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Abstract Regarding the learning component of the systems,
we find pure probabilistic models (Gildea and Juraf-

In this paper we describe the CoNLL-2004 sky, 2002; Gildea and Palmer, 2002; Gildea and Hock-
shared task: semantic role labeling. We intro- enmaier, 2003), Maximum Entropy (Fleischman et al.,
duce the specification and goal of the task, de-  2003), generative models (Thompson et al., 2003), De-
scribe the data sets and evaluation methods, and cision Trees (Surdeanu et al., 2003; Chen and Ram-
present a general overview of the systems that bow, 2003), and Support Vector Machines (Hacioglu and
have contributed to the task, providing compar- ~ Ward, 2003; Hacioglu et al., 2003; Pradhan et al., 2003a;
ative description. Pradhan et al., 2003b).

There have also been some attempts at relaxing the ne-
1 Introducti cessity of using syntactic information derived from full
ntroduction parse trees. For instance, in (Hacioglu and Ward, 2003;

In recent years there has been an increasing interestifcioglu et al., 2003; Pradhan et al., 2003a), a SVM-
semantic parsing of natural language, which is becomin@Sed SRL system is devised which performs
a key issue in Information Extraction, Question Answer- an IOB sequence tagging using only shallow syntactic
ing, Summarization, and, in general, in all NLP applicainformation at the level of phrase chunks.
tions requiring some kind of semantic interpretation. Nowadays, there exist two main English corpora with
The shared task of CoNLL-2004concerns the recog- semantic annotations from which to train SRL systems:
nition of semantic roles, for the English language. WepropBank (Palmer et al., 2004) and FrameNet (Fillmore
will refer to it asSemantic Role Labelin@RL). Givena et al., 2001). In the CoNLL-2004 shared task we concen-
sentence, the task consists of analyzing the propositiofgte on the PropBank corpus, which is the Penn Treebank
expressed by some target verbs of the sentence. In pagrpus enriched with predicate—argument structures. It
ticular, for each target verb all the constituents in the seriddresses predicates expressed by verbs and labels core
tence which fill a semantic role of the verb have to beyrguments with consecutive numbers (A0 to A5), try-
extracted (see Figure 1 for a detailed example). Typicahg to maintain coherence along different predicates. A
semantic arguments include Agent, Patient, Instrumenjumber of adjuncts, derived from the Treebank functional
etc. and also adjuncts such as Locative, Temporal, Maggags, are also included in PropBank annotations.

ner, Causg, (_atc. . . To date, the best results reported on the PropBank cor-
Most existing systems for automatic semantic role Iar'espond to a F measure slightly over 83, when using
beling make use of a full syntactic parse of the senten fie gold standard parse trees from Penn ,Treebank as the
in order to define argument boundaries and to extract r Aain source of information (Pradhan et al., 2003b). This
evant information for training classifiers to disambiguat%erformance drops to 77 when a real par,ser is used in-
between role labels. Thus, the task has l_)e_en usua_lly ftead. Comparatively, the best SRL system based solely
proached asa two phase procedure consistimeanigni- on shallow syntactic information (Pradhan et al., 2003a)
tion andlabelingof arguments. performs more than 15 points below. Although these re-
ICONLL-2004 Shared Task web page —uwith sults are not directly comparablg to the ones obtaingd in
data, software and systems’ outputs available— di€ CONLL-2004 shared task (different datasets, differ-
http://cnts.uia.ac.be/conll2004/roles . ent version of PropBank, etc.) they give an idea about the



state-of-the art results on the task. correct annotations for the input data are provided, a sys-
The challenge for CoNLL-2004 shared task is to coméem is allowed either to be trained to predict the input

up with machine learning strategies which address thgart, or to make use of an external tool developed strictly

SRL problem on the basis of only partial syntactic in-within this setting, such as previous CoNLL shared task

formation, avoiding the use of full parsers and externadystems.

