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1 IntrodutionThe shortest path problem with nonnegative ar lengths (the NSP problem) is very ommon inpratie, and algorithms for this problem have been extensively studied, both from theoretial,e.g., [2, 6, 9, 10, 12, 13, 17, 25, 28, 29, 34, 37, 38, 39, 40, 42, 43, 44, 45℄, and omputational, e.g.,[4, 5, 11, 19, 20, 24, 26, 27, 31, 35, 36, 46℄, viewpoints. EÆient implementations of Dijkstra'salgorithm [12℄, in partiular, reeived a lot of attention.Suppose that the input graph has n verties and m ars. To state some of the previous results,we assume that the input ar lengths are integral. Let U denote the biggest ar length. We de�neC to be the ratio between U and the smallest nonzero ar length, Æ. Note that if the lengths areintegral, then C � U . Modulo preision problems and arithmeti operation omplexity, our resultsapply to real-valued ar lengths as well. To simplify omparing time bounds with and without U(or C), one an make the similarity assumption [18℄: logU = O(log n).Several algorithms for the problem have near-linear worst-ase running times, although noalgorithm has a linear running time if the graph is direted and the omputational model is well-established. In the pointer model of omputation, the Fibonai heap data struture of Fredman andTarjan [16℄ leads to an O(m+n logn) implementation of Dijkstra's algorithm. In a RAMmodel withunit-time word operations, the fastest urrently known algorithms ahieve the following bounds:O(m + n(logU log logU)1=3) [39℄, O(m + n(plog n)) [38℄, O(m log logU) [25℄, and O(m log logn)[43℄.For undireted graphs, Thorup's algorithm [42℄ has a linear running time in a word RAM model.A onstant-time priority queue of [3℄ yields a linear-time algorithm for direted graphs, but onlyin a non-standard omputation model that is not supported by any existing omputer.Our work has been motivated by a reent paper of Meyer [29℄. The paper gives an NSP algorithmwith a linear average time for input ar lengths drawn independently from a uniform distributionon [1; : : : ;M ℄. It also proves that, under the same assumptions, the running time is linear withhigh probability. Meyer's algorithm may san some verties more than one, and its worst-asetime bound, O(nm logn), is far from linear. Both the algorithm and its analysis are ompliated.In this paper we show that a natural improvement of the multi-level buket (MLB) shortest pathalgorithm of [9℄ has an average running time that is linear, and a worst-ase time of O(m+n logC).Our average-time bound holds for ar lengths distributed uniformly on [1; : : : ;M ℄;1 the lengths donot need to be independent. We also show that if the lengths are independent, the algorithm runningtime is linear with high probability. We refer to the new algorithm as the smart queue algorithm.Unlike the MLB algorithm, our algorithm is not an implementation of Dijkstra's algorithm: avertex seleted for sanning is not neessarily a minimum labeled vertex. However, the seletedvertex distane label is equal to the orret distane, and eah vertex is sanned at most one.Similar relaxation of Dijkstra's algorithm was originally introdued by Dinitz [13℄ and used in itsfull strength by Thorup [42℄.Pratial importane of the NSP problem motivated extensive omputational work. Implemen-tations of Dijkstra's algorithm based on the lassial binary heap data struture [45℄ were often usedas a benhmark to ompare against. This algorithm is easy to ode and has reasonable onstantfators.2 In pratie binary heaps usually outperform Fibonai heaps [16℄ and often outperformpairing heaps [40℄. However, the running time of the algorithm based on binary heaps grows super-linear with the number of elements on the heap, and the algorithm is not hard to beat on biggerproblems.1The results also hold for other distributions suh that the proof of Theorem 6.2 goes through.2Implementations based on 4-heaps have better onstants.1



For many pratial problems, label-orreting algorithms of Pape [36℄, Pallottino [35℄, andGlover et al. [20℄ perform extremely well. However, these algorithms have bad worst-ase timebounds and sometimes perform poorly. Furthermore, unlike implementations of Dijkstra's algo-rithm and the smart queue algorithm, these algorithms annot be terminated early if one desires ashortest path between a pair of verties.Dail's buket-based algorithm [10℄ works well if U is small. Goldberg et al. [5℄ show that the two-level buket algorithm has a reasonable performane for moderately large U . Further theoretial andexperimental work [6, 24℄ produed more robust two- and three-level implementations. Althoughthey have muh better worst-ase performane than the label-orreting algorithms mentionedabove, these MLB implementations are somewhat slower on many pratial problems. For example,based on real-life road networks, Zhan and Noon [46℄ reommend Pallottino's algorithm for the NSPproblem and buket-based algorithms for the single pair problem.We desribe a pratial implementation of the smart queue algorithm. As a step toward thisimplementation, we develop a new implementation of the MLB algorithm that is more eÆient thanthe previous implementations if the number of buket levels is large. A simple modi�ation of thisimplementation yields an eÆient implementation of the smart queue algorithm. Our experimentalresults show that the smart queue algorithm with a large number of levels is pratial. In partiular,an implementation with the number of levels optimized for the worst-ase theoretial performaneworks well on both typial and bad-ase inputs. For 32-bit ar lengths, the ode runs in timeless than 2:5 times that of breadth-�rst searh for all inputs we tried. These inputs inluded onesdesigned to be hard for our implementation. Our results lead to better understanding of NSPalgorithm implementations and show how lose their performane is to the lower bound providedby breadth-�rst searh.Our algorithm has been motivated by a theoretial average-ase analysis. The fat that thealgorithm is also pratial is an interesting example of a situation where probabilisti