
Parallel Tree Building on a Range of Shared Address Space
Multiprocessors: Algorithms and Application Performance

Hongzhang Shan and Jaswinder Pal Singh
Department of Computer Science

Princeton Universityfshz, jpsg@cs.princeton.edu

January 15, 1998

Abstract

Irregular, particle-based applications that use trees, for exam-
ple hierarchical N-body applications, are important consumers
of multiprocessor cycles, and are argued to benefit greatly in pro-
gramming ease from a coherent shared address space program-
ming model. As more and more supercomputing platforms that
can support different programming models become availableto
users, from tightly-coupled hardware-coherent machines to clus-
ters of workstations or SMPs, to truly deliver on its ease of pro-
gramming advantages to application users it is important that the
shared address space model not only perform and scale well in
the tightly-coupled case but also port well in performance across
the range of platforms (as the message passing model can). For
tree-based N-body applications, this is currently not true: While
the actual computation of interactions ports well, the parallel
tree building phase can become a severe bottleneck on coher-
ent shared address space platforms, in particular on platforms
with less aggressive, commodity-oriented communication archi-
tectures (even though it takes less than 3 percent of the timein
most sequential executions). We therefore investigate theperfor-
mance of five parallel tree building methods in the context ofa
complete galaxy simulation on four very different platforms that
support this programming model: an SGI Origin2000 (an ag-
gressive hardware cache-coherent machine with physicallydis-
tributed memory), an SGI Challenge bus-based shared memory
multiprocessor, an Intel Paragon running a shared virtual mem-
ory protocol in software at page granularity, and a Wisconsin
Typhoon-zero in which the granularity of coherence can be var-
ied using hardware support but the protocol runs in software(in
the last case using both a page-based and a fine-grained proto-
col). We find that the algorithms used successfully and widely
distributed so far for the first two platforms cause overall appli-
cation performance to be very poor on the latter two commodity-
oriented platforms. An alternative algorithm briefly considered
earlier for hardware coherent systems but then ignored in that
context helps to some extent but not enough. Nor does an algo-
rithm that incrementally updates the tree every time-step rather
than rebuilding it. The best algorithm by far is a new one we pro-
pose that uses a separate spatial partitioning of the domainfor
the tree building phase—which is different than the partitioning
used in the major force calculation and other phases—and elim-
inates locking at a significant cost in locality and load balance.
By changing the tree building algorithm, we achieve improve-
ments in overall application performance of more than factors
of 4-40 on commodity-based systems, even on only 16 proces-

sors. This allows commodity shared memory platforms to per-
form well for hierarchical N-body applications for the firsttime,
and more importantly achieves performance portability since it
also performs very well on hardware-coherent systems.

1 Introduction
As hierarchical techniques are applied to more and more prob-
lem domains, and applications in these domains model more
complete and irregular phenomena, building irregular trees from
leaf entries efficiently in parallel becomes more important. N-
body problems are among the most important applications of
tree-based simulation methods today, and we use them as the
driving domain in this paper. The performance of N-body ap-
plications has been well-studied on two kinds of platforms:
message passing machines [4, 2] and tightly coupled hardware
cache-coherent multiprocessors [9]. Due to their irregular and
dynamically changing nature, a coherent shared address space
programming model has been argued to have substantial ease of
programming advantages for them, and to also deliver very good
performance when cache coherence is supported efficiently in
hardware.

Recently, clusters of workstations or multiprocessors have
become widely and cheaply available to high-end application
users as well. Since they are capable of delivering high com-
putational performance, they are important and viable platforms
for next-generation supercomputing. As a result, the coherent
shared address space model (like message passing) has been
supported on a much greater variety of systems with both dif-
ferent granularities as well as varying levels of hardware sup-
port in the communication architecture. The focus is on using
more commodity-oriented communication architectures, either
by relaxing the integration and specialization of the communica-
tion controller [11] or by leveraging the virtual memory mech-
anism to produce coherence at page granularity (shared virtual
memory) [5], or by providing access control in software [6, 7],
in almost all cases running its protocol in software. For the
shared address space model to truly deliver on its ease of pro-
gramming advantages for complex, irregular applications such
as tree-based N-body applications to end users—for whom it
may be important that their codes run well across a range of
available platforms—it is very important that performance not
only be good on hardware cache-coherent systems but also port
well across these important platforms. Although message pass-
ing may have ease of programming disadvantages, it ports quite

1

well in performance across all these systems. This performance
portability advantage may overcome the ease of programming
advantages of the coherent shared address space model if thelat-
ter cannot deliver good performance on commodity-based sys-
tems, so users in domains like tree-based N-body applications
may prefer to use the more difficult model. The question of per-
formance portability of a shared address space has begun to be
studied [8], but there is a lot more work to be done. By study-
ing performance across platforms in some detail for hierarchical
N-body applications, we were led to study and develop new tree
building algorithms; these algorithms and the resulting perfor-
mance of the N-body applications across the range of systems
are the subject of this paper.

Having specified the initial positions and velocities of then
bodies, the classical N-body problem is to find their positions af-
ter a number of time steps. In the last decade, several O(NlogN)
algorithms have been proposed. The Barnes-Hut method [1] is
the one widely used on sequential and parallel machines today;
while the tree building issues and algorithms we discuss apply
to all the methods, we use a 3-dimensional Barnes-Hut galaxy
simulation as an example application.

