
Little Languages and their Programming Environments

John Clements1 Paul Graunke1 Shriram Krishnamurthi2

Matthias Felleisen1

1Department of Computer Science
Rice University

Houston, TX 77005-1892

2Computer Science Department
Brown University

Providence, RI 02912

contact: <sk@cs.brown.edu>

March 15, 2001

Summary

Programmers constantly design, implement, and program in little languages. Two different ap-
proaches to the implementation of little languages have evolved. One emphasizes the design of
little languages from scratch, using conventional technology to implement interpreters and compil-
ers. The other advances the idea of extending a general-purpose host language; that is, the little
language shares the host language’s features (variables, data, loops, functions) where possible; its
interpreters and compilers; and even its type soundness theorem. The second approach is often
called a languageembedding.

This paper directs the attention of little language designers to a badly neglected area: the pro-
gramming environments of little languages. We argue that an embedded little language should
inherit not only the host language’s syntactic and semantic structure, but also its programming en-
vironment.

We illustrate the idea with our DrScheme programming environment and S-XML, a little trans-
formation language for XML trees. DrScheme provides a host of tools for Scheme: a syntax analysis
tool, a static debugger, an algebraic stepper, a portable plugin system, and an interactive evaluator.
S-XML supports the definition of XML languages using a simple form of schemas, the convenient
creation of XML data, and the definition of XML transformations.

The S-XML embedding consists of two parts: a library of functions and a set of syntactic
extensions. The elaboration of a syntactic extension into core Scheme preserves the information
necessary to report the results of an analysis or of a program evaluation at the source level. As a
result, all of DrScheme’s tools are naturally extended to the embedded language. The process of
embedding the S-XML language into Scheme directly creates a full-fledged S-XML environment.

We believe that this method of language implementation may be generalized to other languages
and other environments, and represents a substantial improvement upon current practice.



1 Reusing Language Technology

Programmers constantly design little programming languages. Many of these languages die a quick
death or disappear under many layers of software; network protocols, GUI layout declarations, and
scripting tools are examples. Others evolve and survive to fill a niche; AWK, Make, Perl, and Tcl
come to mind.

Once a programmer understands that some problem is best solved by designing a new little
language, he must make an implementation choice. One possibility is to build the little language
from scratch. This option involves the tasks of specifying a (typically formal) syntax, a (semi-
formal) system of context-sensitive constraints, and an (informal) semantics; and of implementing
the required software: a lexer, a parser, a type checker, a code generator and/or an evaluator.

The other option is to extend an existing general-purpose language with just those constructs
that the task requires. In this case, the little language shares the host language’s syntax (variables,
data, loops, functions) where possible; its interpreters and compilers; and even its type soundness
theorem. This kind of extension is often called alanguage embedding.

The following table summarizes the salient differences between strategy of implementing a
language “from scratch” in a languageA and the strategy of embedding a little language into a
languageB.

designing a little language “from scratch” embedding a little language
variables, loops, etc. are designed explicitlyvariables, loops, etc. are those ofB
safety/type-soundness may not exist safety/type-soundness is that ofB
lexer is implemented inA the lexer is an extension ofB’s
parser is implemented inA the parser is an extension ofB’s
validity checker is implemented inA the validity checker isB’s
interpreter is implemented inA the interpreter isB’s

Succinctly put, the “implement from scratch” strategyusestechnologies; an embedding shares, and
thus trulyreuses, technology for the construction of a little language.

This paper illustrates that a language embedding can reuse more of the host’s technology than
just the evaluator. Specifically, we argue that if a programming environment for a host language is
properly constructed and if we use a well-designed embedding technology, the mere act of construct-
ing the embedding also creates a full-fledged programming environment for the little languages.

In support of our argument we construct an embedded little language, called S-XML, and derive
its environment from DrScheme, our Scheme programming environment [7]. S-XML permits pro-
grammers to create and manipulate XML-like data. More precisely, they can use a set of constructs
to specify XML trees in a natural manner, and they can define tree transformations on the data with
an easy-to-use pattern-matching construct. DrScheme provides a host of tools for Scheme: a syntax
analysis tool that includes a variable binding display and a variable renaming mechanism; a static
debugger; an algebraic stepper; a portable library system; and an evaluator that correlates run-time
exceptions with the program source. the S-XML programming environment inherits all of these.

