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ABSTRACT 

Link Analysis has shown great potential in improving the per-
formance of web search. PageRank and HITS are two of the most 
popular algorithms. Most of the existing link analysis algorithms 
treat a web page as a single node in the web graph. However, in 
most cases, a web page contains multiple semantics and hence the 
web page might not be considered as the atomic node. In this 
paper, the web page is partitioned into blocks using the vision-
based page segmentation algorithm. By extracting the page-to-
block, block-to-page relationships from link structure and page 
layout analysis, we can construct a semantic graph over the 
WWW such that each node exactly represents a single semantic 
topic. This graph can better describe the semantic structure of the 
web. Based on block-level link analysis, we proposed two new 
algorithms, Block Level PageRank and Block Level HITS, whose 
performances we study extensively using web data.   

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; H.5.4 [Information Interfaces and Presentation]: 
Hypertext/Hypermedia 

General Terms 
Algorithms, Performance, Human Factors  

Keywords 
Web information retrieval, VIsion-based Page Segmentation, 
Graph Model, Link Analysis 

1. INTRODUCTION 
Traditional information retrieval techniques can give poor results 
on the Web, with its vast scale and highly variable content quality. 
Recently, however, it was found that Web search results might be 
much improved by using the information contained in the link 
structure between pages. PageRank [19] and HITS [16] are two of 
the most popular algorithms. A number of extensions to these two 
algorithms are also proposed, such as [1][2][6][7][8][13][17]. 

PageRank simulates a random walk on the link graph and assigns 
each page a score of importance. Different from PageRank, HITS 
assigns two scores to a page, authority score and hub score. Hubs 
and authorities exhibit a mutually reinforcing relationship. 

All these link analysis algorithms are based on two assumptions: 
(a) the links convey human endorsement. If there exists a link 
from page A to page B and these two pages are authored by dif-
ferent people, then the first author found the second page valu-
able. Thus the importance of a page can be propagated to those 
pages it links to. (b) pages that are co-cited by a certain page are 
likely related to the same topic. However, these two assumptions 
do not hold in many cases. A typical example is the web page at 
http://news.yahoo.com (Figure 1) which contains multiple seman-
tics (marked with rectangles with different colors) and many links 
only for navigation and advertisement (the left region). In this 
case, the importance of each page may be mis-calculated by Pag-
eRank and topic drift may happen in HITS.  

These two problems are caused by the fact that a single web page 
often contains multiple semantics and the different parts of the 
web page have different importance in that page. Thus, from the 
perspective of semantics, a web page should not be the smallest 
unit. The hyperlinks contained in different semantic blocks usu-
ally point to the pages of different topics. Naturally, it is more 
reasonable to regard the semantic blocks as the smallest units of 
information. Recently some works were proposed to overcome 
these two problems [2][9][14][15][18]. But they still consider the 
web page as the unit of information.  

In this paper, we proposed two novel link analysis algorithms 
called Block Level PageRank (BLPR) and Block Level HITS 
(BLHITS) which treat the semantic blocks as information units. 
By using vision-based page segmentation (VIPS) algorithm 
[4][5], we extract page-to-block and block-to-page relationships 
and then construct a page graph and a block graph. Based on this 
graph model, the new link analysis algorithms are capable of dis-
covering the intrinsic semantic structure of the web. The above 
two assumptions become reasonable in block level link analysis 
algorithms. Thus, the new algorithms can improve the perform-
ance of search in web context. 

