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Software engineers must systematically account for the broad scope of environmental behavior that

is described in non-functional requirements and includes the coordinated actions of stakeholders

and software systems. The Inquiry Cycle Model (ICM) provides engineers with a strategy to
acquire and refine these requirements by having domain experts answer six questions: who, what,

where, when, how and why. Goal-based requirements engineering has led to the formalization of

requirements to answer the ICM questions about when, how and why goals are achieved, main-
tained or avoided. In this paper, we present a systematic process called Semantic Parameterization

for expressing natural language domain descriptions of goals as specifications in Description Logic.

The formalization of goals in Description Logic allows engineers to automate inquiries using who,
what and where questions, completing the formalization of the ICM questions. The contributions

of this approach include new theory to conceptually compare and disambiguate goal specifications

that enables querying goals and organizing goals into specialization hierarchies. The artifacts in
the process include a dictionary that aligns the domain lexicon with unique concepts, distinguish-

ing between synonyms and polysemes, and several natural language patterns that aid engineers
in mapping common domain descriptions to formal specifications. Semantic Parameterization has

been empirically validated in three case studies on policy and regulatory descriptions that govern

information systems in the finance and health-care domains.

Categories and Subject Descriptors: D.2.1 [Requirements/ Specifications]: Languages and

Methodologies

General Terms: Documentation, Standardization, Human Factors

Additional Key Words and Phrases: Natural Language, domain knowledge, formal specification,

Description Logic

1. INTRODUCTION

To improve the validity of software requirements and designs, requirements and

software engineers must consider the role of the software system in the broader con-
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text of stakeholder goals. These goals focus the requirements engineering effort on

satisfying specific environmental states that include non-functional requirements.

These states are either achieved, maintained or avoided by actors who perform

actions within the environment [van Lamsweerde 2001]. Developing formal de-

scriptions of both the system, actors and the environment will reduce stakeholder

misconceptions about the role of the system and expose tacit interactions within

the environment that are necessary to ensure broader requirements coverage. In

the discussion that follows, we use the term domain to refer to a set of conceptually

related environments and domain description to refer to a stakeholder’s conceptu-

alization or transcription of a specific domain problem in natural language [Jackson

and Zave 1993].

Goal-based methods exist to extract goals from domain descriptions [Antón 1996]

and to formalize goals for automated analysis [Dardenne et al. 1993; Fuxman et al.

2004]. The Goal-Based Analysis Method (GBRAM) provides engineers with guide-

lines and heuristics to acquire semi-formal instances of actors, goals and constraints

[Antón 1996]. The GBRAM supports the Inquiry Cycle Model (ICM), which drives

requirements elicitation by asking who, what, where, when, how and why questions

to domain experts [Potts et al. 1994]. The model provides an interactive struc-

ture by which stakeholders and analysts iteratively elaborate upon requirements

through expression, discussion and commitment, contributing to the refinement of

requirements. Inquiry helps analysts and stakeholders identify what information is

missing and which assumptions are pending. In GBRAM, the answers to ICM ques-

tions yield new artifacts in the form of goals or domain descriptions that refine or
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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condition previously identified goals [Antón 1996]. By supporting the ICM during

formalization, engineers encourage the continued involvement of the domain expert

helping to disambiguate and refine formal models that are derived from domain

descriptions.

The Knowledge Acquisition in AutOmated Specification (KAOS) [Dardenne et al.

1993] and Tropos [Fuxman et al. 2004] methods provide engineers a means to for-

malize several goal operators (achieve, maintain, avoid) using linear-time temporal

logic (LTL) and many important goal concepts using conceptual graphs (CG). In

the goal refinement process, the LTL representations formalize inquiries about when

goals are satisfied whereas the CGs formalize inquires about why and how goals are

satisfied. Goal-related questions about who performs an action, what objects are

acted upon, where actions are performed require the expressive power to reason

about classes of individuals (e.g., instances) using concepts and roles. In knowl-

edge representation, concepts and roles are defined abstractly in domain-level or

intensional knowledge using sub-class or specialization relationships. These defini-

tions are independent from instance-level or extensional knowledge, which describes

specific problems within the domain by assigning individuals to pre-defined con-

cepts and roles. Although KAOS distinguishes between domain and instance-level

knowledge [Dardenne et al. 1993], the class relationships are exclusively defined

using CGs and cannot adequately be expressed and reasoned about in LTL. On the

other hand, Tropos uses no sub-classing or specialization of structures and thus the

domain- and instance-levels are not distinguished in the formalization. Although

GBRAM directs stakeholders to ask all of the ICM-related questions, the lack of
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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goal formalization in first-order predicate logic precludes the automation of the

inquiry process using logical inference.

To address this limitation in KAOS, Tropos and GBRAM, we consider a fragment

of first-order logic called Description Logic (DL) that is used to represent and reason

about knowledge at the domain- and instance-levels [Baader et al. 2002]. The basic

inference mechanism in DL is called subsumption and is used to infer whether

or not one concept is contained in the set of subclasses of another concept and,

inversely, to infer whether one concept is more general than another. By assigning

individuals to concepts, DL can be used to reason about the similarity of individuals

through shared concepts at different levels of abstraction. Unfortunately, it is a non-

trivial task to map goal structures from KAOS, Tropos and GBRAM into DL. For

example, in KAOS, Tropos and GBRAM, each goal is represented by a semi-formal

natural language statement that consists of a verb followed by a phrase. The phrase

is often represented as a single proposition that prohibits asking more detailed

who, what and where questions using logical inference. In KAOS [Dardenne et al.

1993] for example, the goal “Achieve BorrowerRequestSatisfied” implies several

tacit activities in the goal phrase, including: the intent of an actor (the borrower) to

borrow; the request of the borrower; and the perception by some actor of satisfying

the borrower’s request. This goal also has several ambiguities that are identifiable

by asking the right ICM questions, including: what the borrower is borrowing; what

the borrower is requesting; who perceives the satisfaction (e.g., the borrower or the

lender); and how the satisfaction is measured. These questions are typically raised

during the Inquiry Cycle with the answers supplied by a domain expert. Because
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.



Semantic Parameterization · 5

the phrase is informal, unstructured and compounded into a single proposition,

these questions can only be identified and answered by an engineer who recognizes

these ambiguities in the label given to this proposition. Similar to KAOS, both

GBRAM and Tropos yield goals with phrases that are also informal and inaccessible

to automated inquiry [Antón et al. 2004; Fuxman et al. 2004].

We build upon this prior work and present a process called Semantic Parame-

terization that engineers can use to systematically map natural language domain

descriptions into DL expressions. The process can be used by engineers and do-

main experts to formalize otherwise vaguely defined sources of knowledge and dis-

tinguish knowledge about the domain (e.g., concepts and roles) from knowledge

about problems (e.g., individuals and interactions) in the domain. The rigorously

derived DL expressions support asking who, what, where, why and how questions

about instances in the domain relevant to the Inquiry Cycle Model. These questions

extend the role of the domain expert in disambiguating and refining formal models

of domain descriptions. The process assists in the identification of four types of

ambiguity: (1) synonymy (same-meaning) and (2) polysemy (multiple meaning)

by mapping the lexicon to unique concepts in a dictionary; (3) anaphora (back-

ward references) or cataphora (forward references) by applying NL phrase heuris-

tics to domain descriptions; and (4) under-specifications or omissions by applying

NL patterns to domain descriptions. We provide a standard procedure for deriving

generalizable NL patterns from domain descriptions. Finally, we summarize sev-

eral NL patterns that were successfully employed to formalize frequently recurring

requirements phrases in a substantial body of work across three case studies.
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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The remainder of this paper is organized as follows: in Section 2 we present re-

lated work, focusing on methods to map domain descriptions into structured and

semi-structured goals; in Section 3 we present the Semantic Parameterization pro-

cess; in Section 4 we present the NL patterns for modeling goals and requirements;

in Section 5 we present the empirical validation from three case studies; with our

discussion and summary in Section 6, where we show the results of two formal

techniques, enabled by our approach, to analyze goals.

