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1 Introdu
tionThe shortest path problem with nonnegative ar
 lengths (the NSP problem) is very 
ommon inpra
ti
e, and algorithms for this problem have been extensively studied, both from theoreti
al,e.g., [2, 6, 9, 10, 12, 13, 17, 25, 28, 29, 34, 37, 38, 39, 40, 42, 43, 44, 45℄, and 
omputational, e.g.,[4, 5, 11, 19, 20, 24, 26, 27, 31, 35, 36, 46℄, viewpoints. EÆ
ient implementations of Dijkstra'salgorithm [12℄, in parti
ular, re
eived a lot of attention.Suppose that the input graph has n verti
es and m ar
s. To state some of the previous results,we assume that the input ar
 lengths are integral. Let U denote the biggest ar
 length. We de�neC to be the ratio between U and the smallest nonzero ar
 length, Æ. Note that if the lengths areintegral, then C � U . Modulo pre
ision problems and arithmeti
 operation 
omplexity, our resultsapply to real-valued ar
 lengths as well. To simplify 
omparing time bounds with and without U(or C), one 
an make the similarity assumption [18℄: logU = O(log n).Several algorithms for the problem have near-linear worst-
ase running times, although noalgorithm has a linear running time if the graph is dire
ted and the 
omputational model is well-established. In the pointer model of 
omputation, the Fibona

i heap data stru
ture of Fredman andTarjan [16℄ leads to an O(m+n logn) implementation of Dijkstra's algorithm. In a RAMmodel withunit-time word operations, the fastest 
urrently known algorithms a
hieve the following bounds:O(m + n(logU log logU)1=3) [39℄, O(m + n(plog n)) [38℄, O(m log logU) [25℄, and O(m log logn)[43℄.For undire
ted graphs, Thorup's algorithm [42℄ has a linear running time in a word RAM model.A 
onstant-time priority queue of [3℄ yields a linear-time algorithm for dire
ted graphs, but onlyin a non-standard 
omputation model that is not supported by any existing 
omputer.Our work has been motivated by a re
ent paper of Meyer [29℄. The paper gives an NSP algorithmwith a linear average time for input ar
 lengths drawn independently from a uniform distributionon [1; : : : ;M ℄. It also proves that, under the same assumptions, the running time is linear withhigh probability. Meyer's algorithm may s
an some verti
es more than on
e, and its worst-
asetime bound, O(nm logn), is far from linear. Both the algorithm and its analysis are 
ompli
ated.In this paper we show that a natural improvement of the multi-level bu
ket (MLB) shortest pathalgorithm of [9℄ has an average running time that is linear, and a worst-
ase time of O(m+n logC).Our average-time bound holds for ar
 lengths distributed uniformly on [1; : : : ;M ℄;1 the lengths donot need to be independent. We also show that if the lengths are independent, the algorithm runningtime is linear with high probability. We refer to the new algorithm as the smart queue algorithm.Unlike the MLB algorithm, our algorithm is not an implementation of Dijkstra's algorithm: avertex sele
ted for s
anning is not ne
essarily a minimum labeled vertex. However, the sele
tedvertex distan
e label is equal to the 
orre
t distan
e, and ea
h vertex is s
anned at most on
e.Similar relaxation of Dijkstra's algorithm was originally introdu
ed by Dinitz [13℄ and used in itsfull strength by Thorup [42℄.Pra
ti
al importan
e of the NSP problem motivated extensive 
omputational work. Implemen-tations of Dijkstra's algorithm based on the 
lassi
al binary heap data stru
ture [45℄ were often usedas a ben
hmark to 
ompare against. This algorithm is easy to 
ode and has reasonable 
onstantfa
tors.2 In pra
ti
e binary heaps usually outperform Fibona

i heaps [16℄ and often outperformpairing heaps [40℄. However, the running time of the algorithm based on binary heaps grows super-linear with the number of elements on the heap, and the algorithm is not hard to beat on biggerproblems.1The results also hold for other distributions su
h that the proof of Theorem 6.2 goes through.2Implementations based on 4-heaps have better 
onstants.1



For many pra
ti
al problems, label-
orre
ting algorithms of Pape [36℄, Pallottino [35℄, andGlover et al. [20℄ perform extremely well. However, these algorithms have bad worst-
ase timebounds and sometimes perform poorly. Furthermore, unlike implementations of Dijkstra's algo-rithm and the smart queue algorithm, these algorithms 
annot be terminated early if one desires ashortest path between a pair of verti
es.Dail's bu
ket-based algorithm [10℄ works well if U is small. Goldberg et al. [5℄ show that the two-level bu
ket algorithm has a reasonable performan
e for moderately large U . Further theoreti
al andexperimental work [6, 24℄ produ
ed more robust two- and three-level implementations. Althoughthey have mu
h better worst-
ase performan
e than the label-
orre
ting algorithms mentionedabove, these MLB implementations are somewhat slower on many pra
ti
al problems. For example,based on real-life road networks, Zhan and Noon [46℄ re
ommend Pallottino's algorithm for the NSPproblem and bu
ket-based algorithms for the single pair problem.We des
ribe a pra
ti
al implementation of the smart queue algorithm. As a step toward thisimplementation, we develop a new implementation of the MLB algorithm that is more eÆ
ient thanthe previous implementations if the number of bu
ket levels is large. A simple modi�
ation of thisimplementation yields an eÆ
ient implementation of the smart queue algorithm. Our experimentalresults show that the smart queue algorithm with a large number of levels is pra
ti
al. In parti
ular,an implementation with the number of levels optimized for the worst-
ase theoreti
al performan
eworks well on both typi
al and bad-
ase inputs. For 32-bit ar
 lengths, the 
ode runs in timeless than 2:5 times that of breadth-�rst sear
h for all inputs we tried. These inputs in
luded onesdesigned to be hard for our implementation. Our results lead to better understanding of NSPalgorithm implementations and show how 
lose their performan
e is to the lower bound providedby breadth-�rst sear
h.Our algorithm has been motivated by a theoreti
al average-
ase analysis. The fa
t that thealgorithm is also pra
ti
al is an interesting example of a situation where probabilisti
 analysis leadsto improved pra
ti
al performan
e.2 PreliminariesThe input to the NSP problem is a dire
ted graph G = (V;A) with n verti
es, m ar
s, a sour
evertex s, and nonnegative ar
 lengths `(a). The goal is to �nd shortest paths from the sour
e to allverti
es of the graph. Unless mentioned otherwise, we assume that ar
 lengths are integers in theinterval [1; : : : ; U ℄, where U denotes the biggest ar
 length. Let Æ be the smallest nonzero ar
 lengthand let C be the ratio of the biggest ar
 length to Æ. If all ar
 lengths are zero or if C < 2, then theproblem 
an be solved in linear time [13℄; without loss of generality, we assume that C � 2 (andlogC � 1). This implies logU � 1. We say that a statement holds with high probability (w.h.p.) ifthe probability that the statement is true approa
hes one as m!1.We assume the word RAM model of 
omputation (see e.g., [1℄). To eÆ
iently implement theMLB date stru
ture [9℄, we need array addressing and the following unit-time word operations:addition, subtra
tion, 
omparison, and arbitrary shifts. To allow a higher-level des
ription of ouralgorithm, we use a strong RAM 
omputation model that also allows word operations in
ludingbitwise logi
al operations and the operation of �nding the index of the most signi�
ant bit inwhi
h two words di�er. The latter operation is in AC0; see [8℄ for a dis
ussion of a 
losely relatedoperation. The use of this more powerful model does not improve the amortized operation bounds,but simpli�es the des
ription. 2



