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Abstract. Modal logic has a good claim to being the logic of choice
for describing the reactive behaviour of systems modeled as coalgebras.
Logics with modal operators obtained from so-called predicate liftings
have been shown to be invariant under behavioral equivalence. Expres-
sivity results stating that, conversely, logically indistinguishable states
are behaviorally equivalent depend on the existence of separating sets of
predicate liftings for the signature functor at hand. Here, we provide a
classification result for predicate liftings which leads to an easy criterion
for the existence of such separating sets, and we give simple examples of
functors that fail to admit expressive normal or monotone modal logics,
respectively, or in fact an expressive (unary) modal logic at all. We then
move on to polyadic modal logic, where modal operators may take more
than one argument formula. We show that every accessible functor ad-
mits an expressive polyadic modal logic. Moreover, expressive polyadic
modal logics are, unlike unary modal logics, compositional.

Introduction

Coalgebra has in recent years emerged as an appropriate framework for the
treatment of reactive systems in a very general sense [24]; in particular, coalgebra
provides a unifying perspective on notions such as coinduction, corecursion, and
bisimulation. It has turned out that modal logic is a good candidate for being
the basic logic of coalgebra in the same sense as equational logic is the basic logic
of algebra. E.g., classes of coalgebras defined by modal axioms can be regarded
as the dual of varieties [12, 14]. Moreover, coalgebraic modal logic as considered
in [9, 13, 18, 20, 19, 22] is invariant under behavioral equivalence. Conversely,
in [18, 20, 19], sufficient conditions are given for coalgebraic modal logics to be
expressive in the sense that logically indistinguishable states are behaviorally
equivalent; this is a generalization of the classical result for Hennessy-Milner
logic [8]. These results depend on conditions imposed on the signature functor,
i.e. the data type in which collections of successor states are organized.

Indeed, coalgebraic logic as introduced by Moss [16], which may be regarded
as a somewhat extreme form of modal logic, is expressive for the (very large)
class of so-called set-based functors; however, from the point of view of practical
application in software specification, coalgebraic logic has the disadvantage of
being rather difficult to grasp, as the syntax and the semantics of its formu-
lae involve applications of the signature functor to the language itself and the



satisfaction relation, respectively. By comparison, modal logic is rather intuitive
and thus well suited for specification purposes. E.g., modal logic is used in the
specification of object-oriented programs in the specification language CCSL [23]
and in [13] and forms a central feature of the algebraic-coalgebraic specification
language CoCasl [17].

Coalgebraic modal logic as developed in [18, 20] obtains its modal operators
from so-called predicate liftings, which transform predicates on X into predi-
cates on TX, where T is the signature functor. Predicate liftings generalize the
natural relations considered in [19], which may be regarded as constructions that
convert coalgebras into Kripke frames. It is shown in [18, 20] that the expres-
sivity problem for coalgebraic modal logic reduces to the existence of enough
predicate liftings for the given signature functor; no general answer is given to
the question of how to actually find such predicate liftings.

Here, we observe that predicate liftings are equivalent to a notion of modal-
ity used in [11]; this affords an immediate overview of all possible predicate
liftings of a given functor. Moreover, one obtains easy criteria which identify so-
called monotone and continuous predicate liftings, respectively. These properties
of predicate liftings correspond to the validity of natural axioms in the arising
modal logic; in particular, continuity corresponds to normality. It turns out that
continuous predicate liftings essentially coincide with natural relations. These
classification results are on the one hand helpful in designing good sets of modal
operators for expressive modal logics. On the other hand, they can be used to
show that certain signature functors fail to admit expressive monotone or nor-
mal modal logics, or indeed an expressive modal logic in the sense considered so
far at all. Examples of the latter type include certain composite functors, e.g.
the double finite powerset functor, but also single-layer datatypes such as non-
repetitive lists. Typical examples of coalgebras that require non-normal modal
logics are those involving some sort of weighting on the successor states, e.g.
multigraphs or probabilistic automata.

We then introduce an extension of coalgebraic modal logic in which modal
operators may be polyadic, i.e. apply to more than one formula. Both unary
and polyadic modal operators may be subsumed under the abstract notion of
syntax (or language) constructor [4, 5]. Polyadic modal logic, while hardly more
complicated than unary modal logic, turns out to be expressive for a large class of
functors, the so-called accessible functors. Furthermore, we show that polyadic
modal logic is compositional in the sense that expressive modal logics can be
combined along functor composition; differently put, polyadic modal logic is,
unlike unary modal logic, closed under the composition of syntax constructors.

