
I∈C

Ifc,fe .

Thus Ifc,fe
represents a sphere of vectors centered at I and including the vectors

J whose distances #⊥(J) and d �⊥(I, J) are bounded by fc and fe, respectively.
Also, Cfc,fe is the union of the spheres centered in vectors of C.

3.2 The CB IC Problem

As indicated in the Introduction, the idea of the condition-based approach is
considering sets of input configurations for which a particular agreement problem
can be solved. Such sets C are called conditions. In the IC problem, as in other
agreement problems, a condition C is a subset of Vn. It is assumed that C
represents input configurations that are common in practice. Hence, it is required
that the protocol terminates whenever the input configuration belongs, or could
have belonged to C. That is, if the input vector is J (some processes may have
crashed initially), termination is required if J ≤ I for some I ∈ C, since it is
possible that the processes that crashed initially had inputs that would complete
J into a vector I ∈ C. Similarly, termination is required if some (at most fe)
non-⊥ values of J can be changed to obtain a vector J ′, such that J ′ ≤ I for
I ∈ C, since it is possible that the corresponding processes are value-faulty.

More precisely, here follows a condition-based version of the interactive con-
sistency problem. Each process pi proposes a value vi ∈ V and has to decide a
vector Di. We say that an (fc, fe)-fault tolerant protocol solves the CB IC prob-
lem for a condition C, if in every execution whose proposed vector J belongs to
Vn

fc
, the protocol satisfies the following properties:
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– CB IC-Agreement. No two different vectors are decided.
– CB IC-Termination. If (1) J ∈ Cfc,fe and no more than fc processes crash, or

(2.a) no process crashes, or (2.b) a process decides, then every crash-correct
process decides.
– CB IC-Validity. If J ∈ Cfc,fe , then the decided vector D is such that J ∈
Dfc,fe

with D ∈ C.
The agreement property states that there is a single decision, even if the

input vector is not in C, guaranteeing “safety” always. The termination prop-
erty requires that the processes that do not crash must decide at least when
the circumstances are “favorable.” Those are (1) when the input could have be-
longed to C, as explained above, (provided there are no more than fc crashes
during the execution), and (2) under normal operating conditions. The validity
property eliminates trivial solutions by relating the decided vector and the pro-
posed vector. It states that, when the proposed vector belongs to at least one
sphere defined by the condition, the center of such a sphere is decided, which
is one of the possible actual inputs that could have been proposed. To simplify
the notation we do not allow ⊥ entries in the decided vector (the same results
apply).

3.3 The Interactive Consistency Conditions

We define here a set of conditions for which there is a solution to the CB IC
problem. Then, the next section presents a protocol that solves CB IC for any
condition in this set. As it can be seen from the definitions below, this set is
quite restricted. Nevertheless, in the following section we prove that those are
the only conditions for which the CB IC problem can be solved.

Similarly to the approach used in [23], we define the set of conditions in two
equivalent ways, called acceptability and legality. We start with acceptability,
which is useful to derive protocols. We then consider legality, which is useful to
prove impossibility results.

Acceptability is defined in terms of a predicate P and a function S. Given a
condition C and an input vector J ∈ Vn

fc
proposed by the processes, P (J) has to

hold when J ∈ Cfc,fe
to allow a process to decide at least in those cases. Then,

S(J) provides the process with the corresponding decision vector. To meet these
requirements, P and S have to satisfy the following properties.

– Property TC→P : I ∈ C ⇒ ∀J ∈ Ifc,fe : P (J),
– Property AP→S :

∀J1, J2 ∈ Vn
fc

: (J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2),
– Property VP→S :

∀J ∈ Vn
fc

: P (J) ⇒ S(J) = I such that I ∈ C ∧ J ∈ Ifc,fe
.

Definition 1. A condition C is (fc, fe)-acceptable if there exist a predicate P
and a function S satisfying the three previous properties.
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The following is a more geometric version of acceptability (where d(, ) is Ham-
ming distance).

Definition 2. A condition C is (fc, fe)-legal if for all distinct I1, I2 ∈ C,
d(I1, I2) ≥ 2fe + fc + 1.

We will prove that the set of (fc, fe)-acceptable conditions is the same as
the set of (fc, fe)-legal conditions, and this is precisely the set of conditions for
which there exists an (fc, fe)-fault tolerant protocol that solves CB IC.

3.4 A Shared Memory CB IC Protocol

We show in this section that for any (fc, fe)-acceptable condition C there is a
(fc, fe)-fault tolerant protocol that solves CB IC. Such a protocol is described in
Figure 1, which needs to be instantiated with parameters P and S associated
to C. Interestingly, the protocol is very similar to the condition-based consensus
protocol presented in [23], illustrating the relation between consensus and CB IC.

Computation Model

We consider a standard asynchronous system made up of n > 1 processes,
p1, . . . , pn, that communicate through a single-writer, multi-reader shared mem-
ory, and where at most fc, 1 ≤ fc < n, processes can crash [3,21].

We assume the shared memory is organized into arrays. The j-th entry of an
array X[1..n] can be read by any processes pi with an operation read(X[j]). Only
pi can write to the i-th component, X[i], and it uses the operation write(v,X[i])
for this.

To simplify the description of our algorithms, we assume two primitives,
collect and snapshot. The collect primitive is a non-atomic operation which can
be invoked by any process pi. It can only be applied to a whole array X[1..n],
and is an abbreviation for ∀j : do read(X[j]) enddo. Hence, it returns an array
of values [a1, . . . , an] such that aj is the value returned by read(X[j]). The
processes can take atomic snapshots of any of the shared arrays: snapshot(X)
allows a process pj to atomically read the content of all the registers of the array
X. This assumption is made without loss of generality, since atomic snapshots
can be wait-free implemented from single-writer multi-reader registers (although
there is a cost in terms of efficiency: the best known simulation has O(n log n)
time complexity [2]).