3 Labeling Method and Related ResultsThe labeling method for the shortest path problem [14, 15℄ works as follows (see e.g., [41℄). Themethod maintains for every vertex v its distan
e label d(v), parent p(v), and status S(v) 2funrea
hed; labeled; s
annedg. Initially d(v) = 1, p(v) = nil, and S(v) = unrea
hed. Themethod starts by setting d(s) = 0 and S(s) = labeled. While there are labeled verti
es, themethod pi
ks su
h a vertex v, s
ans all ar
s out of v, and sets S(v) = s
anned. To s
an an ar
(v; w), one 
he
ks if d(w) > d(v) + `(v; w) and, if true, sets d(w) = d(v) + `(v; w), p(w) = v, andS(w) = labeled.If the length fun
tion is nonnegative, the labeling method always terminates with 
orre
t short-est path distan
es and a shortest path tree. The eÆ
ien
y of the method depends on the rule to
hose a vertex to s
an next. We say that d(v) is exa
t if the distan
e from s to v is equal to d(v).It is easy to see that if the method always sele
ts a vertex v su
h that, at the sele
tion time, d(v)is exa
t, then ea
h vertex is s
anned at most on
e.Dijkstra [12℄ observed that if ` is nonnegative and v is a labeled vertex with the smallestdistan
e label, than d(v) is exa
t. However, a linear-time implementation of Dijkstra's algorithmin the strong RAM model as at least as hard as linear-time sorting. Dinitz [13℄ and Thorup [42℄ usea relaxation of Dijkstra's sele
tion rule to get linear-time algorithms for spe
ial 
ases of the NSPproblem. To des
ribe a related relaxation that we use, de�ne the 
aliber of a vertex v, 
(v), to bethe minimum length of an ar
 entering v, or in�nity if no ar
 enters v.Lemma 3.1 (
aliber lemma) Suppose ` is nonnegative and let � be a lower bound on distan
elabels of labeled verti
es. Let v be a vertex su
h that �+ 
(v) � d(v). Then d(v) is exa
t.The lemma follows from the observation that for any labeled vertex u, su
h that (u; v) 2 A,d(u) + `(u; v) � �+ 
(v) � d(v).4 Algorithm Des
ription and Corre
tnessOur algorithm is based on the MLB implementation of Dijkstra's algorithm modi�ed to useLemma 3.1 to dete
t and s
an verti
es with exa
t (but not ne
essarily minimum) distan
e la-bels. Our algorithm is a labeling algorithm. During the initialization, the algorithm also 
omputes
(v) for every vertex v. The algorithm keeps labeled verti
es in one of two pla
es: a set F and apriority queue B. The former is implemented to allow 
onstant time additions and deletions, forexample as a doubly linked list. The latter is implemented using multi-level bu
kets as des
ribedbelow. The priority queue supports operations insert, delete, de
rease-key, and extra
t-min.However, the insert operation inserts verti
es into either B or F , and the de
rease-key operationmay move verti
es from B to FAt a high level, the algorithm works as follows. Verti
es in F have exa
t distan
e labels and ifF is nonempty, we remove and s
an a vertex from F . If F is empty, we remove and s
an a vertexfrom B with the minimum distan
e label. Suppose a distan
e label of a vertex u de
reases. Notethat u 
annot belong to F . If u belongs to B, then we apply the de
rease-key operation to u.This operation either relo
ates u within B or dis
overs that u's distan
e label is exa
t and movesu to F . If u is neither in B nor F , we apply the insert operation to u, and u is inserted eitherinto B or, if d(u) is determined to be exa
t, into F .Next we des
ribe the bu
ket stru
ture B. For a given integer parameter � � 2, B 
ontainsk + 1 levels of bu
kets, where k = dlog� Ue. Ex
ept for the top level, a level 
ontains � bu
kets.3
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Figure 1: MLB example. � = 2, k = 3, � = 10. Values on the bottom are in de
imal. Values ontop are in binary, with the least signi�
ant bit on the bottom. Shaded bits determine positions ofthe 
orresponding elements.Con
eptually, the top level 
ontains in�nitely many bu
kets. However, at most three 
onse
utivetop-level bu
kets 
an be nonempty at any given time (see Lemma 4.1 below), and one 
an maintainonly these bu
kets by wrapping around modulo three at the top level.3 We denote bu
ket j at leveli by B(i; j); i ranges from 0 (bottom level) to k (top), and j ranges from 0 to � � 1, ex
ept atthe top level dis
ussed above. A bu
ket 
ontains a set of verti
es maintained in a way that allows
onstant-time insertion and deletion, e.g., in a doubly linked list. At ea
h level i, we maintain thenumber of verti
es at this level.We maintain � su
h that � is a lower bound on the distan
e labels of labeled verti
es. Initially� = 0. Every time an extra
t-min operation removes a vertex v from B, we set � = d(v). Considerthe base � representation of the distan
e labels and number digit positions starting from 0 for theleast signi�
ant digit. Let �i;j denote the i-th through j-th least signi�
ant digit of � and let �idenote the i-th least signi�
ant digit. Similarly, di(u) denotes the i-th least signi�
ant digit ofd(u), and likewise for the other de�nitions. Note that � and the k+1 least signi�
ant digits of thebase � representation of d(u) uniquely determine d(u): d(u) = �+ (u0;k � �0;k) if u0;k > �0;k andd(u) = �+�k + (u0;k � �0;k) otherwise.For a given �, let �i and �i be � with the i least signi�
ant digits repla
ed by 0 or � � 1,respe
tively. Ea
h level i < k 
orresponds to the range of values [�i+1; �i+1℄. Ea
h bu
ket B(i; j)
orresponds to the subrange 
ontaining all integers in the range with the i-th digit equal to j. Atthe top level, a bu
ket B(k; j) 
orresponds to the range [j ��k; (j +1) ��k). The width of a bu
ketat level i is equal to �i: the bu
ket 
ontains �i distin
t values. We say that a vertex u is in therange of B(i; j) if d(u) belongs to the range 
orresponding to the bu
ket.The position of a vertex u in B depends on �: u belongs to the lowest-level bu
ket 
ontainingd(u). More formally, let i be the index of the most signi�
ant digit in whi
h d(u) and �0;k di�er,or 0 if they mat
h. Note that �i � d(u) � �i. Given � and u with d(u) � �, we de�ne the positionof u by (i; di(u)) if i < k and B(k; bd(u) � �=�k
) otherwise. If u is inserted into B, it is insertedinto B(i; j), where (i; j) is the position of u. For ea
h vertex in B, we store its position.Figure 1 gives an example of the bu
ket stru
ture. In this example, � = 2, k = 3, and� = 10. For instan
e, to �nd the position of a vertex v with d(v) = 14, we note that the binaryrepresentations of 10 and 14 di�er in bit 2 (remember that we start 
ounting from 0) and the bitvalue is 1. Thus v belongs to bu
ket 1 at level 2.Our modi�
ation of the MLB algorithm uses Lemma 3.1 during the insert operation to put3For low-level eÆ
ien
y, one may want � to be a power of two and wrap around modulo four.4