The rest of this paper is organized as follows. In Section 2, we 
describe the VIPS page segmentation algorithm. In Section 3, we 
describe how to build the graph models. Link analysis algorithms 
using the new graph model are given in Section 4. Some experi-
mental evaluations are provided in Section 5. Finally, we give 
concluding remarks and future work in Section 6. 
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2. VISION-BASED PAGE SEGMENTA-
TION 
The VIsion-based Page Segmentation (VIPS) algorithm [4][5] 
aims to extract the semantic structure of a web page based on its 
visual presentation. Such semantic structure is a tree structure; 
each node in the tree corresponds to a block. Each node will be 
assigned a value (Degree of Coherence) to indicate how coherent 
of the content in the block based on visual perception, the bigger 
is the DoC value, the more coherent is the block. The VIPS algo-
rithm makes full use of page layout structure. It first extracts all 
the suitable blocks from the html DOM tree, and then it finds the 
separators between these blocks. Here, separators denote the hori-
zontal or vertical lines in a web page that visually cross with no 
blocks. Based on these separators, the semantic tree of the web 
page is constructed. Thus, a web page can be represented as a set 
of blocks (leaf nodes of the semantic tree). For details, see [5]. 
Compared with DOM based methods, the segments obtained by 
VIPS are much more semantically aggregated [24]. Noisy infor-
mation, such as navigation, advertisement, and decoration can be 
easily removed because they are often placed in certain positions 
of a page. Contents with different topics are distinguished as sepa-
rate blocks. 

3. BLOCK LEVEL WEB GRAPH 
In this section, we describe how to construct a block level web 
graph. Like page-to-page graph model, the block-to-block model 
might be useful for many web based applications, such as web 
image retrieval and web page categorization, but in this paper our 
primary purpose is using link analysis to improve web information 
retrieval. Our graph model is induced from two kinds of relation-

ships, i.e. block-to-page and page-to-block. We begin with some 
definitions. Let P denote the set of all the web pages, P = {p1, p2, 
…, pk}, where k is the number of web pages. Let B denote the set 
of all the blocks, B = {b1, b2, …, bn}, where n is the number of 
blocks. It is important to note that, for each block there is only 
one page that contains that block. bi ∈ pj means the block i is con-
tained in the page j.  

3.1 Block-Based Link Structure Analysis 
In this section, we describe the block-based link structure using 
matrix notations. Let Z denote the block-to-page matrix with di-
mension n × k. Z can be formally defined as follows: 

⎩
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where si is the number of pages that block i links to. Zij can also 
be viewed as a probability of jumping from block i to page j. The 
block-to-page relationship gives a more accurate and robust repre-
sentation of the link structures of the Web. It is important to note 
that, traditional link analysis algorithm like HITs [16] does not 
distinguish between links in different semantic blocks. It may 
cause the problem of topic drifting. 

From Figure 1, we can see the links in different blocks point to 
the pages with different topics. In this example, one link points to 
a page about entertainment and another link points to a page about 
sports. 

3.2 Page Layout Analysis 
The page-to-block relationships are obtained from page layout 
analysis. Let X denote the page-to-block matrix with dimension k 
× n. As we have described above, each web page can be seg-
mented into blocks. Thus, X can be naturally defined as follows: 
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where si is the number of blocks contained in page i. The above 
formula assigns equal importance value to each block in a page. It 
is simple but less practical. Intuitively, some blocks with big size 
and centered position are probably more important than those 
blocks with small size and margin position. This observation leads 
to the following formula, 
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where f is a function which assigns to every block b in page p an 
importance value. Specifically, the bigger fp(b) is, the more impor-
tant the block b is. f is empirically defined below, 

size of block  in page 
( )

dist. from the center of  to the center of screen
b p

f bp b
β=  (4) 

where β is a normalization factor to make the sum of fp(b) to be 1, 
i.e. 

1)( =∑ ∈ pb p bf
 (5) 

Note that, fp(b) can also be viewed as a probability that the user is 
focused on the block b when viewing the page p. 

Figure 1: Part of a sample web page (news.yahoo.com). 
Clearly, this page is made up of different semantic blocks 
(with different color rectangle). Different blocks have dif-
ferent importances in the page. The links in different 
blocks point to the pages with different topics. 



Some more sophisticated definitions of f can be formulated by 
considering the background color, fonts, etc. Also, f can be 
learned from some pre-labeled data (the importance value of the 
blocks can be defined by people) as a regression problem by using 
learning algorithms such as SVM [20], neural networks, etc. By 
incorporating more advanced block importance models, such as 
the schemes described in [21], we expect that a better result might 
be achieved. 