lexico-semantic knowledge bases. The annotations prg- i

vided for the development of systems include, apart frofi-2  Evaluation

the argument boundaries and role labels, the levels of pr&valuation is performed on a separate test set, which in-

cessing treated in the previous editions of the CoNLIcludes only predicted input data. A system is evaluated

shared task, i.e., words, PoS tags, base chunks, clausaih respect tgrecision recall and the f measurePre-

and named entities. cision (p) is the proportion of arguments predicted by a
The rest of the paper is organized as follows. Sectiofystem which are correcRecall(r) is the proportion of

2 describes the general setting of the task. Section 3 preorrect arguments which are predicted by a system. Fi-

vides a detailed description of training, development angally, the i measure computes the harmonic mean of

test data. Participant systems are described and compagggcision and recall, and is the final measure to com-

in section 4. In particular, information about learningpare the performance of systems. It is formulated as:

techniques, SRL strategies, and feature developmentliz=1 = 2pr/(p + ).

provided, together with performance results on the devel- For an argument to be correctly recognized, the words

opment and test sets. Finally, section 5 concludes. spanning the argument as well as its semantic role have
to be correct?
2 Task Description As an exceptional case, the verb argument of each

proposition is excluded from the evaluation. This argu-
The goal of the task is to develop a machine learning sysaent is the lexicalization of the predicate of the proposi-
tem to recognize arguments of verbs in a sentence, atidn. Most of the time, the verb corresponds to the target
label them with their semantic role. A verb and its set of/erb of the proposition, which is provided as input, and
arguments form @ropositionin the sentence, and typi- only in few cases the verb participant spans more words
cally, a sentence will contain a number of propositions. than the target verb.

There are two properties that characterize the structure Except for non-trivial cases, this situation makes the
of the arguments in a proposition. First, arguments do neerb fairly easy to identify and, since there is one verb
overlap, and are organized sequentially. Second, an arguith each proposition, evaluating its recognition over-
ment may appear split into a number of non-contiguousstimates the overall performance of a system. For this
phrases. For instance, in the sentencg ‘The apple], reason, the verb argument is excluded from evaluation.
said John,{_a1 is on the table]”, the utterance argument
(labeled with typeAl) appears split into two phrases.3 Data
Thus, there Is a set of non-ove_rlappln_g arguments Ial:he data consists of six sections of the Wall Street Jour-
beled with semantic roles associated with each proposi-
tion. The set of arguments of a proposition can be seen hal part of the I_Denn Treeban_k_ (Marcus et al., 1993), and

X ﬁ?‘cilows the setting of past editions of the CoNLL shared

a chunklng_of the sentence, in Wh'Ch chur_1ks are parts Qlsk: training set (sections 15-18), development set (sec-
the semantic roles of the proposition predicate.

| i ber darget verb ked i tion 20) and test set (section 21). We first describe anno-
N practice, numboer darget verbsare markedin a Sen- 444 rejated to argument structure. Then, we describe
tence, each governing one proposition. A system has

Re preprocessing of input data. Finally, we describe the
recognize and label the arguments of each target verb. formpat (F))f the datzgsets P Y.

2.1 Methodological Setting 3.1 PropBank

Training and development data are provided to build thg&he Proposition Bank (PropBank) (Palmer et al., 2004)
learning system. Apart from the correct output, both datannotates the Penn Treebank with verb argument struc-
sets contain the correct input, as well as predictions of there. The semantic roles covered by PropBank are the
input made by state-of-the-art processors. The training|lowing:

set is used for training systems, whereas the development

set is used to tune parameters of the learning systems an®® Numbered arguments AO-A5, AA): Arguments
select the best model. defining verb-specific roles. Their semantics de-

Systems have to be developed strictly with the data 27,¢ srl-eval.pl program is the official program to

provided, which consists of input and output data and thgyajuate the performance of a system. It is available at the
official external resources (described below). Since th&hared Task web page.