verti
es into F whenever the lemma allows it. The details are as follows.insert: Insert a vertex u into B [ F as follows. If � + 
(u) � d(u), put u into F . Otherwise
ompute u's position (i; j) in B and add u to B(i; j).de
rease-key: De
rease the key of an element u in position (i; j) as follows. Remove u fromB(i; j). Set d(u) to the new value and insert u as des
ribed above.extra
t-min: Find the lowest nonempty level i. Find j, the �rst nonempty bu
ket at level i, bysetting j to the index of the bu
ket at level i that 
ontains �, and in
remental j until the bu
ketB(i; j) is nonempty. If i = 0, delete a vertex u from B(i; j). (In this 
ase � = d(u).) Return u. Ifi > 0, examine all elements of B(i; j) and delete a minimum element u from B(i; j). Note that inthis 
ase � < d(u); set � = d(u). Sin
e � in
reased, some vertex positions in B may have 
hanged.We do bu
ket expansion of B(i; j) and return u.To understand bu
ket expansion, note that the verti
es with 
hanged positions are exa
tly thosein B(i; j). To see this, let �0 be the old value of � and 
onsider a vertex v in B. Let (i0; j0) be v'sposition with respe
t to �0. By the 
hoi
e of B(i; j), if (i; j) 6= (i0; j0), then either i < i0, or i = i0and j < j0. In both 
ases, the 
ommon pre�x of �0 and d(v) is the same as the 
ommon pre�x ofd(u) and d(v), and the position of v does not 
hange.On the other hand, verti
es in B(i; j) have a longer 
ommon pre�x with d(u) than they havewith �0 and these verti
es need to move to a lower level. Bu
ket expansion deletes these verti
esfrom B(i) and uses the insert operation to add the verti
es ba
k into B or into F , as appropriate.The vertex u in B(i; j) with the minimum distan
e label is not inserted into B, but returned ands
anned. Note that we do bu
ket expansions only when F is empty and the expanded bu
ket
ontains a labeled vertex with the minimum distan
e. Thus � is updated 
orre
tly.Although the formal des
ription of the algorithm is nontrivial, the algorithm itself is simple: Atea
h step, remove a vertex from F or, if F is empty, then remove the minimum-labeled vertex fromB. In the latter 
ase, expand the bu
ket from whi
h the vertex has been removed, if ne
essary.S
an the vertex and update its neighbors if ne
essary. Terminate when both F and B are empty.The width of a top level bu
ket is at least U . In the original MLB algorithm, at any point ofthe exe
ution all labeled verti
es are 
ontained in at most two 
onse
utive top level bu
kets. Aslightly weaker result holds for our algorithm.Lemma 4.1 At any point of the exe
ution, all labeled verti
es are in the range of at most three
onse
utive top level bu
kets.Proof. Let �0 be the 
urrent value of � and let B(k; j) be the top level bu
ket 
ontaining �0. Ex
eptfor s (for whi
h the result holds trivially), a vertex v be
omes labeled during a s
an of anothervertex u removed from either B or F . In the former 
ase, at the time of the s
an d(u) = � � �0,d(v) = � + `(u; v) � �0 + U , and therefore v is 
ontained either in B(k; j) or B(k; j + 1). In thelatter 
ase, when u has been added to F , the di�eren
e between d(u) and � was at most 
(u) � U ,thus d(u) � �0 + U , d(v) � d(u) + U � �0 + 2 � U , and thus v belongs to B(k; j), B(k; j + 1), orB(k; j + 2).Algorithm 
orre
tness follows from Lemmas 3.1 and 4.1, and the observations that � is alwaysset to the minimum distan
e label of a labeled vertex, � remains a lower bound on the labeledvertex labels (and therefore is monotoni
ally nonde
reasing), and F always 
ontains verti
es withexa
t distan
e labels. 5



5 Worst-Case AnalysisIn this se
tion we prove a worst-
ase bound on the running time of the algorithm. Our analysis issimilar to that for the MLB algorithm given in [6℄, ex
ept the resulting bound has a C instead ofa U . Some de�nitions and lemmas introdu
ed in this se
tion will be also used in the next se
tion.We start the analysis with the following lemmas.Lemma 5.1 [6℄� Given � and u, we 
an 
ompute the position of u with respe
t to � in 
onstant time.� We 
an �nd the lowest nonempty level of B in 
onstant time.Lemma 5.2 The algorithm runs in O(m + n + �1 + �2) time, where �1 is the total number oftimes a vertex moves from a bu
ket of B to a lower level bu
ket and �2 is the number of emptybu
kets examined by the algorithm.Proof. Sin
e ea
h vertex is s
anned at most on
e, the total s
an time is O(m + n). A vertex isadded to and deleted from F at most on
e, so the total time devoted to maintaining F is O(n). Aninsert operation takes 
onstant time, and these operations are 
aused by inserting verti
es into Bfor the �rst time, by de
rease-key operations, and by extra
t-min operations. The former takeO(n) time; we a

ount for the remaining ones jointly with the other operations. A de
rease-keyoperation takes 
onstant time and is 
aused by a de
rease of d(v) due to a s
an of an ar
 (u; v). Sin
ean ar
 is s
anned at most on
e, these operations take O(m) total time. The work we a