3.3 Building Graph Models 
In the last two subsections, we have constructed two affinity ma-
trices, i.e. block-to-page and page-to-block. Based on these two 
matrices, we can build two graph models, i.e. page graph GP (VP, 
EP, WP) and block graph GB (VB, EB, WB). For each graph, V is the 
set of the nodes (page, block, respectively), E is the set of edges 
linking two nodes, W is a weight matrix defined on the edges. We 
begin with the page graph.  

3.3.1 Page Graph 
When constructing a graph, we essentially define a weight matrix 
on the edges. WP can be simply defined as follows. WP(i, j) is 1 if 
page i links to page j, and 0 otherwise. This definition is pretty 
simple yet has been widely used as the first step to many applica-
tions, such as PageRank [19], HITS [16], community mining 
[11][12], etc. However, based on our previous discussions, differ-
ent blocks in a page have different importance. Therefore, those 
links in blocks with high importance value should be more impor-
tant than those in blocks with low importance value. In other 
words, a user might prefer to follow those links in important 
blocks. This consideration leads to the following definition of WP, 

P∈= ∑ ∈ βα ,β,bZbfβ,αW αb αP      ),()()(  (6) 
or 

XZWP =  (7) 

X is a k × n page-to-block matrix and Z is a n × k block-to-page 
matrix, thus WP is a k × k page-to-page matrix. 

Here we provide a simple analysis of our definition of WP from 
the probabilistic viewpoint. Let’s consider WP(α, β) as a probabil-
ity Prob(β|α) of jumping from page α to page β. Since page α is 
composed of a set of blocks, we have 

∑ ∈= αb α|bobPrbβobPrαβobPr )()|()|(  (8) 

where Prob(β|b) is actually Z(b, β) and Prob(b|α) is fα(b). 

Finally, it would be interesting to see under what conditions our 
definition of WP reduces to the ordinary definition. This occurs 
when the function f(b)  is defined as the number of links contained 
in block b. 

3.3.2 Block Graph 
The block graph is constructed over the blocks. Let’s first con-
sider a jump from block a to block b. Suppose a user is looking at 
block a. In order to jump to the block b, he first jumps to page β 
which contains block b, and then he focuses his attention on block 
b. Thus, a natural definition of WB is as follows, 
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or 

ZXWB =  (10) 

where WB is a n × n matrix. By definition, WB is clearly a prob-
ability transition matrix. However, there is still one limitation of 
this definition such that it is unable to reflect the relationships 
between the blocks in the same page. Two blocks are likely re-
lated to the same topics if they appear in the same page. This leads 
to a new definition, 

1(1 )BW t ZX tD U−= − +  (11) 

where t is a suitable constant. D is a diagonal matrix, Dii = ∑jUi j. 
Uij is zero if block i and block j are contained in different pages; 
otherwise, it is set to the DOC (degree of coherence, see [5] for 
details) value of the smallest block containing both block i and 
block j. It is easy to check that the sum of each row of D-1U is 1. 
Thus, WB can be viewed as a probability transition matrix such 
that WB (a, b) is the probability jumping from block a to block b. 

4. BLOCK LEVEL LINK ANALYSIS AL-
GORITHMS 
PageRank and HITS are two of the most popular link analysis 
algorithms. However, both of them ignore the fact that a single 
web page might contain multiple semantics and the different parts 
of the web page might have different importances. The different 
hyperlinks in a page might point to the pages with different se-
mantics. Therefore, the computed importances of web pages might 
not accurately reflect the web structure in the sense of semantics. 
In this section, we introduce two new link analysis algorithms, i.e. 
block level PageRank and block level HITS, which are based on 
the graph model described in previous section. 

4.1 Block Level PageRank 
Block Level PageRank (BLPR) is similar to the original PageR-
ank algorithm in spirit. The key difference between them is that, 
traditional PageRank algorithm models web structure in the page 
level while BLPR models web structure in the block level.  