The material is organized as follows. Section 1 gives an overview of coalgebra
and modal logic. Expressivity results for modal logic which assume the existence
of enough predicate liftings are discussed in Section 2; in particular, we improve
an expressivity result of [20] and give a simplified proof. We then proceed to
discuss the classification of predicate liftings in Section 3. Finally, polyadic modal
logic is treated in Section 4.



1 Preliminaries: Coalgebra and Modal Logic

We now briefly recall the paradigm of modelling reactive systems by means of
coalgebras, limiting ourselves to the set-valued case, and the use of modal logic
to describe reactive behavior.

Definition 1. Let T : Set → Set be a functor (all functors will implicitly be
set functors from now on). A T -coalgebra A = (X, ξ) consists of a set X of
states and an evolution map ξ : X → TX. A morphism (X1, ξ1) → (X2, ξ2) of
T -coalgebras is a map f : X1 → X2 such that ξ2 ◦ f = Tf ◦ ξ1. A T -coalgebra C
is called final if there exists, for each T -coalgebra A, a unique morphism A→ C.
Two states x and y in T -coalgebras A and B are called behaviorally equivalent
if there exists a coalgebra C and homomorphisms f : A → C, g : B → C such
that f(x) = g(y).

The general intuition is that the behavior map describes the successor states
of a state, organized in a data structure given by T . The notion of behavioral
equivalence serves to encapsulate the state space: two states are behaviorally
equivalent if the observable aspects of the state evolution from the given states
are identical. Thus, the reactive behavior of a state is embodied in its behavioral
equivalence class. Final coalgebras are behaviorally abstract in the sense that
behaviorally equivalent states are equal; the carrier set of a final coalgebra may
be thought of as the set of all possible behaviors. By Lambek’s Lemma, the
evolution map of a final coalgebra is bijective.

Remark 2. Behavioral equivalence as just defined coincides in most cases with
bisimilarity, and appears to be the preferable notion in cases where this fails [12].
Coalgebraic modal logic as treated here captures precisely behavioral equiva-
lence.

Example 3. 1. Let Pω be the (covariant) finite powerset functor. Then Pω-
coalgebras are finitely branching graphs, thought of as (unlabeled) transition
systems or indeed Kripke frames.

2. Let T be given by TX = I → Pω(X) (equivalently TX = Pω(I×X)). Then
T -coalgebras are labelled transition systems with label set I.

3. Let T be given by TX = I → ((O × X) + E). Then T -coalgebras may be
thought of as modelling objects with state set X, method set I, output set
O, and exception set E [13]. Elements of the final T -coalgebra are finite or
infinite I-branching trees with O-labelled nodes and E-labelled leaves.

4. Let T = Pω ◦ Pω. Then T -coalgebras may be thought of as transition sys-
tems with two levels of non-determinism; i.e. in each step, a set of possible
successors is chosen non-deterministically.

5. The finite multiset (or bag) functor BN is given as follows. The set BN(X)
consists of the maps B : X → N with finite support, where B(x) = n is read
‘B contains the element x with multiplicity n’. We write elements of BNX
additively in the form

∑
nixi, thus denoting the multiset that contains x

with multiplicity
∑

xj=x nj . For f : X → Y , BN(f)(
∑
nixi) =

∑
nif(xi).



Coalgebras for BN are directed graphs with N-weighted edges, often referred
to as multigraphs [6].

6. A similar functor, denoted BZ, is given by a slight modification of the multiset
functor where we allow elements to have also negative multiplicities, i.e. BZX
consists of finite maps X → Z, called generalized multisets (this set is also
familiar as the free abelian group over X).

7. Another variation of the multiset functor is the finite distribution functor
Dω, where DωX is the set of probability distributions on X with finite sup-
port. Coalgebras for Dω are probabilistic transition systems (as yet without
inputs).

8. Examples 5–7 above may be extended by taking into account a notion of
input, with input alphabet I, as in Example 2: for T ∈ {BN,BZ, Dω}, one
has functors S and R given by SX = I → TX and RX = T (I × X).
These functors are isomorphic for T ∈ {BN,BZ} in case I is finite, but not
for T = Dω. In the latter case, S-coalgebras are reactive probabilistic au-
tomata, and R-coalgebras are generative probabilistic automata [2] (more
precisely, one would usually allow for terminal states by additionally in-
troducing the constant functor 1 as a summand), the difference being that
generative probabilistic automata assign probabilities also to inputs.

All of the above examples fall into the following class of functors:

Definition 4. A functor T is called κ-accessible, where κ is a regular cardinal,
if T preserves κ-directed colimits.

Accessible functors have final coalgebras [1, 21].