analysis leadsto improved pratial performane.2 PreliminariesThe input to the NSP problem is a direted graph G = (V;A) with n verties, m ars, a sourevertex s, and nonnegative ar lengths `(a). The goal is to �nd shortest paths from the soure to allverties of the graph. Unless mentioned otherwise, we assume that ar lengths are integers in theinterval [1; : : : ; U ℄, where U denotes the biggest ar length. Let Æ be the smallest nonzero ar lengthand let C be the ratio of the biggest ar length to Æ. If all ar lengths are zero or if C < 2, then theproblem an be solved in linear time [13℄; without loss of generality, we assume that C � 2 (andlogC � 1). This implies logU � 1. We say that a statement holds with high probability (w.h.p.) ifthe probability that the statement is true approahes one as m!1.We assume the word RAM model of omputation (see e.g., [1℄). To eÆiently implement theMLB date struture [9℄, we need array addressing and the following unit-time word operations:addition, subtration, omparison, and arbitrary shifts. To allow a higher-level desription of ouralgorithm, we use a strong RAM omputation model that also allows word operations inludingbitwise logial operations and the operation of �nding the index of the most signi�ant bit inwhih two words di�er. The latter operation is in AC0; see [8℄ for a disussion of a losely relatedoperation. The use of this more powerful model does not improve the amortized operation bounds,but simpli�es the desription. 2



3 Labeling Method and Related ResultsThe labeling method for the shortest path problem [14, 15℄ works as follows (see e.g., [41℄). Themethod maintains for every vertex v its distane label d(v), parent p(v), and status S(v) 2funreahed; labeled; sannedg. Initially d(v) = 1, p(v) = nil, and S(v) = unreahed. Themethod starts by setting d(s) = 0 and S(s) = labeled. While there are labeled verties, themethod piks suh a vertex v, sans all ars out of v, and sets S(v) = sanned. To san an ar(v; w), one heks if d(w) > d(v) + `(v; w) and, if true, sets d(w) = d(v) + `(v; w), p(w) = v, andS(w) = labeled.If the length funtion is nonnegative, the labeling method always terminates with orret short-est path distanes and a shortest path tree. The eÆieny of the method depends on the rule tohose a vertex to san next. We say that d(v) is exat if the distane from s to v is equal to d(v).It is easy to see that if the method always selets a vertex v suh that, at the seletion time, d(v)is exat, then eah vertex is sanned at most one.Dijkstra [12℄ observed that if ` is nonnegative and v is a labeled vertex with the smallestdistane label, than d(v) is exat. However, a linear-time implementation of Dijkstra's algorithmin the strong RAM model as at least as hard as linear-time sorting. Dinitz [13℄ and Thorup [42℄ usea relaxation of Dijkstra's seletion rule to get linear-time algorithms for speial ases of the NSPproblem. To desribe a related relaxation that we use, de�ne the aliber of a vertex v, (v), to bethe minimum length of an ar entering v, or in�nity if no ar enters v.Lemma 3.1 (aliber lemma) Suppose ` is nonnegative and let � be a lower bound on distanelabels of labeled verties. Let v be a vertex suh that �+ (v) � d(v). Then d(v) is exat.The lemma follows from the observation that for any labeled vertex u, suh that (u; v) 2 A,d(u) + `(u; v) � �+ (v) � d(v).4 Algorithm Desription and CorretnessOur algorithm is based on the MLB implementation of Dijkstra's algorithm modi�ed to useLemma 3.1 to detet and san verties with exat (but not neessarily minimum) distane la-bels. Our algorithm is a labeling algorithm. During the initialization, the algorithm also omputes(v) for every vertex v. The algorithm keeps labeled verties in one of two plaes: a set F and apriority queue B. The former is implemented to allow onstant time additions and deletions, forexample as a doubly linked list. The latter is implemented using multi-level bukets as desribedbelow. The priority queue supports operations insert, delete, derease-key, and extrat-min.However, the insert operation inserts verties into either B or F , and the derease-key operationmay move verties from B to FAt a high level, the algorithm works as follows. Verties in F have exat distane labels and ifF is nonempty, we remove and san a vertex from F . If F is empty, we remove and san a vertexfrom B with the minimum distane label. Suppose a distane label of a vertex u dereases. Notethat u annot belong to F . If u belongs to B, then we apply the derease-key operation to u.This operation either reloates u within B or disovers that u's distane label is exat and movesu to F . If u is neither in B nor F , we apply the insert operation to u, and u is inserted eitherinto B or, if d(u) is determined to be exat, into F .Next we desribe the buket struture B. For a given integer parameter � � 2, B ontainsk + 1 levels of bukets, where k = dlog� Ue. Exept for the top level, a level ontains � bukets.3
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Figure 1: MLB example. � = 2, k = 3, � = 10. Values on the bottom are in deimal. Values ontop are in binary, with the least signi�ant bit on the bottom. Shaded bits determine positions ofthe orresponding elements.Coneptually, the top level ontains in�nitely many bukets. However, at most three onseutivetop-level bukets an be nonempty at any given time (see Lemma 4.1 below), and one an maintainonly these bukets by wrapping around modulo three at the top level.3 We denote buket j at leveli by B(i; j); i ranges from 0 (bottom level) to k (top), and j ranges from 0 to � � 1, exept atthe top level disussed above. A buket ontains a set of verties maintained in a way that allowsonstant-time insertion and deletion, e.g., in a doubly linked list. At eah level i, we maintain thenumber of verties at this level.We maintain � suh that � is a lower bound on the distane labels of labeled verties. Initially� = 0. Every time an extrat-min operation removes a vertex v from B, we set � = d(v). Considerthe base � representation of the distane labels and number digit positions starting from 0 for theleast