The sequential Barnes-Hut method has three phases in each
time step of a simulation. In the first tree-building phase, an oc-
tree is built to represent the distribution of all the bodies. This
is implemented by recursively partitioning the space into eight
subspaces until the number of particles in the subspace is be-
low a threshold value. The lowest level cells contain bodies,
and higher level cells contain the summary effect of the bod-
ies in their rooted subtree. The root cell represents the whole
computational space . The second phase computes the force in-
teractions. In this phase, each body traverses the tree starting
from the root. If the distance between the body and a visited cell
is large enough, the whole subtree rooted at it will be approxi-
mated by that cell; otherwise, the body will visit all the children
of the cell, computing their effect individually and recursively in
this way. In the third phase each body updates its position and
velocity according to the computed forces.

By studying a range of such systems (that support a coherent
shared address space programming model with varying degrees
of efficiency in hardware or software) for hierarchical N-body
applications, we find that while the sequentially dominant (>
97%) force calculation phase parallelizes and scales well on all
platforms, the seemingly unimportant tree building phase per-
forms poorly and very quickly becomes the major bottleneck on
commodity based communication architectures, often taking up
more than half the execution time even on 16-32 processor sys-
tem and even resulting in application slowdowns compared toa
uniprocessor, and not being easily alleviated by running larger
problems. The parallel tree building algorithms for which these
results are observed were developed for hardware-coherentsys-
tems, and deliver very good application performance on those
at least at moderate scale. Programming for portably good per-
formance across shared address space systems thus requiresthat
different tree building algorithms be developed and used. The
goal of this paper is to examine alternative tree building algo-
rithms on the range of coherent shared address space systems,
and substantially improve the performance of the tree building
phase and hence the entire application. As a result of this re-
search, a new and very different tree building algorithm is de-
signed that dramatically improves performance on page-based
shared virtual memory (SVM) systems, while still being com-
petitive on efficient hardware-coherent and other systems,and
thus provides performance portability at least at the scaleexam-
ined.

The platforms we study range from fine grained hard-
ware coherent machines to fine-grained software coherent ma-
chines to page-coherent SVM systems, and from centralized
shared memory systems to distributed ones. They include the
SGI Challenge (centralized shared memory, hardware cache-
coherent) [12], SGI Origin 2000 (distributed shared memory,
hardware cache-coherent) [12], Intel Paragon (page grained
SVM)[10] and Typhoon-zero (hardware support for variable
coherence-granularity but protocols running in software on a
coprocessor)[11] (in the last case, we use a page-based SVM
protocol as well as a fine-grained sequentially consistent proto-
col). We use five different algorithms to build the tree, and keep
the other two phases of a time step the same.

The next section describes the five tree building algorithms.
Section 3 introduces the four platforms. The experimental re-
sults are analyzed in section 4, related work is discussed insec-
tion 5, and section 6 summarizes our conclusions.

2 Parallel Tree Building Algorithms
The five methods we use differ from each other in data struc-
tures and/or algorithms. We call them as ORIG, ORIG-LOCAL,
UPDATE, PARTREE, SPACE. The first two algorithms, ORIG
and ORIG-LOCAL, come from the Stanford Parallel Applica-
tion Suites. They correspond to the versions in the SPLASH
and SPLASH-2 programs, respectively. The PARTREE and UP-
DATE algorithms have been developed previously in the context
of efficient hardware cache-coherent systems, but in previous
work, a small modification to the original algorithm was found
to work just as well in that context. We examine these algorithms
on modern hardware -coherent machines and study their impact
on commodity-based platforms as well. The SPACE algorithm
is a new algorithm we developed motivated by an understanding
of performance bottlenecks on the commodity platforms. Here
we only discuss the tree building phase; the force calculation and
update phases are the same in all cases and are discussed in [9].

2.1 ORIG
In this and the next three algorithms, in the tree building phase
each processor is responsible for only those particles which were
assigned to it for force calculation (and update) in its previous
time step. (For the first time step, the particles are evenly as-
signed to processors). The global octree is built by having pro-
cessors load their particles concurrently into a single shared tree,
using locks to synchronize as necessary First, the dimensions of
the root cell of the tree are determined from the current posi-
tions of the particles. Each processor then adds its own particles
one by one to the root cell. Whenever the number of particles
in a cell exceeds a fixed number k, the cell is subdivided into 8
sub-cells, each of them representing one sub-space, and thepar-
ticle recursivelly inserted in the appropriate sub-cell. The tree is
therefore adaptive in that it will have more levels in the higher
density regions. When a particle is actually inserted or a cell ac-
tually subdivided, a lock is required to guarantee that onlyone
processor is modifying the cell at a time.

All the cells used are allocated from a single contiguous
shared array (the shared array of global cells in Figure 1), which
is itself allocated at the beginning of the program. A processor
obtains the next index in the array dynamically when it needsto
“create” a new cell in the tree. Each processor has a separate
array of cell pointers to record which cells are assigned to it (lo-
cal arrays of cell pointers in Figure 1). The arrays of bodiesand

2

body pointers are represented similarly. When bodies or cells
are reassigned across time-steps, only the value of the pointers
in the local arrays change.

