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Abstract— The use of virtual output queues (VOQs)
in input-queued (IQ) switches can eliminate the head-of-
line (HOL) blocking phenomena that limits matching and
switching performance. An effective matching scheme for
IQ switches with VOQs must provide high throughput
under several admissible traffic patterns while keeping the
implementation feasible. A variety of matching schemes
that deliver high throughput under traffic with uniform
distributions has been proposed. In this document, we
present the design and implementation of diverse matching
schemes for input-queued matching schemes. These imple-
mentation have been performed as undergraduate senior
projects.

Index Terms— input-queued switch, round-robin match-
ing, virtual output queue, captured frame, eligible frame

I. INTRODUCTION

Input-queued (IQ) switches have been objective of
research for several years as they work without the
speedup requirement of an output-queued (OQ) switch.
Because of the feasible implementability with current
technologies, IQ switch architectures have been adopted
by several manufacturers for switch/routers. The intro-
duction of virtual output queues (VOQs), where one
queue per output port is allocated at an input port of IQ
switches, is known to remove the head-of-line (HOL)
blocking problem from IQ switches. HOL blocking
causes idle outputs to remain so even in the existence
of traffic for them at an idle input [1].
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The well-known Head-Of-Line (HOL) blocking prob-
lem [2] is present on this architecture, which uses First-In
Fist-Out (FIFO) buffers as input queues. HOL blocking
makes 100% throughput unachievable [2], consequently,
QoS guarantees are undefined. The disadvantage to using
a single FIFO as an input buffer is that only an HOL cell
per input is considered by the scheduler; the matching
choices are largely reduced, producing blocking of cells
that could be directly routed. Some solutions have been
proposed to solve HOL blocking.

A way to solve the HOL blocking in IQ switches is
by providing a single and separate FIFO for each of the
outputs that an incoming cell could be destined to. This
is called a Virtual Output Queue (VOQ). A scheduler
might have different matching options to accomplish the
most profitable or largest match. Figure 1 shows a packet
switch with VOQs at the input ports and a scheduler
controlling the forwarding of cells from the VOQs to
the output ports.

It is common to find the following practices in packet
switch design: 1) Segmentation of incoming variable-
size packets at the ingress side of a switch to perform
internal switching with fixed-size packets, or cells, and
re-assembling the packets at the egress side before they
depart from the switch. 2) Use of VOQs, to avoid head-
of-line (HOL) blocking [1]. 3) Use of crossbar fabrics for
implementation of packet switches because of their non-
blocking capability, simplicity, and market availability.
This paper follows these practices.

One major requirement for an input-queued switch
is the delivery of high throughput under different traf-
fic conditions. We consider admissible traffic [4], with
Bernoulli arrivals and uniform and nonuniform distribu-
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Fig. 1. Switch with VOQs and scheduler

tions. An IQ switch, based on a crossbar switch fabric
and VOQs, has the throughput performance dependable
mainly on the used matching scheme and speedup. In
general, matching schemes are required to provide: a)
low complexity, b) fast contention resolution, c) fairness,
and, d) high matching efficiency.

Maximum weight matching (MWM) have been used
to show that IQ switches with VOQs can provide 100%
throughput under admissible traffic [4]. These matching
schemes show that using a quantitative differentiation
among contending VOQs, based on queue occupancy
or cell waiting time, can make a switch deliver 100%
throughput. However, MWM schemes have intrinsically
high computation complexity that is translated into long
resolution time and high hardware complexity. This
makes these schemes prohibitely expensive for a prac-
tical implementation with current available technolo-
gies. An alternative is to use maximal-weight matching
schemes, also based on quantitative differentiation of
queues. However, the hardware and time complexity
of these schemes can be considered high for the ever
increasing data rates, and a large number of iterations
may be needed to achieve a satisfactory matching result.
Moreover, weight-based schemes may starve queues with
little traffic to provide more service to the congested
ones, therefore, presenting unfairness [7].

Maximal-size matching are another way to resolve
contention in IQ switches [5]. Schemes based in round-
robin matching, such as iSLIP [9], DRRM [10], and SRR
[12] have been proposed to deliver 100% throughput

under uniform traffic. iSLIP showed that the desynchro-
nization effect, where arbiters reach the point where each
of them prefers to match with different input/outputs,
is beneficial for switching under uniform traffic. Other
schemes have employed further the advantage of this
effect [12], [13].

In this paper, we describe several matching schemes
for input-queued packet switches. Two of the presented
schemes are round-robin based, and the other is time-
stamp based. The former two schemes belong to a
maximal-size matching class, while the latter belongs to
a maximal-weight matching class. The implementation
of these schemes have been undertaken as undergraduate
senior design projects. Our contribution is to share
the experience obtained by undergraduate students with
digital design using a very-high description language,
such as VHDL.