signi�ant digit. Let �i;j denote the i-th through j-th least signi�ant digit of � and let �idenote the i-th least signi�ant digit. Similarly, di(u) denotes the i-th least signi�ant digit ofd(u), and likewise for the other de�nitions. Note that � and the k+1 least signi�ant digits of thebase � representation of d(u) uniquely determine d(u): d(u) = �+ (u0;k � �0;k) if u0;k > �0;k andd(u) = �+�k + (u0;k � �0;k) otherwise.For a given �, let �i and �i be � with the i least signi�ant digits replaed by 0 or � � 1,respetively. Eah level i < k orresponds to the range of values [�i+1; �i+1℄. Eah buket B(i; j)orresponds to the subrange ontaining all integers in the range with the i-th digit equal to j. Atthe top level, a buket B(k; j) orresponds to the range [j ��k; (j +1) ��k). The width of a buketat level i is equal to �i: the buket ontains �i distint values. We say that a vertex u is in therange of B(i; j) if d(u) belongs to the range orresponding to the buket.The position of a vertex u in B depends on �: u belongs to the lowest-level buket ontainingd(u). More formally, let i be the index of the most signi�ant digit in whih d(u) and �0;k di�er,or 0 if they math. Note that �i � d(u) � �i. Given � and u with d(u) � �, we de�ne the positionof u by (i; di(u)) if i < k and B(k; bd(u) � �=�k) otherwise. If u is inserted into B, it is insertedinto B(i; j), where (i; j) is the position of u. For eah vertex in B, we store its position.Figure 1 gives an example of the buket struture. In this example, � = 2, k = 3, and� = 10. For instane, to �nd the position of a vertex v with d(v) = 14, we note that the binaryrepresentations of 10 and 14 di�er in bit 2 (remember that we start ounting from 0) and the bitvalue is 1. Thus v belongs to buket 1 at level 2.Our modi�ation of the MLB algorithm uses Lemma 3.1 during the insert operation to put3For low-level eÆieny, one may want � to be a power of two and wrap around modulo four.4



verties into F whenever the lemma allows it. The details are as follows.insert: Insert a vertex u into B [ F as follows. If � + (u) � d(u), put u into F . Otherwiseompute u's position (i; j) in B and add u to B(i; j).derease-key: Derease the key of an element u in position (i; j) as follows. Remove u fromB(i; j). Set d(u) to the new value and insert u as desribed above.extrat-min: Find the lowest nonempty level i. Find j, the �rst nonempty buket at level i, bysetting j to the index of the buket at level i that ontains �, and inremental j until the buketB(i; j) is nonempty. If i = 0, delete a vertex u from B(i; j). (In this ase � = d(u).) Return u. Ifi > 0, examine all elements of B(i; j) and delete a minimum element u from B(i; j). Note that inthis ase � < d(u); set � = d(u). Sine � inreased, some vertex positions in B may have hanged.We do buket expansion of B(i; j) and return u.To understand buket expansion, note that the verties with hanged positions are exatly thosein B(i; j). To see this, let �0 be the old value of � and onsider a vertex v in B. Let (i0; j0) be v'sposition with respet to �0. By the hoie of B(i; j), if (i; j) 6= (i0; j0), then either i < i0, or i = i0and j < j0. In both ases, the ommon pre�x of �0 and d(v) is the same as the ommon pre�x ofd(u) and d(v), and the position of v does not hange.On the other hand, verties in B(i; j) have a longer ommon pre�x with d(u) than they havewith �0 and these verties need to move to a lower level. Buket expansion deletes these vertiesfrom B(i) and uses the insert operation to add the verties bak into B or into F , as appropriate.The vertex u in B(i; j) with the minimum distane label is not inserted into B, but returned andsanned. Note that we do buket expansions only when F is empty and the expanded buketontains a labeled vertex with the minimum distane. Thus � is updated orretly.Although the formal desription of the algorithm is nontrivial, the algorithm itself is simple: Ateah step, remove a vertex from F or, if F is empty, then remove the minimum-labeled vertex fromB. In the latter ase, expand the buket from whih the vertex has been removed, if neessary.San the vertex and update its neighbors if neessary. Terminate when both F and B are empty.The width of a top level buket is at least U . In the original MLB algorithm, at any point ofthe exeution all labeled verties are ontained in at most two onseutive top level bukets. Aslightly weaker result holds for our algorithm.Lemma 4.1 At any point of the exeution, all labeled verties are in the range of at most threeonseutive top level bukets.Proof. Let �0 be the urrent value of � and let B(k; j) be the top level buket ontaining �0. Exeptfor s (for whih the result holds trivially), a vertex v beomes labeled during a san of anothervertex u removed from either B or F . In the former ase, at the time of the san d(u) = � � �0,d(v) = � + `(u; v) � �0 + U , and therefore v is ontained either in B(k; j) or B(k; j + 1). In thelatter ase, when u has been added to F , the di�erene between d(u) and � was at most (u) � U ,thus d(u) � �0 + U , d(v) � d(u) + U � �0 + 2 � U , and thus v belongs to B(k; j), B(k; j + 1), orB(k; j + 2).Algorithm orretness follows from Lemmas 3.1 and 4.1, and the observations that � is alwaysset to the minimum distane label of a labeled vertex, � remains a lower bound on the labeledvertex labels (and therefore is monotonially nondereasing), and F always ontains verties withexat distane labels. 5