pends on the verb and the verb usage in a sentence, Training Devel. Test

or verb sense In general A0 stands for theagent Sentences 8,936 2,012 1,671
and Al corresponds to thpatientor themeof the Tokens 211,727 47,377 40,039
proposition, and these two are the most frequent | Propositions 19,098 4,305 3,627
roles. However, no consistent generalization can be | Distinct Verbs 1,838 978 855
made across different verbs or different senses ofthe | All Arguments| 50,182 11,121 9,598
same verb. PropBank takes the definition of verb | AO 12,709 2,875 2,579
senses from VerbNet, and for each verb and each | Al 18,046 4,064 3,429
sense defines the set of possible roles for that verb | A2 4,223 954 714
usage, called theleset The definition of rolesets A3 784 149 150
is provided in the PropBankrames fileswhich is A4 626 147 50
made available for the shared task asféfitial re- A5 14 4 2
sourceto develop systems. AA 5 0 0

AM-ADV 1,727 352 307

e Adjuncts (AM-): General arguments that any verb AM-CAU 283 53 49

may take optionally. There are 13 types of adjuncts: | AM-DIR 231 60 50
AM-ADV: general-purpose AM-MOD modal verb AM-DIS 1,077 204 213
AM-CAU: cause AM-NEG: negation marker AM-EXT 152 49 14
AM-DIR : direction AM-PNC: purpose AM-LOC 1,279 230 228
AM-DIS : discourse markerAM-PRD: predication AM-MNR 1,337 334 255
AM-EXT: extent AM-REC: reciprocal
AM-LOC: location AM-TMP: tem?)oral ﬁm::\\lﬂgg 1;853 fgf fg;
AM-MNR manner

AM-PNC 446 100 85

AM-PRD 10 3 3

e References R-): Arguments representing argu-

ments realized in other parts of the sentence. The | AM-REC 2 1 0
role of a reference is the same as the role of the ref- | AM-TMP 3,567 759 747
erenced argument. The label isRntag prefixed to R-AO 738 162 159

the label of the referent, e.®-A1l. R-Al 360 74 70
R-A2 49 17 9

e Verbs (V): Participant realizing the verb of the R-A3 8 0 1
proposition, with exactly one verb for each one. R-AA 1 0 0
R-AM-ADV 1 0 0

We used the February 2004 release of PropBank. Most | R-AM-LOC 27 4 4
predicative verbs were annotated, although not all of | R-AM-MNR 4 0 1
them (for example, most of the occurrences of the verb | R-AM-PNC 1 0 1
“to have” and “to be” were not annotated). We applied R-AM-TMP 35 6 14

procedures to check consistency of propositions, looking
for overlapping arguments, and incorrect semantic role
labels. Also, co-referenced arguments were annotated as

a single item in PropBank, and we automatically dls’tm'named entities. The preprocessors correspond to the fol-

guished betwee.n the refere_nt and the reference _W'th SIrR‘:’wing state-of-the-art systems for each level of annota-
ple rules matching pronominal expressions, which werg n:

tagged ask arguments. A total number of 68 proposi-

tions were not compliant with our procedures, and were , pqg tagger: (Gifenez and Mirquez, 2003), based
filtered out from the CoNLL data sets. The predicate- Support Vector Machines, and trained on Penn
argument annotations, thus, are not necessarily complete 1 oabank sections 0—18.

in a sentence. Table 1 provides counts of the number of

sentences, annotated propositions, distinct verbs and ar-, Chunker and Clause Recognizer: (Carreras and

Table 1: Counts on the three data sets.

guments in the three data sets. Marquez, 2003), based on Voted Perceptrons, and
32 p . following the CoNLL settings of 2000 and 2001
' reprocessing tasks (Tjong Kim Sang and Buchholz, 2000; Tjong

In this section we describe the pipeline of processors to  Kim Sang and Bjean, 2001). These two processors
compute the annotations which form the input part of  form a coherent partial syntax of a sentence, that is,
the data: part-of-speech (PoS) tags, chunks, clauses and chunks and clauses form a tree.