Example 5. Parametrized algebraic datatypes defined in terms of constructors
and equations (i.e. quotients of term algebra functors) are κ-accessible functors if
all constructors have arity less than κ. E.g., the multiset functors BN and BZ are
ω-accessible. The finite distribution functor Dω is ω-accessible. For each regular
cardinal κ, the functor Pκ given by Pκ(X) = {A ⊂ X | |A| < κ} is κ-accessible.
The class of κ-accessible functors is closed under composition; e.g. Pω ◦ Pω is
ω-accessible.

Remark 6. In all results presented below, κ-accessibility can in fact be replaced
by preservation of κ-directed unions. We have refrained from making this explicit
in all statements, in favor of using standard terminology.

In order to specify requirements on coalgebraic systems in a way that guarantees
invariance under behavioral equivalence, coalgebraic logic for so-called Kripke
polynomial functors has been introduced (with variations in the syntax) e.g.
in [9, 13, 22]. These results have been generalized in [18, 19, 20], where coalgebraic
modal logics are defined on the basis of given natural relations and predicate
liftings for the signature, respectively, as follows.

Definition 7. A predicate lifting for a functor T is a natural transformation

λ : 2 → 2T ,



where 2 denotes the contravariant powerset functor Setop → Set, with 2f (A) =
f−1[A]. Explicitly, a predicate lifting assigns to each A ⊂ X a set λX(A) ⊂ TX
such that

Tf−1[λY (A)] = λX(f−1[A])

for all maps f : X → Y . A predicate lifting λ is called monotone if A ⊂ B ⊂ X
implies λX(A) ⊂ λX(B), and continuous if λX preserves intersections for each
set X, i.e. λX(

⋂
i∈I Ai) =

⋂
i∈I λX(Ai).

A predicate lifting λ is equivalently described by its transposite λ[ : T →
2(2 ), given by λ[

X(t) = {A ⊂ X | t ∈ λX(A)}. A set Λ of predicate liftings for
T is called separating if for each set X, the source of maps

(λ[
X : T → 2(2 ))λ∈Λ

is jointly injective, in other words: t ∈ TX is uniquely determined by the set
{(λ,A) ∈ Λ× 2X | t ∈ λX(A)}; this property is called separation at X.

We shall need the following fact proved in [20]:

Proposition 8. A set Λ of predicate liftings for a κ-accessible functor is sepa-
rating iff separation holds at all sets X such that |X| < κ.

Definition 9. Let T be a functor. A language for T -coalgebras is a set L of
formulae, equipped with a family of satisfaction relations |=(X,ξ) (or just |=)
between states of T -coalgebras (X, ξ) and formulae φ ∈ L; we define [[φ]](X,ξ) (or
just [[φ]]) as the set {x ∈ X | x |=(X,ξ) φ}.

States x and y in T -coalgebras A and B, respectively, are called logically
indistinguishable under L if

x |= φ iff y |= φ

for all φ ∈ L. The language L is called adequate if behaviorally equivalent states
are logically indistinguishable, equivalently: the satisfaction of formulae is in-
variant under T -coalgebra morphisms.

Remark 10. One can define a formula φ ∈ L to be valid in a coalgebra (X, ξ) if
x |= φ for all x ∈ X. This makes L into a logic for coalgebras as defined in [14]. If
T has a final coalgebra, then adequacy of L guarantees that classes of coalgebras
defined by axioms in L have final models [14].

Coalgebraic modal logic [18, 20] is a language Lκ(Λ) for T -coalgebras,
parametrized by a set Λ of predicate liftings for T and a regular cardinal κ
which serves as a bound for conjunctions: formulae φ ∈ Lκ(Λ) are defined by
the grammar

φ ::= [λ]φ (λ ∈ Λ)

|
∧
i∈I

φi (|I| < κ)

| ¬φ0.



Disjunctions
∨

i∈I φi for |I| < κ are then defined as usual. In the definition of
satisfaction, the clauses for conjunction and negation are as expected; the clause
for the modal operator [λ] is

x |=(X,ξ) [λ]φ ⇐⇒ ξ(x) ∈ λX [[φ]](X,ξ).

The naturality equation for predicate liftings is easily seen to be precisely the
condition that is needed in order to ensure adequacy of Lκ(Λ) [20]. The converse
of this statement, i.e. the question under which conditions Lκ(Λ) and related
logics are expressive, is the main subject of this paper.

The construction of Lκ(Λ) presupposes that a suitable set of predicate liftings
for T is already given. We will discuss in Section 3 how predicate liftings may
be obtained and classified in general.

Definition 11. A natural relation for T is a natural transformation µ : T → P.

Thus, for a natural relation µ, composition with µX converts T -coalgebras on
X into Kripke frames. A natural relation µ induces (transposites of) predicate
liftings by composing with transposites of predicate liftings for P:

T → P → 2(2 ).