5 Worst-Case AnalysisIn this setion we prove a worst-ase bound on the running time of the algorithm. Our analysis issimilar to that for the MLB algorithm given in [6℄, exept the resulting bound has a C instead ofa U . Some de�nitions and lemmas introdued in this setion will be also used in the next setion.We start the analysis with the following lemmas.Lemma 5.1 [6℄� Given � and u, we an ompute the position of u with respet to � in onstant time.� We an �nd the lowest nonempty level of B in onstant time.Lemma 5.2 The algorithm runs in O(m + n + �1 + �2) time, where �1 is the total number oftimes a vertex moves from a buket of B to a lower level buket and �2 is the number of emptybukets examined by the algorithm.Proof. Sine eah vertex is sanned at most one, the total san time is O(m + n). A vertex isadded to and deleted from F at most one, so the total time devoted to maintaining F is O(n). Aninsert operation takes onstant time, and these operations are aused by inserting verties into Bfor the �rst time, by derease-key operations, and by extrat-min operations. The former takeO(n) time; we aount for the remaining ones jointly with the other operations. A derease-keyoperation takes onstant time and is aused by a derease of d(v) due to a san of an ar (u; v). Sinean ar is sanned at most one, these operations take O(m) total time. The work we aounted forso far is linear.Next we onsider the extrat-min operations. Consider an extrat-min operation that returnsu. The operation takes O(1) time, plus the time proportional to the number of empty buketsexamined, plus the time proportional to the number of verties in the expanded buket, exludingu. Eah of these verties moves to a lower level in B. Thus we get the desired time bound.Note that �1 = O(nk) and �2 = O(n�) sine after examining less than � empty buketswe disover a nonempty one and san a vertex from it. Setting � to d logUlog logU e balanes �1 and�2 and yields the O �m+ n logUlog logU � worst-ase time bound. To get a better bound, we de�nek0 = blog� Æ.Lemma 5.3 Bukets at level k0 and below are never used.Proof. Let (i; j) be the position of a vertex v of aliber (v) � Æ. If i � k0, then d(v) � � < �i ��k0 � Æ � (v) and the algorithm adds v to F , not B.The lemma implies that the algorithm uses O(log� U � log� Æ) = O(log�C) buket levels.Setting � to d logClog logC e and applying Lemma 5.3, we get the following result.Theorem 5.4 The worst-ase running time of the algorithm is O(m+ n logClog logC ).Note that setting � = 2 yields an O(m+ n logC) bound.Our optimization an also be used to improve other data strutures based on multi-level bukets,suh as radix heaps [2℄ and hot queues [6℄. For these data strutures, the equivalent of Lemma 5.3allows one to replae time bound parameter U by C. In partiular, the bound of the hot queue im-plementation of Raman [39℄ improves to O(m+n(logC log logC)1=3). The modi�ation of Raman'salgorithm to obtain this bound is straightforward given the results of this setion.6



6 Average-Case AnalysisIn this setion we prove that for � = 2 (or any other onstant), the smart queue algorithm runs inlinear average time under the assumption that the input ar lengths are uniformly distributed on[1; : : : ;M ℄.4 We also show that the running time is linear with high probability with the additionalassumption that the lengths are independent.Sine � = 2, �2 = O(n); it remains to bound �1.A key lemma for our analysis is as follows.Lemma 6.1 The algorithm never inserts a vertex v into a buket at a level less than or equal tolog (v)� 1.Proof. Suppose during an insert operation v's position in B is (i; j) with i � log (v) � 1. Thenthe most signi�ant digit in whih d(v) and � di�er is digit i and d(v)�� < �i+1 � (v). Thereforeinsert puts v into F , not B.The above lemma motivates the following de�nitions. The weight of an ar a, w(a), is de�nedby w(a) = k � blog `(a): The weight of a vertex v, w(v), is de�ned to be the maximum weight ofan inoming ar or zero if v has no inoming ars. Lemma 6.1 implies that the number of times van move to a lower level of B is at most w(v) + 1 and therefore �1 � m+PV w(v). Note that kdepends on the input, and thus the weights are de�ned with respet to a given input.For the probability distribution of ar weights de�ned above, we havePr[blog `(a) = i℄ = 2i=M for i = 0; : : : ; k � 1. The de�nition of w yieldsPr[w(a) = t℄ = 2k�t=M for t = 1; : : : ; k: (1)Sine M � U , we have M � 2k�1, and thereforePr[w(a) = t℄ � 2�t+1 for t = 1; : : : ; k: (2)Theorem 6.2 If ar lengths are uniformly distributed on [1; : : : ;M ℄, then the average running timeof the algorithm is linear.Proof. Sine � � m+PV w(v), it is enough to show that E[PV w(v)℄ = O(m). By the linearityof expetation and the de�nition of w(v), we have E[PV w(v)℄ �PAE[w(a)℄. The expeted valueof w(a) is E[w(a)℄ = kXi=1 iPr[w(a) = i℄ � 1Xi=1 i2�i+1 = 2 1Xi=1 i2�i = O(1):Note that this bound holds for any k. Thus PAE[w(a)℄ = O(m).Remark Note that Theorem 6.2 does not require ar lengths to be independent. Our proof ofits high-probability variant, Theorem 6.7, requires the independene.Remark The proof of the theorem works for any ar length distribution suh that E[w(a)℄ =O(1). In partiular, the theorem holds for real-valued ar lengths seleted uniformly from [0; 1℄.In fat, for this distribution the high-probability analysis below is simpler (given the independeneassumption). However, the integer distribution is somewhat more interesting, beause some testproblem generators use this distribution and most pratial problems have integral lengths.4As we shall see, if M is large enough then the result also applies to the range [0; : : : ;M ℄.7



Next we show that the algorithm running time is linear w.h.p. by showing that PAw(a) =O(m) w.h.p. First, we show that w.h.p. U is not muh smaller than M and Æ is lose to Mm�1(Lemmas 6.3 and 6.4). Let St be the set of all ars of weight t and note that PAw(a) =Pt tjStj.We show that as t inreases, the expeted value of jStj goes down exponentially. For small valuesof t, this is also true w.h.p. To deal with large values of t, we show that the total number of arswith large weights is small, and so is the ontribution of these ars to the sum of ar weights.Proofs of the following two lemmas are fairly standard; we inlude them to make the paperself-ontained.Lemma 6.3 W.h.p., U �M=2.Proof. For an ar a, Pr[`(a) < M=2℄ < 1=2 and by the independene of ar lengths,Pr[U < M=2℄ � 2�m ! 0 as m!1:Thus Pr[U �M=2℄ ! 1 as m!1.Lemma 6.4 W.h.p., Æ �Mm�4=3. If M � m2=3, then w.h.p. Æ �Mm�2=3.Proof. For an ar a, we havePrh`(a) �Mm�4=3i = (M �Mm�4=3)=M � 1�m�4=3:Sine the ar lengths are independent, we havePrhÆ �Mm�4=3i � �1�m�4=3�m ! 1 as m!1:Similarly, Prh`(a) > Mm�2=3i = (M � bMm�2=3)=M � 1� m�2=32 :and by the independenePrhÆ > Mm�2=3i � �1� 12m2=3�m ! 0 as m!1:From (1) and the independene of ar weights, we have E[jStj℄ = m2k�t=M . By the Cherno�bound (see e.g. [7, 33℄), Pr�jStj � 2m2k�t=M� < � e4�m2k�t=M . Sine M � 2k�1, we havePr�jStj � 4m2�t� < �e4�2m2�t :As mentioned above, we bound the ontributions of ars with large and small weights toPAw(a)di�erently. We de�ne � = log(m2=3) and partition A into two sets, A1 ontaining the ars withw(a) � � and A2 ontaining the ars with w(a) > �.Lemma 6.5 PA1 w(a) = O(m) w.h.p. 8