Each shared register is initialized to a default value ⊥. In addition to the
shared memory, each process has a local memory. The subindex i is used to
denote pi’s local variables.

Protocol

A process pi starts by invoking SM CB IC (vi) with some vi ∈ V. It terminates
when it executes the statement return (line 7, 9 or 10) which provides it with a
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decision vector. The shared memory is made up of two arrays of atomic registers,
V [1..n] andW [1..n] (the aim of V [i] is to contain the value proposed by pi, while
the aim ofW [i] is to contain the vector pi suggests to decide on or � if pi cannot
decide by itself). The protocol has a three part structure.

– Local view determination: lines 1-3. A process pi first writes into V [i] the
value it proposes (line 1). Then, it reads the array V until it gets a vector
(Vi) including at least (n− fc) proposed values.
– Wait-free condition-dependent part: lines 4-5. If P (Vi) holds, pi computes its

view wi = [a1, . . . , an] of the decided vector. If pi cannot decide, it sets wi

to �. pi also writes wi in the shared registerW [i] to help the other processes
decide.
– Termination part: lines 6-11. If wi �= �, then pi unilaterally decides the

vector wi. If it cannot decide by itself (wi = �) pi waits until it knows (1)
either that another process pj has unilaterally decided, (2) or that no process
can unilaterally decides. In the first case, it decides pj ’s suggested vector,
while in the second case it decides the full vector of proposed values.

Function SM CB IC (vi)

(1) write(vi, V [i]);
(2) repeat Vi ← collect(V ) until (#⊥(Vi) ≤ fc) endrepeat;
(3) Vi ← snapshot(V );
(4) if P (Vi) then wi ← S(Vi) else wi ← � endif;
(5) write(wi, W [i]);
(6) if (wi �= �)
(7) then return (wi)
(8) else repeat Wi ← collect(W )

until (∃Wi[j] �= ⊥,�) ∨ (Wi = [�, . . . ,�])
endrepeat;

(9) if (∃Wi[j] �= ⊥,�) then return (Wi[j])
(10) else return

(
collect(V )

)

(11) endif
(12) endif

Fig. 1. A Shared Memory CB IC Protocol

Theorem 1. The protocol described in Figure 1 is an (fc, fe)-fault tolerant pro-
tocol that solves the CB IC problem for a condition C, when it is instantiated
with P, S associated to C, and C is (fc, fe)-acceptable.

Proof Follows directly from the next three Lemmas. ✷Theorem 1

In the following J denotes the vector actually proposed by the processes.
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Lemma 1. CB IC-Validity. If J ∈ Cfc,fe , then the decided vector D is such that
J ∈ Dfc,fe with D ∈ C.
Proof There are three cases according to the line (7, 9 or 10) at which a process
decides.

– pi decides at line 7. In that case, P (Vi) held at line 4. Moreover, Vi ≤ J
and #⊥(Vi) ≤ fc, from which we conclude that if J ∈ Cfc,fe , we also have
Vi ∈ Cfc,fe

. It then follows from VC→P that S(Vi) = I with I ∈ C and
J ∈ Ifc,fe

.
– pi decides at line 9. In that case, pi decides a vector decided by another

process at line 7. CB IC-Validity follows from the previous item.
– pi decides at line 10. In that case W = [�, . . . ,�], i.e., no process has

suggested a decision vector. Hence, for any pj , P (Vj) was false. Combining
this with the TC→P property, we get that the input vector J does not belong
to Cfc,fe , and CB IC-Validity trivially follows.

✷Lemma 1

Lemma 2. CB IC-Termination. If (1) J ∈ Cfc,fe and no more than fc processes
crash, or (2.a) no process crashes, or (2.b) a process decides, then every crash-
correct process decides.

Proof We consider the three cases separately.

– Let us assume that J ∈ Cfc,fe
and no more than fc processes crash.

Let pi be a crash-correct process. Let us first observe that, as at most fc
processes crash, pi cannot block forever at line 2. Moreover, let Vi the local
view obtained by pi. As J ∈ Cfc,fe , Vi ≤ J and #⊥(Vi) ≤ fc, we have
Vi ∈ Cfc,fe , i.e., ∃D ∈ C such that Vi ∈ Dfc,fe . It then follows from the
TC→P property that P (Vi) holds. Consequently, wi �= � and pi decides at
line 7.
– Let us assume that no process crashes and P (Vi) holds for no process pi.

(Hence J /∈ Cfc,fe ; otherwise, the previous item would apply.) As there is no
crash, no process blocks forever at line 2. Moreover, as P (Vi) holds for no
process pi and no process crashes,W becomes eventually equal to [�, . . . ,�].
Consequently, no process blocks forever at line 8, and each process executes
line 10 and terminates.
– Let us assume that some process (pj) decides. In that case, as pj executed

line 2, we conclude that at least (n− fc) processes have deposited the value
they propose into V , and consequently, no crash-correct process can block
forever at line 2.
Let us consider the case where pj decides at line 7. Let pi be a crash-correct
process that does not decide at line 7. As no crash-correct process pi blocks
forever at line 2, pi benefits from the vector deposited by pj into W [j] to
decide at line 9.
Let us consider the case where pj decides at line 9. In that case, some process
pk deposited a vector into W [k]. As we have seen just previously, all crash-
correct processes decide.
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Let us finally consider the case where pj decides at line 10. Then W =
[�, . . . ,�], and consequently, no process decided at line 7 or 9. But, as
W = [�, . . . ,�], any crash-correct process eventually exits line 8 and then
decides at line 10.