ounted forso far is linear.Next we 
onsider the extra
t-min operations. Consider an extra
t-min operation that returnsu. The operation takes O(1) time, plus the time proportional to the number of empty bu
ketsexamined, plus the time proportional to the number of verti
es in the expanded bu
ket, ex
ludingu. Ea
h of these verti
es moves to a lower level in B. Thus we get the desired time bound.Note that �1 = O(nk) and �2 = O(n�) sin
e after examining less than � empty bu
ketswe dis
over a nonempty one and s
an a vertex from it. Setting � to d logUlog logU e balan
es �1 and�2 and yields the O �m+ n logUlog logU � worst-
ase time bound. To get a better bound, we de�nek0 = blog� Æ
.Lemma 5.3 Bu
kets at level k0 and below are never used.Proof. Let (i; j) be the position of a vertex v of 
aliber 
(v) � Æ. If i � k0, then d(v) � � < �i ��k0 � Æ � 
(v) and the algorithm adds v to F , not B.The lemma implies that the algorithm uses O(log� U � log� Æ) = O(log�C) bu
ket levels.Setting � to d logClog logC e and applying Lemma 5.3, we get the following result.Theorem 5.4 The worst-
ase running time of the algorithm is O(m+ n logClog logC ).Note that setting � = 2 yields an O(m+ n logC) bound.Our optimization 
an also be used to improve other data stru
tures based on multi-level bu
kets,su
h as radix heaps [2℄ and hot queues [6℄. For these data stru
tures, the equivalent of Lemma 5.3allows one to repla
e time bound parameter U by C. In parti
ular, the bound of the hot queue im-plementation of Raman [39℄ improves to O(m+n(logC log logC)1=3). The modi�
ation of Raman'salgorithm to obtain this bound is straightforward given the results of this se
tion.6



6 Average-Case AnalysisIn this se
tion we prove that for � = 2 (or any other 
onstant), the smart queue algorithm runs inlinear average time under the assumption that the input ar
 lengths are uniformly distributed on[1; : : : ;M ℄.4 We also show that the running time is linear with high probability with the additionalassumption that the lengths are independent.Sin
e � = 2, �2 = O(n); it remains to bound �1.A key lemma for our analysis is as follows.Lemma 6.1 The algorithm never inserts a vertex v into a bu
ket at a level less than or equal tolog 
(v)� 1.Proof. Suppose during an insert operation v's position in B is (i; j) with i � log 
(v) � 1. Thenthe most signi�
ant digit in whi
h d(v) and � di�er is digit i and d(v)�� < �i+1 � 
(v). Thereforeinsert puts v into F , not B.The above lemma motivates the following de�nitions. The weight of an ar
 a, w(a), is de�nedby w(a) = k � blog `(a)
: The weight of a vertex v, w(v), is de�ned to be the maximum weight ofan in
oming ar
 or zero if v has no in
oming ar
s. Lemma 6.1 implies that the number of times v
an move to a lower level of B is at most w(v) + 1 and therefore �1 � m+PV w(v). Note that kdepends on the input, and thus the weights are de�ned with respe
t to a given input.For the probability distribution of ar
 weights de�ned above, we havePr[blog `(a)
 = i℄ = 2i=M for i = 0; : : : ; k � 1. The de�nition of w yieldsPr[w(a) = t℄ = 2k�t=M for t = 1; : : : ; k: (1)Sin
e M � U , we have M � 2k�1, and thereforePr[w(a) = t℄ � 2�t+1 for t = 1; : : : ; k: (2)Theorem 6.2 If ar
 lengths are uniformly distributed on [1; : : : ;M ℄, then the average running timeof the algorithm is linear.Proof. Sin
e � � m+PV w(v), it is enough to show that E[PV w(v)℄ = O(m). By the linearityof expe
tation and the de�nition of w(v), we have E[PV w(v)℄ �PAE[w(a)℄. The expe
ted valueof w(a) is E[w(a)℄ = kXi=1 iPr[w(a) = i℄ � 1Xi=1 i2�i+1 = 2 1Xi=1 i2�i = O(1):Note that this bound holds for any k. Thus PAE[w(a)℄ = O(m).Remark Note that Theorem 6.2 does not require ar
 lengths to be independent. Our proof ofits high-probability variant, Theorem 6.7, requires the independen
e.Remark The proof of the theorem works for any ar
 length distribution su
h that E[w(a)℄ =O(1). In parti
ular, the theorem holds for real-valued ar
 lengths sele
ted uniformly from [0; 1℄.In fa
t, for this distribution the high-probability analysis below is simpler (given the independen
eassumption). However, the integer distribution is somewhat more interesting, be
ause some testproblem generators use this distribution and most pra
ti
al problems have integral lengths.4As we shall see, if M is large enough then the result also applies to the range [0; : : : ;M ℄.7



Next we show that the algorithm running time is linear w.h.p. by showing that PAw(a) =O(m) w.h.p. First, we show that w.h.p. U is not mu
h smaller than M and Æ is 
lose to Mm�1(Lemmas 6.3 and 6.4). Let St be the set of all ar
s of weight t and note that PAw(a) =Pt tjStj.We show that as t in
reases, the expe
ted value of jStj goes down exponentially. For small valuesof t, this is also true w.h.p. To deal with large values of t, we show that the total number of ar
swith large weights is small, and so is the 
ontribution of these ar
s to the sum of ar
 weights.Proofs of the following two lemmas are fairly standard; we in
lude them to make the paperself-
ontained.Lemma 6.3 W.h.p., U �M=2.Proof. For an ar
 a, Pr[`(a) < M=2℄ < 1=2 and by the independen
e of ar
 lengths,Pr[U < M=2℄ � 2�m ! 0 as m!1:Thus Pr[U �M=2℄ ! 1 as m!1.Lemma 6.4 W.h.p., Æ �Mm�4=3. If M � m2=3, then w.h.p. Æ �Mm�2=3.Proof. For an ar
 a, we havePrh`(a) �Mm�4=3i = (M �Mm�4=3)=M � 1�m�4=3:Sin
e the ar
 lengths are independent, we havePrhÆ �Mm�4=3i � �1�m�4=3�m ! 1 as m!1:Similarly, Prh`(a) > Mm�2=3i = (M � bMm�2=3
)=M � 1� m�2=32 :and by the independen
ePrhÆ > Mm�2=3i � �1� 12m2=3�m ! 0 as m!1:From (1) and the independen
e of ar
 weights, we have E[jStj℄ = m2k�t=M . By the Cherno�bound (see e.g. [7, 33℄), Pr�jStj � 2m2k�t=M� < � e4�m2k�t=M . Sin
e M � 2k�1, we havePr�jStj � 4m2�t� < �e4�2m2�t :As mentioned above, we bound the 
ontributions of ar
s with large and small weights toPAw(a)di�erently. We de�ne � = log(m2=3) and partition A into two sets, A1 
ontaining the ar
s withw(a) � � and A2 
ontaining the ar
s with w(a) > �.Lemma 6.5 PA1 w(a) = O(m) w.h.p. 8