Proof. Assume that Æ �Mm�4=3 and U �M=2; by Lemmas 6.3 and 6.4 this happens w.h.p. Thisassumption implies C � m4=3. The probability that for some t : 1 � t � �, jStj � 4m2�t is, by theunion bound and the fat that the probability is maximized for t = �, less than� �e4�m2�� � log(m2=3)�e4�mm�2=3 � logm�e4�m1=3 ! 0 as m!1:Thus w.h.p., for all t : 1 � t � �, we have jStj < 4m2�t andXA1 w(a) = t��Xt=1 tjStj � 4m 1Xt=1 t2�t = O(m):Lemma 6.6 PA2 w(a) = O(m) w.h.p.Proof. If M < m2=3, then k � � and A2 is empty, so the lemma holds trivially.Now onsider the ase M � m2=3. By Lemmas 6.3 and 6.4, w.h.p. Mm�4=3 � Æ � Mm�2=3and U � M=2; assume that this is the ase. The assumption implies m2=3=2 � C � m4=3.Under this assumption, we also have 2k�1 � M � 2k+1. Combining this with (1) we get 2�2�t �Pr[w(a) = t℄ � 21�t. This implies that2�2�� � Pr[w(a) > �℄ � 22�� ;therefore m�2=38 � Pr[w(a) > �℄ � 4m�1=3and by the independene of ar weights,m1=38 � E[jA2j℄ � 4m2=3By the Cherno� bound, Pr[jA2j > 2E[jA2j℄℄ < �e4�E[jA2j℄ :Replaing the �rst ourrene of E[jA2j℄ by the upper bound on its value and the seond ourreneby the lower bound (sine e=4 < 1), we getPrhjA2j > 8m2=3i < �e4�m1=3=8 ! 0 as m!1:For all ars a, `(a) � Æ, and thusw(a) = k � b`(a) � 1 + logU + 1� log Æ = 2 + logC � 2 + (4=3) logm:Therefore w.h.p., XA2 w(a) � 8m2=3(2 + (4=3) logm) = o(m):Thus we have the following theorem.Theorem 6.7 If ar lengths are independent and uniformly distributed on [1; : : : ;M ℄, then withhigh probability, the algorithm runs in linear time.Remark The expeted and high probability bounds also apply if the ar lengths ome from[0; : : : ; U ℄ and U = !(m), as in this ase with high probability no ar has zero length.9



7 Algorithm ImplementationIn this setion we desribe eÆient implementations of MLB and smart queue algorithms, inludingalgorithm engineering onsiderations involved in their development. We also disuss how the MLBimplementation di�ers from the previous implementations [6, 24℄. The mb ode implements thealgorithm MLB algorithm and the sq ode implements the smart queue algorithm.Previous implementations of the MLB algorithm, as well as those desribed below, use thefollowing wide buket heuristi. Pik w suh that 0 < w � Æ. Then the MLB algorithm remainsorret if one multiplies the buket width on every level by w. Both mb and sq odes use the widebuket heuristi. We refer to the modi�ations needed to onvert the MLB algorithm to the smartqueue algorithm as the aliber heuristi. This heuristi is the only di�erene between mb and sq.Our implementation of mb is very similar to that of [24℄, exept in the details of the insertoperation. The previous implementation maintained a range of distane values for eah level,updating the ranges when the value of � hanged. To insert a vertex, one looks for the lowestlevel to whih the vertex belongs, and then omputes the o�set of the buket to whih the vertexbelongs. In ontrast, mb and sq ompute the vertex position with respet to � as desribed inSetion 4. This is slightly more eÆient when the number of levels is large. The eÆieny gainis bigger for sq beause it does not neessarily examine all levels for a given value of �. The newimplementation is also simpler than the old one.We always set � to a power of two. This allows us to use bit shifts instead of divisions. Ourodes set w to the biggest power of two not exeeding Æ, or to one if Æ � 1. We use an array torepresent eah level of bukets.One an give mb either k or � as a parameter. Then mb sets the other parameter based onthe input ar lengths. We refer to the ode with the number of levels k set to two by mb2l, andto the ode with � set to two by mb2d. These are the two extreme ases that we study. (We donot study the single-level ase beause it often would have needed too muh memory and time.)Alternatively, one an let mb hose the values of both k and � based on the input. We refer to thisadaptive variant as mb-a. The adaptive variant of the algorithm uses the relationship � = �(k)suggested by the worst-ase analysis. To hose the onstant hidden by the � loation, we observethe following. Examining empty bukets involves looking at a single pointer and has good loalityproperties as we aess the bukets sequentially. Moving verties to lower levels, on the otherhand, requires hanging several pointers, and has poor loality. This suggests that � should besubstantially greater than k, and experiments on�rm this.In more detail, mb-a sets k and � as follows. First we �nd the smallest value of k suh thatk is a power of two and (16k)k � U=w. Then we set � to 16k. At this point, however, both �and k may be larger than they need to be. While (�=2)k � U=w we redue �. Finally while(�)k�1 � U=w we redue k. This typially leads to 16k � � � 128k and works well in our tests.We obtain our sq ode by adding the aliber heuristi to mb. The modi�ation of mb isrelatively straightforward. We use a stak to implement the set F needed by the aliber heuristi.The adaptive variant of the ode, sq-a, uses the same proedure to set k and � as mb-a does.8 Experimental Methodology and SetupFollowing Moret and Shapiro [32℄, we use a baseline ode { breadth-�rst searh (bfs) in our ase{ and measure running times of our shortest path odes on an input relative to the bfs runningtime on this input. Our BSF ode omputes distanes and a shortest path tree for the unit lengthfuntion. The breadth-�rst searh problem is a speial ase of NSP and, modulo low-level details,10