✷Lemma 2

The following corollary follows from the proof of the previous theorem.

Corollary 1. Either all processes that decide do it at lines 7/9, or at line 10.

Lemma 3. CB IC-Agreement. No two different vectors are decided.

Proof Let us consider two processes pi and pj that decide. By Corollary 1, there
are two cases. Moreover, if a process decides at line 9, it decides a vector decided
by another process at line 7. So, in the following we only consider decisions at
line 7 or 10.

– Both pi and pj decide at line 7. In that case, their local views Vi and Vj

are such that P (Vi) and P (Vj) hold. Since the snapshot invocations can
be ordered, these local views are ordered. Without loss of generality let us
consider Vi ≤ Vj . As Vi ≤ Vj and both P (Vi) and P (Vj) hold, we conclude
from the AP→S property that S(Vi) = S(Vj).
– Both pi and pj decide at line 10. In that case, it follows from the protocol

text that they decide the same vector (made up of the n proposed values).

✷Lemma 3

3.5 Characterizing the Interactive Consistency Conditions

A Characterization
In this section we prove the opposite of Theorem 1: if there is a (fc, fe)-fault
tolerant protocol that solves CB IC for C, then C must be (fc, fe)-acceptable.
The proof extends ideas initially proposed in [9,29] for f = 1. We start by
establishing a bridge from legality to acceptability.

Lemma 4. An (fc, fe)-legal condition is (fc, fe)-acceptable.

Proof Let C be an (fc, fe)-legal condition. We show that there are a predicate
P and a function S satisfying the properties TC→P , AP→S and VP→S defined
in Section 3.3.

As C is (fc, fe)-legal, for any two distinct input vectors I1 and I2 we have
d(I1, I2) ≥ 2fe + fc + 1, from which we conclude that Cfc,fe is made up of non-
intersecting spheres, each centered at a vector I of C. Let us define P and S as
follows:

– P (J) holds iff J belongs to a sphere (i.e., ∃I ∈ C : J ∈ Ifc,fe
),

– S(J) outputs the center I of the sphere to which J belongs.
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The properties TC→P and VP→S are trivially satisfied by these definitions. Let us
consider the property AP→S . If P (J1) holds, J1 belongs to a sphere centered at
I1 ∈ C (i.e., J1 ∈ I1fc,fe

). Moreover, due to definition of S, we have S(J1) = I1.
Similarly for J2, if P (J2) holds, J2 belongs to a sphere centered at I2 ∈ C (i.e.,
J2 ∈ I2fc,fe

) and S(J2) = I2.
If I1 �= I2, we have d(I1, I2) ≥ 2fe + fc + 1 from the legality definition.

It follows that there is at least one non-⊥ entry in which J1 and J2 differ.
Consequently, in that case, we cannot have J1 ≤ J2.

Let us now consider the additional assumption stated in AP→S , namely,
J1 ≤ J2. From the previous observation, we conclude that, if P (J1) and P (J2)
hold and J1 ≤ J2, then J1 and J2 belong to the same sphere, and consequently
have the same center I. Hence, S(J1) = S(J2) = I. ✷Lemma 4

Lemma 5. If there is an (fc, fe)-fault tolerant protocol that solves CB IC for C,
then C must be (fc, fe)-legal. (Proof in [24].)

We can now prove our main result.

Theorem 2. The CB IC problem for a condition C is (fc, fe)-fault tolerant solv-
able iff C is (fc, fe)-legal.

Proof By Lemma 5 if the CB IC problem for a condition C is (fc, fe)-fault
tolerant solvable then C is (fc, fe)-legal. By Lemma 4 C is (fc, fe)-acceptable. By
Theorem 1 the CB IC problem for C is (fc, fe)-fault tolerant solvable. ✷Theorem 2

Correspondence with Error-Correcting Codes

A one-to-one correspondence. Consider an error-correcting code (ECC) problem
where a sender wants to reliably send words to a receiver through an unreliable
channel. Each word is represented by a sequence of k digits from an alphabet A,
and is called a codeword. A code consists of a set of codewords. The channel can
erase or alter digits. The problem is to design a code that allows the receiver to
recover the word sent from the word it receives (the received word can contain
erased digits1 and modified digits). We assume all codewords are of the same
length, n. The ECC theory has been widely studied and has applications in many
diverse branches of mathematics and engineering (see any textbook, e.g., [4]).

Although its goal is different, the CB IC problem can actually be associated
in a one-to-one correspondence with the ECC problem. More precisely, we have
the following correspondences:

– alphabet A/set of values V,
– codeword/ vector of the condition,
– codeword length/number of processes (n),

1 An erasure occurs when the received digit does not belong to the alphabet A. Such
a digit is replaced by a default value (⊥).
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– code/condition,
– erasure/process crash (upper bounded by fc),
– alteration/erroneous proposal (upper bounded by fe),
– word received/proposed input vector,
– decoding/deciding.

On the necessary and sufficient condition. We have stated in Theorem 2 that the
CB IC problem is (fc, fe)-fault tolerant solvable for a condition C iff ∀I1, I2 ∈ C:
(I1 �= I2) ⇒ d(I1, I2) ≥ 2fe+fc+1. The “corresponding” code theory theorem
(whose proof appears in any texbook on error-correcting codes, e.g., Theorem
5.17 in [4], pages 96-97) is stated as follows:

“A code C is t error/e erasure decoding iff its minimal Hamming distance
is ≥ 2t+ e+ 1.”