Proof. Assume that Æ �Mm�4=3 and U �M=2; by Lemmas 6.3 and 6.4 this happens w.h.p. Thisassumption implies C � m4=3. The probability that for some t : 1 � t � �, jStj � 4m2�t is, by theunion bound and the fa
t that the probability is maximized for t = �, less than� �e4�m2�� � log(m2=3)�e4�mm�2=3 � logm�e4�m1=3 ! 0 as m!1:Thus w.h.p., for all t : 1 � t � �, we have jStj < 4m2�t andXA1 w(a) = t��Xt=1 tjStj � 4m 1Xt=1 t2�t = O(m):Lemma 6.6 PA2 w(a) = O(m) w.h.p.Proof. If M < m2=3, then k � � and A2 is empty, so the lemma holds trivially.Now 
onsider the 
ase M � m2=3. By Lemmas 6.3 and 6.4, w.h.p. Mm�4=3 � Æ � Mm�2=3and U � M=2; assume that this is the 
ase. The assumption implies m2=3=2 � C � m4=3.Under this assumption, we also have 2k�1 � M � 2k+1. Combining this with (1) we get 2�2�t �Pr[w(a) = t℄ � 21�t. This implies that2�2�� � Pr[w(a) > �℄ � 22�� ;therefore m�2=38 � Pr[w(a) > �℄ � 4m�1=3and by the independen
e of ar
 weights,m1=38 � E[jA2j℄ � 4m2=3By the Cherno� bound, Pr[jA2j > 2E[jA2j℄℄ < �e4�E[jA2j℄ :Repla
ing the �rst o

urren
e of E[jA2j℄ by the upper bound on its value and the se
ond o

urren
eby the lower bound (sin
e e=4 < 1), we getPrhjA2j > 8m2=3i < �e4�m1=3=8 ! 0 as m!1:For all ar
s a, `(a) � Æ, and thusw(a) = k � b`(a)
 � 1 + logU + 1� log Æ = 2 + logC � 2 + (4=3) logm:Therefore w.h.p., XA2 w(a) � 8m2=3(2 + (4=3) logm) = o(m):Thus we have the following theorem.Theorem 6.7 If ar
 lengths are independent and uniformly distributed on [1; : : : ;M ℄, then withhigh probability, the algorithm runs in linear time.Remark The expe
ted and high probability bounds also apply if the ar
 lengths 
ome from[0; : : : ; U ℄ and U = !(m), as in this 
ase with high probability no ar
 has zero length.9



7 Algorithm ImplementationIn this se
tion we des
ribe eÆ
ient implementations of MLB and smart queue algorithms, in
ludingalgorithm engineering 
onsiderations involved in their development. We also dis
uss how the MLBimplementation di�ers from the previous implementations [6, 24℄. The mb 
ode implements thealgorithm MLB algorithm and the sq 
ode implements the smart queue algorithm.Previous implementations of the MLB algorithm, as well as those des
ribed below, use thefollowing wide bu
ket heuristi
. Pi
k w su
h that 0 < w � Æ. Then the MLB algorithm remains
orre
t if one multiplies the bu
ket width on every level by w. Both mb and sq 
odes use the widebu
ket heuristi
. We refer to the modi�
ations needed to 
onvert the MLB algorithm to the smartqueue algorithm as the 
aliber heuristi
. This heuristi
 is the only di�eren
e between mb and sq.Our implementation of mb is very similar to that of [24℄, ex
ept in the details of the insertoperation. The previous implementation maintained a range of distan
e values for ea
h level,updating the ranges when the value of � 
hanged. To insert a vertex, one looks for the lowestlevel to whi
h the vertex belongs, and then 
omputes the o�set of the bu
ket to whi
h the vertexbelongs. In 
ontrast, mb and sq 
ompute the vertex position with respe
t to � as des
ribed inSe
tion 4. This is slightly more eÆ
ient when the number of levels is large. The eÆ
ien
y gainis bigger for sq be
ause it does not ne
essarily examine all levels for a given value of �. The newimplementation is also simpler than the old one.We always set � to a power of two. This allows us to use bit shifts instead of divisions. Our
odes set w to the biggest power of two not ex
eeding Æ, or to one if Æ � 1. We use an array torepresent ea
h level of bu
kets.One 
an give mb either k or � as a parameter. Then mb sets the other parameter based onthe input ar
 lengths. We refer to the 
ode with the number of levels k set to two by mb2l, andto the 
ode with � set to two by mb2d. These are the two extreme 
ases that we study. (We donot study the single-level 
ase be
ause it often would have needed too mu
h memory and time.)Alternatively, one 
an let mb 
hose the values of both k and � based on the input. We refer to thisadaptive variant as mb-a. The adaptive variant of the algorithm uses the relationship � = �(k)suggested by the worst-
ase analysis. To 
hose the 
onstant hidden by the � lo
ation, we observethe following. Examining empty bu
kets involves looking at a single pointer and has good lo
alityproperties as we a

ess the bu
kets sequentially. Moving verti
es to lower levels, on the otherhand, requires 
hanging several pointers, and has poor lo
ality. This suggests that � should besubstantially greater than k, and experiments 
on�rm this.In more detail, mb-a sets k and � as follows. First we �nd the smallest value of k su
h thatk is a power of two and (16k)k � U=w. Then we set � to 16k. At this point, however, both �and k may be larger than they need to be. While (�=2)k � U=w we redu
e �. Finally while(�)k�1 � U=w we redu
e k. This typi
ally leads to 16k � � � 128k and works well in our tests.We obtain our sq 
ode by adding the 
aliber heuristi
 to mb. The modi�
ation of mb isrelatively straightforward. We use a sta
k to implement the set F needed by the 
aliber heuristi
.The adaptive variant of the 
ode, sq-a, uses the same pro
edure to set k and � as mb-a does.8 Experimental Methodology and SetupFollowing Moret and Shapiro [32℄, we use a baseline 
ode { breadth-�rst sear
h (bfs) in our 
ase{ and measure running times of our shortest path 
odes on an input relative to the bfs runningtime on this input. Our BSF 
ode 
omputes distan
es and a shortest path tree for the unit lengthfun
tion. The breadth-�rst sear
h problem is a spe
ial 
ase of NSP and, modulo low-level details,10



the bfs running time is a lower bound on the NSP 
odes. Baseline running times give a goodindi
ation of how 
lose to optimal the running times are and redu
es dependen
y on low-levelimplementation and ar
hite
ture details.However, some of the dependen
ies, in parti
ular 
a
he dependen
ies, remain. Our 
odes putar
 and vertex re
ords in 
onse
utive lo
ations. Input IDs of the verti
es determine their orderingin memory. In general, breadth-�rst sear
h examines verti
es in a di�erent order than an NSPalgorithm. This may { and in some 
ases does { lead to very di�erent 
a
hing behavior of thetwo 
odes for 
ertain vertex orderings. To deal with this dependen
y on input IDs, our generatorspermute the IDs at random. Thus all our problem generators are randomized.For every input problem type and any set of parameter values, we run the 
orresponding gen-erator �ve times and report the averages. We report the baseline bfs time in se
onds and all othertimes in units of the bfs time. In addition, we 
ount operations that determine �1 and �2 inLemma 5.2. For ea
h of these operations, we give the number of the operations divided by thenumber of verti
es, so that the amortized operation 
ost is immediate. The two kinds of operationswe 
ount are examinations of empty bu
kets and the number of verti
es pro
essed during bu
ketexpansion operations.We use 64-bit integers for internal representation of ar
 lengths and distan
es. If the graph
ontains simple paths longer than 264, our 
odes may get over
ows. Note that for 32-bit input ar
lengths, no over
ow 
an happen unless the number of verti
es ex
eeds 232, whi
h is too many to�t into the memory of a modern 
omputer.Our experiments have been 
ondu
ted on a 933 MHz Pentium III ma
hine with 512M of memory,256K 
a
he, and running RedHat Linux 7.1. All our shortest path 
odes and the baseline 
ode arewritten in C++, in the same style, and 
ompiled with the g