the bfs running time is a lower bound on the NSP odes. Baseline running times give a goodindiation of how lose to optimal the running times are and redues dependeny on low-levelimplementation and arhiteture details.However, some of the dependenies, in partiular ahe dependenies, remain. Our odes putar and vertex reords in onseutive loations. Input IDs of the verties determine their orderingin memory. In general, breadth-�rst searh examines verties in a di�erent order than an NSPalgorithm. This may { and in some ases does { lead to very di�erent ahing behavior of thetwo odes for ertain vertex orderings. To deal with this dependeny on input IDs, our generatorspermute the IDs at random. Thus all our problem generators are randomized.For every input problem type and any set of parameter values, we run the orresponding gen-erator �ve times and report the averages. We report the baseline bfs time in seonds and all othertimes in units of the bfs time. In addition, we ount operations that determine �1 and �2 inLemma 5.2. For eah of these operations, we give the number of the operations divided by thenumber of verties, so that the amortized operation ost is immediate. The two kinds of operationswe ount are examinations of empty bukets and the number of verties proessed during buketexpansion operations.We use 64-bit integers for internal representation of ar lengths and distanes. If the graphontains simple paths longer than 264, our odes may get overows. Note that for 32-bit input arlengths, no overow an happen unless the number of verties exeeds 232, whih is too many to�t into the memory of a modern omputer.Our experiments have been onduted on a 933 MHz Pentium III mahine with 512M of memory,256K ahe, and running RedHat Linux 7.1. All our shortest path odes and the baseline ode arewritten in C++, in the same style, and ompiled with the g ompiler using the -O6 optimizationoption. Our bfs ode uses the same data strutures as the mb ode.9 Problem FamiliesWe report data on seven problem families produed by three problem generators. These problemfamilies have been seleted as the most interesting from many more families we experimented with.Sine we are interested in eÆieny of the data strutures, we restrit our study to sparse graphs,for whih the data struture manipulation time is most apparent.Our �rst generator, SPRAND, builds a Hamiltonian yle and then adds ars at random. Thegenerator may produe parallel ars but not self-loops. Ar lengths are hosen independently anduniformly from [`; u℄. Vertex 1 is the soure. If the number of ars is large enough, SPRANDgraphs are expanders and the average number of verties in the priority queue during a shortestpath omputation is large.We use SPRAND to generate two problem families, RAND-I and RAND-C. For both families,` = 1 and m = 4n. For RAND-I, u = n, and n inreases by a fator of two from one set ofparameter values to the next one. We hose the initial value of n large enough so that the runningtime is nonnegligable and the �nal value as large as possible subjet to the onstraint that all ourodes run without paging. For RAND-C, n = 220 and u = 2i; i starts at 1 and then takes oninteger multiples of four from 4 to 32. Up to i = 20, the minimal ar length Æ in all test inputs isone. For i = 24, Æ is greater than one for some inputs. For i = 28 and 32, Æ is always greater thanone. Note that the expeted value of C does not hange for i � 28, and therefore the results fori > 32 would have been very similar to those for i = 28 and 32.Our seond generator, SPGRID, produes grid-like graphs. An x; y grid graph ontains x � yverties, [i; j℄, for 0 � i < x and 0 � j < y. A vertex [i; j℄ is onneted to the adjaent verties11
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Figure 2: An example of a hard prob-lem instane; k = 3 and � = 16. Arlengths are given in hexadeimal. Weomit the extra vertex with ars de-signed to manipulate vertex alibers.in the same layer, [i; j + 1 mod y℄ and [i; j � 1 mod y℄. In addition, for i < x � 1, eah vertex[i; j℄ is onneted to the vertex [i+1; j℄. Ar lengths are hosen independently and uniformly from[`; u℄. Vertex [0; 0℄ is the soure. We use SPGRID to generate two problem families, LONG-I andLONG-C. Both families ontain long grid graphs with y = 8 and x a parameter. For these graphs,the average number of verties in the priority queue is small.The LONG-I and LONG-C problem families are similar to the RAND-I and RAND-C families.For LONG-I, u = n and n inreases by a fator of two from the value that yields a reasonablerunning time to the maximum value that does not ause paging. The LONG-C problem familyuses the same values of u as the RAND-C problem family.Our last problem generator is SPHARD. This generator produes problems aimed to be hardfor MLB algorithms for ertain values of k and �. Graphs produed by this generator onsistof 2k + 1 vertex-disjoint paths, with the soure onneting to the beginning of eah path. (SeeFigure 2 for an example.) These paths have the same number of ars, whih an be adjusted toget a graph of the desired size. Path ars have a length of �. The lengths of the soure ars areas follows. One ar has zero length. Out of the remaining ars, k ars have the following base-�representation. For 1 � i � k, the �rst i digits are �� 1 and the remaining digits are 0. The lastk ars, for 1 � j � k, have the �rst j � 1 digits �� 1, the j-th digit 1, and the remaining digits 0.The graph also ontains an extra vertex with no inoming ars onneted to every other vertex ofthe graph. The length of the ar onneting the vertex to the soure is zero to make sure that theminimum ar length is zero. Lengths of the other ars are all the same. These lengths an be zero(to fore every vertex aliber to zero) or large (so that the alibers are determined by the otherars).Note that if the SPHARD generator with parameters k and � produes an input, our adaptiveodes may selet di�erent parameter values. For D = log�, a problem produed by SPRAND has(k �D)-bit lengths. These lengths determine parameter values seleted by the adaptive odes.The three SPHARD problem families we study are HARD1, HARD0, and HARDEST-SQ. The�rst two problem families di�er only in the length of the ars whih determine vertex alibers:the length is large for the �rst family and zero for the seond. All problems in this family haveapproximately 220 verties, and the number of ars is approximately the same in all problems. Toreate a problem in this family, we hose k and D suh that k �D = 36 and generate a problem whihis hard for mb with k levels and � = 2D. Eah HARDEST-SQ problem also has approximately 220verties. Problems in this family di�er by the k and � values. These values are seleted so thatboth the generator and the adaptive odes use the same k and � parameters.12