In this sense, CB IC and ECC are equivalent problems:

Theorem 3. The CB IC problem is (fc, fe)-fault tolerant solvable for a condition
C iff C is fe error/fc erasure decoding.

4 A Coding Theory-Based Approach to Consensus

An input vector can actually be seen as a codeword made up of n digits (one
per process) that encode the decision value. This observation [17] leads to an-
other way to characterize the set of conditions that allow to solve the consensus
problem. The discussion that follows uses the message passing model. As shown
in [17], the results hold also in the shared memory model. So, similarly to [23],
the initial input values of all processes is seen as a vector of Vn (the set of all pos-
sible input vectors). We say that an f-fault tolerant protocol solves the consensus
problem for a given condition C if it guarantees the following properties2:

– CB C-Validity. If the input vector belongs to the condition C, then a decided
value is a proposed value.
– CB C-Agreement. If the input vector belongs to the condition C, then no two

different values are decided.
– CB C-Guaranteed Termination. If at most f processes fail and the input vector

belong to C, then every correct process pi eventually decides.

For Byzantine failures we use the following definition of validity and agreement:

– CB BC-Validity. If all input values are v, then only v can be decided by a
correct process.
– CB BC-Agreement. If the input vector belongs to the condition C, then no

two different values are decided by correct processes.
2 Notice that this condition-based definition of the consensus problem is weaker than
the one that we introduced in [23]. The definition in [23] requires validity and agree-
ment to hold even when the input vector does not belong to the condition, (i.e.,
C-Validity and C-Agreement), and termination to additionally hold whenever there
are no failures or a process decides. Section 4.2 discusses these issues.
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4.1 Characterizing the Input Vectors with Codes

We define the initial configuration c of the system as bi-valent if there are two
executions σ1 and σ2 that start with c such that the decision value in σ1 is v1, the
decision value in σ2 is v2, and v1 �= v2. Otherwise, the configuration is univalent.

In our characterization, each allowed input vector must always lead the sys-
tem to the same decision value. In other words, the initial configuration of the
system is not allowed to be bi-valent. Thus, we can treat the set of allowed input
vectors as codewords coding the possible decision values. Clearly, in the case of
consensus, since the decision value has to be unique, the code maps words from
Vn to values in V. Also, due to the validity requirement of consensus, we must
limit ourselves to codes in which at least one of the digits of every codeword
corresponding to a value v ∈ V has to be v. Thus we have:

Definition 3. A d-admissible code is a mapping C : Vn → V such that the
Hamming distance of every two codewords coding different values in V is at least
d and at least one of the digits in each codeword mapped to a value v ∈ V is v.

Solving Consensus with d-Admissible Codes

A simple generic protocol for solving the consensus problem using d-admissible
codes in both the crash failure and Byzantine failure models is presented in
Figure 2 (this protocol combines protocols described in [17,23]). Vi is the vector
of initial values heard so far by process pi; code is a set of codewords defining
the allowed input vectors.

Function MP Consensus(vi)

(1) ∀j : send val1(vi, i) to pj ;
(2) wait until (at least (n− f) val1 msgs have been delivered);
(3) ∀j : do if val1(vj , j) has been delivered then Vi[j]← vj

(4) else Vi[j]← ⊥ endif
(5) enddo;
(6) wi ← match (Vi,code);
(7) if wi �= ⊥ then return(w) endif

Fig. 2. A Message-Passing Consensus Protocol

For the crash failures model with at most f = fc failures, it is sufficient to use
an (fc +1)-admissible code, while for the Byzantine failures model with at most
f = fb failures we have to use a (2fb + 1)-admissible code. Also, the protocol
uses a subroutine called match to check whether the digits received so far can be
matched to any codeword. It returns ⊥ if no matching was found; otherwise, it
returns the value of the decoded word corresponding to the codeword matched.
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More precisely, each digit that was not received from some process is treated
as the special value ⊥ in the vector of received digits. Then, all match has to do
is to check if the distance of this vector is at most f from some legal codeword.
If it is, match returns the value mapped to by this codeword. Otherwise, match
returns ⊥. Note that by the specific codes that we use, the same rule applies
in both benign and Byzantine failures, and in both cases, if there are at most
f failures, we are guaranteed to find such a codeword. Also, it is possible that
there would be several possible codewords to chose from, but in this case they
all have to be mapped to the same value, so any of them can be picked. The
match routine is the equivalent of the predicate P and function S introduced
in [23]. The exact implementation of the match routine is outside the scope of
this paper. Here we simply rely on coding theory to guarantee that it exists.

It is not hard to show [17] that the previous protocol satisfies validity, agree-
ment, and termination when the input vectors are indeed codewords of some
(fc + 1)-admissible (or (2fb + 1)-admissible) code. Section 4.2 discusses the im-
plications of satisfying validity and agreement when the input vectors are not
always codewords, and termination when the input vectors are not codewords
but there are no failures.

Necessity of d-Admissibility for Solving Consensus

The consensus problem considered in Theorem 4 (resp. Theorem 5) is defined by
the following three properties: CB C-Agreement (resp.CB BC-Agreement), CB C-
Guaranteed Termination and CB C-Validity (resp. CB BC-Validity).

Theorem 4. If a condition C allows to solve consensus in the crash failure
model (with at most fc failures), then C consists of codewords of an (fc + 1)-
admissible code.

Proof To prove the theorem, we first point the reader to the proof of the
consensus impossibility result as stated in [3]. In that proof, it was shown that if
there is a bi-valent initial configuration, then consensus cannot be solved. That
proof is for the case of a single failure, but the case of fc failures is completely
analogous. So, all that we have to show is that if the initial input vectors allowed
by the condition are not words of an (fc +1)-admissible code, then there has to
be a bi-valent initial configuration.