 
ompiler using the -O6 optimizationoption. Our bfs 
ode uses the same data stru
tures as the mb 
ode.9 Problem FamiliesWe report data on seven problem families produ
ed by three problem generators. These problemfamilies have been sele
ted as the most interesting from many more families we experimented with.Sin
e we are interested in eÆ
ien
y of the data stru
tures, we restri
t our study to sparse graphs,for whi
h the data stru
ture manipulation time is most apparent.Our �rst generator, SPRAND, builds a Hamiltonian 
y
le and then adds ar
s at random. Thegenerator may produ
e parallel ar
s but not self-loops. Ar
 lengths are 
hosen independently anduniformly from [`; u℄. Vertex 1 is the sour
e. If the number of ar
s is large enough, SPRANDgraphs are expanders and the average number of verti
es in the priority queue during a shortestpath 
omputation is large.We use SPRAND to generate two problem families, RAND-I and RAND-C. For both families,` = 1 and m = 4n. For RAND-I, u = n, and n in
reases by a fa
tor of two from one set ofparameter values to the next one. We 
hose the initial value of n large enough so that the runningtime is nonnegligable and the �nal value as large as possible subje
t to the 
onstraint that all our
odes run without paging. For RAND-C, n = 220 and u = 2i; i starts at 1 and then takes oninteger multiples of four from 4 to 32. Up to i = 20, the minimal ar
 length Æ in all test inputs isone. For i = 24, Æ is greater than one for some inputs. For i = 28 and 32, Æ is always greater thanone. Note that the expe
ted value of C does not 
hange for i � 28, and therefore the results fori > 32 would have been very similar to those for i = 28 and 32.Our se
ond generator, SPGRID, produ
es grid-like graphs. An x; y grid graph 
ontains x � yverti
es, [i; j℄, for 0 � i < x and 0 � j < y. A vertex [i; j℄ is 
onne
ted to the adja
ent verti
es11
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Figure 2: An example of a hard prob-lem instan
e; k = 3 and � = 16. Ar
lengths are given in hexade
imal. Weomit the extra vertex with ar
s de-signed to manipulate vertex 
alibers.in the same layer, [i; j + 1 mod y℄ and [i; j � 1 mod y℄. In addition, for i < x � 1, ea
h vertex[i; j℄ is 
onne
ted to the vertex [i+1; j℄. Ar
 lengths are 
hosen independently and uniformly from[`; u℄. Vertex [0; 0℄ is the sour
e. We use SPGRID to generate two problem families, LONG-I andLONG-C. Both families 
ontain long grid graphs with y = 8 and x a parameter. For these graphs,the average number of verti
es in the priority queue is small.The LONG-I and LONG-C problem families are similar to the RAND-I and RAND-C families.For LONG-I, u = n and n in
reases by a fa
tor of two from the value that yields a reasonablerunning time to the maximum value that does not 
ause paging. The LONG-C problem familyuses the same values of u as the RAND-C problem family.Our last problem generator is SPHARD. This generator produ
es problems aimed to be hardfor MLB algorithms for 
ertain values of k and �. Graphs produ
ed by this generator 
onsistof 2k + 1 vertex-disjoint paths, with the sour
e 
onne
ting to the beginning of ea
h path. (SeeFigure 2 for an example.) These paths have the same number of ar
s, whi
h 
an be adjusted toget a graph of the desired size. Path ar
s have a length of �. The lengths of the sour
e ar
s areas follows. One ar
 has zero length. Out of the remaining ar
s, k ar
s have the following base-�representation. For 1 � i � k, the �rst i digits are �� 1 and the remaining digits are 0. The lastk ar
s, for 1 � j � k, have the �rst j � 1 digits �� 1, the j-th digit 1, and the remaining digits 0.The graph also 
ontains an extra vertex with no in
oming ar
s 
onne
ted to every other vertex ofthe graph. The length of the ar
 
onne
ting the vertex to the sour
e is zero to make sure that theminimum ar
 length is zero. Lengths of the other ar
s are all the same. These lengths 
an be zero(to for
e every vertex 
aliber to zero) or large (so that the 
alibers are determined by the otherar
s).Note that if the SPHARD generator with parameters k and � produ
es an input, our adaptive
odes may sele
t di�erent parameter values. For D = log�, a problem produ
ed by SPRAND has(k �D)-bit lengths. These lengths determine parameter values sele
ted by the adaptive 
odes.The three SPHARD problem families we study are HARD1, HARD0, and HARDEST-SQ. The�rst two problem families di�er only in the length of the ar
s whi
h determine vertex 
alibers:the length is large for the �rst family and zero for the se
ond. All problems in this family haveapproximately 220 verti
es, and the number of ar
s is approximately the same in all problems. To
reate a problem in this family, we 
hose k and D su
h that k �D = 36 and generate a problem whi
his hard for mb with k levels and � = 2D. Ea
h HARDEST-SQ problem also has approximately 220verti
es. Problems in this family di�er by the k and � values. These values are sele
ted so thatboth the generator and the adaptive 
odes use the same k and � parameters.12