After the tree has been built, the center of mass of the cells
are computed in parallel from the bottom of the tree to the top.
Each processor is responsible for computing the center of mass
of the cells it “created”.

local arrays of cell pointers

shared array of global cells

P1 P2 P3 P4

Figure 1:The array of global cells and local arrays of cell point-
ers used in ORIG Algorithm. The shaded cells are actually used
while the blank are not.

Figure 3 shows a 2-dimensional problem, in which a quad-
tree is built instead of an octree using the body distribution
shown on the left part. The 3-dimensional case is very simi-
lar to this (ignore the boxes and dashed lines in the tree for now,
they will be useful when describing the UPDATE algorithm).

2.2 ORIG-LOCAL
The ORIG-LOCAL version of the application is an optimized
version of the ORIG program. The main differences from the
ORIG version are the data structures used to represent the cells.
First, ORIG-LOCAL distinguishes internal cells in the treefrom
leaf cells and uses different data structures to represent them.
Particles can be contained only in the leaves. Second, each pro-
cessor allocates and manages its own cell and leaf arrays, instead
of allocating them in a single global array and local pointerar-
rays (See Figure 2). By keeping its assigned cells (shaded) con-
tiguous in the address space, this allows a processor to moreeas-
ily allocate its cells in its local memory and reduce false sharing
among cells, which is particularly important at larger coherence
granularities. If bodies are reassigned across time-steps, they are
moved from one processors’s array (declared in a shared arena)
to another’s. Each processor also maintains a private data struc-
ture which includes some frequently accessed variables such as
the number of cells used and the number of leaves used. In the
ORIG version, these variables are allocated together in shared
arrays, increasing the potential for false sharing. In the perfor-
mance section, we will find that these data structure changes
have a great effect on the execution time of N-body applications.

.

cell array for processor 1:

cell array for processor n:

cell array for processor 2:

..

Figure 2: The local cell arrays used in ORIG-LOCAL Algo-
rithm. The shaded cells are actually used while the blank cells
are not

2.3 UPDATE
Experience with the application shows that since the particle
distributions in N-body computation tend to evolve slowly with
time, the number of particles that move out of the cell in which
they were placed in the previous time step is small. In the UP-
DATE algorithm, instead of rebuilding the tree each time step
we incremently update the tree every time step as necessary.For
every particle we start from the cell it was in in the previoustime
step, and move it only if it has crossed its cell boundary. Since
the size of the whole space changes in each time step, to do this,
we need more variables in the cell and leaf data structures to
record the space bounds they represented in the previous time
step. However, the relative positions in the tree structurethat
cells represent remain the same across time-steps. If the particle
must be moved out of its current leaf cell, we compare it with
its parent recursively until a cell in which it should belongin
this time step has been found. Then we move it out of the origi-
nal leaf cell and insert it in the subtree represented by the newly
found cell, locking and even creating new cells as necessary.

Considering Figure 3 as an example, the body in the shaded
box moves to the box above it in the next time step. When up-
dating the tree, it will be first moved out of the leaf containing
it in this time step, and checked whether it will stay in the cell
labeled by number 9 in the tree (which represents the box with
the thick border in the figure on the left). Since this is not true,
it is checked with the root, and inserted from there. The dashed
line in the tree shows the path by which this particle moves. As a
result, the only particle in the source leaf cell disappears, so the
leaf is reclaimed, and the particle will be added to its new cell.

2.4 PARTREE
In the previous three algorithms, particles are loaded directly
into a single shared tree. As a result, whenever a cell is ac-
tually modified (e.g. particles or new children added) a lock
is needed to implement the necessary mutual exclusion. This
causes a lot of synchronization, contention and remote access,
which are usually expensive in these systems. Especially for
large numbers of processors, a large amount of contention will
be caused at the first few levels of the tree, when processors are
waiting at locks to insert their own particles. To reduce these
overheads, another algorithm which we call PARTREE can be
used. The following is the code skeleton to build the global tree:

{

Local_

cell *Local_Tree;

MakeGlobalTree()

Tree = InitRoot();

MergeLocalTrees (Local_Tree, Global_Tree);
InsertParticlesInTree(Local_Particles, Local_Tree);

BARRIER;
}

In this algorithm, The function InsertParticlesInTree is re-
sponsible for building a local tree (LocalTree) for each proces-
sor using only those particles (LocalParticles) that are currently
assigned to it (from the previous time step). Figure 4 shows the
local trees built for each processor assuming the particle distri-
bution shown in Figure 3. The building of the local trees does
not require any communication or synchronization. After the lo-
cal trees have been built, they are merged into a global tree by
MergeLocalTrees function. The dimensions of the local trees are
precomputed to be the same as those in the final global tree (i.e.

3

32

CELL : LEAF : PARTICLE :

32

9 15 7 1

81 7 1
1

42

9

Figure 3:With 4 processors, each subspace at most have 4 particles, the number beside the cells or leaves indicating the number
of particles contained in it. The bodies assigned to different processors are represented by different shape.

the space represented by the root cell). This also means thata
cell in one tree represents the same subspace as the correspond-
ing cell in another tree. This fact allows the MergeLocalTree to
make merging decisions based only on the types of the local and
global cells not have to worry about sizes and positions.

This will result in the same global tree for this distribution
as that in Figure 3.