This paper is organized as follows. Section II presents
the switch model under study and definitions used in
this paper. Section III introduces the iterative round-
robin matching scheme. Section IV introduces the iSLIP
matching scheme. Section V presents the iterative oldest-
cell first matching scheme. Section VI presents the
results of the development of this project. Section VII
presents the conclusions.

II. SWITCH MODEL AND PRELIMINARY DEFINITIONS

We consider an IQ switch with N input output ports.
There are N VOQs at each input port. A VOQ at input
port i that stores cells for output port j is denoted as
V OQ(i, j).

any of the scheduling algorithms under study were
designed for input-buffered crossbar architectures of
size N x N, where N is the number of input and output
ports. This architecture has the following properties:

1) Every input port has some buffer structure to hold
arriving traffic until it can be transferred to its
output.

2) Every input port has the data rate, defined as R.
3) During a matching phase, a set of cells is chosen

to satisfy the so-called crossbar constraint: at
most one cell can leave an input port and at most
one cell can enter an output port as a result of a
matching.

Considering that cells can be momentarily stored at
some buffers (e.g., input buffers) to avoid input or output
contention, a set of cells that can be transferred has to be
chosen. Thus, the selection of this set of cells has to be
made by an arbiter, which has to find a match between
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the input and output ports. The way to describe the type
of scheduler is the matching algorithm used.

We can classify scheduling algorithms as being max-
imum or maximal. A maximum match is one that
matches the maximum number of inputs and outputs.
This kind of match algorithm can be split into two
categories, size or weight matching.

Maximum size match.As in [3], let Si,j be a service

indicator such that
N∑

i=1

Si,j(n) ≤ 1 and
N∑

j=1

Si,j(n) ≤ 1;

a value of 1 indicates that input i is matched to output
j or that queue Qi,j is allowed to forward a cell to its
output. It is the match that maximizes the number of
connections

∑

i,j

Si,j(n) .

Maximum weight match
This maximizes the total weight,

∑

i,j

Si,j(n)wi,j(n).

In this kind of matching, a weight is assigned to every
input-output pair according to a considering parameter
that assigns priorities. A weighted graph is shown in
Figure 2.
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Fig. 2. Request from VOQ at the inputs can be seen as a weighted
request graph

A maximal match, as in a bipartite graph, is the match
where no more matches can be made trivially. Using the
crossbar constraint, a stable matching is then defined:
A matching of an input port to an output port is said to
be stable if for each cell c waiting in an input queue,
one of the following cases holds:

1) Cell c is part of the matching, i.e., c will be
transferred from the input side to the output side
during this phase.

2) A cell that is ahead of c in its priority list is part
of the matching or a cell that is ahead of c in its
output priority list is part of the matching.

An example of this definition is shown in Figure 3.
These three cases are depicted in a 3 x 3 switch, where
the cells are identified by the input port number and the
output port letter. The cells 1B and 3A are included in
the match. This is case 1 of the stable match definition.
However, for case 2, cell 1C could not go because the
cell 1B from its input was matched. Similarly, for case 3,
cell 2A could not go because its output received cell 3A,
which is from another input. Furthermore, cell 3B could
not take part in the match because another cell from its
input, 3A, was matched instead. Also, another cell from
another input, cell 1B, was matched to 3A’s destination,
port B. This demonstrates that cases 2 and 3 can apply
at the same time.
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Fig. 3. Example of the stable matching case

III. ITERATIVE ROUND-ROBIN MATCHING (iRRM)

This scheme, presented in [8], is the simplest version
of any matching scheme based on round-robin selection.
iRRM offers an acceptable performance in just two
iterations. For the simplicity of its algorithm, iRRM
offers a very simple implementation. There exists a
scheduler in each input and output port that is able to
select a pairing port. These schedulers or pointers are
named accept pointer ai at the inputs and grant pointer
gi at the output. The algorithm is as follows:

1) Each unmatched input sends a request to every
output for which it has a queued cell.

2) If an unmatched output receives any requests, it
chooses the one that appears next in a round-robin
schedule starting from the highest priority element.
The output notifies each input whether or not its
request was granted. The pointer gi to the highest
priority element of the round-robin schedule is
incremented (module N ) to one location beyond
the granted input.