Assume, by way of contradiction, that C does not correspond to an (fc +1)-
admissible code and there is no bi-valent initial configuration. Thus, there are
two allowed univalent initial configurations c1 and c2 that differ in less than
fc + 1 processes, yet each one leads to a different value v1 and v2 respectively.
Denote by P ′ = pi1 , . . . , pik

(k ≤ fc) the processes that differ between c1 and
c2. Hence, there is an execution σ1 of the protocol that starts at c1 in which all
processes in P ′ fail before managing to take any action. All other processes must
decide in σ1 on value v1 without receiving any message from any process in P ′.
Let pj be one of the processes that decides in σ1 on v1, HPpj be the history
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prefix of pj at the moment it decides, and CHpj
(σ1, HPpj ) be its causal history

at that point.
Since the network latency is unbounded, we can create another execution σ2

that starts in c2, no process fails during σ2, but CHpj (σ1, HPpj ) is also a causal
history of pj in σ2. Given the determinism of pj , it must also decide in σ2 on the
same value v1. Since the protocol is assumed to solve consensus, all processes
must decide v1. Thus, either c2 leads to v1, or c2 is bi-valent. A contradiction.

✷Theorem 4

Theorem 5. If a condition C allows to solve consensus in the Byzantine failure
model (with at most fb failures), then C consists of codewords of a (2fb + 1)-
admissible code.

Proof To prove the theorem, we first note that the proof in [3] that consensus
is not solvable if there is an initial bi-valent configuration is also valid for the
Byzantine case. Thus, all that we have to show is that if the initial input vectors
allowed by the condition are not words of a (2fb+1)-admissible code, then there
has to be a bi-valent initial configuration.

Assume by way of contradiction that C does not correspond to a (2fb + 1)-
admissible code and there is no bi-valent initial configuration. Thus, there are
two allowed univalent initial configurations c1 and c2 that differ in less than
2fb + 1 processes, yet each one leads to a different value v1 and v2 respectively.
We can divide the set of processes whose initial state is different in c1 and c2
into two subsets, P ′ and P ′′ such that |P ′| ≤ |P ′′| ≤ f . Due to termination,
there is an execution σ1 of the protocol that starts at c1 in which all processes
in P ′ crash before managing to take any action. All other processes must decide
in σ1 on value v1 without receiving any message from any process in P ′. Let pj

be one of the processes in N \ P ′′ that decides in σ1 on v1, HPpj be the history
prefix of pj at the moment it decides, and CHpj

(σ1, HPpj ) be its causal history
at that point.

Since the network latency is unbounded, we can create the following execu-
tion σ2 that starts in c2. In σ2, all processes in P ′′ suffer the Byzantine failure
that makes them behave as if their initial configuration was as in c1, but oth-
erwise obey the protocol. No process crashes during σ2. Due to the unbounded
message latency, all messages of processes in P ′ are delayed enough so that
CHpj

(σ1, HPpj
) is also a causal history of pj in σ2. Given the determinism of

pj , it must also decide in σ2 on the same value v1. Since the protocol is assumed
to solve consensus, all correct processes must decide v1. Thus, either c2 leads to
v1, or c2 is bi-valent. A contradiction. ✷Theorem 5

4.2 Strict Condition-Based Consensus

In order to weaken the dependency of the possible solutions on whether the input
vectors are indeed codewords, we can make any of the validity, agreement, and
termination requirements more strict. Here we discuss the consequences of doing
so.
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Agreement

In order to ensure that agreement holds even when the input vectors are not
codewords (i.e., C-Agreement), it is possible to augment the protocol described
in Figure 2 with additional checks that verify that all decided values are the
same. The modified protocol is depicted in Figure 3. It guarantees agreement
whenever f = fc < n/2 in the benign failures model and when f = fb < n/3
in the Byzantine model. The protocol also guarantees CB-C-Validity and CB-C-
Guaranteed Termination.

Function MP Consensus(vi)

(1) ∀j : send val1(vi, i) to pj ;
(2) wait until (at least (n− f) val1 msgs have been delivered);
(3) ∀j : do if val1(vj , j) has been delivered then Vi[j]← vj

(4) else Vi[j]← ⊥ endif
(5) enddo;
(6) wi ← match (Vi,code);
(7) ∀j : send val2(wi, i) to pj ;
(8) repeat wait for a new val2(wj , j) message;
(9) if val2(w,−) with the same non-⊥ value w has
(10) been received from at least (n− f) processes
(11) then return(w)
(12) endif
(13) endrepeat

Fig. 3. An Always Safe Message-Passing Consensus Protocol

Validity

The previous protocol (Figure 3) might not satisfy the C-Validity property when
the input vector is not a codeword of an admissible code (it only satisfies CB C-
Validity). A slightly stronger definition of admissibility allows to overcome this
problem, namely:

Definition 4. A strongly d-admissible code is a mapping C : Vn → V such that
the Hamming distance of every two codewords coding different values in V is at
least d and at least d of the digits in each codeword mapped to a value v ∈ V are
v.

We say that an f-fault tolerant protocol solves the strict consensus problem for a
given condition C if it guarantees C-Validity, C-Agreement, and CB-C-Guaranteed
Termination. Clearly, the protocol of Figure 3 solves strict consensus for strongly
(f + 1)-admissible codes.
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Theorem 6. A condition C allows to solve strict consensus in the crash failure
model (with at most fc failures), iff C consists of codewords of a strongly (fc+1)-
admissible code.