2. RELATED WORK

Several researchers have recognized the need to better align natural language re-

quirements and formal models to: prevent the loss of original context [Potts 1997];

incorporate knowledge about the system environment [Jackson 1997; van Lam-

sweerde 2000; Mylopoulos et al. 1997; Nuseibeh and Easterbrook 2000]; improve

traceability [Ramesh and Jarke 2001]; apply formal analysis to requirements con-

cepts [van Lamsweerde 2000; Nuseibeh and Easterbrook 2000]; and reduce am-

biguous terminology [Gause and Weinberg 1989; Jackson 1997; Denger et al. 2003;

Wasson et al. 2003; Wasson 2006]. In this paper, we focus on the process to

model natural language descriptions of systems and their environments. Therefore,

we first review the role of ontology in modeling domain knowledge before review-

ing two popular methods for acquiring formal specifications from natural language

descriptions: controlled languages [Cregan et al. 2007; Konrad and Cheng 2005;

Kaljurand and Fuchs 2007; Smith et al. 2002] and standard lexicons [Cysneiros

and Leite 2004; Kaindl 1996; Overmyer et al. 2001; Wasson et al. 2003; Wasson

2006]. We conclude by reviewing a few types of ambiguities identified by Gause
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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and Weinberg [Gause and Weinberg 1989]. Throughout this overview, we discuss

how Semantic Parameterization extends or complements the related work.

In knowledge representation, an ontology defines terms in classification hierar-

chies in which conceptually more abstract terms appear higher in the hierarchy. An

upper ontology describes the most abstract terms that are more frequently shared

across multiple domains. In the KAOS framework, the meta-level concepts are

most likely to appear in an upper ontology. The IEEE Standard Upper Ontology

Working Group (IEEE P1600.1) was established to produce a standard upper on-

tology to support computer applications. Example material from different upper

ontologies can be found in Cyc [Matuszek et al. 2006], DOLCE [Gangemi et al.

2002], the Suggested Upper Merged Ontology (SUMO) [Niles and Pease 2001], and

WordNet [Fellbaum 1998]. There is a debate concerning the existence, feasibility

and relevance of an upper ontology to coordinate shared knowledge across mul-

tiple domains and users [Welty 2002]. Because upper ontologies tend to lead to

extraneous issues beyond the scope of a single software system, we have developed

our process in such a way that the requirements models are limited to the mean-

ing that domain experts assign directly to domain descriptions. In large software

projects, this sharp focus is often essential to success of the project. Consequently,

we take the approach that experienced domain experts must properly align separate

ontologies when that need arises.

Controlled languages, which comprise a subset of natural language, have been

developed in requirements engineering [Breaux and Antón 2005b; 2005a; Konrad

and Cheng 2005; Denger et al. 2003; Smith et al. 2002] and artificial intelligence
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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[Chen 1983; Kaljurand and Fuchs 2007; Cregan et al. 2007] to reduce ambiguity

and inconsistency in natural language specifications. Smith et al. describe the

PROPEL tool that uses disciplined natural language (DNL) templates to capture

requirements [Smith et al. 2002]. The templates permit a limited number of concise,

highly-structured phrases that correspond to formal properties used in finite state

automata. Konrad and Cheng employ a structured English grammar with special

operators tailored to the specification of real-time properties [Konrad and Cheng

2005]. Templates and structured grammars require the engineer to focus the domain

description in a manner consistent with pre-defined operators in a formal method.

Denger et al. use natural language patterns to capture conditional, temporal and

functional requirements statements [Denger et al. 2003]. Similar to templates and

grammars, we provide natural language patterns in Section 4 that are intended to

help engineers restate goal descriptions into Description Logic expressions. These

expressions extend prior work by allowing engineers to formally reason about the

classification and composition of goal concepts.

In artificial intelligence, we highlight three approaches to map a subset of the

English language to entity-relationship (ER) models [Chen 1983] and Description

Logic, including Attempo Controlled English (ACE) by Kaljarund et al. [Kalju-

rand and Fuchs 2007] and Computer-Processable ENGlish (PENG) by Cregan et

al. [Cregan et al. 2007]. Peter Chen proposed eleven rules to manually extract

entities, relations and attributes in ER models from English sentences [Chen 1983].

ER models require engineers to decide whether a “thing” is an entity or a relation

between entities, an ambiguity we call the node-edge problem, which we discuss in
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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Section 3.1. We identify new rules in addition to the rules identified by Chen and

present these new rules in Section 4. ACE [Kaljurand and Fuchs 2007] and PENG

[Cregan et al. 2007] include two approaches to align a subset of natural language

(English) with a formal semantics in DL. An important issue that arises during

this alignment includes words with an anaphoric or cataphoric function, such as

English pronouns and definite articles (e.g., this, that, the), that refer the reader to

a particular thing or individual described in a prior or subsequent context, respec-

tively. Our approach extends their work by elaborating upon a method to formally

distinguish all shared individuals using anaphoric and cataphoric references and to

unambiguously map these individuals into assertions in DL. Because ACE has been

mapped to DL using “artificial” examples that lack coherence and relevance to a

particular domain [Kaljurand and Fuchs 2006; 2007], their results are still prelimi-

nary and anecdotal. In Section 5, we present empirical validation of our approach

in three case studies over two domains.

In requirements engineering, it is common practice to standardize the natural

language vocabulary using a lexicon or dictionary. Antón et al. applied the Goal-

Based Requirements Analysis Method (GBRAM) [Antón 1996] to policies to ex-

tract goals that begin with a verb followed by a goal phrase [Antón and Earp 2004;

Antón et al. 2004]. In GBRAM, these verbs are standardized in a shared lexicon

to avoid redundant goals. Overmyer et al. describe the Linguistic Assistant for

Domain Analysis (LIDA) tool that maintains a list of words acquired from natu-

ral language documents; the words are used to identify classes and attributes in

the UML [Overmyer et al. 2001]. Similarly, Kaindl shows how to identify binary
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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relationships between nouns in natural language definitions and map them to new

classes [Kaindl 1996]. Wasson et al. employ a domain map to facilitate effective

communication between domain experts and engineers [Wasson et al. 2003; Wasson

2006]. The domain map contains technical words classified into hierarchies of super-

ordinate and sub-ordinate terms and is used to identify ambiguous terms based on

their commonality and domain-specific interpretation. Cysneiros and Leite model

non-functional, natural language requirements in the UML using class, sequence

and collaboration diagrams [Cysneiros and Leite 2004]. Their approach uses a Lan-

guage Extended Lexicon (LEL) to codify the natural language vocabulary in terms

of denotations and connotations. In our approach, we employ a dictionary that

maps words in a lexicon to their meanings in an ontology expressed in Description

Logic. The dictionary is used to resolve three types of ambiguity: (1) synonymy

(same meaning) and (2) polysemy (multiple meanings) at both the conceptual and

real-world knowledge levels; and (3) under-specifications or omissions that are im-

plied by relations to other concepts (i.e., the word “patient” implies a relationship

to a hospital, doctor, or some other agent that provides treatment to the patient.)

Ambiguity can appear in requirements specifications that use natural language

representations. Gause and Weinberg describe three types of ambiguity: (1) miss-

ing requirements, such as missing constraints on properties of things; (2) ambiguous

words, including adjectives such as “small” or “inexpensive;” and (3) new words

that are introduced in requirements statements that did not appear in the original

domain description [Gause and Weinberg 1989]. Our process supports detecting

some ambiguities in all three of these categories. For example, the process exposes
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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missing constraints on the properties of actions and goals. These properties are

assigned a formal interpretation in Description Logic that is presented in Table

IV. Furthermore, the dictionary separately distinguishes adjectives that appear in

domain descriptions and can be used to detect value-laden terms such as “small”

and “inexpensive” in requirements models. While our process does not prevent

engineers from introducing new words during the formalization of domain descrip-

tions, the process does separate new words from words that appear in the domain

description by using a meta-model, which is described in Section 3.2. This sepa-

ration supports scrutinizing new words to identify potential ambiguities in domain

descriptions. Finally, a fourth type of ambiguity called syntactic ambiguity includes

sentence phrases that may be attributed to more than one noun or phrase in the sen-

tence. For example, the sentence “The health plan notifies patients with e-mail” is

syntactically ambiguous because it is unclear whether “with e-mail” is attributed to

the notification (e.g., use e-mail to notify patients) or to the patients (e.g., patients

who have e-mail are notified). This example is formalization in DL in Section 3.3.