In fact, it suffices to consider the composite (λ∀)[ ◦ µ, where λ∀X(A) = {B ∈
P(X) | B ⊂ A}; this will be treated in more detail in Section 3.

2 Expressivity of Coalgebraic Modal Logic

We now turn to the question of when coalgebraic modal logic is strong enough
to distinguish behaviorally inequivalent states.

Definition 12. A language L for T -coalgebras is called expressive if logical
indistinguishability under L implies behavioral equivalence.

It is shown in [18] that, for T κ-accessible and Λ separating, Lσ(Λ) is expressive
for ‘sufficiently large’ σ in the stronger sense that behavioral equivalence classes
are characterized by single formulae. Moreover, it is shown in [20] that under the
same assumptions, Lκ(Λ) is expressive in the sense defined above, provided that
either α < κ implies 2α < κ (i.e. κ = ω or κ strongly inaccessible) or the pred-
icate liftings in Λ are continuous. These restrictions are quite strong: even the
mere existence of strongly inaccessible cardinals is unprovable in ZFC, and the
next section will show that continuous predicate liftings are in fact just natural
relations. The proofs in [18, 20] are by terminal sequence induction. Note that
the subtle-appearing difference between the two expressiveness results is in fact
rather substantial. E.g. in the case of labelled transition systems (Example 3.2),
the first result concerns a modal logic with countably infinitary conjunction,
while the second result asserts the expressivity of standard Hennessy-Milner
logic with finitary conjunction.

We now give an improved version of the second result, in which the additional
assumptions on κ and Λ, respectively, are dropped.



Theorem 13. Let T be κ-accessible and let Λ be a separating set of predicate
liftings. Then Lκ(Λ) is expressive.

Proof. (Sketch) One has to show that a given T -coalgebra (X, ξ) can be quo-
tiented by the logical indistinguishability relation R. This leads to a well-
definedness problem, which may be solved using separation under Λ and the
fact that on Z ⊂ X with |Z| < κ, sets that are closed under R can be described
by a Lκ(Λ)-formula.

The above expressivity result has a partial converse:

Theorem 14. If T is κ-accessible and the final T -coalgebra (Z, ζ) satisfies |Z| ≥
κ, then expressivity of Lσ(Λ) for some σ implies that Λ is separating.

Example 15. The assumption |Z| ≥ κ in the above theorem is essential. As a
simple example where |Z| < κ, consider the non-empty finite powerset functor
P∗ω (i.e. P∗ω(X) = {A ∈ Pω(X) | A 6= ∅}). The final coalgebra for this functor
is a singleton. Thus, all states are behaviorally equivalent, so that any logic
is expressive for T , including e.g. Lω(∅); of course, the empty set of predicate
liftings is not separating. The same holds for the functor P∗ω ◦ P∗ω, which as we
shall see below does not admit a separating set of predicate liftings at all.

3 Classification of Predicate Liftings

As indicated above, no general method has been given so far to actually construct
predicate liftings for a given functor. The following simple fact (essentially just
the Yoneda Lemma for the functor 2T : Setop → Set) gives immediate access
to all predicate liftings that a functor admits.

Proposition 16. Predicate liftings for T are in one-to-one correspondence with
subsets of T2, where 2 = {>,⊥}. The correspondence takes a predicate lifting λ
to λ2({>}) ⊂ T2 and, conversely, C ⊂ T2 to the predicate lifting λC defined by

λC
X(A) = (TχA)−1[C]

for A ⊂ X, where χA : X → 2 is the characteristic function of A.

Remark 17. Subsets of T2, i.e. T -algebras on 2, have appeared as modalities
in [11]. Proposition 16 establishes that this notion of modality and the one
induced by predicate liftings are equivalent.

We shall thus freely apply terminology introduced so far for predicate liftings to
subsets of T2 as well. E.g. we say that a set of subsets of T2 is separating if the
associated set of predicate liftings is separating, etc. Proposition 16 leads to a
criterion for the existence of separating sets of predicate liftings, and hence of
expressive modal logics.



Corollary 18. A functor T has a separating set of predicate liftings iff the
source

SX = (Tf : TX → T2)f :X→2

is jointly injective at each set X. If T is κ-accessible, then joint injectivity of SX

for |X| < κ is sufficient.

Example 19. 1. The (finite) powerset functor has, by Proposition 16, pre-
cisely 16 predicate liftings, generated as boolean combinations of the pred-
icate liftings λ∀ and λ∃ corresponding to {∅, {>}}, {{>}, {>,⊥}} ⊂ P2,
respectively; i.e. λ∀(A) = {B | B ⊂ A} and λ∃(A) = {B | B ∩ A 6= ∅}. The
predicate lifting λ∀ is continuous; the set {λ∀} is separating. The modalities
induced by λ∀ and λ∃ are the usual operators of modal logic.