The S-XML embedding consists of several language extensions. Some can be defined as func-
tions, some cannot. The implementation of the latter exploits DrScheme’s syntax definition mech-
anism, which, in turn, is based on Scheme’s macro technology. DrScheme’s syntax extensions are
completely transparent to DrScheme’s tools. At the same time, the elaboration of a syntactic exten-
sion into core Scheme preserves all necessary information to report the results of an analysis or of

1



<article>
<header>

<title>Not an Article</title>
<author> John Clements </author>

</header>
<text>

This is not a newspaper article.
But if it was, this is where the
article’s text would be.

</text>
</article>

Header

Article

Text

Title Author

chars chars

chars

Figure 1: Correspondence between concrete and abstract syntaxes

a program evaluation at the source level. By adding two small extensions that undo the elaboration
at certain strategic places, we thus ensure that DrScheme’s syntax checker checks the syntax and
context-sensitive properties of S-XML transformations; the static debugger turns into an XML va-
lidity checker; the stepper shows how the transformations rewrite XML trees at the level of XML
data constructors; and the interpreter prints XML results and reports errors in terms of S-XML trans-
formations. In short, the process of embedding the S-XML language into Scheme directly creates a
full-fledged S-XML environment.

The following section introduces XML and S-XML; the third section discusses the S-XML
embedding in Scheme. The fourth and fifth section present DrScheme and the little language envi-
ronment created with the embedding. The underlying technology is explained in the sixth section.
The seventh section relates our work to the relevant areas. The last section summarizes our ideas
and suggest topics for future extensions.

2 A Running Example: S-XML

To Illustrate our ideas, we develop a little language — and anaccompanying programming environ-
ment — for operating on XML documents.

2.1 XML

XML (for “eXtensible Markup Language”) is a proposed standard for a family of languages. It was
designed to provide a middle ground between the universally accepted but inconsistent and seman-
tically rigid HTML language and the extensible but overly complex SGML family of languages. To
a first approximation, an XML element may be either character data or a tag pair annotated with
an optional attribute association list and enclosing a list of zero or more XML elements [3]. In this
regard, HTML and XML are similar.

On a deeper level, XML consists of two related parts: a concrete syntax and an abstract syntax.
Figure 1 shows an example of the concrete syntax and a corresponding abstract syntax tree.

Specific languages within the XML domain are specified using “schemas”. A schema defines
the set of valid tags, their possible attributes, and constraints upon the XML elements appearing
between a pair of tags. A schema for the newspaper article language from figure 1 appears in figure

2



<schema>
<element name="header">

<sequence> <element-ref name="title"/>
<element-ref name="author"/>

</sequence>
</element>
<element name="body">

<mixed> <pcdata/> <mixed/>
</element>
<element name="article">

<sequence> <element-ref name="header"/>
<element-ref name="body"/>

</sequence>
</element>

</schema>

Figure 2: A simple schema for newspaper articles

2.1 This schema specifies, among other things, that theheaderfield must contain atitle and an
@author@. The ability to specify XML languages explicitly using schemas is what most clearly
separates XML and HTML.

XML documents are data; in order to use this data, programmers must write programs that
accept and manipulate it. Walsh [27], a member of the XML design team, states:

. . . [I]t ought to take about two weeks for a competent computer science graduate
student to build a program that can process XML documents.

The implication is that processing XML data is a tedious and time-consuming process, involving
the design and implementation of a project-specific package of I/O routines.

Below the surface syntax, XML expressions are purely trees. Each node is either character data
or a tagged node containing a set of attributes and a set of subtrees. A program that processes XML
data will be a tree-processing program. Given the complexity of the defined syntax, it makes sense
to abstract away from that concrete syntax into a purely tree-based paradigm.

Once the work of parsing concrete syntax is moved out of the programmer’s domain, processing
XML trees becomes a more manageable task. Many if not most XML programs will consist of a
small set of tree transformations, taking the data from one XML language into another. For instance,
a newspaper’s web site might be designed to transform an article stored in an XML-structured
database (as shown in figure 1) into a web page shown to a reader. An HTML document produced
by such a transformation is shown in figure 3.

2.2 S-XML

The simple and specialized nature of XML transformations makes them an ideal candidate for an
embedded language solution. The language should include special forms for creating and validat-

1The W3C has not yet settled on a schema standard. The schema shown here is written in a simple illustrative schema
language designed to be read easily. Also, the trivial schemas forauthorandtitle are omitted.

3



<html>
<head><title>Not an Article</title></head>
<body>

<center><h1>Not an Article</h1>by John Clements</center>
<spacer type="vertical" size="20">
<p>This is not a newspaper article. But if it was, this
is where the article’s text would be.</p>

</body>
</html>

Figure 3: The result of a simple XML transformation

ing XML elements, and a mechanism for expressing tree transformations easily. On the other hand,
a language for XML processing should not preclude the production of more complex programs.
Rather, it should allow programmers to work with the full power of the general-purpose host lan-
guage, if they so choose.