The work unit for merging into the global tree has been
changed from a particle to a cell or subtree. The number of
global insert operations will therefore be greatly reduced, and
hence so will the number of synchronizations. This reduction
comes at a potential cost of redundant work. Instead of directly
being loaded into the global tree, particles will be first loaded
into the local tree and then the local trees will be merged. Ifthe
partitioning incorporates physical locality, this overhead should
be small while the reduction in locking overhead can be substan-
tial.

P4P1 P2 P3

Figure 4:PARTREE: The local trees created by processors with
the distribution in Figure 3

2.5 SPACE
The PARTREE algorithm reduces locking substantially, but still
has a fair amount of it. The space algorithm eliminates locking
entirely in the tree building phase by using a completely differ-
ent partitioning of bodies and cells than that used in the other
phases (like force calculation and update). Instead of using the
same partitions of particles from the previous time step, asall
the other algorithms so far, in this case the space itself is par-
titioned among processors anew (differently) for tree-building.
Each processor is responsible for loading into the tree those par-
ticles that are in subspaces assigned to it. The idea is that if the
subspaces match cells (leaf or hopefully internal) of the tree and
each subspace (cell) is assigned to a different processor, then

two particles assigned to different processors will never have to
be inserted in the same cell and there is no need for locking.
The problem, of course, is imbalance in tree-building if a sim-
ple spatial decomposition is used. To alleviate this, the three
dimensional space is first divided into several sub-spaces,and
the number of particles in each sub-space computed. If the num-
ber in some sub-space exceeds a threshold, then that sub-space
is recursively divided again, and so on until the number of par-
ticles in every sub-space is below the threshold. This resulting
partitioning tree corresponds exactly to the actual octreeused in
the application, but of course is subdivided to fewer levels, usu-
ally below 4. The problem with using the existing partitionsis
that they are based on load balancing and come for other plans,
and its particle assignments to processors do not correspond to
disjoint internal space cells.

The resulting sub-spaces are assigned to processors. Since
the particles a processor is assigned for tree building are not the
same as the ones it is assigned for force calculation (the assign-
ment for force calculation is determined after the tree has been
built before), which may result in extra communication and loss
of data locality, which is the disadvantage of this scheme.

A processor builds one local subtree for each sub-space as-
signed to it, and then attaches these subtrees to the global tree
(that was partially constructed during the subdivision) without
locking. The synchronization and contention problems in the
previous four algorithms are almost completely avoided. The
trade-off between load imbalance and partitioning time is influ-
enced by the value of the threshold used in subdividing cells.

If we set the threshold value to 8 and the number of pro-
cessors to 4, for the particle distribution in Figure 3, the two-
dimensional space will be partitioned as the left part of Figure
5, and the subspaces and particles in them assigned to the 4 pro-
cessors. And during the partitioning phase the global tree is also
partially created as it is the UPPER part in Figure 5. The el-
lipses correspond to the space assigned to processors, and in-
dicate the subtrees that need to be created by each processor.
Thus P1, P2, P3, P4 will create two, four, one and two subtrees
individually using the particles contained in the corresponding
subspaces. Thus the bodies assigned to processor for tree build-
ing are different from those assigned by the other algorithms.
The creating of the local trees does not need any communica-
tion. And after they have been created, these local trees canbe
directly added to the global tree without locking, since only one
processor will attach a subtree to a given cell position. They are

4

P4
CELL : LEAF : PARTICLE :

32

9 15

81 7 1
1

42

17
P1

P2 P3

P4

L
O

W
E

R

U
P

P
E

R

P4

P2

P2

P3

P2

P1

P1 P2
P3

Figure 5:SPACE: the partitioned space and corresponding global treecreated using the body distribution in Figure 3

shown as the LOWER part in Figure 5. Finally by pulling the
UPPER and LOWER pieces togather we get the same octree as
that in Figure 3.

3 Platforms

3.1 SGI Challenge
The Challenge is a bus-based, cache-coherent design with cen-
tralized memory. It is capable of holding up to 36 MIPS R4400
processors. Our system has 16 150MHz R4400 processors.
They are connected by a 50MHz wide, high speed bus with 256
data bits and 40 address bits, called POWERpath-2. The sus-
tained bus transfer rate can be 1.22GB/sec. This bus intercon-
nects all the major system components and provides support for
coherence. The coherence scheme is a 4-state write-invalidate
cache coherence protocol. The memory can be up to 16GB. The
total miss penalty for a secondary cache miss is about 1100ns.

3.2 SGI Origin 2000
This is a new hardware-coherent distributed shared memory sys-
tem from SGI. Each node contains two 200Mhz MIPS R10000
processors connected by a system bus, a fraction of the main
memory on the machine (1-4GB per node), a combined commu-
nication/coherence controller and network interface called the
Hub, and an I/O interface called Xbow [13]. Our system has 30
processors with a 4MB secondary cache per processor. The local
memory bandwidth is 512MB/s, shared by the local two proces-
sors and other devices on the bus. the maximum local memory
access time is 313ns, and the remote maximum access time is
703ns. The interconnection network has a hypercube topology.
The peak bisection bandwidth is over 16GB/s, and the per-link
bandwidth is 1.2GB/s. There are 4 virtual channels for each link
and they are bi-directional. The distributed directory protocol is
used for cache coherence. The page size is 16kb.