Precision  Recall HAcc. Start-End  format. Represents  non-overlapping

PoS Dev. (acc. - - 96.88 phrases (clauses or arguments) which may be embed-
PoS Test (acc.) - - 96.70 ded® inside one another. Each tag indicates whether
Chunking Dev. | 94.28%  93.65%  93.96 a clause starts or ends at that word and is of the form

Chunking Test | 93.80% 92.93%  93.36 START*END The STARTpart is a concatenation ¢fk
Clauses Dev. 90.51% 86.12%  88.26 parentheses, each representing that a phrase ofitype
Clauses Test | 88.73% 82.92%  85.73 starts at that word. ThENDpart is a concatenation of
Named Entities| 88.12% 88.51%  88.31 k) parentheses, each representing that a phrase of type
k ends at that word. For example, thetag represents
Table 2: Results of the preprocessing modules on the dg-\yord with no starts and ends: tHA0*A0) tag
velopment and test sets. Named Entity figures are bas?é’presents a word constituting &0 argument; and the
on the CoNLL-2003 test set. (S(S*S) tag represents a word which constitutes a
base clause (labeled) and starts another higher-level
e Named entities with (Chieu and Ng, 2003), basedlause. Finally, the concatenation of all tags constitutes
on Maximum-Entropy classifiers, and following thea well-formed bracketing. For the particular case of split
CoNLL-2003 task setting (Tjong Kim Sang andarguments, of typé, the first part appears as a phrase
De Meulder, 2003). with label £, and the remaining as phrases with label

Such processors were ran in a pipeline, from PoS tagg'k (continuation prefix). See examples of annotations

to chunks, clauses and finally named entities. Table 3f columns 4th, 7th and 8th of Figure 1.
summarizes the performance of the processors on the df
velopment and test sections. These figures differ from the

original results in the original due to a better quality of theTen systems have participated in the CoNLL-2004 shared
input information in our runs. The figures of the namedask. They approached the task in several ways, using dif-
entity extractor are based on the corpus of the CoNLLferent learning components and labeling strategies. The
2003 shared task, since gold annotations of named enfgilowing subsections briefly summarize the most impor-

ties were not available for the current corpus. tant properties of each system and provide a qualitative
comparison between them, together with a quantitative

3.3 Format :
_ evaluation on the development and test sets.
Figure 1 shows an example of a fully-annotated sentence.

Annotations of a sentence are given using a flat represef-l  Learning techniques

tation in columns, separated by spaces. Each column gy, 1o six different learning algorithms have been ap-
codes an annotation by associating a tag with every Worﬂlied in the CoNLL-2004 shared task. None of them
For each sentence, the following columns are provided:ig new with respect to the past editions. Two teams

Participating Systems

1. Words. used the Maximum Entropy (ME) statistical framework
2. Part of Speech tags. (Baldewein et al., 2004; Lim et al., 2004). Two teams
3. Chunks in IOB2 format. used Brill's Transformation-based Error-driven Learning
4. Clauses in Start-End format. (TBL) (Higgins, 2004; Williams et al., 2004). Two other

5. Named Entities in IOB2 format. groups applied Memory-Based Learning (MBL) (van den
6. Target verbs, marking predicative verbs. This Bosch et al., 2004; Kouchnir, 2004). The remaining four

column, provided as input, specifies the governinge@ms employed vector-based linear classifiers of differ-

verbs of the propositions to be analyzed. Each targ&nt types: Hacioglu et al. (2004) and Park et al. (2004)
verb is in the base form. Occasionally this columriSed Support Vector Machines (SVM) with polyno-
does not mark any verb (i.ex,may be 0). mial kernels, Carreras et al. (2004) used Voted Percep-

7. For each of the target verbs, a column in Start-End rons (VP) also with polynomial kernels, and finally,
format specifying the arguments of the propositionPunyakanok etal. (2004) used SNoWw, a Winnow-based
These columns are the output of a system, that i§€twork of linear separators. Additionally, the team of
the ones to be predicted, and are not available fdpaldewein etal. (2004) used a EM-based clustering al-
the test set. gorithm for feature development (see section 4.3).