Let A denote the weight matrix of graph G built in previous sec-
tion. We first construct a probability transition matrix M by re-
normalizing each row of A to sum to 1. One then imagines a ran-
dom web surfer who at each time step is at some web page, and 
decides which page to visit on the next step at follows: with prob-
ability 1−ε, he randomly picks one of the hyperlinks on the cur-
rent page, and jumps to the web page it links to; with probabilityε, 
he “resets” by jumping to a web page picked uniformly and at 
random from the collection. Here, ε is a suitable parameter. This 
process defines a Markov Chain on the web pages, with transition 
matrix εU+(1−ε)M, where U is the transition matrix of uniform 
transition probability (Uij = 1/n, for all i,j). The vector of PageR-
ank scores is then defined to be the stationary distribution of this 
Markov Chain, i.e., the left eigenvector of the transition matrix. 

Mathematically, BLPR can be computed as follows: 



pp =−+ TMU ))1(( εε  (12) 

where p is a vector whose ith element is the block level PageRank 
of the ith web page. 

Note that, in our method, the Markov Chain is induced from the 
graph model described in previous section. Therefore, the com-
puted block level PageRank can reflect the semantic structure of 
the web to some extent. For example, those web pages pointed by 
many advertisement hyperlinks might not be assigned a large im-
portance value since the advertisement hyperlinks are always in 
the less important blocks. Specifically, those noisy hyperlinks 
play little role in computing block level PageRanks. 

4.2 Block Level HITS 
Different from PageRank which assigns only one value to each 
page, HITS assigns two values to each page (authority value and 
hub value). Hubs and authorities exhibit a mutually reinforcing 
relationship. 

As we discussed before, there are always multiple semantic re-
gions in one page. Some hyperlinks such as banners, navigation 
panels, and advertisements in a page do not convey human en-
dorsement. Thus equally mutually reinforcing all the links in a 
page might not be suitable. 

Based on our block level graph of the web presented in previous 
section, we proposed a Block Level HITS (BLHITS) algorithm. In 
BLHITS, the authority hub reinforcing idea is the same as the 
original HITS. The main difference is that in BLHITS, a page will 
have only authority score and a block will have only hub score.  

The authority-hub reinforcing relationship in our block level 
HITS is described in equation (13). A denotes the vector of au-
thority values for pages and H denotes vector of hub values for 
blocks. Z is the block to page matrix we discussed in section 3: 

HZA T=       ZAH =  (13) 
 

Bharat and Henzinger [2] addressed the three problems in original 
HITS algorithm developed by Kleinberg, i.e. a "links-only" ap-
proach: Mutually Reinforcing Relationships Between Hosts 
(where certain arrangements of documents 'conspire" to dominate 
the computation), Automatically Generated Links (where no hu-
man's opinion is expressed by the link), and Non-relevant Docu-
ments (where the graph contains documents not relevant to the 
query topic). They assign each edge of the graph an authority 
weight and a hub weight to solve the first problem and combining 
connectivity and content analysis to solve the latter two.  

Chakrabarti et al [7][8] addressed another problem in HITS that 
regarding the whole page as a hub is not suitable because a page 
always contains multiple regions in which the hyperlinks point to 
different topics. They proposed to dis-aggregate hubs into coher-
ent regions by segmenting the DOM tree of a HTML page, and 
showed great improvement over the original HITs. The idea of 
splitting hub into several coherent regions is similar to our Block-
Level HITS method. In Chakrabarti’s work, the web-pages were 
segmented based on the text distribution (consider the similarity 
between region and query) [8] or Minimum Description Length 
[7]. It is computed on-line and thus it is time consuming. In our 
method, we use the VIPS [5] algorithm, which has proved to be 
very effective in getting a semantic partition of webpage [24]. So 

all the computation can be done off-line which can greatly speed 
up the search. Moreover, Chakrabarti’s algorithm only considers 
splitting a mixed hub, and the different hubs (regions) in a page 
are equally treated. In our Block-Level HITS algorithm, the im-
portance values of different parts of the page are treated differ-
ently. Thus, the links in these hubs are treated differently, which 
can affect the authority-hub reinforcing process. 

We list below the main differences between our BLHITS algo-
rithm and the traditional HITS algorithm:  

1. The analysis of BLHITS is at block level. It regards the 
hyperlinks as from blocks to pages, while HITS regards the 
hyperlinks as from pages to pages. 