3.3 Paragon
Unlike previous systems, the Paragon was designed without
hardware support for a shared address space [15]. The shared
address space and coherence are provided in software at page

granularity through the virtual memory system. The protocol
we used is the Home-based Lazy Release Consistency model
(HLRC) [10]. The granularity of coherence is larger (which
causes more false sharing of the data), as are the costs of com-
munication and synchronization, but more data is transfered in
each communication. So protocol actually is delayed till syn-
chronization points, and the protocol is multiple-written. This
means that synchronization events are particularly expensive on
such platforms. In the Paragon system, each node has a com-
pute processor and a communication co-processor, which share
64 MB of local memory. Both processors are 50MHz i860 mi-
croprocessors with 16k bytes of I-cache and 16 kbytes D-cache.
The data caches are coherent between the two processors. The
memory bus provides a peak bandwidth of 400 MBytes/sec. The
nodes are interconnected with a worm-hole routed 2-D mesh
network whose peak bandwidth is 200 Mbytes/s per link. The
co-processor runs exclusively in kernel mode, dedicated tocom-
munication. The one way message passing latency of a 4-byte
NX/2 message is about 50�s.
3.4 Typhoon-0
This system provides hardware support for coherence(access
control) at any fixed granularity that is a multiple of the cache
line size(64 bytes), but smaller than a page(4kb), and runs the
protocol in software on a separate co-processor. The system
consists of 16 dual-processor SUN SPARCStation 20s. Each
contains two 66MHz Ross HyperSPARC processors, one used
for computation and the other to run the coherence protocol.
The cache-coherent 50MHz MBus connects all the processors
and the memory. I/O devices reside on the 25MHz SBus. Each
node contains a Myrinet network interface which includes a 7-
MIPS custom processor(LANai) and 128KB of memory. The 16
nodes are connected by 3 Myrinet 8-port crossbar switches. Two
ports of each switch are used to connect to other switches. With
Myrinet hardware, the host(SPARC) processor and Myrinet
LANai processor cooperate with each other to send and receive
data. The uncontended latency for a 4-byte round trip mes-
sage is 40 microseconds. Bandwidth is limited by the SBus.
Each node also contains a Typhoon-0 card that logically per-
forms fine-grain access control checks on all loads and stores by
physically snooping memory bus transactions and exploiting in-
clusion. Several coherence protocols have been implemented in

5

softwares from protocol based on sequentially consistent hard-
ware coherence at fine grain (but running in software) to proto-
cols like HLRC based on SVM at coarse grain. We will examine
both these schemes.

4 Performance
We now discuss the results on the four platforms. We report the
actual execution times and the speedups obtained over a single
processor on the same platform. We use the sequential execution
time (in seconds) from the best sequential version of the appli-
cation to measure speedups. Table 1 shows the sequential exe-
cution time for all four platforms. All times and most speedups
in this section are for the entire application (though running for
only a few time steps), and some time speedups are shown for
only the tree building phase. Timing is begun after two time
steps to eliminate unrepresentative cold-start and let theparti-
tioning scheme settle down. We also present the percentage of
time that is spent in the tree building phase for each algorithm.
On some platforms, we can not run all the data sets due to mem-
ory limitations. These are marked with dashes in the table.

platform no. of particles
8k 16k 32k 64k 128k 512k

Origin 2000 3.6 7.8 17.1 36.6 77.8 348.2
Challenge 16.0 34.9 76.1 161.3 339.3 –
Typhoon-0 15.4 35.4 72.9 154.2 330.7 –
Paragon 80.1 168.4 366.2 862.5 – –

Table 1:The Best Sequential Time on the four Platforms

4.1 SGI Challenge
On this platform, all the five versions deliver good speedups(see
Figure 6), ranging from 12 to 15 on 16 processors, and the data
set size does not have much effect on it. The ORIG-LOCAL
version gets the best result (15), followed by the SPACE and
PARTREE versions; the ORIG version is the worst. The algo-
rithms do not change performance very much because synchro-
nization is supported in hardware and does not involve any extra
communication or software protocol activity, and hence is quite
inexpensive. Load imbalance plays a larger role, but shouldnot
be very large.

8k 16k 32k 64k 128k

No. of Particles

0

5

10

15

Sp
ee

du
p

 ORIG-LOCAL
 SPACE
 PARTREE
 UPDATE
 ORIG

Figure 6:Speedups for 16 processors on SGI Challenge.

The ORIG version performs a little worse than the others.
the reason is that its data structures cause more false sharing
and communication as discussed earlier. Figure 7 shows the tree
building cost for the 128k data set for each algorithm. We find

that even on hardware cache-coherent machines, the total execu-
tion time is highly affected by tree building cost, but not for the
good algorithms (ORIG-LOCAL, PARTREE, SPACE and even
UPDATE at this scale).

1p 8p 16p

Processors

0

2

4

6

8

P
er

ce
nt

ag
e(

\%
)

 ORIG-LOCAL
 SPACE
 PARTREE
 UPDATE
 ORIG

Figure 7:Tree-building cost for 128k particles and 16 proces-
sors on SGI Challenge, as a percentage of total execution time.
The cost percentages of ORIG-LOCAL, PARTREE and SPACE
algorithms are the same

4.2 SGI Origin 2000
The Origin machine we use currently has 30 processors. In this
section we examine how the algorithms compare and how the
comparison changes with the data set size and with the number
of processors.

4.2.1 Effect of Data Set Size

The speedups on 30 processors of these five algorithms for dif-
ferent data set sizes is shown in Figure 8.