_ As a main difference with respect to past editions, less
IOB2 format. Represents chunks which do not overlasftort has been put into combining different learning al-
nor embed. Words outside a chunk receive the tag O. Fgithms and outputs. Instead, the main effort of partici-
words forming a chunk of typg, the first word receives han¢s \went into developing useful SRL strategies and into
theB- k tag (Begin), and the remaining words receive the
tagl- & (Inside). 3Arguments in data do not embed, though format allows so.



The DT B-NP (s* O - (AO* *
*

San NNP  I-NP * B-ORG - *
Francisco NNP I-NP * I-ORG - * *
Examiner NNP  I-NP * I-ORG - *A0) *
issued VBD B-VP * (0] issue (V*V) *

a DT B-NP * o - (A1* (A1*
special JJ I-NP * o - * *
edition NN I-NP * (0] - *Al) *Al)
around IN B-PP * o - (AM-TMP* *
noon NN B-NP * o - *AM-TMP) *
yesterday NN B-NP * o - (AM-TMP*AM-TMP) *

that WDT B-NP (S* 0 - (C-A1* (R-A1*R-A1)
was VBD B-VP (s* (0] - * *
filled VBN I-VP * o fill * (V*V)

entirely RB  B-ADVP * (0] - * (AM-MNR*AM-MNR)
with IN B-PP * @) - * *
earthquake NN B-NP * (0] - * (A2*
news NN I-NP * O - * *
and CC I-NP * o - * *
information NN I-NP *S)S) O - *C-Al) *A2)

. (0] *S) o - * *

Figure 1: An example of an annotated sentence, in columns. Input consists of words (1st), PoS tags (2nd), base chunks
(3rd), clauses (4th) and named entities (5th). The 6th column marks target verbs, and their propositions are found in
remaining columns. According to the PropBank Framesisiuwe (7th), theAO annotates the issuer, and tg the

thing issued, which appears split into two parts. flbr  (8th), Al is the the destination, am&R the theme.

the development of features (see sections 4.2 and 4.8)g the problem into two independent phasescogni-
As an exception, van den Bosch et al. (2004) applied @on, in which the arguments are recognized, dalkl-
voting strategy to derive the final sequence tagging amg, in which the already recognized arguments are as-
a voted combination of three overlappinggram output signed role labels. The third approach also proceeds in
sequences. The same team also applied a meta-learntng phases:filtering, in which a set of argument can-
step, by using iterative classifier stacking, for correctinglidates are decided ardbeling in which the set of
systematic errors committed by the low—level classifiersoptimal arguments is derived from the proposed can-
This work is also worth mentioning because of the exterdidates. As a variant of the first two-phase strategy,
sive work done on parameter tuning and feature selectioman den Bosch et al. (2004) first perform a direct classi-
fication of chunks into argument labels, and then decide
4.2 SRL approaches the actual arguments in a post-process by joining previ-
SRL is a complex task which has to be decomposed inteusly classified argument fragments. All this information
a number of simpler decisions and tagging schemes ia summarized in the second column of Table 3.
order to be addressed by learning techniques. An implication of implementing the two-phase strat-
One first issue is the annotation of the different propoegy is the ability to work with argument candidates in
sitions of a sentence. Most of the groups treated thide second phase, allowing to develop feature patterns for
annotation of semantic roles for each verb predicate @@mplete arguments. Regarding the first phase, the recog-
an independent problem. An exception is the system difition of candidate arguments is performed by means
Carreras et al. (2004), which performs the annotation aff a IOB or open—closdagging using classifiers, either
all propositions simultaneously. As a consequence, trargument—independent, or specialized by argument type.
former teams treat the problem as the recognition of se- It is also worth noting that all participant systems per-
guential structures (a.k.a. chunking), while the latter diformed learning of predicate-independent classifiers in-
rectly derives a hierarchical structure formed by the argustead of specializing by the verb predicate. Information
ments of all propositions. Table 3 summarizes the maiabout verb predicates is captured through features and
properties of each system regarding the SRL strategy insome global restrictions.
plemented. This property corresponds to the first column. Another important issue is thgranularity at which
Regarding thdabeling strategywe can distinguish at the sentence elements are processed. It has become very
least three different strategies. The first one consists ofear that a good election for this problem is phrase-by-
performing role identification directly by a IOB-type se-phrase processing (P-by-P, using the notation introduced
guence tagging. The second approach consists of dividy Hacioglu et al. (2004)) instead of word-by-word (W-