We call our language S-XML. It uses S-expressions to match the tree-based structure of XML
elements. It provides thexml andlmx forms for creating XML elements and embedding computa-
tion; thexml-match form to state pattern-based transformations on these elements; and a language
of schemas to express language restrictions. We explain these constructs below.

2.2.1 xml

The little language must provide language forms for constructing XML elements conveniently, be-
cause any program that transforms XML data needs to construct XML elements. In other words,
we must choose a concrete syntax for these elements in the embedded language.

To take a simple example, a HTML footer might contain a horizontal line and a page number.
A naı̈ve approach would be to directly embed XML’s concrete syntax into Scheme strings:

" <center>page number <em>3</em></center>"

The obvious shortcoming of the string representation is its lack of structure; every procedure that
operates on this data must parse the string all over again. This is wasteful and time-consuming. A
better way is to specify this data in a structured form. Our language should provide a straightforward
way to create such “parsed” structures, independent of the representation of these data. Ideally, the
program text that creates an XML element should closely resemble the XML text itself, less the end
tag. In the S-XML language, this datum is therefore represented with the following program text:

(xml (center" page number " (em3)))

Within the form (xml . . . ), each nested subexpression is taken to describe an XML element. Just
as double-quotes and backslashes are used in many languages to denote literal data,xml is used to
denote XML literals.

XML elements may also contain attributes. Thexml form permits the addition of attributes to
elements. These attributes appear as an optional (parenthesized) list immediately following the tag
name. Thus, an HTMLbodytag with thebgcolorattribute might be written as:

4



(define(format-article xml-article)
(xml-match xml-article(title-string author-string body-text T) ; keywords

[(article (header(title title-string) (author author-string)) ; pattern
(text body-text. . . ))

(xml (html (head(title title-string)) ; result
(body(center(h1 title-string) " by " author-string)

(spacer((type" vertical" ) (size" 20" )))
body-text. . . )))]

[(page ) ; pattern
(error ’ format-page " badly formatted xml-article" )])) ; result

Figure 4: A simple transformer

(xml (body((bgcolor" BLUE" )) . . . ))

2.2.2 lmx

With the xml construct, programmers can conveniently specify large XML constants. But pro-
grammers may also wish to abstract such tree constructions over certain parameters. For example,
a programmer may wish to specify the footer of a page relative to a page number. To allow an
“escape” into the parent language, S-XML includes thelmx construct:

(lmx expression)

An lmx expression may only occur as a sub-expression of somexml expression. It evaluates
its subexpression; the result is spliced into the XML tree in place of thelmx-expression. Using a
combination oflmx andxml forms, a programmer can now easily define a function that produces a
page footer:

(define (make-footer page-number)
(xml (center" page number: " (em(lmx page-number)))))

2.2.3 xml-match

The programmer now has the tools needed to build elements of the desired XML language. Next,
he needs a mechanism to manipulate these elements in a simple way. The most convenient method
is to use pattern-matching; our S-XML language provides thexml-match form, to perform pattern-
matching and tree-processing on XML elements.

To evaluate anxml-match expression, each pattern is matched against the input. Once a match
is found, the result expression is evaluated, with the bindings introduced by the pattern-match.

Figure 4 shows the definition of the HTML-producing transformer illustrated earlier. Note that
both input and output patterns are specified in the same way thatxml elements are.

5



(schema
(element((name" header" ))

(sequence(element-ref((name" title" )))
(element-ref((name" author" )))))

(element((name" body" ))
(mixed(pcdata)))

(element((name" article" ))
(sequence(element-ref((name" header" )))

(element-ref((name" body" ))))))

Figure 5: A S-XML Schema for an Article Language

2.2.4 schema

One of the most important features of XML is the ability to define and restrict XML languages, us-
ing formal specifications. Several standards have been proposed for this; S-XML uses our version
of schemas. A schema describes the set of valid XML elements for a specific XML language. A
schema is also itself an XML element, and may therefore be described using the same S-XML con-
ventions. Figure 5 shows the S-XML representation of the schema shown in figure 2. A comparison
with the XML specification of this schema reveals the similarity between the two.

3 Building a Little Language

On the one hand, much of the functionality of a little language may be established by building a
library of functions and constants. In fact, for some tasks a domain-specific library serves as a
complete solution to the embedding problem.