2. The root set in BLHITS is made up of top ranked blocks 
rather than top ranked pages in HITS. When a query is sub-
mitted to our system, we first retrieve the top ranked pages. 
The top ranked blocks are then extracted from these top 
ranked pages. In this step, those noisy blocks (such as ad-
vertisement block) are excluded. In our system, all the pages 
are pre-indexed at block level, so we can directly get the top 
ranked blocks without any extra computation. 

3. When expanding the root set, we only consider the out-links 
contained in top ranked blocks. HITS expands all the links 
in the pages, which inevitably introduce noisy pages into the 
base set. Similarly, we only add those blocks which contain 
links link to the pages in the root set rather than the whole 
pages to the root set.  

4. B&H [2] proved that combining the connectivity and con-
tent analysis (pruning those nodes according the relevance 
of the node with an expanded query) is very effective in en-
hancing the performance of HITS. In our BLHITS, the 
nodes are blocks, so the relevance measure is between 
blocks and expanded query, which makes more sense. 

5. B&H [2] assigns authority weight and hub weight for each 
edge in the graph to solve the mutually reinforcing relation-
ships problem. But this only occurs when there exists k 
edges from documents on a first host to a single document 
on a second host and exists t edges from a single document 
on a first host to a set of documents on a second host. Be-
sides implementing this heuristics, we extend the idea of au-
thority weight and hub weight of the edge, i.e. we multiply 
an additional weight (deduced from the importance weight 
of the block in original page) for each edge. This weight is 
calculated by the ratio between the importance value of the 
block containing this link and the maximum block impor-
tance value in that page. So this weight is 1 for the most im-
portant block in the page. In this way, those links which do 
not convey author endorsement will have little effect in 
computation.  

5. EXPERIMENTS 
In this section, several experiments were performed to compare 
our proposed block level link analysis algorithms, i.e. Block Level 
PageRank and Block Level HITS, to the traditional PageRank and 
HITS algorithms. 



5.1 Experiment framework 
We chose the topic distillation task in web track of TREC 2003 as 
the benchmark of the algorithms. The data set used in this task is 
“.GOV”, which was crawled from .gov Web sites in the year of 
2002. It contains 1,247,753 documents. 1,053,372 of them are 
text/html files, which were used in our experiments. The task aims 
to find the key entry page of some topic. Here key entry page must 
obey the following two rules: 

1. It is principally devoted to the topic 
2. It is not part of a larger site which is also principally de-

voted to the topic 

For example, for the topic of 'science', the following websites 
might be considered as key resources:  

www.nsf.gov/ National Science Foundation 

science.nasa.gov/ Science @ NASA 

www.science.gov/ Government Science Portal 
www.house.gov/science/ 
welcome.htm 

House Committee on Science 

But the page 'www.house.gov' fails on the first rule while the page 
'www.nsf.gov/home/bio/' fails on the second rule. 

So this task is quite different from traditional ad hoc retrieval task 
in that only relying on the relevance of the content might not work. 
Link analysis can provide some extra useful information for rank-
ing. This situation is much like the real world web search. So this 
corpus and queries are very suitable in evaluating different link 
analysis algorithms. 

There are totally 50 queries. The number of relevant pages (based 
on human judgment) for each query ranged from 1 to 86 with 
average of 10.32. Among them, 31 queries have less than 10 rele-
vant pages, so the average P@10 is a little bit low. 

Only the “title” field of each query is used for retrieval. All the 
pages in the dataset were partitioned using VIPS and indexed at 
block level [23], the Page to Block and Block to Page matrix are 
constructed. 