3) If an input receives a multiple grant, it accepts the
one that appears next in a round-robin schedule
starting from the highest priority element. The
pointer aj to the highest priority element of the
round-robin schedule is incremented (module N )
to one location beyond the accepted output.
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Fig. 4. Example of matching with iRRM

An example of this matching scheme is shown in
Figure 4. In this example, we assume that the initial
values for the grant pointers are input 1 (e.g., gi = 1).
Similarly, accept pointers are pointing initially to output
1 (e.g., aj = 1). This status remains during step 1, while
the inputs request transmission to all outputs that they
have a cell destined for. In step 2, among all received
requests, the grant schedulers select the requesting input
that is nearest to the one currently pointed to. Output
1 chooses input 1, output 2 chooses input 1, output 3
has no requests, and output 4 chooses input 3. Then, the
pointers gi move one position beyond the selected one,
in this case, g1 = 2, g2 = 2, g3 = 1, and g4 = 4. In step
3, the accept pointers decide which grant is accepted in
similar way to the grant pointers. In this example, input
1 accepts output 1, and input 3 accepts output 4, then
a1 = 2, a2 = 1, a3 = 1, and a4 = 1. Notice that the

pointer a3 accepted the grant issued by output 4, so the
pointer returns to position 1.

IV. ITERATIVE ROUND-ROBIN WITH SLIP (iSLIP)

This scheme presented in [9], is an improved version
of simple round-robin matching. The difference is that
in this scheme, the grant pointers update their positions
only if their grants are accepted (recall that there are
two pointers, a grant pointer at an output port and an
accept pointer at an input port). In this scheme, starvation
is avoided because a recently matched pair gets the
lowest priority. This scheme converges in, at most, N

iterations. Although, one iteration is sufficient to offer
100% throughput. The matching procedure with this
scheme follows three steps:

1) Each unmatched input sends a request to every
output for which it has a queued cell.

2) If an unmatched output receives multiple requests,
it chooses the one that appears next in a fixed,
round-robin schedule starting from the highest
priority element. The output notifies each input
whether or not its request was granted. The pointer
gi to the highest priority element of the round-
robin schedule is incremented (module N) to one
location beyond the granted input if and only if the
grant is accepted in step 3 of the first iteration. The
pointers gi are only updated in the first iteration.

3) If an input receives multiple grants, it accepts
the one that appears next in a fixed, round-robin
schedule starting from the highest priority element.
The pointer aj to the highest priority element of
the round-robin element is incremented (modulo
N) to one location beyond the accepted output.
As the granted pointers, the pointers ai are only
updated in the first iteration.

Because of the round-robin moving of the pointers, we
can also expect the algorithm to provide a fair allocation
of bandwidth among all flows.

This scheme contains 2N arbiters, where each arbiter
is implementable with low complexity [6]; however,
simulations were done with only one iteration due to
the speed limitation of actual arbiters. The throughput
offered with this algorithm is 100%, for any number
of iterations. A matching example of this scheme is
shown in Figure 5. Considering the example from the
iRRM discussion, initially all pointers aj and gi are
set to 1. In step 2 of iSLIP, the output accepts the
request that is closer to the pointed input in a clockwise
direction; however, in a manner different from iRRM,
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the pointers gi are not updated in this step. They wait
for the acceptance result. In step 3, the inputs accept
the grant that is closer to the one pointed to by ai.
The accept pointers change to one position beyond the
accepted one, a1 = 2, a2 = 1, a3 = 1, and a4 = 1. Then,
after the accept pointers decide which grant is accepted,
the grant pointers change to one position beyond the
accepted grant (i.e., a non-accepted grant produces no
change in a grant pointer position). The new values for
these pointers are g1 = 2, g2 = 1, g3 = 4 and g4 = 1. In
the following iterations, in the current arbitration phase,
the pointers are not modified (i.e., updating occurs in
the first iteration only). Only the unmatched input and
outputs are considered in subsequent iterations.
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Fig. 5. Example of matching with iSLIP

V. ITERATIVE OLDEST CELL FIRST (IOCF)

This algorithm, as in [7], considered for an IQ archi-
tecture, gives preference to cells that have been wait-
ing for the longest time. This algorithm is reported to
achieve 100% throughput and non-input starvation. It
uses VOQ and no speedup (S = 1). It is stable for
all independent arrival processes, i.e., no input queue
occupancy grow infinitely. This is the maximal matching
version of OCF. This scheme works in an iterative way,
similar to iSLIP, except that iOCF uses a maximal-
weight matching scheme. In this case, every request has
a different weight (contrary to iSLIP, which uses equal
request weight) equivalent to the queuing time of the
HOL cell in the input queue. This algorithm is reported
to need log2 N iterations. It follows three different steps:

1) Request: each input sends a request to all outputs
for which it has a queued cell. Each request con-
tains the age of the first cell in the corresponding
input queue.