On the other hand, there are language forms that cannot be implemented as ordinary functions.
Among these are shortcuts for creating structured data (e.g.xml and lmx), language forms that
introduce variable bindings (e.g.xml-match), and language forms that affect the flow of control in
non-standard ways (xml-match again).

These new language forms may be added usingmacros. Macros are tree-rewriting rules that are
applied to syntax trees during compilation. They elaborate the language forms of the little language
into the forms of the host language. In our case, the host language is Scheme.

3.1 Scheme Macros

The notion of syntactic abstraction is not a new one. Nearly every general-purpose programming
language has some facility for declaring and invoking macros. However, the vast majority of these
are deeply flawed. Macro systems like C’s gained a well-deserved reputation as dangerous and
inelegant. Their ill-considered use often leads to problems for novices and experts alike. Embedding
a little language in C using these macros would be difficult at best.

Fortunately, languages like Scheme offer more controlled and useful macro mechanisms. These
systems operate on expressions, rather than tokens, and they have a well-defined semantics as tree

6



transformations. As a simple example, consider thelet form of Scheme. Thelet form binds values
to variable names. In many languages, this type of operation is built into the language. In Scheme,
it need not be. Instead, Scheme may implementlet with a macro that elaborates each use of the
form into the application of a procedure. Here is the rewriting rule forlet:

(let ((<var> <exp>) . . . )<body> . . . )) 7! ((lambda (<var> . . . )<body> . . . )<exp> . . . )

The ellipses are not a notational shorthand but are an integral part of the macro language described
in the Revised5 Report on Scheme [14]. On the left-hand-side of the macro, they indicate that the
prior pattern will occur zero or more times, as in a BNF grammar. This input pattern is matched
against the input, and where ellipses occur, bindings of lists are created. The right-hand-side pattern
uses ellipses to generate sequences of output patterns drawn from these bindings. The components
of the matched patterns may be split from each other, asillustrated by thelet macro shown here.

3.2 Building S-XML

S-XML is implemented as an embedding within Scheme. The embedding (comprising the forms
enumerated in section 2.2) is constructed as a combination of a small functional library and a set of
macros.

Thexml form is implemented as a single macro. This macro transforms uses of thexml form
into expressions that construct Scheme data. The form also permits the omission of empty attribute
fields; it is this kind of syntactic shorthand that gives the little language one of its true advantages
over the unmodified general-purpose language. The action of thexml macro is shown in this exam-
ple, where anxml form is translated into Scheme code that creates a structure:

(xml (center" Text: " (lmx (get-text)))) 7! (make-center(list) (list " Text: " (get-text)))

Each use of theschemaform elaborates into a structure declaration and a type declaration.2 An
example of this macro’s translation is shown here:

(schema
(element((name" elt" ))

(sequence
(element-ref((name" other" ))))))

7!

(begin
(define-struct elt(attrs elements))
(define-type elt(cons other null)))

Note that adopting a richer schema language is simply a matter of modifying a single macro; no
other code needs to change.

The xml-match form is implemented using a macro in conjunction with a library function.
The macro delays the evaluation of the patterns and their matching expressions. It also provides
bindings for any pattern variables that occur in the expressions. The function accepts a value and
these pattern-expression pairs, and evaluates the first expression whose pattern matches the input
value.

2DrScheme uses a type inference system called MrSpidey, described in more detail in section 4.

7



A transformer that takes centered text to italicized text is elaborated like this:

(xml-match (xml (center3))
(text)
((xml (center text))
(xml (italic text))))

7!

(xml-match-fn(xml (center3))
(list ’ text)
(list

(list ’(center text)
(lambda (text)

(xml (italic text))))))

Thexml-match-fnprocedure is a part of S-XML’s runtime library.
With the addition of these three forms, Scheme becomes S-XML, a little language ideal for con-

structing and manipulating XML-like data, along with the full gamut of Scheme values. Variables
and functions are inherited from Scheme. As a result, first-semester undergraduates can program
using XML in a matter of days, rather than the weeks of work that are supposedly required.

4 DrScheme

Building an S-XML evaluator using macros and functions is not enough. This is the lesson that we
as programmers have learned in the course of implementing many languages, both little and large.
In fact, for a “from scratch” little language implementation, the execution framework is a small
fraction of the total work required to make the language usable. To use a language productively,
programmers need a host of related tools: editors, checkers (syntax and semantic), debuggers, li-
braries, and the like. We demonstrate these ideas with the DrScheme programming environment [7].