Proof First, note that the proof of Theorem 4 holds here as well. The only
thing we need to show is that C-Validity cannot be guaranteed unless the code
satisfies the property that each word is mapped to a value that appears in at
least fc +1 of its digits. Assume by way of contradiction that there is a protocol
P that solves strict consensus for a condition C that includes an allowed input
vector V in which no value appears more than k ≤ fc times. In other words,
every execution of P that starts with V has to terminate.

As discussed before, since P solves consensus for C, V must be an initial uni-
valent configuration. Consider an execution of P that starts with V and decides
some value v. Thus, every execution of P that starts with V must decide v. Since
v only appears k ≤ fc times in V , the execution E in which all processes whose
initial value is v crash before sending any message must also terminate with a
decision value v. Denote the set of corresponding processes by S. Therefore, there
exists an execution E′ in which the input vector is the same as V except for all
processes in S for which the input value is different, and during E′ all processes
in S crash immediately. For processes outside S, E′ is indistinguishable from E,
and therefor E′ also terminates with a decision value v. However, this violates
C-Validity. ✷Theorem 6

Note that instead of using strongly d-admissible codes, we could use a weaker
definition of validity that only requires it to hold if either all initial values are
the same, or when there are no failures. Such a definition is used in any case for
the Byzantine failure model.

It is shown in [17] that strongly (f + 1)-admissible codes are the same as
f -acceptable codes in [23]. In particular, Condition C1 in [23] requires that the
most popular value in a vector in C1 appear at least f + 1 times more than the
second most popular value in the same vector. Clearly, any two vectors that lead
to different decision values and obey this condition must differ in at least f + 1
places, and thus the Hamming distance of the code is f + 1.

Condition C2 in [23] requires that the largest value in a vector in C2 appear
at least f + 1 times. For any condition defined on values from some range V,
any vector mapped to a value v ∈ V must include at least f + 1 v entries and
no entries larger than v. Consider two vectors V1 and V2 leading to different
decision values v and u such that v > u. Thus, V1 must include at least f + 1 v
entries, while V2 does not include any v entries, which means that they differ in
at least f +1 entries. In other words, the Hamming distance of the code is f +1.

Termination

To guarantee termination in the crash failure model with fc < n/2, both (1)
when the input vector is a codeword and (2) when the input vector is not a
codeword and there are no failures or a process decides, it is possible to use the
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protocols described in [23]. At present, we have no solution for the Byzantine
model.

4.3 k-Set Consensus

The augmented definition of k-set consensus when there are conditions on the
input vectors is:

– CB K-Validity. If the input vector belongs to the condition C, then a decided
value is a proposed value.
– CB K-Agreement. If the input vector belongs to the condition C, then at

most k distinct values are decided.
– CB K-Guaranteed Termination. If at most f processes fail and the input vector

belongs to the condition C, then eventually every correct process pi decides.

For the case of Byzantine faults we use the following definitions of validity and
agreement:

– CB KB-Validity. If the initial value of all processes is the same, then every
correct process that decides has to decide on this value.
– CB KB-Agreement. If the input vector belongs to the condition C, then at

most k distinct values are decided by the correct processes.

Next, we define (d, k)-admissible codes:

Definition 5. A (d, k)-admissible code is a mapping C : Vn → V such that: (a)
for every codeword w in C, all codewords whose Hamming distance from w is
less than d are mapped to at most k different values, and (b) at least one of the
digits in each codeword mapped to a value v ∈ V is v.

Given the above definition, we claim that k-set consensus can be solved if
the input vectors are codewords of a (fc + 1, k)-admissible code in the crash
failures model, and (2fb + 1, k)-admissible code in the Byzantine model. Note
that by slightly changing the behavior of the match routine in the protocol in
Figure 2, we can use the protocol without any additional modifications to solve
k-set agreement for the above codes. The only difference is that now match
checks whether the Hamming distance of the vector of received digits from any
codeword is at most fc (fb). If the answer is yes, match returns the value pointed
to by the closest of these codewords, breaking symmetry arbitrarily. Otherwise,
match returns ⊥.

5 Practical Implications of the Results

5.1 Benefiting from Error-Correcting Code Theory

Following the results of Sections 3 and 4, we can use known t error/e erasure
correcting codes to define conditions suited to the CB IC and consensus problems.
This is illustrated below with a simple example using a linear code. Interestingly,
linear codes can be composed. An additional benefit of using coding theory is
that some codes have been proved to be maximal. Using such a code gives a
condition that contain as many input vectors as possible.
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From a code ... Let us consider the following linear code C, namely, the binary
[n,M, d]-code where n = 6 is the length of a codeword, M = 2k = 8 is the
number of codewords (k being the length of the words to be encoded) and d = 3
is the code minimal Hamming distance. As d = 3, C can detect and correct one
error. The set C of codewords can be obtained from a generator matrix G made
up of k linearly independent size n vectors. Considering a particular generator
matrix G, we get the following set C of 8 codewords:

0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1

1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1

These codewords can also be defined from a check matrix A. This matrix is
obtained from G: it is such that A GT = 0 (GT is the transpose of G, and 0 is
a k × k zero matrix). We have:

A =



1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1




Let w be a received word. It is a codeword if its syndrome is equal to the 0
vector (the syndrome of a vector w is the value AwT , where wT is the transpose
of w). When A wT �= 0, the syndrome value defines the altered position of w.

... To a condition. Let us now consider a system made up of n = 6 processes.
The previous 8 vectors define a condition C on the vocabulary V = {0, 1}. Due
to Definition 2 and Theorem 2, C can cope with fc = 2 process crashes and
fe = 0 erroneous proposals (or alternatively, fc = 0 and fe = 1). The matrix A
provides a simple way to define the condition C for the CB IC problem:

C = {I such that syndrome(I) = 0}

where syndrome(I) = A IT . It is possible to show that the following accept-
ability parameters (predicate P and function S) can be associated with such a
condition C:

P (J) = ∃I : such that J ∈ Ifc,fe
∧ syndrome(I) = 0,

S(J) = I such that J ∈ Ifc,fe ∧ syndrome(I) = 0.