The risk of misinterpreting this type of ambiguity can lead to incorrectly specifying

the requirement.

3. SEMANTIC PARAMETERIZATION

Semantic Parameterization is a process to support engineers who map natural lan-

guage domain descriptions to models expressed in first-order predicate logic for

the purpose of performing automated reasoning and analysis. The process was

developed to support the following three goals:

(1) Provide a reference system similar to natural language that allows stakeholders
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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to make ambiguous statements about systems and that systematically detects

and resolves such ambiguities. This system is realized through semi-automated

procedures that combine tools, knowledge bases and user feedback. The dictio-

nary that is based on Description Logic and presented in this section supports

this goal by documenting the many formal interpretations of domain words.

(2) Provide automated support for placing natural language-like inquiries across

collections of requirements that answer who, what, where, when, how and why

questions [Potts et al. 1994]. The query enables comparing requirements, which

is necessary to build more advanced requirements analysis techniques such as

organizing requirements, identifying conflicts, etc. We validated this design goal

in two case studies in which we use queries to ask open-ended policy questions

[Breaux and Antón 2005a], organize requirements into hierarchies [Breaux and

Antón 2005a; Breaux et al. 2006] and identify some ambiguities and conflicts

[Breaux et al. 2006].

(3) Provide a means to formalize and compare different stakeholder viewpoints. We

support this goal in two ways: (1) by formally distinguishing between the words

in a domain description and the engineer’s interpretation of those words in a

conceptual model; and (2) by providing formal semantics to express different

stakeholder viewpoints on the same requirements model with regard to purposes

[Breaux and Antón 2005b], transactions and delegations [Breaux et al. 2006].

In the remainder of this section, we present an introduction to Description Logic

followed by the relevant terminology and formal definitions for Semantic Parame-

terization and the process to map domain descriptions into DL expressions.
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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3.1 Introduction to Description Logic

The Description Logic (DL) is a subset of first-order logic used to express and

reason about knowledge [Baader et al. 2002]. In DL, knowledge is maintained in a

knowledge base KB that is comprised of an intensional component, called the TBox

T , which describes abstract terminology or domain knowledge, and an extensional

component, called the ABox A, which describes assertions about a domain-specific

problem. The TBox contains terminological axioms called descriptions that define

both concepts, used to describe individuals, and roles, used to describe binary rela-

tionships between individuals. The ABox contains assertions about individuals in

terms of concepts and roles. In the DL family ALC (Attributive Language + Com-

plement), complex descriptions are built from other descriptions using constructors

such as union, intersection, negation and full existential qualifiers over roles. In

this paper, we use the DL family ALCI that combines the constructors from ALC

with role inversion (I) [Baader et al. 2002]. Reasoning in the DL family ALCI is

known to be PSPACE-complete [Baader et al. 2002].

Consider a brief example in the health care domain. We define a TBox that con-

tains descriptions for the concept Hospital and the role hasPatient and an ABox

that contains assertions over two individuals x and y in the form Hospital(x) and

hasPatient(x,y) with the following interpretations: Hospital(x) asserts that x be-

longs to the concept Hospital and hasPatient(x,y) asserts that the individual x

belongs to the role hasPatient in which the individual y fills that role. By sepa-

rating intensional knowledge (e.g., concepts and roles) from extensional knowledge

(e.g, individuals), it is possible to make inferences about individuals using only the
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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concepts and roles they fill.

Reasoning in DL begins with an interpretation I that consists of a non-empty

set ∆I , called the domain of interpretation, and the interpretation function ·I that

maps concepts and roles to subsets of ∆I as follows: every atomic concept C is

assigned a subset CI ⊆ ∆I and every atomic role R is assigned the subset RI ⊆

∆I ×∆I . In Description Logic, two special concepts are defined: >, pronounced

“top,” with the interpretation >I = ∆I and ⊥, pronounced “bottom,” with the

interpretation ⊥I = �. In addition to constructors for union, intersection and

negation, DL provides a constructor to constrain role values, written R.C, which

means the filler for the role R belongs to the concept C. The interpretation function

is extended to concept definitions for the DL family ALCI as follows, where C and

D are concepts and R and S are roles in the TBox:

>I = ∆I

⊥I = �
(¬C)I = ∆I\CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I =
{

a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI
}

(∃R.>)I =
{

a ∈ ∆I | ∃b.(a, b) ∈ RI
}

(R−)I =
{

(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI
}

Description Logic includes axioms for subsumption, equivalence and disjointness

with respect to a TBox. Subsumption provides a means to describe individuals in

terms of generalities and organize concepts into subsumption hierarchies, similar to

class hierarchies in object-oriented design. We say a concept C is subsumed by a

concept D, written T |= C v D, if CI ⊆ DI for all interpretations I that satisfy

the TBox T . The concept C is equivalent to a concept D, written T |= C ≡ D,
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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if CI = DI for all interpretations I that satisfy the TBox T . The concept C is

disjoint from D, written T |= C uD → ⊥, if CI ∩DI = � for all interpretations

I that satisfy the TBox T .

For example, in the health care domain, we might encounter two phrases “to

treat individuals” and “treatment of individuals” intended to have the same inten-

sional meaning. In the first phrase, the word “treat” is an action verb whereas in

the second phrase the word “treatment” is a noun that describes the activity “to

treat someone.” In DL, we formulate a definition using the following equivalence

axiom: Treatment ≡ Activity u hasAction.Treat. The axiom states that the con-

cept Treatment is equivalent to an Activity with the role hasAction whose filler is

constrained to the concept Treat. This axiom ensures that descriptions expressed

as either “to treat individuals” or “treatment of individuals” will be conceptually

equivalent for reasoning purposes, regardless of the object of the treatment (e.g.,

individuals, patients, etc.)

3.2 Formal Definitions

In Semantic Parameterization, the universe of discourse is comprised of the concepts

and roles contained in the TBox T , assertions contained in the ABox A, and the

set of natural language words W, called the lexicon, that consists of all words in

the union of the following disjoint subsets: the set N of nouns, the set J of non-

inflected adjectives and the set V of transitive and ditransitive verbs (excluding the

verbs to-be and to-have); therefore, W = N ∪J ∪V. Adverbs that are derived from

adjectives are mapped to their adjectival form in J . The dictionary maps words in

the lexicon to the concepts and roles in the TBox with statements about individuals

expressed as assertions in the ABox. The following definitions precisely define the
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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dictionary as well as polysemy and synonymy that occur in domain descriptions:

Definition 3.1. The dictionary D is a subset of pairs in W×T , called dictionary

entries, that consist of a word w ∈ W and an axiom A ∈ T . The axiom A is one

of two possible DL descriptions: (1) a concept C; or (2) if w ∈ N , the description

can be a role R.D for a some concept D. In the second case, the word w is used in

natural language statements to refer to individuals that belong to the domain of the

role description. For example, a dictionary entry (subject, isSubjectOf.Activity)

contains the word subject that is used to refer to an individual x in the domain of

the role isSubjectOf(x,y), as opposed to the range of the role, which refers to an

individual belonging to the concept Activity.

To improve readability, the concept and role names in dictionary entries corre-

spond to their dictionary word as follows: for a word word in the dictionary, if the

word refers to a concept we use the concept name Word, the exact word with capital

initial, or if the word refers to a role we use the role name isWordOf with the inverse

role name hasWord such that isWordOf− ≡ hasWord.