DrScheme is a programming environment for the Scheme language. It is a graphical, cross-
platform environment for developing programs. It includes a syntax-sensitive editor, a read-eval-
print loop, a syntax checker, a stepper, and a static type checker. The challenge is to reuse these
tools in the design and execution of an embedded language.

Scheme programs are composed entirely of S-expressions, and DrScheme’s editor takes ad-
vantage of this in many ways. It provides a set of S-expression-directed movement and editing
functions. It supports dynamic parenthesis-matching, as well as static highlighting of S-expressions
adjacent to the cursor. DrScheme automatically indents lines, and unmatched parentheses are high-
lighted in red.

Another of the tools DrScheme provides is a syntax-checker. This tool performs a number of
tasks:

1. it identifies and highlights syntax errors;

2. it highlights unbound identifiers;

3. it draws arrows from bound identifiers to their binding occurrences; and

4. it permits alpha-renaming, whereby all occurrences of an identifier in a given declaration
scope may be renamed consistently.

The syntax checker is useful for beginners, as it helps them to understand the syntax of the
source language. The checker is also useful for experienced programmers, who generally make
more syntactic mistakes than they would like to admit.

8



DrScheme also features a symbolic algebraic stepper, which can display a program’s execution
as an algebraic calculation, according to a standard reduction semantics for Scheme. The step-
per shows each step of the execution as a rewriting step; the “before” and “after” expressions are
displayed, and the difference is highlighted. The stepper is useful both in debugging and in under-
standing the details of the language semantics.

DrScheme provides static type-checking through MrSpidey [8]. MrSpidey performs type infer-
ence by using set-based analysis [10, 2] to associate a set of values with each program location.
When MrSpidey cannot guarantee that the application of a primitive will not cause an error, it flags
the location of the primitive’s application. Furthermore, MrSpidey provides useful information to
the user in the form of graphical inference chains. If an inappropriate argument might reach a prim-
itive, MrSpidey visually depicts the execution path whereby this argument arrives at the erroneous
application.

MrSpidey also has an explicit assertion mechanism, of the form (: expression type). Using this
form, the user may force MrSpidey to check whether an expression is guaranteed to evaluate to a
given type. So, for instance, the assertion (: (+ 3 5) str) fails, because the result of evaluating (+ 3
5) is a number rather than a string.

DrScheme supports plugins, called Teachpacks for historical reasons. Any DrScheme pro-
gram may be evaluated with one or more plugins enabled. These plugins are encapsulated using
DrScheme’s unit system [9], which guarantees that only the intended plugin’s functions are ex-
posed, and also that the plugin’s meaning will not be affected by the user’s code.

5 Building a Little Language Environment

In order to deliver a useful programming environment to the programmer, DrScheme’s tools must
work seamlessly with the new forms of S-XML. In the following sections, we examine several of
DrScheme’s tools and how their behavior must change to accommodate the embedded language.

5.1 Editing

Since the little language consists entirely of tree-structured expressions, the editor’s features are
inherited immediately; editing programs in the little language is as convenient as editing Scheme.
The only modification required to the programming environment is the addition of thexml-match
keyword to the list of specially indented keywords in DrScheme’s preference panel.

5.2 Check Syntax

The Check Syntax tool is designed to work transparently through macros. No modification whatso-
ever is required to extend the syntax checker for an embedded language.

The syntax checker is particularly useful for embedded languages, where the language’s syntax
is often described informally. For instance, even an experienced programmer might be surprised
when using an embedded language to discover that certain identifiers are unbound, or are bound to
locations other than expected.

For an example of this, see figure 6, an example using the S-XML language. In particular,
this example shows the definition of a simple web page, using thexml and lmx forms. The bind-

9



Figure 6: Check Syntax works through macros

ing arrows show howmake-home-linkandhome-link-textare bound, and the red highlighting3 on
backgronud-colorindicate that this identifier is unbound (in this case, because of a simple typo).
Finally, the ‘rename . . . to’ box shows how users can rename all occurrences of a specific binding in
an S-XML transformation.

5.3 The Stepper

When a programmer embeds a little language within Scheme, the stepper should be transparent with
respect to the macros and libraries introduced by the embedded language. In other words, it must
“step” in a manner that corresponds to the reductions of the embedded language, rather than the
host language.

S-XML embeds several forms within Scheme; each has a natural reduction sequence. Thexml
form must simply be transparent;xml values are displayed as such, and computation within these
terms (using thelmx form) are properly embedded. Theschemaform is trivial, as it contains no
runtime computation. Thexml-match form shows steps corresponding to the location of the proper
pattern, and those within the corresponding pattern.