by-W). The motivation is twofold: (1) phrase boundaries prop. | lab. | gran. | glob. | post
are almost always consistent with argument boundaries;hacioglu S t P-by-P | no no
(2) P-by-P processing is computationally less expensivepunyakanok s | fl | W-by-W | yes | no
and allows to explore a relatively larger context. Most of carreras fl P-by-P | yes | no
the groups performed a P-by-P processing, but admittinglim t P-by-P | yes | no
a processing by words within the target verb chunks. Thepark rc P-by-P | no | yes
system by Baldewein et al. (2004) works with a bit morg higgins t | W-by-Ww | no | yes
general elements called “chunk sequences”, extracted fivan den bosch Cj P-by-P | part. | yes
a preprocess using heuristic rules. This information is kouchnir rc | P-by-P | no | yes
presented in the third column of Table 3. baldewein rc | P-by-P | yes | no
Information regarding clauses has proven to be very Williams t mixed | no | no
useful, as can be seen in section 4.3. All systems captured ) . o
some kind of clause information through feature codifical@Ple 3: Main properties of the SRL strategies imple-
tion. However, some of the systems restrict the search fg€nted by the ten participant teams (sorted by perfor-
arguments only to the immediate clause (Park et al., 200412nCe on the test set). “prop.” stands for the treatment of
Williams et al., 2004) and others use the clause hierarcl‘i}}l propositions of a sentence; possible values su@ep-

to guide the exploration of the sentence (Lim et al., 20047at€) and_(joint). “lab.” stands for labeling strategy;
Carreras et al., 2004). possible values are: (one step tagging)c (recognition

+ classification)fl (filtering + labeling),cj (classifica-

nnunnunnon-—

Very relevant to the SRL strategy is the availability of o ) p o "
global sentential information when decisions are takeffiO" * j0ining). “gran.” stands for granularity; “glob.

Almost all of the systems try to capture some global leveft@nds for global optimization. “post” stands for post-
information by collecting features describing the targeP"©¢€SSING.:
predicate and its context, the “syntactic path” from the
element under consideration to the predicate, etc. (see .
section 4.3). But only some of them include a globaP€'S: ¢lauses, and named entities.
optimization procedure at sentence level in the labeling !t is worth mentioning that the general type of features
Strategy_ The Systems Working with Maximum Entropﬁerived from the basic information are Strongly inSpired
Models (Baldewein et al., 2004; Lim et al., 2004) usd previous works on the SRL task (Gildea and Jurafsky,
beam search to find taggings that maximize the prob’ZOOZ, Surdeanu et al., 2003, Pradhan et al., 2003&) Many
ability of the output sequence. Carreras et al. (2004ystems used the same kind of ideas but implemented
and Punyakanok et al. (2004) also define a global scdf different ways, since the particular learning strategies
ing function to maximize. At this point, the system ofused (see section 4.2) impose different constraints on the
Punyakanok et al. (2004) deserves special consideratidifpe of information available or the way of expressing it.
since it formally implements a set of structural and lin- As a general idea, we can divide the features into four
guistic constraints directly in the global cost function totypes: (1)basicfeatures, evaluating some kind of local
maximize. These constraints act as a filter for valid outinformation on the context of the word or constituent be-
put sequences and ensure coherence of the output. Ang treated; (2) Features characterizing the internal struc-
thors refer to this part of the system as tinéerence ture of a candidate argument; (3) Features describing
layer and they implement it using integer linear programyproperties of the target verb predicate; (4) Features that
ming. The iterative classifier stacking mechanism usecapture the relations between the verb predicate and the
by van den Bosch et al. (2004) also tries to alleviate theonstituent under consideration.
problem of locality of the low-level classifiers. This in-  All systems used some kind of basic features. Roughly
formation is found in the fourth column of Table 3. speaking, they consist of words, PoS tags, chunks, clause
Finally, some systems use some kind of postproceskbels, and named entities extracted from a window-
ing to ensure coherence of the final labeling, correct somgased context. These values can be considered with
systematic errors, or to treat some types of adjunctive apr without the relative position with respect to the el-
guments. In most of the cases, this postprocess is p@ment under consideration, and somgrams of them
formed on the basis of simple ad-hoc rules. This inforean also be computed. If the granularity of the sys-