Definition 3.2. Two words in a domain description are synonyms if they are

different words and their uses have the same intensional or extensional meanings.

Two different words w1, w2 are intensional synonyms, if for two dictionary entries

(w1, A1), (w2, A2) ∈ D, it is true that T |= A1 ≡ A2; or they are extensional

synonyms if the words are used to refer to the same set of individuals in the ABox

such that, for all x in this set, KB |= A1(x)∧A2(x), recalling that if A1 and A2 are

roles then the concerned individuals are in the domain of that role.

Definition 3.3. A word in a domain description is a polyseme if it has different
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.
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intensional or extensional meanings. The word w is an intensional polyseme, if

for two dictionary entries (w,A1), (w,A2) ∈ D, it is true that A1 and A2 are not

equivalent or (A1)I 6= (A2)I for some interpretation I that satisfies the TBox T ; or

it is an extensional polyseme, if the word is used to refer to two different individuals

x, y in the ABox such that KB |= A1(x) ∧ A2(y), recalling that if A1 and A2 are

roles then the concerned individuals are in the domain of that role.

The Node-Edge Problem. The node-edge problem is the matter of deciding

whether a word maps to a concept or a role in a conceptual model. For ex-

ample, we can map the word patient to a concept Patient or to a role such as

isPatientOf1.Doctor or isPatientOf2.Hospital. The first role may describe a pa-

tient who has been assigned to a doctor whereas the second role may describe a

patient who has been admitted to a hospital. To resolve this problem, we assert

that for a common word w and a set of conceptually related roles { Ri | (w,Ri) ∈ D

for 1 ≤ i ≤ n }, there exists a shared concept C with dictionary entry (w, C) and

the subsumption axiom R1 tR2 t ... tRn v C in the TBox. For example, the ax-

iom isPatientOf1 t isPatientOf2 v Patient ensures that individuals who belong to

either of the roles isPatientOf1 or isPatientOf2 also belong to the concept Patient.

The advantage of using a role to refer to an individual is increased specificity (e.g.,

it implies a relation to another concept in the range of that role) whereas using a

concept to refer to an individual provides the freedom to generalize among similar

individuals irrespective of their different relations to other concepts.
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3.3 Parameterization Process

The parameterization process extends the ABox with assertions acquired from a

domain description and allows the engineer to develop re-usable NL patterns that

generalize across multiple descriptions. The extension is partitioned into two sets

of DL assertions: (1) those assertions that come from words in the NL statement,

called the grounding; and (2) those assertions that come from words inferred by

the engineer, called the meta-model. Each new assertion incrementally builds a

specification; a notion Zave and Jackson call conjunction as composition [Zave

and Jackson 1993]. Together, the grounding and meta-model align with the NL

phrase structure to comprise the NL pattern. Engineers who re-use these patterns

will improve consistency in requirements models because the resulting models are

structurally similar under DL subsumption and unification. In addition, these

engineers will save time and effort because the NL patterns serve as templates that

characterize the tacit knowledge in conceptually related domain descriptions.

We illustrate the parameterization process with the Unstructured Natural Lan-

guage Statement (UNLS) UNLS1.0, grounding G and meta-model M in Table I.

We assume the dictionary contains all the necessary words for this exercise with

corresponding concepts and roles contained in the TBox. In practice, however,

the engineer may need to add new words to the dictionary which may require

adding new DL axioms for subsumption, equivalence and disjointness. The process

proceeds in three phases: (1) apply phrase heuristics to disambiguate words with

an anaphoric or cataphoric function such as pronouns to identify extensional syn-

onyms; (2) derive the grounding by using the dictionary to assign DL meanings to
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Table I. The grounding G and meta-model M derived from UNLS1.0

Domain Description

UNLS1.0: The customer1,1 must not share2,2 the access-code3,3 of the
customer1,1 with someone4,4 who is not the provider5,4.

Grounding (G) Meta-Model (M)

Customer(p1)

u Share(p2)

u isAccessCodeOf(p3,p1)

u Someone(p4)

u Provider(p4)

Activity(p5)

u hasSubject(p5,p1)

u hasAction(p5,p2)

u hasObject(p5,p3)

u hasTarget(p5,p4)

u isRefrainmentOf (p5,p1)

the words in the domain description; (3) derive the meta-model by using the dic-

tionary to identify the tacit relationships between concepts implied by the domain

description. We prepared UNLS1.0 by hyphenating nouns in the statement that de-

scribe a single concept or role. For example, the noun “access code” is hyphenated

because it refers to a single concept AccessCode or role isAccessCodeOf.

In the first phase, the engineer coordinates with domain experts and applies

phrase heuristics to disambiguate references between different noun phrases that

refer to the same person, place or thing called an anaphoric or cataphoric function.

Pronouns (e.g., he, her, it, this, that, etc.) and nouns that follow articles (e.g., a,

the) both refer to a unique person, place or thing in domain descriptions. Because

pronouns are frequent sources of ambiguity, the engineer must identify and replace

pronouns with a definite article followed by the noun phrase that uniquely identifies

the intended individuals (e.g., replace it with the system if it refers to the system.).

For the same reason, possessive pronouns are replaced by the engineer (e.g., their

website is replaced with the company’s website if the possessive pronoun their refers

to the company).

The engineer must then identify and distinguish intensional and extensional syn-
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.



20 · Travis Breaux et al.

onyms and polysemes. For example, if the same noun is used to refer to two different

individuals (e.g., this network and that network) then the engineer must consistently

distinguish these extensional polysemes. We assume all lexically equivalent words

are intensional synonyms (same concept) and extensional polysemes (different indi-

viduals), unless otherwise distinguished using subscripts as follows: for networkx,y,

the subscript x is an intensional index and the subscript y is an extensional index.

Similar indices are synonyms and dissimilar indices are polysemes for the given

word network. For example, the words network1,1 and network1,2 represent two

intensional synonyms and extensional polysemes (e.g., same concept but different

individuals).

In UNLS1.0, for example, the two occurrences of the word customer both have

the same intensional and extensional meaning, whereas the word someone, which

describes any person, and the word provider, which in this context describes a

person who provides services, both have different intensional meanings (different

concepts) but have the same extensional meaning (same individual).

In the second phase, the engineer then builds an extension G to the ABox A.

For each word wx,y in UNLS1.0, find the dictionary entry (w, A) ∈ D and ex-

tend the ABox with assertions C(py) for individual py, if A is a concept C, or

R(py, pv) for individual py, pv, if A is a role R, noting that the individual pv may

be the same individual from another word wu,v in the prepared statement. For

example, in UNLS1.0, since the phrase “access-code3.3 of the customer1.1” denotes

an association between the customer and the access-code, we add the assertion

isAccessCodeOf(p3,p1) where individual p3 refers to the access-code and p1 refers to
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Table II. Primitive RNLS Heuristics

Heuristic RNLS and ABox Extension

RNLS: The wordC is a wordD.

For some (wordC , C), (wordD, D) ∈ D, find an individual x such that:

A′′ = A′ ∪ A ∪ {C(x) ∧D(x)}
(i)

RNLS: The wordR of a wordC .

For some (wordC , C), (wordR, R.C) ∈ D, find individuals x, y such that:
A′′ = A′ ∪ A ∪ {R(x, y) ∧ C(y)}

(ii)

RNLS: The wordC has a wordR.

For some (wordC , C), (wordR, R.C) ∈ D find individuals x, y such that:

A′′ = A′ ∪ A ∪ {C(x) ∧R−(x, y)}
(iii)

RNLS: The wordD is a wordR of a wordC .
For some (wordD, D), (wordR, R.C), (wordC , C) ∈ D find individuals x, y

such that: A′′ = A′ ∪ A ∪ {D(x) ∧R(x, y) ∧ C(y)}
(iv)

the customer. However, if the phrase were simply “access-code3.3” with no mention

of customer, we would have added the assertion AccessCode(p3). After completing

phase one, the extended ABox A′ includes the grounding G from Table I as follows:

A′ = A ∪ G

At this point, all of the nouns, verbs and adjectives in UNLS1.0 have been for-

malized using DL; these words and derived assertions in the above extension are

called the grounding. In the third phase, the engineer elicits from domain experts

the implicit or tacit knowledge, if any, that relates the individuals in the ground-

ing to each other through a sequence of implied roles. Table II provides a set of

heuristics based on primitive restricted natural language statements (RNLS) that

only use the verbs to-be and to-have. Applying the primitive RNLS heuristics will

introduce new words and assertions that comprise the meta-model.