Figure 7, shows a step in the evaluation of a simple HTML construction. The stepper highlights
the reducible subexpression in green, and the resulting subexpression in purple. The call tomake-
page-footeris replaced by the body of the procedure, and the value of the argument is substituted in
the bound location in the body.

3On a grayscale printer, this will appear gray.

10



Figure 7: The stepper works through macros

5.4 Validity Checking

MrSpidey provides an assertion mechanism to enable programmers to check statically that certain
variables may only be bound to values of a given type. The natural extension of this assertion ability
in the S-XML language is to use the assertion operator for validity checking. In S-XML, a schema
expands into a MrSpidey type definition.

This type definition may then be used to implement S-XML validity checking, as shown in
figure 8. Rather than abody, this article has simply a string. This is illegal, by the schema that
appears above. Therefore, MrSpidey highlights the offending assertion in red. The path from the
string to its use in thexml form is indicated by a series of arrows.

5.5 Plugins

DrScheme’s plugin system also proves useful in the S-XML language embedding. For instance,
the “simple-cgi” plugin permits users to build and test cgi scripts. Using this plugin, programmers
can write programs which interact directly with a web browser, either by using a simple “question
& answer” interface, or by sending a complete HTML form. The S-XML language provides the
needed forms to easily construct these HTML forms.

In figure 9, the simple-cgi Teachpack is used to interact with the user directly. Note that in this

11



Figure 8: MrSpidey catches validity errors

case, we may also use the stepper to trace the execution of the script.

6 How It All Works

The extension of DrScheme’s programming tools to S-XML is largely automatic. The key tech-
nologies required are source correlation andrectifiers.

In DrScheme, source elaboration of macros is performed by McMicMac [19]. McMicMac
transforms a source file (a character stream) into an abstract syntax tree. Each term in the tree has a
reference to some position of the source file. These references are preserved by McMicMac’s sub-
sequent macro elaboration, so that each term in the fully elaborated program has a direct reference
to a source location. This elaborated program goes to the evaluator for execution.

As a consequence, the static tools (including the syntax-checker and MrSpidey) operate trans-
parently with respect to macros. These tools draw conclusions about the elaborated program, and
display the results using source-correlation indirection. Hence, they require no modification what-
soever to accommodate the embedded language.

The interpreter and the stepper draw heavily on source correlation as well. However, since these
tools are not static, they must also display the runtime values and expressions of the embedded
language. DrScheme employs rectifiers to perform these back-translations. There are two types of

12



Figure 9: Using Plugins to Test CGI Scripts

rectifiers: value rectifiers, and expression rectifiers.
A little language that enriches the value set of the host language must include a way to display its

values to the user. Value rectifiers perform this translation. That is, if the little language introduces
new language forms for the creation of data, the programming tools should display the resulting
values using the same forms that the programmer employed to create the data. In S-XML, the
following interaction4 illustrates this:

> (xml (center" page number " (em(lmx (+ 1 2)))))
(xml (center" page number " (em3)))

Rather than displaying the value in an internal format, the printer uses the concrete syntax asso-
ciated with the little language. Since value rectifiers deal exclusively with runtime values, they
have no need of source correlation. A value rectifier provides a mapping from values to displayed
information.

The second category of rectifier comprises the expression rectifiers. These arise in the operation
of the stepper, which must reconstruct each step within the host language’s evaluator as a step within
the embedded language. In some cases, the elaborated forms may have been partially evaluated.
For instance, the evaluation of thexml-match form may proceed through many reductions. Each

4Value rectifiers are currently implemented for the stepper, but not for the read-eval-print loop.

13



of these must be displayed as anxml-match term. Expression rectifiers make heavy use of source
correlation information, as they must reconstruct source terms based upon the history of macro
elaboration imposed upon the source.

For the S-XML language, we have constructed these rectifiers explicitly. Future work includes
generating them automatically from the macros and libraries that make up the language embedding.

7 Related Work

Our work relates to four distinct areas of research. They are, in descending order of relevance: the
construction of programming environments; the embedding of little languages in host languages;
the problem of debugging optimized code; and transformation languages for XML. EMACS is
by far the most prominent effort to produce an extensible and customizable programming envi-
ronment [23]. With a few hundred lines of EMACS code, a programmer can create an EMACS
mode that assists with some syntactic problems (indentation, syntax coloring) or with a read-eval-
print loop (source correlation of run-time environment). But, the EMACS extensions have to be
produced manually; they are not connected or derived from the little language embedding.