8k 16k 32k 64k 128k 512k

No. of Particles

0

10

20

30

Sp
ee

du
p

(3
0

pr
oc

es
so

rs
)

 PARTREE
 ORIG-LOCAL
 SPACE
 UPDATE
 ORIG

Figure 8:Speedups on SGI Origin 2000

We find that the ORIG-LOCAL, PARTREE and SPACE ver-
sions all work quite well, their performance is very close toeach
other, and they scale very well with larger data sets. The many
synchronizations needed in building the tree do not affect the
performance very much here either since locks are supportedef-
ficiently in hardware. In fact, SPACE does a little worse than
PARTREE and ORIG-LOCAL due to load imbalance and local-
ity.

The interesting thing is that unlike on the Challenge there
is a big gap between the performance of ORIG version and the
performance of the other four versions. The reason here is that a
”remote” (communication) cache miss costs much more than a
local miss on the Origin, and also causes contention in the inter-
connect, while on the Challenge the costs and contention effects
in the two cases are quite similar. There are many more remote
misses in the ORIG version than the others, mostly because of

6

false sharing in the data structure and to a lesser extent because
a processor’s cells are not allocated locally.

Greater “remote access” will also further exacerbate the load
imbalance. Table 2 shows the time spent for the BARRIER op-
eration for 64k and 512k data sets using 16 processors. The
time used for ORIG version is highest, almost 15 times longer
than ORIG-LOCAL version and it is followed (distantly) by the
SPACE version.

ORIG ORIG-LOCAL UPDATE PARTREE SPACE

64k 0.51 0.022 0.044 0.025 0.076
512k 5.25 0.340 0.412 0.231 0.862

Table 2: Time (in seconds) spent for BARRIER operations in
the application program for 64k and 512k data set

Figure 9 shows the speedup for the tree building phase alone
(accumulated on the measured time-steps). Comparing with Fig-
ure 8, they reflect almost the same characteristics. The speedups
for the whole application have relatively similar curves across
schemes to the speedups of tree building phase, though the
speedups for the tree building are much lower.

8k 16k 32k 64k 128k 512k

No. of Particles

0

5

10

15

Sp
ee

du
p

(3
0

pr
oc

es
so

rs
)

 PARTREE
 ORIG-LOCAL
 SPACE
 UPDATE
 ORIG

Figure 9:Speedups on Origin 2000 for the tree building phase
with 30 processors

4.2.2 Effect of Number of Processors

Figure 10 shows the speedups for 16, 24, and 30 processors with
different tree building algorithms for a 512k particle dataset.

ORIG-LOCAL SPACE ORIG UPDATE PARTREE
5

10

15

20

25

30

SP
E

E
D

U
P

16p
24p
30p

Figure 10:Speedups on Origin 2000 for 16, 24, 30 Processors
with a 512k-particle data set

The PARTREE, ORIG-LOCAL, and SPACE versions scale
very well with the number of processors, with the PARTREE
version always yielding the best speedup (it has the least com-
munication, which is more expensive here). The UPDATE ver-
sion behaves a little worse. The corresponding tree building cost
is shown in Figure 11, and clearly correlates well with overall
performance. In the ORIG version, the tree bulding cost takes
up almost 60% of the total execution time at 30 processors.

1p 8p 16p 24p 30p

Processors

0

20

40

60

P
er

ce
nt

ag
e(

\%
)

 ORIG
 UPDATE
 ORIG-LOCAL
 SPACE
 PARTREE

Figure 11:Percentage of execution time spent in Tree Building
on Origin 2000 for 512k particles on 30 processors

4.3 Paragon
With the shared address space supported in software at page
granularity using shared virtual memory, the performance char-
acteristics of this platform reveals a completely different story.
Even for 16k particles, the time needed for ORIG-LOCAL,
ORIG, UPDATE versions is almost intolerably long given the
limited access we had to the machine. They lead to very sub-
stantial slowdown over a uniprocessor execution. So we only
collect data for the SPACE and PARTREE versions. The reason
for poor performance is that we use a software protocol with a
relaxed memory consistency model on this platform. All of the
(expensive) communication and protocol activity occurs atsyn-
chronization events such as locks with the relaxed softwarepro-
tocol (to reduce false sharing at page granularity which would
otherwise have destroyed performance anyway). Also there is
tremendous serialization at locks because critical sections are
greatly dilated by expensive page faults and protocol activity
within them [14]. The ORIG, ORIG-LOCAL, and UPDATE al-
gorithms use a lot of locking, so they perform very poorly (see
the end of section 4 for measurements of dynamic lock counts).
Since the PARTREE version is more coarse grained and needs
less locking, it performs better. However, the only algorithm
that performs well is the SPACE algorithm, since it completely
avoids using locks during the tree building phase.

Figure 12 gives the speedups for the application using the
SPACE and PARTREE versions, showing that the former per-
forms much better. The reduction in synchronization far out-
weighs any increase in load imbalance or in communication due
to loss of locality across phases.

8k 16k 32k 64k

No. of particles

0

5

10

15

SP
E

E
D

U
P

 SPACE
PARTREE

8k 16k 32k 64k

No. of particles

0

20

40

60

P
E

R
C

E
N

T
A

G
E

SPACE
PARTREE

Figure 12: Speedups and Percentage of Time spent in Tree
Building on Paragon with 16 Processors

For the SPACE algorithm, the tree building cost is usually
less than 20% of the total execution time. But for the PARTREE
algorithm, the tree-building cost usually approximates 50per-
cent. Tree building clearly becomes the bottleneck quite quickly,
and it is important to use algorithms with very little synchro-
nization on such SVM platforms. Another page-grained SVM
platform will be examined next.