5.1.1 Relevance weighting 
In our experiments, each document includes the text of the html 
page and the anchor texts from other page. And we use BM2500 
[20] as the relevance weighting function. It is of the form: 

1 3

3

( 1) ( 1)

( )( )T Q

k tf k qtf
w

K tf k qtf∈

+ +

+ +
∑  (14) 

where Q is a query containing key terms T, tf is the frequency of 
occurrence of the term within a specific document, qtf is the fre-
quency of the term within the topic from which Q was derived, 
and w is the Robertson/Sparck Jones weight of T in Q. It is calcu-
lated by  
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log
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r R r
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− + − − + +
 (15) 

where N is the number of documents in the collection, n is the 
number of documents containing the term, R is the number of 
documents relevant to a specific topic, and r is the number of 
relevant documents containing the term. In our experiment, the R 
and r are set to zero. In (14), K is calculated by 

1((1- ) / )k b b dl avdl+ ×  (16) 

where dl and avdl denote the document length and the average 
document length. In our experiments, we tune the k1= 4.2, 
k3=1000, b = 0.8 to achieve the best baseline (We took the result 
of using relevance score only as our baseline). The mean average 
precision is 0.1285 and the P@10 is 0.112. Compared with the 
best result of TREC2003 participants (with MAP of 0.1543 and 
P@10 of 0.1280), this baseline is reasonable.  

5.1.2 PR and BLPR weighting 
To compare to PageRank, we implement the PageRank algorithm 
based on the link matrix deduced from traditional page level link 
analysis. And we calculate the BLPR (block level PageRank) 
based on the link matrix we discussed in section 3. 

These two ranks are calculated off-line, and stored for combina-
tion with relevance rank. 

5.1.3 HITS and BLHITS weighting 
HITS algorithm is query dependant, so we can not calculate a 
unique rank off-line.  

For comparison, we implemented the page-level HITS algorithm 
described in [16], the size of the root set, i.e. t, is 200, the in-link 
parameter d is 50,  and we also discard those intrinsic links (links 
between pages with the same domain name), which is a very sim-
ple heuristic but very effective [16]. Moreover, based on the work 
of Bharat and Henzinger [2], we modify the basic algorithm on 
two aspects: 

1. We eliminated mutually reinforcing relationship between 
hosts. That is, if there are k edges from pages on a first web-
site to a single page on a second website, we assign each 
edge an authority weight of 1/k. If there are t edges from a 
single document on a first host to a set of documents on a 
second host, we give each edge a hub weight of 1/t. 

2. We combined connectivity and content analysis. After we 
obtained the base set, we expand the original query using 
traditional query expansion techniques [10], and then we 
compute the relevance score of all the documents in the base 
set with the expanded query, and finally prune the nodes 
from the neighborhood graph with Median Weight threshold. 

More details and effectiveness analysis can be referred to [2]. In 
our Block Level HITS, we implement the algorithm described in 
section 4.2.  

5.2 Results on PR & BLPR  
In this subsection, we compare the PageRank (PR) and Block-
Level PageRank (BLPR) algorithms on web search. 

5.2.1 Intuitive result 
We calculated the PR value and BLPR value for each page offline. 
Although it is not easy to judge which one is better simply based 
on these two values, we can get some interesting information from 
the top ranked pages. Figure 2(a) shows 15 pages with the highest 
PR value and Figure 2(b) shows 15 pages with the highest BLPR 
value. 



In the top 15 PageRank list, we can see that it is unreasonable for 
the six pages (ranked 4, 6, 7, 10, 13 and 15) to get such high ranks. 
In contrast, in top 15 BLPR list, only 1 page (ranked 4) gets un-
reasonably high rank. This is because that BLPR treat the differ-
ent parts of the pages with different importances, so the impacts of 
the links which do not confer the recommendation (navigational 
link, advertisement links) are restrained.  

5.2.2 Results on TREC2003 
In this test, we combined the relevance rank with PageRank (or 
Block Level PageRank). We chose the top 2000 results according 
to the relevance score, and then we sorted these 2000 results ac-
cording to their PR values or BLPR values. Thus we get two rank-
ing lists. One is according to the relevance and the other is ac-
cording to importance (PR or BLPR). We combine them as fol-
lows: 

( ) (1 ) ( )relevance importancerank d rank dα α⋅ + − ⋅  (17) 

We selected top (with least combined rank value) 1000 results 
from the combined list for evaluation. The average precision and 
P@10 variation with alpha are shown in figure 3 and figure 4. All 
the curves converge to the baseline when α = 1. 