The use of the syndrome function allows for an efficient determination of the in-
put vectors I defining a legal condition. As the CB IC problem directly considers
input vectors of size n (each corresponding to a codeword), the generator matrix
G is useless for this problem.

5.2 Benefiting from Distributed Computing Results

Let a code C, |C| > 1, be (fc, fe)-perfect if the spheres whose centers are the
vectors I of C define a partition of Vn

fc
, i.e.,
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∀I1, I2 ∈ C : I1 �= I2 : I1fc,fe ∩ I1fc,fe = ∅ and Vn
fc

=
⋃
I∈C

Ifc,fe
.

When fc = 0, the notion of (fc, fe)-perfect code is the coding theory notion of
perfect code. Interestingly, perfect codes are known. (They are rare, and have the
property not to correctly decode a received word with more than fe errors.) The
following is a simple example of using distributed computing to prove a result in
coding theory. It states that code perfection does not exist when a code system
has to cope with digit erasures.

Theorem 7. There is no (fc, fe)-perfect code for fc ≥ 1, fe < n.

Proof Let us assume that such an (fc, fe)-perfect code C does exist. Then,
due to the definition of (fc, fe)-perfection, we have Vn

fc
=

⋃
I∈C Ifc,fe , i.e., all

the possible input vectors are included. As C is (fc, fe)-perfect, no two spheres
intersect. Consequently, C is (fc, fe)-legal, i.e., (fc, fe)-acceptable. This means
that there is a CB IC protocol that always terminates when the number of crashes
is ≤ fc. Consequently, in every execution all decided vectors are equal. Moreover,
at least two different vectors are decided, since the code is non-trivial. This is a
version of consensus that is known to be unsolvable in the presence of crashes
(an implication of FLP [15], e.g. [22]). It follows that C is not (fc, 0)-perfect.

✷Theorem 7

Another trivial result that stems from this work is that error correcting data,
e.g., parity bits (and in general xor), cannot be computed in asynchronous en-
vironments prone to failures.

5.3 Agreement in Mixed Environments

The practical implication of the previous coding-based characterization is the
ability to solve consensus in mixed environments. That is, assume that a set
of n processes is split into clusters, where in each cluster the communication
is synchronous enough so that consensus can be solved, but between clusters
the system is asynchronous. Clusters can correspond to different LANs, or a
single large LAN can be arbitrarily divided into several clusters for scalability
purposes. With such a division into clusters, it is possible to have all nodes of
a single cluster initially decide on one value, and use that value as their input
value to the global consensus problem, which will be run among all processes
using the protocol similar to the one described in Figure 2. If the size of the
smallest cluster is at least fc + 1 (resp., 2fb + 1), we can solve consensus in the
global system despite fc crash failures (resp., fb Byzantine failures).

A shortcoming of this approach is that if clusters become disconnected, the
previous protocol can block until they reconnect again. Another shortcoming of
the above scheme is that it requires a high degree of redundancy in the system.
However, if we look at error correcting codes, for both erasure and alteration er-
rors, there are more efficient codes. For example, parity can be used to overcome
one digit erasure with only one extra digit, while Hamming code can correct
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one digit flip with an overhead of log(n) digits. But, in both cases, some digits
in each codeword depend on many other digits in the same word. Practically
speaking, given a code, if some digit b depends on the values of some other
digits b1, . . . , bl, it indicates that process b needs synchronous communication
links with b1, . . . , bl. Thus, it would be interesting to find codes that present
a good tradeoff between the number of digits each digit depends on, and the
digit overhead for error correction. That is, small overhead implies the ability
to solve consensus with small hardware redundancy, while low dependency be-
tween digits means that it can be applied more easily to real settings, since it
requires weaker synchrony assumptions. Looking at linear codes might be a good
direction for this [4,7].

Let us notice that Pfitzmann andWaidner have shown how to solve Byzantine
agreement for any number of faults in the presence of a reliable and secure
multicast during a precomputation phase [31]. Also, Fitzi and Maurer showed
how to obtain Global Broadcast in the presence of up to n/2 Byzantine failures
based on a Local Broadcast service [16]. However, none of these works draws
any relation from agreement to error correction.

5.4 Cluster-Based Failure Detectors

The above discussion indicates that it is possible to solve consensus despite a
small number of failures using failure detectors that provide the accuracy and
completeness properties of ✸W only among members of clusters. Such failure de-
tectors need not guarantee anything about failure suspicions of processes outside
the cluster. Formally, we assume that processes are divided into non-overlapping
clusters, and augment the definitions of accuracy and completeness given in [11]
as follows:

– Strong c-Completeness. Eventually, every process that fails is permanently
suspected by every non-faulty process in the same cluster.
– Weak c-Completeness. Eventually, every failed process is permanently sus-

pected by some non-faulty process in the same cluster.
– Eventual Strong c-Accuracy. There is a time after which no non-faulty process

is suspected by any non-faulty process in the same cluster.
– Eventual Weak c-Accuracy. There is a time after which some non-faulty pro-

cess is not suspected by any non-faulty process in the same cluster.

As discussed in [11], guaranteeing one of these properties is trivial. The diffi-
cult problem (impossible in completely asynchronous systems) is guaranteeing a
combination of one of the accuracy requirements with one of the completeness
requirements. A failure detector belongs to the class c-✸W if it guarantees Weak
c-Completeness and Eventual Weak c-Accuracy. Similarly, a failure detector be-
longs to the class c-✸S if it guarantees Strong c-Completeness and Eventual Weak
c-Accuracy.