2. A close relative of the functors Pω, BN, and the list functor list is the functor
T that takes a set X to the free idempotent monoid (or free band monoid)
over X. The set TX is obtained as the quotient of listX modulo idem-
potence, i.e. the equation xx = x. (Subsequent quotienting modulo com-
mutativity produces Pω.) By Corollary 18, T does not admit a separating
set of predicate liftings: the elements of T{a, b, c} represented by abaca and
abca, respectively, are distinct (see e.g. [25]), but identified under Tf for
all f : {a, b, c} → 2 (e.g. Tχ{b,c}(abaca) = ⊥>⊥>⊥ = ⊥>⊥ = ⊥>>⊥ =
Tχ{b,c}(abca)).

3. Let T be the non-repetitive list functor; i.e. TX is the set of lists over X con-
taining every element of X at most once, and Tf(l) is obtained by removing
duplicates leftmost first in (list f)(l). By Corollary 18, T does not admit a
separating set of predicate liftings, since abc, bac ∈ T{a, b, c} are identified
under Tf for all f : {a, b, c} → 2.

4. The double finite powerset functor T = Pω ◦Pω does not admit a separating
set of predicate liftings. E.g., given a finite set X, the set {A ⊂ X | |A| ≤ 2}
is identified with Pω(X) under Tf for all f : X → 2. A similar argument
works for Pω ◦ list.

Provided the criterion of Corollary 18 is satisfied, the separation property for a
given set of predicate liftings can be checked at the level of subsets of T2:

Theorem 20. Let T admit a separating set of predicate liftings, and let C ⊂
P(T2). The following are equivalent:

(i) C is separating
(ii) cl(C) = {(Tf)−1[C] | C ∈ C, f : 2 → 2} is separating
(iii) t ∈ T2 is uniquely determined by the set {C ∈ cl(C) | t ∈ C}.

We have seen in Example 19 that accessible functors may fail to admit an
expressive (unary) modal logic. We now proceed to investigate the relationship
between typical modal axioms and properties of predicate liftings, with a view
to giving further separating examples.

Generally, a modal operator � is called monotone [3] if it satisfies the axiom
scheme �(φ∧ψ) =⇒ �φ, often referred to as axiomM . Moreover, � is α-normal



for a regular cardinal α if it satisfies the axiom scheme
∧

i∈I �φi ⇐⇒ �
∧

i∈I φi

for |I| < α. Note that ω-normality is semantically equivalent to the usual notion
of normality for modal operators, i.e. the necessitation rule (‘conclude �φ from
φ’) and the K-axiom �(φ ⇒ ψ) ⇒ (�φ ⇒ �ψ) (equivalently: �φ ⇒ (�ψ ⇒
�(φ ∧ ψ))). In a nutshell, monotone predicate liftings correspond to monotone
modal logic, and continuous predicate liftings correspond to normal modal logic:

Theorem 21. Let T be a functor, and let λ be a predicate lifting for T . If λ
is monotone then [λ] is monotone. Conversely, if T is κ-accessible, T admits a
separating set of predicate liftings, the final T -coalgebra (Z, ζ) satisfies |Z| ≥ κ,
and [λ] is monotone, then λ is monotone.

Definition 22. For a regular cardinal β, we define β̄ to be the smallest cardinal
such that 2α < β̄ for all α < β.

E.g. ω̄ = ω, and β̄ = β for β strongly inaccessible. Under GCH, β̄ is either β or
2β .

Proposition 23. If T is κ-accessible, then a predicate lifting λ for T is contin-
uous iff λX preserves intersections for |X| < κ iff λX preserves intersections of
less than κ̄ sets.

Corollary 24. If T is ω-accessible, then a predicate lifting λ for T is continuous
iff λX(X) = TX for all X and λX(A ∩B) = λX(A) ∩ λX(B) for all A,B ⊂ X.

Theorem 25. Let T be a functor, and let λ be a predicate lifting for T . If λ is
continuous, then the modal operator [λ] is α-normal for all regular cardinals α.
Conversely, if T is κ-accessible, T admits a separating set of predicate liftings, the
final T -coalgebra (Z, ζ) has |Z| ≥ κ, and [λ] is κ̄-normal, then λ is continuous.

As announced above, continuous predicate liftings ‘are’ natural relations:

Theorem 26. A predicate lifting λ for T is continuous iff its transposite λ[ is
of the form (λ∀)[ ◦ µ (cf. Example 19) for some natural relation µ : T → P .

(A dual result holds for predicate liftings with transposites of the form (λ∃)[ ◦µ;
in pointwise form, this appears essentially already in [10].)