In Table II, wordC , wordD, and wordR are words in the dictionary D; C, D are

concepts and R is a role in the TBox T ; and x and y are individuals. The articles the,

a, an in the primitive RNLS may be interchanged as necessary, since the uniqueness

expressed by these words maps to extensional references and individuals in the

UNLS and DL formulas, respectively. In addition, the engineer may find that the
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Table III. Results from Applying Phrase Heuristics

Index Heuristic Resulting RNLS

(1a) (ii) The access-code3,3 of the customer1,1.

(1b) (iv) The access-code3,3 is the property6,3 of the customer1,1.

(1c) (iv) The access-code3,3 is a possession7,3 of the customer1,1.

(2) (iv) The customer1,1 is the subject8,1 of an activity9,5.

(3) (iv) Share2,2 is the action10,2 of an activity9,5.

(4) (iv) The access-code3,3 is the object11,3 of an activity9,5.

(5) (iv) Someone4.4 is the target12,4 of an activity9,5.

(6) (iii) The activity9,5 has a subject8,1, action10,2, object11,3 and target12,4.

(7) (iv) The activity9,5 is a refrainment13,5 of the customer1.1.

application of heuristic (ii) or (iii) can be restated as heuristic (iv) by substituting

the wordR used in heuristic (ii) or (iii) with wordD in heuristic (iv) and finding a

new word wordR that satisfies heuristic (iv). Table III shows the results of applying

these primitive RNLS heuristics from Table II to UNLS1.0. Each row in Table III

consists of: a numbered index to be used in the following discussion; the roman

numeral index of the heuristic applied from Table II; and the RNLS that results

from applying this heuristic. In each result, all of the grounding words are boldface.

Beginning with the phrase “access-code of the customer,” applying the primitive

RNLS heuristic (ii) yields the RNLS (1a) in Table III. However, using the primitive

RNLS heuristic (iv) by finding a new word for wordD, the engineer may elicit

RNLS (1b) and (1c), exploring the relationship of the access code to the customer

as either the property or possession of the customer. The distinction may have

legal consequences, because in certain jurisdictions it may be illegal for a provider

to revoke an access code from their customer when the access code is owned by

the customer (e.g., the code is the customer’s property). For this reason, the

engineer must ensure the meta-model describes the viewpoint of the appropriate

stakeholder(s) so that the model is consistent with the intended interpretation of

the overall environment. For the purpose of this illustration, we choose RNLS (1a).
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RNLSs (2)-(5) are elicited by recognizing that the UNLS1.0 describes an activ-

ity, in which the customer must not share their access code. This implied activity

contributes a new individual p5 to the meta-model. Each word (customer, share,

access-code, and someone) relevant to this activity is assigned a role (subject, ac-

tion, object, and target) in the activity.

Activities may be composed differently by different engineers. For example, in

Table III the word “subject” could be substituted for the word “actor” in RNLS (2)

and RNLS (6). Likewise, one might designate the subject and object as roles of an

action, not an activity. Because the dictionary ensures that words in the UNLS are

individually mapped to concepts and roles, such variations can be aligned using the

equivalence and subsumption axioms in the TBox. Finally, the modal phrase “must

not” in UNLS1.0 designates the activity as something the customer should not do,

which we call a refrainment in RNLS (7). We conclude the parameterization process

by adding the new assertions that comprise the meta-model M to the extended

ABox as follows: A′′ = A ∪ G ∪ M

Recall that one goal in the parameterization process is to relate individuals

through a sequence of roles to identify the tacit relationships between individuals. In

this example, that sequence of roles is: isAccessCodeOf(p3,p1), hasSubject(p5,p1),

hasAction(p5,p2), hasObject(p5,p3), hasTarget(p5,p4), isRefrainmentOf(p5,p1). In

this application of the parameterization process, the phrase structure of the domain

description generally describes an actor who performs an action on an object. We

generalize this phrase structure into the basic activity pattern that appears in Sec-

tion 4.
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Like other forms of conceptual modeling, including object-oriented design, the

meta-modeling process requires engineers to investigate and expose the tacit or im-

plicit relationships implied by domain descriptions. Because this process is inten-

sive, engineers should first try to re-use previously identified RNLS patterns, such

as those presented in Section 4, and reserve the meta-modeling process for modeling

domain descriptions that contain new phrase structures. Likewise, the failure to ap-

ply an existing pattern may be due to variations in the phrase structures that yield

either one or more new patterns, extensions to existing patterns, or ambiguities

with existing patterns. With regard to ambiguities, consider the following state-

ment: “The health plan notifies patients with e-mail.” The phrase “with e-mail”

has two different meanings expressed in DL and contained in the meta-model: (1)

the patient has e-mail, meaning the patient can access an e-mail account; or (2) the

health plan uses e-mail to notify the patient. In Semantic Parameterization, the

first meaning is expressed as Patient u hasEmail whereas the second meaning is

expressed as Activity u hasInstrument.Email (the pattern for the second meaning

is detailed in Section 4.2.4). By documenting NL patterns that contain the same

or similar phrase structure, engineers can identify these ambiguities so that domain

experts can decide which meaning is intended by the description.

4. RESTRICTED NATURAL LANGUAGE STATEMENTS

The Semantic Parameterization process yields re-usable natural language patterns

that are realized as simple sentences called Restricted Natural Language Statements

(RNLS). Based on our experience working within two different domains, health care

and finance, we found that most domain descriptions can be partially mapped into
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.



Semantic Parameterization · 25

a formal model using at least one of the RNLS patterns presented in this section.

The RNLS patterns are organized into the following three categories:

(1) Primitive RNLS that use the verbs to-be and to-have (see Table II);

(2) Basic and extended activities, including transactions; and

(3) References to other activities, including:

(a) verb phrases masquerading as nouns and adjectives;

(b) transitive verbs followed by verb phrases;

(c) nouns distinguished by verb phrases; and

(d) purposes and instruments.

The RNLS patterns share a common meta-model that use one or more roles listed

in Table IV. These roles map assertions in the ABox to questions in the Inquiry

Cycle Model (ICM) [Potts et al. 1994]. For each role, the answers to these questions

are other concepts and roles to which the filler of that role belongs.

Table IV. Mapping from DL roles to questions in the Inquiry Cycle Model

DL Role in Meta-model ICM Question

isSubjectOf.Activity Who performs the action?

isObjectOf.Activity Upon what is the action performed?

isTargetOf.Activity With whom is the transaction performed?

isPurposeOf.Activty Why is the action performed?

isInstrumentOf.Activity How is the action performed?

isLocationOf.Activity Where is the action performed?

In Semantic Parameterization, each natural language pattern is comprised of:

a domain description expressed as an RNLS; the DL expression that maps to the

RNLS; and the DL pattern that generalizes the DL expression for re-use. In the DL

pattern, we change domain-specific concepts that appear in the grounding to the

generalized concept Noun or Verb to indicate which dictionary entries can be used
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Table V. Basic activity pattern with subject, action and object

Natural Language Statements

RNLS2: The provider promptly updates erroneous information.

Expression Pattern

Activity u Prompt

u hasSubject.Provider

u hasAction.Update

u hasObject.(Information

u Erroneous)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

to map concepts to these slots. For example, the DL expression hasAction.Verb

indicates that only concepts whose dictionary word is in the set of verbs V may

constrain the role hasAction.