As can be seen, PR combined with relevance got the highest per-
formance when alpha is 0.94. The average precision is 0.1485 and 
P@10 is 0.136. BLPR combined with relevance get the highest 
performance when alpha is 0.92. The average precision is 0.1610 
and P@10 is 0.14. In both figures, the BLPR curves are above the 
PR curves, which means BLPR is always better than PR. 

To understand whether these improvements are statistically sig-
nificant, we performed various t-tests with 95% confidence level. 
For the P@10 improvement, compared to baseline, both the PR-
Combination and BLPR-Combination are significant (p-value is 
0.0416 and 0.0279, respectively). For the average precision im-
provement, compared to baseline, BLPR-Combination is signifi-
cant (p-value is 0.0406) but PR-Combination fails (p-value is 
0.096). All these t-test results show that both PageRank and Block 
Level PageRank are useful in improving the web search. More-
over, the Block Level PageRank is better than PageRank. 

 

 

 

Figure 4: P@10 for PR-Combination and BLPR-
Combination on TREC2003 (The black dashed line denotes 
the best result on TREC2003) 
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Figure 3: Average precision given alpha for PR-Combination 
and BLPR-Combination on TREC2003 (The black dashed 
line denotes the best result on TREC2003) 
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(a) Top 15 PR pages in .GOV data set 

1 G00-05-4074066 http://www.usgs.gov/ 
2 G00-08-3906771 http://www.nasa.gov/ 
3 G00-06-0690672 http://www.usda.gov/ 
4 G00-54-0168623 http://www.usgs.gov/privacy.html 
5 G00-09-2318516 http://www.doi.gov/ 

6 G01-90-0139455 
http://www.bnl.gov/bnlweb/ 
security_notice.html 

7 G01-08-1822984 http://naca.larc.nasa.gov/readme.html 
8 G00-10-2171731 http://www.nws.noaa.gov/ 
9 G07-50-3922430 http://ar.inel.gov/home.html 

10 G01-43-2031819 http://www.usgs.gov/accessibility.html 
11 G00-01-3584374 http://firstgov.gov/ 
12 G00-06-3965004 http://ds.usda.gov/ 
13 G01-61-3538562 http://www.usgs.gov/mail.html 
14 G00-13-0831825 http://ds.usda.gov/h 
15 G00-48-1523058 http://www.usgs.gov/disclaimer.html 

 

(b) Top 15 BLPR pages in .GOV data set 

Figure 2: Comparison the top 15 pages in PR list and BLPR list 

1 G00-05-4074066 http://www.usgs.gov/ 
2 G00-08-3906771 http://www.nasa.gov/ 
3 G00-06-0690672 http://www.usda.gov/ 
4 G00-54-0168623 http://www.usgs.gov/privacy.html 
5 G00-10-2171731 http://www.nws.noaa.gov/ 
6 G00-02-1372443 http://www.nara.gov/ 
7 G00-02-3781964 http://www.cdc.gov/ 
8 G00-04-1013476 http://www.ca.gov/ 
9 G00-04-0880016 http://www.abag.ca.gov/ 

10 G01-92-0844584 
http://www.ca.gov/state/portal/ 
myca_homepage.jsp 

11 G00-01-0423383 http://access.wa.gov/ 
12 G00-09-2318516 http://www.doi.gov/ 

13 G01-74-0536144 
http://my.ca.gov/state/portal/ 
myca_homepage.jsp 

14 G00-01-3584374 http://firstgov.gov/ 
15 G00-00-1711483 http://www.lib.noaa.gov/ 

 



5.3 Results on HITS & BLHITS 
HITs algorithm is query dependant. So different from PageRank, 
we can use authority rank of the page to get a result list. And we 
can also combine the authority rank of a page with relevance rank.  

The combination method is the same as equation 17 by replacing 
the rank of importance with rank of authority. Different from Pag-
eRank combination, not all the top ranked 2000 relevant pages 
have authority rank. For these pages, we ranked them at the bot-
tom of the authority rank list. Similarly, those appeared in author-
ity rank list but not in relevance top 2000 list are ranked at the 
bottom of the relevance rank list. 