Most other work on the construction of programming environments focuses on the creation of
tools from language specifications. For example, Teitelbaum, Reps, and others have created the
Cornell Synthesizer Generator [21], which permits programmers to use attribute grammar technol-
ogy to define syntax-directed editors. The ASF+SDF research effort [16] has similar, but more
comprehensive goals. A programmer who specifies an algebraic-denotational semantics for a little
language can create several interesting tools in this framework. In contrast, our work concentrates
on the pragmatic problem of creating or prototyping language tools rapidly. In particular, we accom-
modate an existing implementation without any modifications. Given that most implementations are
not derived formally, our work has greater potential to be applied to other environments.

Second, our most interesting technical problem concerns the relationship between the execution
of elaborated code and the source text. At first glance, this suggests a commonality between our
work and the work on debugging optimized object code. More specifically, code optimizations are
problematic for debuggers and our algebraic stepper. Both need to cope with code transformations
when they interrupt the execution of a program. Hennessy [11], Adl-Tabatabai and Gross [1],
and Cooper, Kennedy and Torczon [4] describe solutions to the problem of debugging optimized
code. We believe, however, that the two communities apply different techniques for the backwards
translations due to the radically different levels of languages. We are currently studying whether
the techniques carry over from the debugging to the stepping problem and whether the adaptation
of these techniques has any advantages.

Third, although our paper is not about techniques for language embeddings, it heavily draws
on ideas in that area. The history of language embeddings starts with LISP [24] and McIlroy, who
introduced the notion of macro transformations in 1962 [20]. Over the past decade, the Scheme pro-
gramming language introduced three important innovations in macro systems. First, Kohlbecker, et
al. [17] showed how to render macro expandershygienic, that is, make them compatible with the lex-
ical structure of a host language. Second, Kohlbecker and Wand introduced the macros-by-example
specification method [18]. Last, but not least, Dybvig, Hieb and Bruggeman [5] implemented the
first source-correlating macro system; our work is based on the more powerful McMicMac program
elaborator[19].

14



More recently, other language communities have rediscovered the idea of embedding languages
for reuse. Fairbairn [6], Hudak [12], Wallace and Runciman [26] use Haskell’s infix operators and
higher-order functions to embed little languages,5 including a little language for XML; Kamin and
Harrison [13] are working along similar lines, using SML. More recently, Oleg Kiselyov [15] has
also worked to embed XML within Scheme. All of these efforts focus on embedding techniques;
none has paid attention to the programming environments of little languages.

Fourth, our paper, like that of Wallace and Runciman [26] and Thiemann[25] address the prob-
lem of transforming XML elements. Our solution solves a problem from which both of the other
approaches suffer. Specifically, using S-XML programmers can specify XML trees in a generic
manner yet they still get the benefits of XML validity checking.

8 Conclusion

We must learn to re-use all levels of language technology in the construction of little languages.
The potential benefits are enormous. Shivers [22] reports that his version of AWK, which is more
powerful than the original, is one tenth of the original’s size. A small implementation is also easy
to manage and to change. Hence, an embedded language is easier to extend than a stand-alone
language. An improvement to the host language generally improves the embedded language(s)
immediately. Finally, if one language plays host to several embedded languages, programs in the
latter can easily exchange structured forms of data, e.g., lists, trees, arrays. In contrast, stand-
alone implementations must employ the operating system’s tool box, which often means that “little
language programmers” must write parsers and unparsers.

With this paper we wish to contribute to the argument for language embeddings, and we hope
to direct the attention of researchers to the programming environments of little languages. More
centrally, we illustrate how an embedding also creates a powerful programming environment for
little languages. The construction hinges on three properties of the host language and environment.
First, the host language must have a mechanism for defining new language constructs. Otherwise
the user of a little language must immediately know everything about the host language. Second, the
mechanism must translate instances of the new constructs in such a manner that the tools can report
results in terms of the surface syntax. Finally, the tools must not contain hard-wired assumptions
about the source language.

For our example, we had to add two small functions to two environment tools: one for translating
Scheme values back into S-XML syntax, and another one for reconstructing an S-XML construct
that has a multi-step algebraic reduction semantics. Based on our experience, we conjecture that
this effort can be automated and we plan to tackle the problem in the future.

References

[1] Adl-Tabatabai, A.-R. and T. Gross. Source-level debugging of scalar optimized code. In
Programming Language Design and Implementation, May 1996.

5These efforts use higher-order functions to express little language programs because the chosen host languages do
not provide facilities for defining new language constructs that declare variables. A detailed discussion of this distinction
is irrelevant to the topic of our paper.