4.1 Basic and Extended Activities

RNLS with verbs other than the irregular verbs to-be and to-have share a common

pattern called the activity pattern. This pattern consists of four dictionary words:

the word activity which defines a concept with three properties, including the subject

(a noun) who performs an action (a verb) on some object (a noun or verb phrase).

Adverbs that modify a verb (the action) are changed to adjectives that describe the

activity (e.g., “to confidentially share” refers to an activity that is “confidential”

with an action “share”).

Table V shows an example of the activity pattern in which the concepts for

the dictionary words provider, update and information constrain the range of the

roles hasSubject, hasAction, and hasObject, respectively. The adverb “promptly”

is changed to the non-inflected adjective prompt that describes the activity in the

intersection (Activity u Prompt). Likewise, the adjective “erroneous” describes the

information in the intersection (Information u Erroneous).

Transactions are an extension of the basic activity pattern and are identified
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by special verbs, including disclose, share, send, rent, etc. Transactions require a

fourth role hasTarget that designates a supplemental actor who participates in the

action with the subject. For example, the phrase “to send electronic mail” has the

action “send” that requires a target to whom the object (electronic mail) is sent.

We model this target property of transactions using the role hasTarget.Noun.

4.2 References to other activities

In domain descriptions, a single natural language statement may describe relation-

ships between multiple activities. For example, the phrase “share information for

marketing” refers to two activities in which the second activity “marketing” is the

purpose of performing the first activity “share information.” The engineer applies

RNLS patterns to separate these activities into distinct RNLS that are linked using

nested references to maintain the intended meaning. We discuss the following four

RNLS patterns in detail: verb phrases masquerading as nouns and adjectives; tran-

sitive verbs followed by verb phrases; distinguishing nouns by verb phrases; and

purposes and instruments.

4.2.1 Verb phrases masquerading as nouns and adjectives. Nouns that end in

-ing (called gerunds) and other nouns that end in -ance, -sion, -tion, -ism, -sure,

-zure, and -ment often describe activities that may be expanded into verb phrases

and separate RNLS. These nouns may follow transitive verbs (see Section 4.2.2)

or appear as the purpose or instrument (see Section 4.2.4). These nouns often are

lexically similar to the verb in the expanded verb phrase, for example: permission/

permit, restriction/ restrict, requirement/ require, etc. During restatement, the

engineer is required to: (1) replace the noun with a cross-reference to a separate
ACM Transactions on Software Engineering and Methodologies, Vol. V, No. N, Month 20YY.



28 · Travis Breaux et al.

Table VI. Verb phrases masquerading as nouns

Natural Language Statements Expression

UNLS3.0: The provider documents disclo-
sures of patient information.

Activity

u hasSubject.Provider

u hasAction.Document

u hasObject.(Disclosure

u hasSubject.Someone

u hasAction.Disclose

u hasObject.PatientInformation

u hasTarget.Someone

)

RNLS3.1: The provider documents
(RNLS3.2).

RNLS3.2: Someone discloses patient infor-
mation to someone.

RNLS that will become the expanded verb phrase; (2) set the verb tense in the

expanded verb phrase to present-simple tense; and (3) state the explicit or implicit

subject or object of the verb phrase in the new RNLS.

In UNLS3.0 presented in Table VI, the noun “disclosure” is expanded from

RNLS3.1 to RNLS3.2 by using the ambiguous noun “someone” to conservatively

describe an extensional polyseme. In the TBox, we ensure the following axiom is de-

fined to complement this pattern: T |= Disclosure ≡ Activity u hasAction.Disclose.

We frequently encountered this type of intensional knowledge in the HIPAA case

study [Breaux et al. 2006] discussed later in Section 5.

Adjectives that are derivable from past-tense verbs describe activities and can

be expanded into separate RNLS. These adjectives are sometimes called transi-

tive adjectives [Keenan and Faltz 1985]. For example, the phrase “the disclosed

information” has the adjective “disclosed” that is also a past-tense verb. The

noun that follows these adjectives is always the object of the described action.

Thus, we axiomatize this relationship in the TBox as follows: T |= Disclosed ≡

isObjectOf.(Activity u hasAction.Disclose).
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Table VII. Transitive verbs followed by verb phrases

Natural Language Statements

UNLS4.0: The provider restricts sharing information with third-parties.
RNLS4.1: The provider1.x restricts (RNLS3.2).
RNLS4.2: The provider1.x shares information with a third-party.

Expression Pattern

Activity

u hasSubject.Provider

u hasAction.Restrict

u hasObject.(Activity

u hasSubject.Provider

u hasAction.Share

u hasObject.Information

u hasTarget.ThirdParty

)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.(Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

)

4.2.2 Transitive verbs followed by verb phrases. Transitive verbs in domain de-

scriptions such as restrict, limit, allow, deny, notify, require and recommend may

be followed by verb phrases. During restatement, the engineer is required to: (1)

replace the verb phrase with a cross-reference to a separate RNLS that will contain

the verb phrase; (2) change the verb in the verb phrase from present-continuous

to present-simple tense; and (3) state the explicit or implicit subject, object and

target of the verb phrase in the new RNLS, if any. For unstated (implicit) subjects,

one may use the same subject from the unrestricted statement if that assumption

is correct or elicit the correct subject from the domain expert.

In UNLS4.0 in Table VII, the transitive verb “restrict” is followed by the verb

phrase “sharing information with third-parties.” Therefore, we separate the verb

phrase from RNLS4.1 into RNLS4.2 and cross-reference, accordingly. The subject of

the verb phrase is unspecified, so we assume the explicit subject from RNLS4.1 (the

provider) in which RNLS4.2 is nested will suffice; this assumption may not always

be valid and any final decisions should be checked with relevant stakeholders. To

derive the DL formula, we apply the activity pattern to RNLS4.2 and assign the
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Table VIII. Nouns distinguished by verb phrases

Natural Language Statements

UNLS5.0: The provider notifies customers who receive health services.
RNLS5.1: The provider notifies the customer1.x who (RNLS5.2).
RNLS5.2: The customer1.x receives health services.

Expression Pattern

Activity

u hasSubject.Provider

u hasAction.Notify

u hasTarget.(Customer

u isSubjectOf.(Activity

u hasAction.Receive

u hasObject.HealthService

)

)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasTarget.(Noun

u isSubjectOf.(Activity

u hasAction.Verb

u hasObject.Noun

)

)

resulting DL expression to the role hasObject in the formula derived from RNLS4.1.

4.2.3 Nouns distinguished by verb phrases. Verb phrases also serve as constraints

that distinguish nouns in domain descriptions. For nouns that signify a person,

place or thing, the words “who,” “where” and “that,” respectively, will often pre-

cede these verb phrases in domain descriptions. The engineer must separate the verb

phrase(s) into new RNLS, replacing the original verb phrase with a cross-reference

to the new RNLS, and change the verb tense in the new RNLS to present-simple.

In UNLS5.0 presented in Table VIII, the act to notify does not apply to all cus-

tomers; rather it is limited to only those customers “who receive health services.”

The word customer in RNLS5.1 and RNLS5.2 is an extensional synonym that pre-

serves the meaning from UNLS5.0 after the separation. In this example, the object

of the notification is missing, thus the engineer must elicit this information from

domain experts to disambiguate the statement.

To derive the DL formulas, we apply the activity pattern to RNLS5.2 and re-

topicalize the derived formula for the customer by: inverting the role hasSubject.Customer
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Table IX. Activities with a purpose (The Why)

Natural Language Statements

UNLS6.0: The provider discloses information to market services to individuals.
RNLS6.1: The provider discloses information to (RNLS6.2).
RNLS6.2: Someone markets services to individuals.

Expression Pattern

Activity

u hasSubject.Provider

u hasAction.Disclose

u hasObject.Information

u hasPurpose.(Activity

u hasAction.Market

u hasObject.Service

u hasTarget.Individual

)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

u hasPurpose.(Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

)

to the intersection (Customer u isSubjectOf) with the remaining description of that

activity (Activity u hasAction u hasObject) assigned to be the constraint on the

role isSubjectOf. As shown in Table VIII, the re-topicalized DL formula from

RNLS5.2 constrains the role hasTarget in the DL formula derived from RNLS5.1.