mation is included in the last column of Table 3. tem is at phrase level then typically a representative
head word of the phrase is used as lexical information.
4.3 Features As an exception to the general approach, the system of

With a very few exceptions all the participant systemdVilliams et al. (2004) does not make use of word forms.
have used all levels of linguistic information provided in  The rest of the features are more interesting since they
the training data sets, that is, words, PoS and chunk lare task dependent, and deserve special attention. Table



4 summarizes the type of features exploited by systems. e Tag target verb and successive particle¥.as

To represent an argument itself, few attributes are of ® Tagnot andn’t in target verb chunk a8M-NEG
general usage. Some systems count the length of it,® Tag modal verbs in target verb chunkAsl-MOD
with different granularities. Others make use of heuris- ® Tag firstNPbefore target verb a&0.
tics to derive its syntactic type. There are systems that ® Tag fwstNPaftgr target verb a81.
extract a structured representation of the argument, ei- ® ;ag\éhat » which - andwho before target verb as
ther homogeneous (capturing different sequences of head "' .
words, PoS tags, chunks or clauses), or heterogeneous’ SW'tC.hAO andAl, andR-AO andR-Al ifthe targgt
(combining all elements, based on the syntactic hierar- verb s part .Of a pa§3|VVE chqu. AVF.) chunk is
chy). A few systems have captured the existence of considered in passive voice if it contains a form of
neighboring arguments, previously identified in the pro- to be and the verb does not ending .
cess. Interestingly, the system of Lim et al. (2004) rep- Table 5 presents the overall results obtained by the
resents the context of an argument relative to the syntaten participating systems, on the development and test
tic hierarchy by means of relative constituent sequence®ts. The best performance was obtained by the SVM-
and syntactic levels. Concerning lexicalization of théased IOB tagger of (Hacioglu et al., 2004), which al-
argument, most of the techniques rely on head worthost reached the performance of 70 in éh the test.
rules based on Collins’, or content word rules as ifThe seven best systems obtaingdsEores in the range
Surdeanu et al. (2003). Only Carreras et al. (2004) def 60-70, and only three systems scored below that.
cide to use a bag-of-words model, apart from heuristic- Comparing the results across development and test cor-
based lexicalization. pora, most systems experienced a decrease in perfor-

Regarding the target verb, the voice feature of the verimance between 1.5 and 3 points. As in previous editions
is generally used, in addition to basic features capturingf the shared task, we attribute this behavior to a greater
the form and PoS tag of the verb. Some systems capturdficulty of the test set instead of an overfitting effect.
statistics on frequent argument patterns for each prediterestingly, the three systems performing below 60 in
cate. Also, systems represented the elements in the prdke development set did not experienced this decrease. In
imity of the target verb, inspired by local subcategorizafact (Williams et al., 2004) and (Baldewein et al., 2004)
tion patterns of a predicate. even improved the results on the test set.