10 Experimental ResultsThis setion disusses our experimental results. The appendix ontains supporting data tables.Caliber heuristi e�etiveness. Our analysis shows that work of the aliber heuristi is amor-tized over other work performed by the algorithm and therefore the heuristi annot hurt perfor-mane by muh. The heuristi an, however, signi�antly improve performane. Experimentaldata on�rms this fat. In partiular, data for the HARD1 family in Table 4 shows how drastiperformane improvement an be. The HARD0 family data in Table 4 shows that if all vertexalibers are fored to zero and the aliber heuristi never helps, its ost is just a few perents ofthe running time.Making more levels pratial. Our previous work [5, 6℄ showed that 2- and 3-level MLB im-plementations and their variants perform well exept on ertain types of graphs with very largelengths. Inreasing the number of levels improved performane on bad examples but hurt perfor-mane on \typial" problems somewhat. Comparing mb and sq ode performane on graphs withrandom ar weights (Tables 1{3), we observe that, as the theory would suggest, the aliber heuristihelps more if the number of buket levels is higher. This is espeially apparent if one omparesdata for mb2d and sq2d on RAND-C problems (Table 2). This makes the buket strutures withhigher number of levels, in partiular the adaptively seleted number of levels, pratial. While therandom ar length data illustrates how the aliber heuristi helps in \typial" ases, Table 4 showsthe e�etiveness of adaptive parameter seletion on hard problems: Note that for problems with36-bit lengths, our adaptive odes set k = 6.Operation ounts and ode tuning. As the analysis suggests, poor performane of the MLBodes is aused by either a large number of the empty buket examinations or a high ost of buketexpansion operations. See for example Tables 3 and 4. The data shows that if the number ofempty buket examinations per vertex is moderate (e.g., ten), they are well-amortized by otheroperations on verties and do not have a notieable e�et on the running time. When the numberof these operations reahes a hundred per vertex, they do have an e�et. See e.g., Tables 2 and 3.Table 4 shows that proessing verties during buket expansion is more expensive. Proessing onevertex inuenes the running time roughly as muh as sanning a hundred empty bukets. Theseobservations justify the hoie of k and � in our adaptive algorithms.Most robust ode. Our data also suggests that sq-a is a very robust ode. Often it is thefastest ode, and its running time is always within 10% the fastest ode. When designing theHARDEST-SQ problem family, our goal was to produe problems whih are hard for the sq-aode. If one believes that these problems are lose to the worst-ase, then Table 5 shows that evenfor large lengths, sq-a performs very well. For example, for 49-bit lengths, its running time exeedsthat of bfs by less than a fator of three. We estimate that for 32-bit lengths, sq-a running timeis always within a fator of 2:5 of the bfs time.11 Conluding RemarksThe worst-ase bound for the smart queue algorithm is ahieved for � = �( logClog logC ), when thework of moving verties to lower levels balanes the work of sanning empty bukets during buket13



expansion. Our average-ase analysis redues the former but not the latter. We get a linear runningtime when � is onstant and the empty buket sans an be harged to verties in nonempty bukets.An interesting open question is if one an get a linear average running time and a better worst-aserunning time, for example using tehniques from [2, 6, 9℄, without running several algorithms \inparallel."Our optimization is to detet verties with exat distane labels before these verties reah thebottom level of bukets and plae them into F . This tehnique an be used not only in the ontextof multi-level bukets, but in the ontext of radix heaps [2℄ and hot queues [6℄.The fat that sq-a performane is lose to that of bfs limits potential improvements one wouldonsider. For example, a searh of a graph to determine better parameter values would not pay foritself, unless it an be amortized over many shortest path omputations, e.g. in the ontext of theall-pairs shortest path problem.We would like to note that Mayer's algorithm [29℄ and its simpli�ed version [30℄ (publishedafter [21℄), is unlikely to be ompetitive with our algorithm in pratie beause it is more ompli-ated. For example, in Mayer's algorithm the number of bukets at eah level is set dynamially,and the eÆient way of omputing the position of a vertex in the buket data struture that weuse does not apply to Mayer's algorithm.Informal experiments show that for problems that are easy for the label-orreting algorithms,the smart queue algorithm works almost as well. It would be interesting to have a more formalomparison of these implementations on real-life problems, suh as those in [46℄.We also implemented an algorithm that ombines the ideas behind smart queues and hotqueues [6℄. Informal experiments show that the resulting ode performs a little better on thehard instanes but slightly worse on \typial" instanes.Our results suggest that the smart queue algorithm should be onsidered in pratie when arlengths are nonnegative integers. The shortest path odes and generators used in this study areavailable via URL http://www.avglab.om/andrew/soft.html.AknowledgmentsThe author would like to thank Jim Horning, Rajeev Raman, Bob Tarjan, and Eva Tardos foruseful disussion and omments on a draft of this paper. We are also grateful to an anonymousreferee of a onferene version of the paper [22℄ for pointing out that Theorem 6.2 does not needar lengths to be independent.Referenes[1℄ A. V. Aho, J. E. Hoproft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.Addison-Wesley, 1974.[2℄ R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster Algorithms for the Shortest PathProblem. J. Asso. Comput. Mah., 37(2):213{223, April 1990.[3℄ A. Brodnik, S. Carlsson, J. Karlsson, and J. I. Munro. Worst ase onstant time priority queues. InPro. 12th ACM-SIAM Symposium on Disrete Algorithms, pages 523{528, 2001.[4℄ B. V. Cherkassky and A. V. Goldberg. Negative-Cyle Detetion Algorithms. Math. Prog., 85:277{311,1999.[5℄ B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory and ExperimentalEvaluation. Math. Prog., 73:129{174, 1996. 14