4.2.4 Purposes and instruments: the why and the how. The purpose (also called

cause or justification) answers the question “why an action is performed” whereas

the instrument (also called the strategy or method) answers the question “how an

action is performed.” These two properties also appear in goal hierarchies from

requirements engineering [van Lamsweerde 2000], in which higher goals (purposes)

are refined into lower goals (instruments). The purpose and instrument appear in

domain descriptions as either: (1) a verb phrase; or (2) a noun masquerading as a

verb phrase. In the first case, we apply the activity pattern, whereas, in the second

case, we apply the pattern discussed in Section 4.2.1.

In UNLS6.0 in Table IX, the purpose “to market services to individuals” is a

verb phrase that answers why the “provider discloses information.” To apply this

pattern, the engineer separates the verb phrase into RNLS6.2, but this time they
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Table X. Activities with an instrument (The How)

Natural Language Statements

UNLS7.0: The employee protects documents by encrypting them.
RNLS7.1: The employee1.x protects a document1.y by (RNLS7.2).
RNLS7.2: The employee1.x encrypts the document1.y.

Expression Pattern

Activity

u hasSubject.Employee)

u hasAction.Protect

u hasObject.Document

u hasInstrument.(Activity

u hasSubject.Employee

u hasAction.Encrypt

u hasObject.Document

)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

u hasInstrument.(Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

)

make no assumptions about the implicit subject. The formula derived from RNLS6.2

is assigned to be a constraint on the role hasPurpose in the formula derived from

RNLS6.1.

In Table X, the UNLS7.0 illustrates the instrumental phrase “by encrypting

them,” that answers how the employee “must protect documents.” To apply this

pattern, the engineer separates the instrumental phrase into a separate RNLS7.2.

The DL expression derived from RNLS7.2 is assigned to be a constraint on the role

hasInstrument in the expression for RNLS7.1.

In some cases, the instrumental phrase may contain the verb “use”, such as “by

using AES” or “by using encryption” where “AES,” which stands for Advanced

Encryption Standard, is an encryption algorithm1 and “encryption” is the activity

“to encrypt.” In the first case, if the noun that follows “using” is a thing, not

an activity, then the engineer should apply the activity pattern to the entire verb

phrase. However, in the second case, the engineer may wish to remove the super-

fluous verb “using” and parameterize the noun using the pattern for verb phrases

1National Institute of Technology, FIPS Pub. 197
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masquerading as nouns in Section 4.2.1.

5. VALIDATION AND PROCESS EVOLUTION

Semantic Parameterization and the RNLS patterns have been developed using

Grounded Theory [Glaser and Strauss 1967] and validated in the following three

studies. In each study, limitations in the parameterization process and formal

models were identified and addressed before conducting subsequent studies. The

limitations were either resolved by extending the NL patterns or they required new

logical operators beyond the scope of Description Logic, such as arithmetic, deontic

and temporal operators. Finally, every statement in the domain description was

parameterized to avoid overlooking limitations in our process. The three studies

are identified as follows:

(1) Goals: A formative study using the 100 most frequent, semi-structured goals

from over 1200 goals acquired by applying GBRAM to over 100 Internet privacy

policies in the finance and health care domains [Breaux and Antón 2005b;

2005a].

(2) Facts: A pilot study using the fact sheet text [DHHS 2003a] summarizing the

U.S. HIPAA Privacy Rule for patients in which we extracted 19 business rules

[Breaux and Antón 2005c].

(3) Rules: A case study using the regulatory text of the HIPAA Privacy Rule,

four sections §164.520-526 [DHHS 2003b] in which we extracted 46 rights and

80 obligations governing access, consent, notification, and review of privacy

practices [Breaux et al. 2006].
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Table XI. Comparative overview of the three studies

Feature Description Goals Facts Rules

Number of words in the domain description 868 1,700 5,900

Number of words in the grounding 708 318 1587

Number of words in the meta-model 905 341 1603

Number of formal models acquired 101 30 94

Number of dictionary entries used 187 140 234

Number of person hours spent during RNLS restatement 1 11 14

Number of person hours spent during parameterization 7 3 10

Percentage Domain Knowledge 45.5% 48.3% 49.7%

All of the RNLS patterns presented in Section 4 were acquired during the Goals

study, except for the pattern to identify verb phrases masquerading as nouns,

which was identified in the Rules study. The Facts and Rules studies served to

test whether Semantic Parameterization and the RNLS patterns would scale from

semi-structured goal descriptions to unstructured natural language documents, in

particular, the legal language of U.S. government health care regulations.

In Table XI, we present measures to compare the three studies, including the

number of words that appear in the domain descriptions, the grounding and the

meta-model; the number of formal models and dictionary entries acquired; the

number of hours spent applying the process; and the percent of domain-dependent

knowledge in each study. In the Goals study, one goal description was found to de-

scribe two goals, resulting in the 101st model acquired during that study. The sepa-

ration of activities into RNLS resulted in this finding. Because the semi-structured

goal descriptions acquired using GBRAM have a similar phraseology to the RNLS

patterns, we observe a higher ratio of grounding words to description words at

82% in the Goals study compared to 19% and 27% in the Facts and Rules stud-

ies, respectively. The Facts and Rules studies were conducted using unstructured

natural language descriptions which contain articles, coordinators (and, or) and

sub-ordinators (if, unless, except) that map to meta-model words and not ground-
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Table XII. Usage for RNLS patterns in three studies

RNLS Pattern Name (Section) Goals Facts Rules

Basic activity pattern (4.1) 280 132 613

Verb phrases masquerading as nouns and adjectives (4.2.1) 119 54 164

Transitive verbs (4.2.2) 18 14 75

Nouns distinguished by verb phrases (4.2.3) 20 5 22

Purposes (4.2.4) 13 23 45

Instruments (4.2.4) 20 3 26

ing words. The fewer verbs in individual goal statements also accounts for the fewer

hours spent during RNLS restatement compared to the Facts and Rules studies.

The number of case splits corresponds to the number of separate goals generated

from logical disjunctions in a domain description. For example, in the goal descrip-

tion “providers and third-parties must notify patients of their privacy practices,”

the obligations of the providers and third-parties are interpreted as independent.

Therefore, the English conjunction “and” is mapped to a logical disjunction which

yields two separate goals, one for providers and the other for third-parties; this

separation is called a case split. For the number of grounding words g and the

number of meta-model words m, the percentage of domain knowledge is calculated

by the simple formula: d = g / (g + m). The percentage of meta-model reuse is

1 − d, which is above 50% in each of these three studies. This percentage shows

that the six roles presented in Table IV that comprise the meta-model frequently

recur and account for a significant portion of the formalized domain descriptions.

In Table XII, we present the total number of occurrences in the three studies of

the RNLS patterns from Section 4. The pattern name and the section from this

paper in which it is discussed appears in the first column; the number of times

each pattern was applied for each of the three studies described above appear in

subsequent columns. The total number of occurrences for the basic activity pattern
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include those activities acquired from applying all of the RNLS patterns described

in Section 4.

The validation to date has addressed the reuse of the RNLS patterns to derive

models from unstructured natural language domain descriptions. Limitations in-

clude arithmetic operators and temporal constraints for which Description Logic is

unsuitable. Additional validation is needed to ascertain the ease with which engi-

neers can apply these patterns compared to other conceptual modeling formalisms.

We have developed tool support including a context-free grammar that has a for-

mal semantics in Description Logic and a parser to read the semantic models and

perform queries; these tools were used to obtain the results in Table XI and XII.

We are currently comparing our approach to another called Ontological Semantics

[Nirenburg and Raskin 2004] that requires reconciling domain descriptions with an

upper ontology that spans several domains.