Corollary 27. A functor admits a separating set of natural relations iff it ad-
mits a separating set of continuous predicate liftings.

The slogan is thus that normal coalgebraic modal logic is the logic of natural
relations.

We now give criteria for the monotonicity and continuity of predicate liftings
at the level of subsets of T2. This will enable us to give examples separating
modal logic, monotone modal logic, and normal modal logic w.r.t. expressive
strength.

Proposition 28. Let 3 denote the set {⊥, ∗,>}. A subset C ⊂ T2 is monotone
iff for each t ∈ T3, Tχ{>}(t) ∈ C implies Tχ{∗,>}(t) ∈ C.



Remark 29. If T is a parametrized algebraic datatype (Example 5), then the
condition of the above proposition informally states that C, which then consists
of equivalence classes of terms in the variables > and ⊥, is closed under replacing
any number of occurrences of ⊥ in a term by >.

Proposition 30. Let T be ω-accessible. A monotone subset C ⊂ T2 is contin-
uous iff, for each t ∈ T{⊥, a, b,>}, Tχ{>}(t) ∈ C whenever Tχ{a,>}(t) ∈ C and
Tχ{b,>}(t) ∈ C.

Remark 31. If T is a parametrized algebraic datatype, then the condition of
the above proposition informally states that if two sets of occurrences of > in
a term representing an element of C ⊂ T2 may separately be replaced by ⊥,
resulting in terms that remain in C, then replacing all occurrences in the two
sets simultaneously also yields a term in C.

Example 32. 1. For the finite multiset functor BN (Example 3.5), BN2 consists
of elements of the form n> + m⊥. By Remark 29, a subset C of BN2 is
monotone iff n>+ (m+ k)⊥ ∈ C implies (n+ k)>+m⊥ ∈ C. A separating
set of monotone predicate liftings λk, k ∈ N, is induced by the subsets of
BN2 of the form Ck = {n>+m⊥ | m ≤ k}. The arising modal operators are
exactly the modalities [k] of graded modal logic (cf. e.g. [6]). Of course, [k]
fails to be normal unless k = 0.
The functor BN does not admit a separating set of continuous predicate
liftings, i.e. does not admit an expressive normal modal logic: using Propo-
sition 30, one can show that all continuous predicate liftings for BN besides
λ0 are induced by {n>+m⊥ | n+m ∈ A} for some A ⊂ N.

2. The generalized multiset functor BZ (Example 3.6) even fails to admit a sep-
arating set of monotone predicate liftings, i.e. does not admit an expressive
monotone modal logic: the description of monotone subsets C ⊂ BZ2 is as
for BN above, but with k ∈ Z, so that C = {n>+m⊥ | n+m ∈ A} for some
A ⊂ Z. A separating set of non-monotone predicate liftings λk, k ∈ Z, for
BZ is given by the subsets Ck = {n>+m⊥ | m ≤ k}.

3. The finite distribution functorDω does not admit a separating set of continu-
ous predicate liftings; this is shown in the same way as for BN. A separating
set of monotone predicate liftings is given by the sets Cp = {P ∈ Dω2 |
P{>} ≥ p}. These predicate liftings give rise to probabilistic modal opera-
tors [p], where [p]φ reads ‘φ holds in the next step with probability at least
p’ (this modal operator appears in [4]; similar operators are used e.g. in [15]).

4. When the above examples are extended with inputs from a set I as laid out in
Example 3.8, one obtains essentially the same modalities as above, indexed
over a ∈ I in the form [ ]a. In the case T = Dω, the meaning of [p]a φ in
reactive probabilistic automata is that on input a, φ holds in the next step
with probability at least p, and in generative probabilistic automata that
with probability at least p, the input is a and φ holds in the next step.

There is a canonical way to produce predicate liftings which often leads to useful
modal operators: one can just apply T to subsets of 2. In particular, the predicate



lifting given by T{>} is often important; in fact, this is the principle which is
currently used for the definition of modal operators in CoCasl [17].

4 Polyadic Coalgebraic Modal Logic

Having seen in the preceding section that accessible functors may fail to ad-
mit separating sets of predicate liftings, we now proceed to develop a slightly
generalized framework that yields expressive logics for all accessible functors. Es-
sentially, all one has to do is to move on from unary modal operators to polyadic
modal operators. Polyadic modal operators for coalgebras rely on the following
notion of polyadic predicate lifting.

Definition 33. An α-ary predicate lifting for a functor T , where α is a cardinal,
is a natural transformation

λ : (2 )α → 2T op

.