Clearly, it is possible to simulate a failure detector in c-✸S from a failure
detector in c-✸W by running within each cluster the simulation given in [11] for
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simulating ✸S from ✸W. It is thus possible to solve consensus among members
of the same cluster using c-✸S and any of the ✸S-based consensus protocols
(e.g., [11,19,20,28,33]). Similarly to the discussion above, each process can use
the decision value of its cluster as its input value in the global consensus protocol
of Figure 2. We call this the direct cluster based approach.

On the other hand, it is easy to derive a failure detector in ✸W from a
failure detector in c-✸W. Specifically, assume that each process is equipped
with a failure detector FD from the class c-✸W.

Theorem 8. A failure detector FD′ that adopts the failure suspicions of FD
for processes inside the cluster, but never suspects any process outside the cluster
is in ✸W.

Proof Note that FD′ ∈ c-✸W, since it behaves the same as FD for processes
inside the same cluster. Clearly, Weak c-Completeness is stronger than Weak
Completeness. This is because the latter only requires that eventually, every failed
process be permanently suspected by some non-faulty process, but different failed
processes can be suspected by different non-faulty processes.

Also, for each cluster, FD guarantees that there it at least one non-faulty
process that is not suspected by any non-faulty process within the cluster. More-
over, by the construction of FD′, this process is not suspected by any process
outside the cluster, and thus FD′ is in ✸W. ✷Theorem 8

Consequently, it is possible to employ Theorem 8 to simulate a failure de-
tector in ✸W, and use it to solve consensus with any of the previously cited
protocols. However, we argue that the direct cluster based approach is more effi-
cient and scalable. That is, the direct cluster based approach only requires failure
detection (heartbeats) among nodes of the same cluster. Specifically, there is no
need for long haul failure detection, and heartbeats are exchanged only among
a small set of close nodes. In contrast, the simulation of ✸S from ✸W given [11]
requires many long haul message exchanges. Moreover, with the direct cluster
based approach, all rounds of ✸W-based protocols are executed between a small
set of well connected processes. Given that consensus can be used as a building
block for solving other problems in distributed computing this can serve as a
basis for a scalable solution to these problems as well.

As before, the downside of this scheme is that if a single cluster becomes dis-
connected from the rest of the network, this might prevent the global consensus
from terminating until that cluster reconnects. Conversely, existing protocols for
solving consensus (with respect to the entire set of nodes) that rely on ✸S can
overcome up to �n/2� − 1 crash failures.

6 Discussion

This paper has investigated principles that underlie distributed computing by
establishing links between agreement problems and error correcting codes. The
results that have been presented draw a correlation between crash failures in dis-
tributed computing and erasures in error correcting, and between value domain
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faults and Byzantine failures in distributed computing and digits corruptions
in error correcting. In particular, it has been shown that condition-based in-
teractive consistency and error correcting are two facets of the same problem.
Similar conditions are shown to be sufficient and necessary for solving consen-
sus. Yet, the conditions for consensus are on one hand less restrictive, since in
consensus each decision value may be coded by more than one codeword. On
the other hand, the conditions for consensus include a restriction on the occur-
rence of the decoded value in the digits of the corresponding codewords, which
is due to the validity requirement of consensus. (This requirement is implicit in
interactive consistency.) For k-set agreement, we only showed sufficient condi-
tions, which are less restrictive due to the more relaxed agreement requirement
of the problem. Showing necessary error-correcting based conditions for k-set
agreement is still an open issue, although some advancements have been made
in giving topological characterizations for such conditions [1,27]. Interestingly
enough, the same protocol, instantiated with the appropriate conditions, can be
used to solve all three problems [27].

The paper has also discussed some interesting tradeoffs related to whether
the agreement, validity, and termination requirements should be preserved only
when the input belongs to the condition. Specifically, we showed that in order
to always obtain validity (i.e., even when the input vector does not belong to
the condition), it is necessary to use more restrictive conditions, while to obtain
always agreement and also termination when there are no failures, we need to
enrich the basic protocols. We have also discussed the implications of our results
in terms of applying limited synchrony technologies like wormholes [36] and
cluster based failure detectors in a clever way.

Another interesting result that comes from this paper is that interactive
consistency is harder than consensus in the sense that it requires more restrictive
conditions. This echos the known result that interactive consistency requires
perfect failure detectors [18], while consensus can be solved with unreliable failure
detectors (this suggests that it might not be a good idea to solve consensus via
interactive consistency). It would be interesting to find a more direct linkage
between the strength of conditions and failure detectors. In particular, if one can
unify this with topological characterization of such conditions, it might enable
viewing failure detectors as topological tweaks on the environment that enable
agreement to be solved.

Finding a linkage between coding theory and agreement problems in dis-
tributed computing seems to be both an intellectually challenging task and a
practically relevant aim. Coding theory is an area that has been extensively
studied. By applying results from coding theory, it might be possible to find
simpler proofs to existing results, and ideally, even to obtain new results in dis-
tributed computing. At the same time, the paper has shown that it is possible to
draw simple proofs for results in error correcting codes by reduction to agreement
problems.

Our work leaves a few additional interesting open problems. For example,
can the results be generalized under a unified framework for general agreement
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problems? Is there a distributed computing problem that is a counterpart of
error detection codes similarly to the fact that CB IC is the counterpart of error
correction? More generally, given a condition C, which agreement problem does
C allow to solve? And at what cost (see [25] for a related result in the case of
consensus)?
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