6. DISCUSSION AND SUMMARY

The formalization of requirements in Description Logic using Semantic Parame-

terization supports the Inquiry Cycle Model (ICM) in two ways: (1) it enables

automating open-ended queries over formalized requirements [Breaux and Antón

2005a]; and (2) it organizes requirements into specialization hierarchies using the

subsumption inference of Description Logic [Breaux et al. 2006]. In addition to

subsumption inference, these techniques build upon the formalization of the ICM

questions in Table IV and the RNLS patterns previously presented in Section 4.

Table XIII shows the results of a query that was applied to the 100 parame-

terized goals in the Goals study that was previously introduced in the Section 5
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Table XIII. Answering two ICM questions from Table IV: “what information can be

shared?” and “with whom?”

Goal ID isObjectOf.Activity isTargetOf.Activity

155 TransactionInformation Subsidiary

155 ExperienceInformation Subsidiary

822 Personally Identifiable Information (PII) Affiliate

822 PII ServiceProvider

954 Information ThirdParty

954 Statistics ThirdParty

156 TransactionInformation Affiliate

156 ExperienceInformation Affiliate

170 PII Subsidiary

[Breaux and Antón 2005a]. The following axioms were first defined in the TBox

T |= (TransactionInformation t ExperienceInformation t PII t Statistics) v

Information. The question “what information can be shared and with whom?” was

mapped to the two DL queries Information u isObjectOf.(Activity u hasAction.Share

u hasTarget.>) and isTargetOf.(Activity u hasAction.Share u hasObject.Information)

and unified with the knowledge base KB to obtain the results in Table XIII. The first

column lists the Goal ID, where duplicate IDs indicate multiple answers caused by

the case splitting of logical disjunctions. Recall that Table IV shows the DL formal-

ization of the ICM questions as DL roles. In Table XIII, the individuals that belong

to the roles isObjectOf.Activity and isTargetOf.Activity answer the question for

“what information is shared” and “with whom,” respectively.

Table XIV shows a set of goal descriptions that all pertain to provision of notice

and that were parameterized in the Rules study [Breaux et al. 2006]. The domain

description defines a stakeholder specialization hierarchy that includes the covered

entity (CE), the health plan (HP), the group health plan (GHP) and the health-care

provider (HCP). The stakeholder hierarchy is realized in the following axioms: T |=

GHP v HP and T |= (HP t HCP) v CE. Using the stakeholder hierarchy, the goals are

organized into a goal specialization hierarchy (displayed horizontally) that compares
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Table XIV. Organizing Goals by Inferring Specialization Hierarchies

Eight Goal Descriptions Pertaining to Provision of Notice

O520.2: The GHP must provide notice to any person.
O520.4: The GHP is not required to provide notice to any person.
O520.7: The CE must provide notice to any person or individual.
O520.8: The HP must provide notice to any person or individual.
O520.10: The HCP must provide notice to the individual.
O520.13: The CE must provide electronic notice to the individual.
O520.14: The CE must provide a paper copy of the notice to the individual.
O520.15: The CE must automatically provide electronic notice to the individual.

Stakeholder Hierarchy Goal Specialization Hierarchy

the goals by the roles isSubjectOf, isActionOf, isObjectOf and isTargetOf in the

goal description as well as by adverbs and adjectives that modify verbs and nouns,

respectively. In the goal hierarchy in Table XIV, arrows point from specialized

goals to more abstract goals. The dotted arrow between goals O520.4 and O520.2

indicates a conflict inferred from the conflicting deontic modalities “must” and “is

not required to.”

In goal-oriented requirements engineering, the terms “refinement” and “reduc-

tion” are often used to define a relationship between two goals, visualized vertically,

in which a high-level goal describes a strategic objective and a low-level goal de-

scribes a technical requirement [Antón and W.M. McCracken 1994; van Lamsweerde

2001]. This relationship is equivalent to the roles isInstrumentOf and isPurposeOf

presented in Section 4.2.4, in which the role fillers are high-level and low-level goals,
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respectively. This refinement relationship is advantageous to requirements and soft-

ware engineers because it formalizes the high-level rational for integrating low-level

goals into software specifications. On the other hand, the specialization or sub-

sumption hierarchy in Table XIV denotes a different relationship between goals.

In a specialization hierarchy, high-level goals generalize low-level goals; meaning,

all goals that correspond to a low-level goal description can also be described by

anyone of the corresponding high-level goal descriptions in their ancestry by follow-

ing the directed arrows. The specialization hierarchy is advantageous to engineers

because any pre- and post-conditions and other relevant context that applies to

high-level goals may also apply to low-level goals in the hierarchy. Similarly, goals

that appear in conflict such as O520.4 and O520.2 in Table XIV must be distinguish-

able by their pre- and post-conditions to ensure these goals are properly achieved

in their respective contexts. These specialization relationships may not be obvious

to engineers based solely on the wording of a large policy or regulatory document.

Description Logic is necessary but not sufficient to define a complete, comparable

semantics for goals. We identified several phrases in the health care and finance

domains that required an extended semantics to express arithmetic [Breaux and

Antón 2005a; 2005c], deontic [Breaux and Antón 2005a; Breaux et al. 2006] and

temporal constraints [Breaux and Antón 2005a] among goals. Arithmetic and com-

parative constraints restrict the measurable values of properties, such as the age of

people by using the phrases “younger than” or “older than”. Deontic constraints

are mapped from modal phrases such as “may”, “must,” “shall”, and “must not” to

predicates in Deontic Logic to infer “what is permissible,” called permissions, and
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“what ought to be,” called obligations [Horty 2001]. Similarly, certain words and

verb tenses can be mapped into Temporal Logic to express the relative time-order of

events, including which events occur “before,” “during” and “after” other events.

Further work is needed to understand the complexity and necessity of reasoning

using hybrid logics to support the software requirements engineering effort.

Although some might think that Semantic Parameterization requires extensive

linguistic knowledge, the dictionary, phrase heuristics and NL patterns require only

an elementary understanding of English grammar. However, knowledge of DL is

required and poses a limitation to the practical application of this process. Fur-

thermore, there are always questions that must be assumed away for the sake of

concentrating on one issue, such as the formalization of domain descriptions in

terms of concepts and roles. The parameterization process demonstrates the chal-

lenge faced by requirements engineers and provides significant guidance with this

aspect of the formalization continuum. Furthermore, the widespread success of this

process will depend upon the eventual improvement and applicability of natural

language techniques to requirements engineering. This work is an attempt to pro-

vide a concrete context and set of problems to which future NL techniques can be

applied. Finally, to date we have validated the applicability of Semantic Parame-

terization to information systems in healthcare and finance. The extent to which

this process is applicable to embedded systems or even decision support systems

has not been validated.

As with other formal methods and with regards to natural language processing

in general, it is important to acknowledge that no matter how rigorous and correct,
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any formal manipulation of an inaccurate representation will only produce more

inaccurate representations. While these methods help engineers to check their as-

sumptions, domain experts must still evaluate the accuracy of the representation.

Consequently, the ability to present domain experts with multiple views of a single

representation, obtained through such manipulation, can help detect errors in the

representation and improve the resulting requirements specifications. Semantic Pa-

rameterization provides one means to obtain such views by enabling engineers and

domain experts to query and present formal representations of goals in specializa-

tion hierarchies.

In this paper, we presented the Semantic Parameterization process to support

engineers in mapping domain descriptions to formal models expressed in Descrip-

tion Logic. The process exposes four types of ambiguity in domain descriptions,

including polysemy, synonymy, anaphora or cataphora and under-specifications or

omissions. We provided several natural language patterns that are intended to as-

sist engineers with consistently and more efficiently mapping descriptions to formal

models. To date, we have developed tools to support the above techniques and

to identify ambiguities [Breaux et al. 2006], infer implied stakeholder rights and

obligations from parameterized goals [Breaux et al. 2006] and generate domain de-

scriptions from goal models [Breaux and Antón 2005a]. We are currently integrating

these techniques into a unified framework. Finally, we summarized the empirical

results of applying this process to three studies to demonstrate repeatability and

illustrate example applications based on the derived formal specifications.
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