A set Λ of such polyadic predicate liftings is called κ-bounded if all predicate
lifings in Λ have arity properly smaller than κ (in particular Λ is ω-bounded if
all predicate liftings in Λ are finitary). Moreover, Λ is called separating if the
associated source of transposites

(λ[ : T → 2((2 )α))λ∈Λ,

formed analogously to the unary case, is injective at each set X.

Explicitly, the naturality condition states that, for each map f : X → Y and
each family (Ai)i∈α of α subsets Ai ⊂ Y ,

Tf−1[λY (Ai)i∈α] = λX(f−1[Ai])i∈α.

The polyadic modal language is then defined as follows.

Definition 34. Let T be a functor, let Λ be a set of polyadic predicate liftings
for T , and let κ be a cardinal. The language Lκ(Λ) is defined as in the unary
case (cf. Section 1), except for application of modal operators: an α-ary predicate
lifting λ ∈ Λ gives rise to an α-ary modal operator [λ], i.e. we have formulae of
the form

[λ] (φi)i∈α

where (φi)i∈α is a family of formulae in Lκ(Λ).
The satisfaction relation over a T -coalgebra (X, ξ) is given by the generalized

clause
x |= [λ] (φi)i∈α iff ξ(x) ∈ λX([[φi]])i∈α.

It is easy to see that Lκ(Λ) is adequate. The expressivity results discussed in
Section 2 generalize in a straightforward manner (essentially by inspection of
the proofs given above and in [18]), i.e. if T is accessible, Λ is a separating
set of polyadic predicate liftings, and σ is ‘sufficiently large’, then Lσ(Λ) has
characterizing formulae for behavioral equivalence classes, and



Theorem 35. Let T be κ-accessible and let Λ be a separating set of polyadic
predicate liftings for T . Then Lκ(Λ) is expressive.

One has the same simple classification result as for unary predicate liftings:

Proposition 36. For α a cardinal, α-ary predicate liftings for T are in one-to-
one correspondence to subsets of T (2α). The correspondence works by taking a
predicate lifting λ to λ2α(π−1

i {>})i∈α ⊂ T (2α), where πi : 2α → 2 is the i-th
projection, and, conversely, C ⊂ T (2α) to the predicate lifting λC defined by

λC
X(Ai)i∈α = (T 〈χAi〉i∈α)−1[C]

for Ai ⊂ X (i ∈ α), where angle brackets are used to denote tupling of functions.

Corollary 37. The functor T admits a separating κ-bounded set of polyadic
predicate liftings iff the the source

SX = (Tf : TX → T (2α))α<κ,f :X→2α

is injective for each set X.

Unlike for unary predicate liftings, we now obtain that all accessible functors
admit expressive polyadic modal logics:

Corollary 38. If T is κ-accessible, then T admits a separating κ-bounded set
of polyadic predicate liftings.

A further issue in coalgebraic modal logic is the modular construction of log-
ics. It has been shown in [18] that separating sets of unary predicate liftings can
be propagated along small products of functors, subfunctors (hence along small
limits), and small coproducts; by Example 19, however, unary predicate liftings
can not be combined along functor composition. Modularity results for expres-
sive languages for accessible functors are proved at a more abstract level in [4, 5],
using notions of syntax (or language) constructor and one-step semantics. These
results include combinations of syntax constructors and their one-step semantics,
respectively, along functor composition.

We now show that separating sets of polyadic predicate liftings can be com-
bined along composition of κ-accessible functors for arbitrary κ (of course, the
existence of separating sets for such composites is clear by Corollary 38). The
arising modal logic can then be seen to be equivalent, via a simple syntactic
transformation, to a multi-sorted modal logic obtained by composing the as-
sociated syntax constructors and their one-step semantics according to [4, 5].
Thus, polyadic modal logic is essentially closed under the composition operation
of [4, 5] — i.e. for purposes of the meta-theory, one never has to go beyond the
polyadic modal language defined above.

We begin by observing that predicate liftings can be composed:



Proposition and Definition 39. Let T and S be functors, let λ be an α-ary
predicate lifting for T , and let (νi)i∈α be a family of predicate liftings for S,
where νi has arity βi. Then

(λ~ (νi)i∈α)X(Aij)i∈α,j∈βi
= λSX(νi

X(Aij)j∈βi
)i∈α

defines a
∑

i∈α βi-ary predicate lifting for T ◦ S.

Next we note that (possibly infinitary) boolean combinations of polyadic predi-
cate liftings are again predicate liftings:

Proposition and Definition 40. Let Λ be a set of polyadic predicate liftings.
Then each of the following equations defines a polyadic predicate lifting ν:

(i) νX(Ai)i∈β = λX(AΦ(j))j∈α, where β is a cardinal, λ ∈ Λ has arity α, and Φ
is a map α→ β;

(ii) νX(Ai)i∈α = TX − λX(Ai)i∈α, where λ ∈ Λ has arity α;
(iii) νX(Ai)i∈α =

⋂
j∈γ λ

j
X(Ai)i∈α, where γ is a cardinal and for each j, λj ∈ Λ

has arity α.