As for features related to a constituent-predicate pair, Table 6 details the performance of systems for the AO-
all systems use the simple feature describing the relativé4 arguments, on the test set. Consistently, the best per-
position between them, and to a lesser degree, the dférming system of the task also outperforms all other sys-
tance and the difference in clausal levels. Again, there t€ms on these semantic roles.

a general tendency to describe the structured path from i
the argument to the verb. Its design goes from sim? Conclusion

ple homogeneous sequences of head words or chunksyig have described the CONLL-2004 shared task on se-
more sophisticated paths combining chunks and clausggantic role labeling. The task was based on the Prop-
and capturing hierarchical properties. The system q8ank corpus, and the challenge was to come up with ma-
Park et al. (2004) also tracks the number of different syrehine learning techniques to recognize and label semantic
tactic elements found between the pair. Remarkably, tles on the basis of partial syntactic structure. Ten sys-
system of Baldewein et al. (2004) uses an EM clusteringsms have participated to the task, contributing with a va-
technique to derive features representing the affinity of aflety of standard or novel learning architectures. The best
argument and a predicate. In the same work, the callegstem, presented by the most experienced group on the
divider features capture also information about the pathiask (Hacioglu et al., 2004), achieved a moderate perfor-
On top of basic feature extraction, all teams workmance of 69.49 at the,Fmeasure. It is based on a SVM
ing with SVM and VP used polynomial kernels of de-tagging system, performing IOB decisions on the chunks
gree 2. Similar in expressiveness, the system designggithe sentence, and exploiting a wide variety of features
by Punyakanok et al. (2004) expanded the feature spaggsed on partial syntax.
with all pairs of basic features. Most of the systems advance the state-of-the-art on se-
mantic role labeling on the basis of partial syntax. How-
ever, state-of-the-art systems working with full syntax
A baseline rate was computed for the task. It was pracstill perform substantially better, although far from a de-
duced by a system developed by Erik Tjong Kim Sangsired behavior for real-task application. Two questions
from the University of Antwerp, Belgium. The base-remain open: which syntactic structures are needed as in-
line processor finds semantic roles based on the followingut for the task, and what other sources of information are
seven rules: required to obtain a real-world, accurate performance.

4.4 Evaluation



sy|ne|lal|at|as|aw|an|w |vs|Vvf|vc|rp|di| pa]|ex
hacioglu + |+ [+ =T =T+ =T+1T+]T=T+7T+T+7 + 1+
punyakanok | + | + | + |+ | + | + | — | + | — |+ | + |+ | | + | +
carreras + | ===+ + | =+ =] =]=|+|=|+ ]+
lim + | = | = = =1 + + |+ | = | =] =+ | = + _
park + | - === ==+ =]|=|+|+]|+] + |+
higgins + ]+ | === =]+ |+ | =|=|=|+]+] + | =
vandenbosch + | + | = | = | = | = + 1+l = 2+l +] = | =
kouchnir + | =+ =+ |+ | =+ | =]+ =1|4+1|+ _ _
baldewein R B B e e N e e A
williams + |+ | ] - =] ]+ = _

Table 4: Main feature types used by the 10 participating systems in the CoNLL-2004 shared task, sorted by perfor-
mance on the test set. “sy”: use of partial syntax (all levels); “ne”: use of named entities; “al”: argument length; “at”:
argument type; “as”: argument internal structure; “aw”: head-word lexicalization of arguments; “an”: neighboring
arguments; “vv”: verb voice; “vs”: verb statistics; “vf”: verb features derived from PropBank frames; “vc”: verb local
context; “rp”: relative position; “di”: distance (horizontal or in the hierarchy); “pa”; path; “ex”: feature expansion.

As a future line, a more thorough experimental evaldJohn Chen and Owen Rambow. 2003. Use of deep lin-

uation is required to see which are the components thatguistic features for the recognition and labeling of se-

most contributed to the performance of systems. mantic arguments. lifroceedings of EMNLP-2003
Sapporo, Japan.
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