10 Experimental ResultsThis se
tion dis
usses our experimental results. The appendix 
ontains supporting data tables.Caliber heuristi
 e�e
tiveness. Our analysis shows that work of the 
aliber heuristi
 is amor-tized over other work performed by the algorithm and therefore the heuristi
 
annot hurt perfor-man
e by mu
h. The heuristi
 
an, however, signi�
antly improve performan
e. Experimentaldata 
on�rms this fa
t. In parti
ular, data for the HARD1 family in Table 4 shows how drasti
performan
e improvement 
an be. The HARD0 family data in Table 4 shows that if all vertex
alibers are for
ed to zero and the 
aliber heuristi
 never helps, its 
ost is just a few per
ents ofthe running time.Making more levels pra
ti
al. Our previous work [5, 6℄ showed that 2- and 3-level MLB im-plementations and their variants perform well ex
ept on 
ertain types of graphs with very largelengths. In
reasing the number of levels improved performan
e on bad examples but hurt perfor-man
e on \typi
al" problems somewhat. Comparing mb and sq 
ode performan
e on graphs withrandom ar
 weights (Tables 1{3), we observe that, as the theory would suggest, the 
aliber heuristi
helps more if the number of bu
ket levels is higher. This is espe
ially apparent if one 
omparesdata for mb2d and sq2d on RAND-C problems (Table 2). This makes the bu
ket stru
tures withhigher number of levels, in parti
ular the adaptively sele
ted number of levels, pra
ti
al. While therandom ar
 length data illustrates how the 
aliber heuristi
 helps in \typi
al" 
ases, Table 4 showsthe e�e
tiveness of adaptive parameter sele
tion on hard problems: Note that for problems with36-bit lengths, our adaptive 
odes set k = 6.Operation 
ounts and 
ode tuning. As the analysis suggests, poor performan
e of the MLB
odes is 
aused by either a large number of the empty bu
ket examinations or a high 
ost of bu
ketexpansion operations. See for example Tables 3 and 4. The data shows that if the number ofempty bu
ket examinations per vertex is moderate (e.g., ten), they are well-amortized by otheroperations on verti
es and do not have a noti
eable e�e
t on the running time. When the numberof these operations rea
hes a hundred per vertex, they do have an e�e
t. See e.g., Tables 2 and 3.Table 4 shows that pro
essing verti
es during bu
ket expansion is more expensive. Pro
essing onevertex in
uen
es the running time roughly as mu
h as s
anning a hundred empty bu
kets. Theseobservations justify the 
hoi
e of k and � in our adaptive algorithms.Most robust 
ode. Our data also suggests that sq-a is a very robust 
ode. Often it is thefastest 
ode, and its running time is always within 10% the fastest 
ode. When designing theHARDEST-SQ problem family, our goal was to produ
e problems whi
h are hard for the sq-a
ode. If one believes that these problems are 
lose to the worst-
ase, then Table 5 shows that evenfor large lengths, sq-a performs very well. For example, for 49-bit lengths, its running time ex
eedsthat of bfs by less than a fa
tor of three. We estimate that for 32-bit lengths, sq-a running timeis always within a fa
tor of 2:5 of the bfs time.11 Con
luding RemarksThe worst-
ase bound for the smart queue algorithm is a
hieved for � = �( logClog logC ), when thework of moving verti
es to lower levels balan
es the work of s
anning empty bu
kets during bu
ket13