The closure of Λ under these constructions, with (i) and (iii) restricted to β < κ
and γ < κ, respectively, is called the κ-boolean closure of Λ, denoted bclκ(Λ).
The elements of this set are called κ-boolean combinations of Λ.

The announced compositionality result for separating sets of predicate liftings
is the following.

Theorem 41. Let S and T be functors, where T is κ-accessible for a regular
cardinal κ, and let ΛS and ΛT be κ-bounded separating sets of predicate liftings
for S and T , respectively. Then

ΛT ~bclκ(ΛS) = {λ~(νi)i∈α | α cardinal, λ ∈ ΛT α-ary, νi ∈ bclκ(ΛS) for all i}

is a κ-bounded separating set of predicate liftings for T ◦ S.

If, in the notation of the above theorem, S is κ-accessible, then it follows from
Theorem 35 that Lκ(ΛT ~ bclκ(ΛS)) is an expressive logic for T ◦ S-coalgebras.
Such an expressive logic can also be obtained by the methods of [4, 5], i.e. by
composing the syntax constructors associated to ΛT and ΛS , along with their
one-step semantics. The result is a multi-sorted modal logic where ΛT -modalities
and ΛS-modalities appear in alternating layers, with ΛT -modalities in the outer-
most layer. This logic can easily be seen to be equivalent to Lκ(ΛT ~ bclκ(ΛS));
in the translation, boolean operators on formulae are turned into boolean opera-
tions on predicate liftings, and two layers of modal syntax in Lκ(ΛT ) and Lκ(ΛS),
respectively, are combined into one layer of modal syntax in Lκ(ΛT ~bclκ(ΛS)).
E.g., if λ ∈ ΛT is α-ary and νi ∈ ΛS for all i, then the multi-sorted formula
[λ][νi](φij) becomes the formula [λ ~ (νi)](φij) of Lκ(ΛT ~ bclκ(ΛS)). In other
words, composites of polyadic modal logics in the sense of [4, 5] can always be
flattened into a polyadic modal logic.



5 Conclusion

We have studied expressivity issues in the modal logic of coalgebras based on the
notion of predicate lifting, following [18, 20]. In [20], an expressivity result for
coalgebraic modal logic has been proved under the assumption that the signature
functor admits a separating set of predicate liftings. We have improved this result
by dropping restrictions on the accessibility degree of the signature functor.
Moreover, we have given a simple classification of predicate liftings which has
lead to a necessary and sufficient criterion for the existence of separating sets of
predicate liftings, and by means of this criterion we have identified examples of
functors that fail to admit an expressive unary modal logic.

We have also related monotonicity and continuity of predicate liftings to
monotonicity and normality, respectively, of the induced modal operators. The
above-mentioned classification of predicate liftings has then allowed us to give
examples separating the coalgebraic expressiveness of modal logic, monotone
modal logic, and normal modal logic. Furthermore, we have identified normal
modal logic as the modal logic of natural relations as introduced in [19]. Since
natural relations convert coalgebras into Kripke frames, the latter result lends
precision to the claim that normal modal logics describe exactly Kripke frames.
More generally, reversing the original viewpoint that modal logic serves as a
specification language for coalgebras, our results show that coalgebra constitutes
a good semantic framework also for non-normal and even non-monotone modal
systems (for non-normal systems cf. also [7]).

Finally, we have proposed to generalize coalgebraic modal logic to include
polyadic modal operators based on polyadic predicate liftings. We have shown
that all accessible functors admit an expressive polyadic modal logic. Moreover,
we have proved a compositionality result stating essentially that polyadic modal
logic is stable under the composition of languages described in [5].

Future work will include the exploitation of these results in the practical
specification of reactive systems. In particular, modal operators specified in terms
of our classification result will be integrated into the design of CoCasl.
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[22] M. Rößiger, Coalgebras and modal logic, Coalgebraic Methods in Computer Sci-
ence, ENTCS, vol. 33, Elsevier, 2000.

[23] J. Rothe, H. Tews, and B. Jacobs, The Coalgebraic Class Specification Language
CCSL, J. Universal Comput. Sci. 7 (2001), 175–193.

[24] J. Rutten, Universal coalgebra: A theory of systems, Theoret. Comput. Sci. 249
(2000), 3–80.

[25] J. Siekmann and P. Szabo, A noetherian and confluent rewrite system for idem-
potent semigroups, Semigroup Forum 25 (1982), 83–110.