The average precision and P@10 variation with alpha are shown 
in figure 5 and figure 6. All the curves converge to the baseline 
when α = 1, and all the curves converge to the HITS or BLHITS 
self when α = 0. 

From these two figures, we can see that either HITS or BLHITS, 
performed worse than baseline, either on average precision or 
P@10. When combined with the relevance rank, both HITS-
Combination and BLHITS-Combination outperformed baseline 
which only used relevance rank. 

The average precision and P@10 of BLHITS is 0.048 and 0.072, 
respectively. This result achieved 60% and 227% improvements 
over HITS on average precision and P@10 (0.030 and 0.022 re-
spectively). The best result of BLHITS-Combination was 
achieved when alpha is 0.4. (average precision is 0.1533 and 
P@10 is 0.146), while HITS-Combination achieved its best result 
when alpha is 0.5 (average precision is 0.1376 and P@10 is 0.14). 
Based on average precision, as alpha varies, the curve of 
BLHITS-Combination is always above the HITS-Combination 
curve. When based on P@10, the peaks of HITS-Combination 
curve and BLHITS-Combination curve are different. BLHITS-
combination achieved its best result with a smaller alpha than 
HITS-combination. This indicates that BLHITS played more roles 
in search. 

We performed several t-tests with 95% confidence level to see 
whether these improvements are statistically significant. We first 

compared HITS and BLHITS directly. Both the average precision 
and P@10 improvements are significant since the p-value is 
0.0158 and 0.00000746 respectively. This indicates that, as to 
finding authoritative sources, Block Level HITS always outper-
formed original page level HITS. 

When combined with relevance rank, both the HITS-Combination 
method and BLHITS-Combination method outperformed the 
baseline. For the P@10 improvement, both of these two combina-
tion methods are significant (p-value is 0.0256 for HITS-
Combination and 0.0058 for BLHITS-Combination). But for av-
erage precision improvement, both of these methods are failed. (p-
values are 0.0904 and 0.3259 for BLHITS-Combine and HITS-
Combine respectively)  

As another kind of link analysis algorithm, HITS (BLHITS) also 
showed great potential to improve web search. Also, experimental 
results showed Block Level HITS is better than Page Level HITS. 

Table 1. Search results comparison on TREC 2003 

Methods P@10 AvP 
Baseline 0.112 0.1285 

PageRank Combination 0.136 0.1485 
Block Level PageRank Combination 0.14 0.161 

HITS 0.022 0.03 
Block Level HITS 0.072 0.048 
HITS Combination 0.14 0.1376 

Block Level HITS Combination 0.146 0.1533 

 

6. CONCLUSIONS AND FUTURE WORK  
In this paper, we addressed the problem that a web page always 
contains multiple semantics while traditional link analysis algo-
rithms ignored this fact. Based on web page segmentation (VIPS) 
techniques, we treat the web page as a set of blocks and the links 
are from blocks to pages rather than from pages to pages. From 
the page to block relationship (page layout analysis) and block to 
page relationship (link analysis), we can construct a new page to 
page graph and block to block graph. Based on these new graphs, 

Figure 5: Average precision for HITS-Combination and 
BLHITS-Combination on TREC2003 (The black dashed line 
denotes the best result on TREC2003) 

Figure 6: P@10 for HITS-Combination and BLHIT-
Combination on TREC2003 (The black dashed line denotes 
the best result on TREC2003) 
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we implement Block Level PageRank and Block Level HITS al-
gorithms. Experiments show that Block Level PageRank outper-
forms PageRank and Block Level HITS outperforms HITS.  

Several questions remain to be investigated in our future work. 

1. Within our framework of analysis, the block-to-block graph 
is induced as a by-product. In fact, we can also compute 
BlockRank from this graph. It is interesting to find out how 
this rank can help web search. 

2. Some advanced block importance models were proposed 
recently [21], it is interesting to see how block level link 
analysis algorithm can get benefits from such models. 
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