7

4.4 Typhoon-0
In this system, the granularity of coherence can be varied (in
powers of two) with hardware support for access control but the
protocol runs in software. We test two protocols on this plat-
form. One is the same HLRC SVM protocol as on the Paragon
with 4k pages. This allows us to examine the same protocol on
platforms with very different performance characteristics. The
other is sequential consistency with 64 bytes coherence gran-
ularity, the protocol for which this machine was designed[11].
With sequential consistency, protocol activity occurs at memory
operations and is not delayed till synchronization points.Large
coherence granularities like 4k bytes would thus perform very
poorly due to false sharing, but synchronization operations are
not nearly as expensive as in relaxed SVM protocols.

4.4.1 HLRC SVM

We obtain results for all five algorithms from 8k to 64k particles
on this platform. 64k particles is the largest data set size we can
run due to memory limitations. Figure 13 shows the speedups
on 16 processors across problem sizes.

8k 16k 32k 64k

No. of particles

0

2

4

6

Sp
ee

du
p

8k 16k 32k 64k

No. of particles

0

20

40

60

80

100

P
er

ce
nt

ag
e

 SPACE
 PARTREE
 LOCAL
 ORIGIN
 UPDATE

Figure 13: Speedups and Percentage of Time spent in Tree
Building on Typhoon-Zero for 16 Processors using the page-
based HLRC SVM protocol

Once again the application with the SPACE version of tree
building vastly outperforms all the others. And the one withthe
PARTREE version is second. The other three usually deliver
a slowdown. With the 64k data set, they are almost 16 times
slower than the sequential time. The results verify that page-
grained SVM platforms are not suitable for fine-grained program
phases with high frequency of synchronization.

With the SPACE algorithm, the percentage of time spent in
tree building is close to 10 percent for most problem sizes on
16 processor systems, but for PARTREE it again reaches 50 per-
cent. For UPDATE, ORIG, and ORIG-LOCAL, with increas-
ing data set size almost all the time is spent on the tree build-
ing (which takes<3% of the time on an uniprocessor). The
speedups for tree building phase alone are shown in Figure 14.
Speedups are poor. With 16 processors, the SPACE version can
get 1.5 times faster, and all the other versions lead to a slow-
down. In this case the data structure difference between ORIG
and ORIG-LOCAL are unimportant compared with the synchro-
nization cost, the opposite of efficient hardware coherent dis-
tributed machines like the Origin 2000.

4.4.2 Fine-grained Sequential Consistency

The coherence granularity, coherence protocol and consistency
model in this case are similar to those on the Origin, but the
protocol is run in software and with less aggressive hardware
support. Latencies and communication controller occupancies
are much larger, and bandwidth is smaller. Compared to HLRC

8k 16k 32k 64k
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

(1
6

pr
oc

es
so

rs
)

 SPACE
 PARTREE
 ORIG-LOCAL
 UPDATE
 ORIG

Figure 14:Speedups for the tree building phase on 16 proces-
sors using the page-grained HLRC SVM protocol

on the same platform, under the Sequential Consistency proto-
col with a granularity of 64bytes the performance difference be-
tween algorithms becomes much smaller. The ORIG-LOCAL
version gets the best speedup (7 on 16 processors with 16k parti-
cles), the SPACE, PARTREE, and UPDATE are almost the same
with a speedup of 4, the ORIG version a little worse. In this
model the synchronization cost is greatly reduced since there
is no protocol overhead incurred in implementing the synchro-
nization as discussed earlier, (the consistency model is not re-
laxed), and all the communication does not happen at synchro-
nization points but at the memory operations themselves. The
poor performance of the ORIG version is caused by whatever
false sharing occurs at 64 byte granularity, since communication
is much more expensive here than on the Origin. Even on the
same platform, the picture is very different than that of HLRC,
where synchronization is far more important than load balance
or false sharing.

To conclude this performance section, we present the num-
ber of locks dynamically used for each processor by different
algorithms in the tree building phase on two platforms, SGI Ori-
gin2000 and Typhoon-zero with HLRC protocol (Figure 15). On
the Typhoon-zero platform, more locks are required than on the
Origin because the HLRC protocol requires additional synchro-
nization to make the code release consistent. At synchronization
points, the shared pages will be invalidated if they have been
written by others. Thus more locks will potentially cause more
page faults, as will greater communication and false sharing on
the Typhoon-zero platform.

P0 P2 P4 P6 P8 P10 P12 P14

PROCESSORS(Typhoon-0)

0

20000

40000

60000

80000

100000

N
o.

 o
f

L
oc

ks

P0 P2 P4 P6 P8 P10 P12 P14

PROCESSORS(Origin 2000)

0

20000

40000

60000

80000

100000

N
o.

 o
f

L
oc

ks

 ORIG
 ORIG-LOCAL
 UPDATE
 PARTREE
 SPACE

Figure 15: The number of locks of each processor executed
in the tree building phase for two time steps with 64k particles
using 16 processors

Figure 15 show that from the ORIG version to the SPACE
version, the number of locks falls off very quickly. This validates
the design strategy of our algorithms: For commodity-oriented
SVM platforms, the goal is to reduce synchronization frequency
(in addition to providing load balance and reducing communica-
tion), even if this impacts load balance a little. The SPACE al-
gorithm runs dramatically better on page-based SVM platforms
that other algorithms and well enough on the other platforms.