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Appendix: Experimental Datan bfs mb2l sq2l mb2d sq2d mb-a sq-a217 time 0.15 1.55 1.56 3.86 2.26 1.88 1.63emp./n se. 3.01 1.09 0.74 0.01 2.05 0.06exp./n 1.09 1.04 7.14 1.56 2.00 1.05218 time 0.30 1.73 1.64 4.15 2.26 1.93 1.73emp./n se. 3.03 0.79 0.74 0.01 2.04 0.04exp./n 1.45 1.19 7.65 1.56 2.36 1.19219 time 0.62 1.68 1.63 4.41 2.31 1.89 1.71emp./n se. 3.34 1.12 0.74 0.00 2.36 0.05exp./n 1.06 1.01 8.15 1.58 1.96 1.01220 time 1.30 1.83 1.79 4.64 2.35 1.94 1.79emp./n se. 3.34 0.79 0.74 0.00 2.37 0.03exp./n 1.41 1.20 8.65 1.58 2.09 1.06221 time 2.90 1.83 1.77 4.73 2.29 2.00 1.78emp./n se. 3.67 1.13 0.74 0.00 2.36 0.03exp./n 1.16 1.03 9.13 1.56 2.33 1.16n bfs mb2l sq2l mb2d sq2d mb-a sq-a217 time 0.08 1.71 1.71 2.71 2.14 1.86 1.71emp./n se. 8.59 4.77 1.00 0.29 4.88 1.00exp./n 0.46 0.39 1.51 0.83 0.61 0.41218 time 0.17 1.66 1.61 2.80 2.13 1.81 1.68emp./n se. 12.45 5.10 1.00 0.29 4.17 1.31exp./n 0.27 0.22 1.51 0.83 0.63 0.46219 time 0.35 1.65 1.65 2.74 2.17 1.73 1.61emp./n se. 13.65 9.43 1.00 0.29 8.89 1.40exp./n 0.42 0.38 1.51 0.83 0.52 0.34220 time 0.75 1.59 1.60 2.72 2.10 1.64 1.60emp./n se. 17.89 10.09 1.00 0.29 6.98 1.47exp./n 0.23 0.21 1.51 0.83 0.45 0.31221 time 1.61 1.60 1.63 2.65 2.06 1.62 1.59emp./n se. 23.59 18.84 1.00 0.29 5.88 2.44exp./n 0.40 0.37 1.51 0.83 0.52 0.42Table 1: RAND-I (top) and LONG-I (bottom) family data
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u bfs mb2l sq2l mb2d sq2d mb-a sq-a1 time 2.97 1.39 1.35 1.39 1.36 1.38 1.35emp. se. 0.00 0.00 0.00 0.00 0.00 0.00exp. 0.48 0.48 0.48 0.48 0.48 0.484 time 2.99 1.74 1.59 1.99 1.73 1.47 1.42emp. se. 0.00 0.00 0.00 0.00 0.00 0.00exp. 1.04 0.88 1.64 1.15 0.42 0.398 time 3.03 1.81 1.69 2.80 1.96 1.79 1.70emp. se. 0.00 0.00 0.00 0.00 0.00 0.00exp. 1.26 1.05 3.51 1.49 1.26 1.0512 time 3.00 1.86 1.73 3.41 2.07 1.85 1.74emp. se. 0.01 0.01 0.01 0.00 0.01 0.01exp. 1.35 1.13 5.49 1.56 1.35 1.1316 time 3.00 1.84 1.74 3.91 2.16 1.95 1.71emp. se. 0.14 0.07 0.08 0.00 0.12 0.04exp. 1.37 1.16 7.44 1.56 2.04 1.0820 time 2.99 1.82 1.75 4.52 2.27 1.89 1.71emp. se. 1.84 0.56 0.57 0.00 1.35 0.02exp. 1.37 1.16 8.97 1.56 2.11 1.0424 time 2.99 2.08 1.80 4.95 2.30 2.11 1.76emp. se. 18.43 1.32 0.93 0.00 6.12 0.03exp. 1.33 1.13 9.23 1.56 2.99 1.1228 time 2.92 2.59 1.85 5.22 2.37 2.13 1.75emp. se. 55.33 1.35 0.95 0.00 11.72 0.04exp. 1.33 1.13 9.23 1.56 2.79 1.0632 time 2.98 2.49 1.85 5.11 2.36 2.13 1.74emp. se. 55.33 1.36 0.95 0.00 11.72 0.04exp. 1.33 1.13 9.23 1.56 2.79 1.06Table 2: RAND-C family data
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u bfs mb2l sq2l mb2d sq2d mb-a sq-a1 time 1.62 1.35 1.35 1.34 1.34 1.34 1.34emp. se. 0.13 0.06 0.13 0.06 0.13 0.06exp. 0.44 0.44 0.44 0.44 0.44 0.444 time 1.63 1.54 1.54 1.72 1.60 1.42 1.49emp. se. 0.61 0.34 0.55 0.23 0.69 0.66exp. 0.88 0.71 1.29 0.80 0.39 0.388 time 1.63 1.60 1.56 2.06 1.76 1.60 1.56emp. se. 2.64 0.77 0.96 0.29 2.64 0.77exp. 0.77 0.54 1.51 0.83 0.77 0.5412 time 1.63 1.56 1.55 2.28 1.87 1.56 1.55emp. se. 5.82 2.44 1.00 0.29 5.82 2.44exp. 0.52 0.42 1.51 0.83 0.52 0.4216 time 1.63 1.56 1.57 2.52 1.99 1.61 1.54emp. se. 13.68 9.45 1.00 0.29 8.87 1.40exp. 0.42 0.38 1.51 0.83 0.52 0.3420 time 1.63 1.67 1.69 2.75 2.10 1.57 1.54emp. se. 43.27 37.60 1.00 0.29 9.30 2.64exp. 0.39 0.37 1.51 0.83 0.34 0.2524 time 1.62 2.22 2.15 2.99 2.23 1.64 1.61emp. se. 146.96 136.51 1.00 0.30 6.10 2.30exp. 0.35 0.33 1.51 0.84 0.51 0.4028 time 1.62 3.08 3.02 3.05 2.33 1.65 1.64emp. se. 212.05 205.08 1.00 0.35 10.96 2.72exp. 0.31 0.30 1.51 0.91 0.43 0.3832 time 1.63 3.18 3.08 3.06 2.38 1.66 1.67emp. se. 212.00 206.77 1.00 0.36 10.96 2.91exp. 0.31 0.31 1.51 0.92 0.43 0.40Table 3: LONG-C family data
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k bfs mb sq2 time 0.63 1189.20 1.38emp. se. 52428.94 0.40exp. 0.60 0.303 time 0.63 10.66 1.39emp. se. 1170.14 0.15exp. 1.14 0.574 time 0.62 2.68 1.44emp. se. 170.44 0.11exp. 1.56 0.676 time 0.63 2.25 1.53emp. se. 24.31 0.08exp. 2.46 0.779 time 0.62 2.87 1.60emp. se. 6.37 0.05exp. 3.89 0.8512 time 0.63 3.70 1.66emp. se. 3.12 0.04exp. 5.36 0.8818 time 0.63 5.86 1.82emp. se. 1.41 0.03exp. 8.32 0.9336 time 0.62 16.32 2.32emp. se. 0.49 0.01exp. 17.75 0.97

k bfs mb sq2 time 0.62 1199.67 1201.13emp. se. 52428.94 52428.94exp. 0.60 0.603 time 0.62 9.48 9.39emp. se. 1170.14 1170.14exp. 1.14 1.144 time 0.63 2.67 2.82emp. se. 170.44 170.44exp. 1.56 1.566 time 0.62 2.25 2.45emp. se. 24.31 24.31exp. 2.46 2.469 time 0.62 2.87 3.08emp. se. 6.37 6.37exp. 3.89 3.8912 time 0.62 3.72 3.93emp. se. 3.12 3.12exp. 5.36 5.3618 time 0.63 5.86 6.05emp. se. 1.41 1.41exp. 8.32 8.3236 time 0.63 16.24 16.43emp. se. 0.49 0.49exp. 17.75 17.75Table 4: HARD1 (left) and HARD0 (right) family data
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bits log� k bfs sq-a4 4 1 time 0.62 1.37emp. se. 0.33exp. 0.046 3 2 time 0.63 1.50emp. se. 1.60exp. 0.808 4 2 time 0.62 1.51emp. se. 3.20exp. 0.8015 5 3 time 0.62 1.73emp. se. 9.00exp. 1.1418 6 3 time 0.62 1.78emp. se. 18.14exp. 1.1424 6 4 time 0.62 1.98emp. se. 21.11exp. 1.5630 6 5 time 0.62 2.18emp. se. 23.00exp. 2.0035 7 5 time 0.62 2.32emp. se. 46.27exp. 2.0042 7 6 time 0.62 2.55emp. se. 48.92exp. 2.4649 7 7 time 0.62 2.80emp. se. 50.87exp. 2.93Table 5: HARDEST-SQ family data
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