expansion. Our average-
ase analysis redu
es the former but not the latter. We get a linear runningtime when � is 
onstant and the empty bu
ket s
ans 
an be 
harged to verti
es in nonempty bu
kets.An interesting open question is if one 
an get a linear average running time and a better worst-
aserunning time, for example using te
hniques from [2, 6, 9℄, without running several algorithms \inparallel."Our optimization is to dete
t verti
es with exa
t distan
e labels before these verti
es rea
h thebottom level of bu
kets and pla
e them into F . This te
hnique 
an be used not only in the 
ontextof multi-level bu
kets, but in the 
ontext of radix heaps [2℄ and hot queues [6℄.The fa
t that sq-a performan
e is 
lose to that of bfs limits potential improvements one would
onsider. For example, a sear
h of a graph to determine better parameter values would not pay foritself, unless it 
an be amortized over many shortest path 
omputations, e.g. in the 
ontext of theall-pairs shortest path problem.We would like to note that Mayer's algorithm [29℄ and its simpli�ed version [30℄ (publishedafter [21℄), is unlikely to be 
ompetitive with our algorithm in pra
ti
e be
ause it is more 
ompli-
ated. For example, in Mayer's algorithm the number of bu
kets at ea
h level is set dynami
ally,and the eÆ
ient way of 
omputing the position of a vertex in the bu
ket data stru
ture that weuse does not apply to Mayer's algorithm.Informal experiments show that for problems that are easy for the label-
orre
ting algorithms,the smart queue algorithm works almost as well. It would be interesting to have a more formal
omparison of these implementations on real-life problems, su
h as those in [46℄.We also implemented an algorithm that 
ombines the ideas behind smart queues and hotqueues [6℄. Informal experiments show that the resulting 
ode performs a little better on thehard instan
es but slightly worse on \typi
al" instan
es.Our results suggest that the smart queue algorithm should be 
onsidered in pra
ti
e when ar
lengths are nonnegative integers. The shortest path 
odes and generators used in this study areavailable via URL http://www.avglab.
om/andrew/soft.html.A
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Appendix: Experimental Datan bfs mb2l sq2l mb2d sq2d mb-a sq-a217 time 0.15 1.55 1.56 3.86 2.26 1.88 1.63emp./n se
. 3.01 1.09 0.74 0.01 2.05 0.06exp./n 1.09 1.04 7.14 1.56 2.00 1.05218 time 0.30 1.73 1.64 4.15 2.26 1.93 1.73emp./n se
. 3.03 0.79 0.74 0.01 2.04 0.04exp./n 1.45 1.19 7.65 1.56 2.36 1.19219 time 0.62 1.68 1.63 4.41 2.31 1.89 1.71emp./n se
. 3.34 1.12 0.74 0.00 2.36 0.05exp./n 1.06 1.01 8.15 1.58 1.96 1.01220 time 1.30 1.83 1.79 4.64 2.35 1.94 1.79emp./n se
. 3.34 0.79 0.74 0.00 2.37 0.03exp./n 1.41 1.20 8.65 1.58 2.09 1.06221 time 2.90 1.83 1.77 4.73 2.29 2.00 1.78emp./n se
. 3.67 1.13 0.74 0.00 2.36 0.03exp./n 1.16 1.03 9.13 1.56 2.33 1.16n bfs mb2l sq2l mb2d sq2d mb-a sq-a217 time 0.08 1.71 1.71 2.71 2.14 1.86 1.71emp./n se
. 8.59 4.77 1.00 0.29 4.88 1.00exp./n 0.46 0.39 1.51 0.83 0.61 0.41218 time 0.17 1.66 1.61 2.80 2.13 1.81 1.68emp./n se
. 12.45 5.10 1.00 0.29 4.17 1.31exp./n 0.27 0.22 1.51 0.83 0.63 0.46219 time 0.35 1.65 1.65 2.74 2.17 1.73 1.61emp./n se
. 13.65 9.43 1.00 0.29 8.89 1.40exp./n 0.42 0.38 1.51 0.83 0.52 0.34220 time 0.75 1.59 1.60 2.72 2.10 1.64 1.60emp./n se
. 17.89 10.09 1.00 0.29 6.98 1.47exp./n 0.23 0.21 1.51 0.83 0.45 0.31221 time 1.61 1.60 1.63 2.65 2.06 1.62 1.59emp./n se
. 23.59 18.84 1.00 0.29 5.88 2.44exp./n 0.40 0.37 1.51 0.83 0.52 0.42Table 1: RAND-I (top) and LONG-I (bottom) family data
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u bfs mb2l sq2l mb2d sq2d mb-a sq-a1 time 2.97 1.39 1.35 1.39 1.36 1.38 1.35emp. se
. 0.00 0.00 0.00 0.00 0.00 0.00exp. 0.48 0.48 0.48 0.48 0.48 0.484 time 2.99 1.74 1.59 1.99 1.73 1.47 1.42emp. se
. 0.00 0.00 0.00 0.00 0.00 0.00exp. 1.04 0.88 1.64 1.15 0.42 0.398 time 3.03 1.81 1.69 2.80 1.96 1.79 1.70emp. se
. 0.00 0.00 0.00 0.00 0.00 0.00exp. 1.26 1.05 3.51 1.49 1.26 1.0512 time 3.00 1.86 1.73 3.41 2.07 1.85 1.74emp. se
. 0.01 0.01 0.01 0.00 0.01 0.01exp. 1.35 1.13 5.49 1.56 1.35 1.1316 time 3.00 1.84 1.74 3.91 2.16 1.95 1.71emp. se
. 0.14 0.07 0.08 0.00 0.12 0.04exp. 1.37 1.16 7.44 1.56 2.04 1.0820 time 2.99 1.82 1.75 4.52 2.27 1.89 1.71emp. se
. 1.84 0.56 0.57 0.00 1.35 0.02exp. 1.37 1.16 8.97 1.56 2.11 1.0424 time 2.99 2.08 1.80 4.95 2.30 2.11 1.76emp. se
. 18.43 1.32 0.93 0.00 6.12 0.03exp. 1.33 1.13 9.23 1.56 2.99 1.1228 time 2.92 2.59 1.85 5.22 2.37 2.13 1.75emp. se
. 55.33 1.35 0.95 0.00 11.72 0.04exp. 1.33 1.13 9.23 1.56 2.79 1.0632 time 2.98 2.49 1.85 5.11 2.36 2.13 1.74emp. se
. 55.33 1.36 0.95 0.00 11.72 0.04exp. 1.33 1.13 9.23 1.56 2.79 1.06Table 2: RAND-C family data
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u bfs mb2l sq2l mb2d sq2d mb-a sq-a1 time 1.62 1.35 1.35 1.34 1.34 1.34 1.34emp. se
. 0.13 0.06 0.13 0.06 0.13 0.06exp. 0.44 0.44 0.44 0.44 0.44 0.444 time 1.63 1.54 1.54 1.72 1.60 1.42 1.49emp. se
. 0.61 0.34 0.55 0.23 0.69 0.66exp. 0.88 0.71 1.29 0.80 0.39 0.388 time 1.63 1.60 1.56 2.06 1.76 1.60 1.56emp. se
. 2.64 0.77 0.96 0.29 2.64 0.77exp. 0.77 0.54 1.51 0.83 0.77 0.5412 time 1.63 1.56 1.55 2.28 1.87 1.56 1.55emp. se
. 5.82 2.44 1.00 0.29 5.82 2.44exp. 0.52 0.42 1.51 0.83 0.52 0.4216 time 1.63 1.56 1.57 2.52 1.99 1.61 1.54emp. se
. 13.68 9.45 1.00 0.29 8.87 1.40exp. 0.42 0.38 1.51 0.83 0.52 0.3420 time 1.63 1.67 1.69 2.75 2.10 1.57 1.54emp. se
. 43.27 37.60 1.00 0.29 9.30 2.64exp. 0.39 0.37 1.51 0.83 0.34 0.2524 time 1.62 2.22 2.15 2.99 2.23 1.64 1.61emp. se
. 146.96 136.51 1.00 0.30 6.10 2.30exp. 0.35 0.33 1.51 0.84 0.51 0.4028 time 1.62 3.08 3.02 3.05 2.33 1.65 1.64emp. se
. 212.05 205.08 1.00 0.35 10.96 2.72exp. 0.31 0.30 1.51 0.91 0.43 0.3832 time 1.63 3.18 3.08 3.06 2.38 1.66 1.67emp. se
. 212.00 206.77 1.00 0.36 10.96 2.91exp. 0.31 0.31 1.51 0.92 0.43 0.40Table 3: LONG-C family data
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k bfs mb sq2 time 0.63 1189.20 1.38emp. se
. 52428.94 0.40exp. 0.60 0.303 time 0.63 10.66 1.39emp. se
. 1170.14 0.15exp. 1.14 0.574 time 0.62 2.68 1.44emp. se
. 170.44 0.11exp. 1.56 0.676 time 0.63 2.25 1.53emp. se
. 24.31 0.08exp. 2.46 0.779 time 0.62 2.87 1.60emp. se
. 6.37 0.05exp. 3.89 0.8512 time 0.63 3.70 1.66emp. se
. 3.12 0.04exp. 5.36 0.8818 time 0.63 5.86 1.82emp. se
. 1.41 0.03exp. 8.32 0.9336 time 0.62 16.32 2.32emp. se
. 0.49 0.01exp. 17.75 0.97

k bfs mb sq2 time 0.62 1199.67 1201.13emp. se
. 52428.94 52428.94exp. 0.60 0.603 time 0.62 9.48 9.39emp. se
. 1170.14 1170.14exp. 1.14 1.144 time 0.63 2.67 2.82emp. se
. 170.44 170.44exp. 1.56 1.566 time 0.62 2.25 2.45emp. se
. 24.31 24.31exp. 2.46 2.469 time 0.62 2.87 3.08emp. se
. 6.37 6.37exp. 3.89 3.8912 time 0.62 3.72 3.93emp. se
. 3.12 3.12exp. 5.36 5.3618 time 0.63 5.86 6.05emp. se
. 1.41 1.41exp. 8.32 8.3236 time 0.63 16.24 16.43emp. se
. 0.49 0.49exp. 17.75 17.75Table 4: HARD1 (left) and HARD0 (right) family data
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bits log� k bfs sq-a4 4 1 time 0.62 1.37emp. se
. 0.33exp. 0.046 3 2 time 0.63 1.50emp. se
. 1.60exp. 0.808 4 2 time 0.62 1.51emp. se
. 3.20exp. 0.8015 5 3 time 0.62 1.73emp. se
. 9.00exp. 1.1418 6 3 time 0.62 1.78emp. se
. 18.14exp. 1.1424 6 4 time 0.62 1.98emp. se
. 21.11exp. 1.5630 6 5 time 0.62 2.18emp. se
. 23.00exp. 2.0035 7 5 time 0.62 2.32emp. se
. 46.27exp. 2.0042 7 6 time 0.62 2.55emp. se
. 48.92exp. 2.4649 7 7 time 0.62 2.80emp. se
. 50.87exp. 2.93Table 5: HARDEST-SQ family data
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