15



[2] Aiken, A. Introduction to set constraint-based program analysis.Science of Computer Pro-
gramming, 1999.

[3] Bray, T., J. Paoli and C. Sperberg-McQueen. Extensible markup language XML. Technical
report, World Wide Web Consortium, Feburary 1998. Version 1.0.

[4] Cooper, K. D., K. Kennedy, L. Torczon, A. Weingarten and M. Wolcott. Editing and compiling
whole programs. InSoftware Engineering Symposium on Practical Software Development
Environments, December 1986.

[5] Dybvig, R. K., R. Hieb and C. Bruggeman. Syntactic abstraction in Scheme.Lisp and Sym-
bolic Computation, 5(4):295–326, December 1993.

[6] Fairbairn, J. Making form follow function: An exercise in functional programming style.
Software—Practice and Experience, 17(6):379–386, June 1987.

[7] Findler, R. B., C. Flanagan, M. Flatt, S. Krishnamurthi and M. Felleisen. DrScheme: A ped-
agogic programming environment for Scheme. InInternational Symposium on Programming
Languages: Implementations, Logics, and Programs, number 1292 in Lecture Notes in Com-
puter Science, pages 369–388, 1997.

[8] Flanagan, C., M. Flatt, S. Krishnamurthi, S. Weirich and M. Felleisen. Catching bugs in the
web of program invariants. InACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 23–32, May 1996.

[9] Flatt, M. and M. Felleisen. Cool modules for HOT languages. InACM SIGPLAN Conference
on Programming Language Design and Implementation, 1998.

[10] Heintze, N. Set Based Program Analysis. PhD thesis, Carnegie Mellon University, October
1992.

[11] Hennessy, J. Symbolic debugging of optimized code.Transactions on Programming Lan-
guages and Systems, 4(3):323–344, 1982.

[12] Hudak, P. Modular domain specific languages and tools. InInternational Conference on
Software Reuse, 1998.

[13] Kamin, S. and D. Hyatt. A special-purpose language for picture-drawing. InUSENIX Confer-
ence on Domain-Specific Languages, 1997.

[14] Kelsey, R., W. Clinger and J. Rees. Revised5 report on the algorithmic language Scheme.ACM
SIGPLAN Notices, 33(9), October 1998.

[15] Kiselyov, O. Scheme and XML. Unpublished Manuscript. Available on the web at:
http://pobox.com/ oleg/ftp/Scheme/xml.html.

[16] Klint, P. A meta-environment for generating programming environments.ACM Transactions
on Software Engineering and Methodology, 2(2):176–201, 1993.

[17] Kohlbecker, E. E., D. P. Friedman, M. Felleisen and B. F. Duba. Hygienic macro expansion.
In ACM Symposium on Lisp and Functional Programming, pages 151–161, 1986.

16



[18] Kohlbecker, E. E. and M. Wand. Macros-by-example: Deriving syntactic transformations from
their specifications. InACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 77–84, 1987.

[19] Krishnamurthi, S., M. Felleisen and B. F. Duba. From macros to reusable generative program-
ming. In International Symposium on Generative and Component-Based Software Engineer-
ing, September 1999. To appear in Springer-Verlag Lecture Notes in Computer Science.

[20] McIlroy, M. D. Macro instruction extensions of compiler languages.Communications of the
ACM, 3(4):214–220, 1960.

[21] Reps, T. W. and T. Teitelbaum.The Synthesizer Generator. Springer-Verlag, 1989.

[22] Shivers, O. A universal scripting framework or, Lambda: the ultimate “little language”. In
Jaffar, J. and R. H. C. Yap, editors,Concurrency and Parallelism: Programming, Networking
and Security, pages 254–265. Springer-Verlag, 1996. LNCS 1179.

[23] Stallman, R. EMACS: the extensible, customizable, self-documenting display editor. InSym-
posium on Text Manipulation, pages 147–156, 1981.

[24] Steele, G. L., Jr. and R. P. Gabriel. The evolution of Lisp. In Bergin, T. J., Jr. and R. G. Gibson,
Jr., editors,History of Programming Languages—II, pages 233–308, 1996.

[25] Thiemann, P. Modeling HTML in Haskell. InPractical Applications of Declarative Lan-
guages, January 2000.

[26] Wallace, M. and C. Runciman. Haskell and XML: Generic document processing combina-
tors vs. type-based translation. InACM SIGPLAN International Conference on Functional
Programming, September 1999.

[27] Walsh, N. A technical introduction to XML.World Wide Web Journal, Winter 1997.

17