2) Grant: When an output receives requests from
more than one input, the request from the input
with the oldest cell is accepted. In this description,
ties are resolved by a random choice.

3) Acceptance: If an input receives two or more
grants from more the output arbiters, the grant for
the oldest cell is selected. Again, ties are resolved
by a random choice.
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This scheme can achieve 100% throughput for general
independent arrival processes with uniform distributed
destinations. The implementation complexity is compro-
mised because the age of the cells has to be stored.
An example is shown in Figure 6. In this case, TS(c)
is the number of time slots that these cells have been
waiting. In step 1, the request stage, every input sends
requests to all outputs for which it has a cell destined.
In step 2, the concession stage, outputs with multiple
requests select the cell with the longest waiting time;
ties are broken randomly. In this example, output 1
receives a unique request, output 2 selects the input 1
request due to the longest waiting time against input
3. Output 4 selects input 4. In step 3, the acceptance
stage, inputs with multiple requests accept the grant that
belongs to the cell with the longest waiting time or
the oldest cell. Once again, ties are broken randomly.
Here, only input 1 receives two concessions. Then, it
selects the one belonging to output 2, due to cell age. In
[18], this scheme was used with a speedup larger than 2
(S > 2), where the architecture was a CIOQ with rate-
controlled schedulers at the input ports, giving not only
100% throughput but also a delay bound.

VI. CROSSBAR AND SCHEDULER IMPLEMENTATIONS

The design and implementation of a cell-based cross-
bar follows a synchronous logic design. The crossbar
has the following inputs: a master clock, a global reset,
eight data inputs with a width of 8 bits each, and eight
data outputs. In addition, the crossbar has an internal
interface for the scheduler, which controls each one of
the 64 crosspoints. Every crosspoint corresponding to
input i receives the same input data at once. According
to the scheduler results, a crosspoint let the data flow
to the output in a synchronous way. When a crosspoint
permits the flow of data to an output, it is said that this
crosspoint is in close state, otherwise, it is said to be in
open state. A crosspoint state lasts for the duration of
the transmission of a cell. This duration is called a time
slot.

The crossbar has a fault detection unit that detects
when two or more crosspoints are in close status (invalid
modes) and clears the data output to avoid sending
corrupted cells to the output ports.

The crossbar provides the interface between the in-
put ports and the scheduler. Therefore, communication
between these two is pursued as in-band fashion. Every
input has a cell-header manager unit. Figure 8 shows the
logic of the header manager. The cell-header manager

Cell-header 
Manager Crosspoint

Inputs In1 
to In8

Fault 
detector

Fig. 7. Logic of an 8x8 crossbar

unit takes the request send by the input ports to the
scheduler and exchange them for acceptance information
issued by the scheduler. This information is needed
by the input ports to determine the cells that can be
transmitted through the crossbar.

Fig. 8. Logic of the header manager section

The scheduler has 16 arbiters in a 8 × 8 switch. One
per input/output. An output arbiter received the requests
from the input ports and selects one. Then, an output
arbiter informs every input arbiter about whether their re-
quests are granted or not. An input arbiter selects a grant
among all those received, and informs the crosspoint,
input ports, and output arbiters about its decision. The
crosspoint set its state as open or close for the next cell
slot. The input ports take this information to determine
which cell can be dispatched in the next time slot. The
output arbiters take the acceptance information to update
their pointers. Figure 9 shows the arbiters that form
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a scheduler section. The Req(i, j) labels indicate the
requests signals from input i to output j. The Acc(i, j)
signals indicate the acceptance information from the
input arbiters at input i to output arbiters at output j.

Output 
Arbiter 1

Input 
Arbiter 1

Output 
Arbiter 8

Input 
Arbiter 1

Req (1, 1)

Req (8, 1)

Req (1, 8)

Req (8, 8)

Acc (1, 1)

Acc (1, 8)

Acc (8, 1)

Acc (8, 8)

Acc (1, 1) Acc (8, 1)

Acc (1, 8) Acc (8, 8)

Fig. 9. Input and output arbiters in the scheduler

VII. CONCLUSIONS

This paper introduced the basis for switch fabric
design. The switch fabric is a major component for a
packet switch or Internet router. The performance of a
packet switch is greatly determined by its architecture
and, in our case, by the matching scheme used. The
matching scheme is performed by the scheduler. The
scheduler determines the time at which a cell (packet)
can traverse the switch fabric in the trip to a destination.
The objective of the scheduler is to resolve contention at
the input and at the outputs. We described three different
matching schemes. Two based on round-robin selection
and one based on time stamps. These three schemes were
implemented as a part of the undergraduate senior design
project. The schemes were modelled with VHDL.
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