8

From ORIG, ORIG-LOCAL, UPDATE, PARTREE to SPACE,
in order to avoid the expensive synchronization on commodity
hardware oriented machines, the number of lock operations be-
comes less and less.

5 Related Work
Parallelizing hierarchical N-body applications for hardware-
coherent (CC-NUMA) and message passing machines has been
well studied earlier. Salmon [4] implemented a Barnes-Hut ap-
plication on a message passing machine. He used aorthog-
onal recursive bisection partitioning technique to obtain good
speedups on a 512 processor NCUBE. Singh et al studied this
application on a prototype CC-NUMA machine, the Stanford
DASH, for both Barnes-Hut and the Fast Multipole Method,
and developed a new partitioning technique calledcostzones that
achieved better performance and ease of programming [3]. That
paper also introduced the PARTREE algorithm in an appendix,
and showed it to improve performance when only a single par-
ticle was allowed per leaf cell in the Barnes-Hut tree. However,
later it was found that allowing multiple particles per leafcell
improved application performance substantially and essentially
eliminated the difference between tree-building algorithms, at
least on hardware CC-NUMA machines at the time, so the algo-
rithm was no longer used and distributed. Finally, Warren and
Salmon implemented an approach very similar tocostzones us-
ing message passing and a hashing approach to maintain a global
tree [2]. There has been other research in parallel N-body appli-
cations, but none focusing on tree building methods for shared
address space systems.

This research focuses on performance across a whole range
of coherent shared address space platforms, from modern, com-
mercial hardware cache-coherent machines with centralized and
distributed memory to page-based software shared virtual mem-
ory systems. The particular focus is on the tree building phase,
which brings down overall performance on commodity-based
systems. Previously proposed algorithms are tested, and new al-
gorithms proposed that outperform them and are the best across
the range of systems.

Another recent paper made a start on studying performance
portability for a shared address space [8]. It includes a hierar-
chical N-body application as one of its many applications ex-
amined, but it does not describe the tree-building algorithms or
examine performance on real commodity-based systems (only
through simulation, and only for page-based shared virtual
memory). This paper is a much more in-depth study of par-
allel tree-building algorithms, describes the new algorithms for
the first time , and quite comprehensively studies the resulting
performance of N-body applications across a wide range of real
platforms.

6 Conclusions
While tree building is not a significant portion of the sequen-
tial execution time in hierarchical N-body applications, and also
not very significant on efficient hardware-coherent systemsat
moderate scale, it becomes crucial to parallel performanceof the
whole application on modern commodity-based coherent shared
address space platforms such as networks of workstations and
SMPs. On these platforms, which implement coherence in soft-
ware, using the tree building algorithms that are accepted for
hardware-coherent systems often leads to either poor applica-
tion speedups or even substantial slowdowns. If shared memory

programming is to port effectively to these commodity commu-
nication architectures like message passing does, which isvery
important in making this attractive model well accepted by ap-
plication users (so a single code, hopefully made much easier to
develop by the shared memory model, will perform well enough
on all available systems), then for these applications the tree
building performance problem must be solved in a performance
portable manner.

This paper studied several different tree-building algorithms
and data structures on four very different platforms that span the
range of commercial and research shared address space systems.
We found that the original algorithms developed and distributed
before perform quite well on efficient hardware-coherent sys-
tems, they do not perform well at all on commodity page-based
shared virtual memory systems. An algorithm called PARTREE
was previously discussed. It improves performance a lot on the
commodity platforms, but not enough. An algorithm that in-
crementally updates the tree based on particle movements in-
stead of rebuilding it every time step doesn’t do even as well
as PARTREE. By understanding that lock-based synchroniza-
tion in the tree building phase is the key performance bottle-
neck on shared virtual memory platforms, we developed and im-
plemented a new, space-based tree-building method called the
SPACE method that uses different partitions for tree-building
than for the rest of the computation in a time-step. This method
eliminates synchronization within the tree-building phase, but at
the cost of some communication, locality and load balance.

Our goal was to understand what algorithms might best be
performance portable across all the platforms, and how different
algorithms interact with different platforms. All the algorithms
have been described (some for the first time) in this paper.

We found that no single version always delivers absolutely
the best performance on all platforms: hardware-coherent and
commodity-based. From the analysis of the results, the impor-
tant bottlenecks are different on different platforms, so different
algorithms do better. The ORIG-LOCAL version is best on SGI
Challenge, the PARTREE version is best on the SGI Origin 2000
platform, the SPACE version is the best on the Paragon and on
Typhoon-Zero for the HLRC shared virtual memory (SVM) pro-
tocol, and the ORIG-LOCAL version is the best on Typhoon-
zero under sequential consistency. However, while the differ-
ences are small on the Challenge and the Origin (except for the
original ORIG version on Origin2000), they are especially large
on the SVM platforms. Overall, the new SPACE algorithm has
by far the best overall performance portability across all systems.
Its performance is dramatically better on commodity systems
when it is better, and not much worse on other systems when it is
worse. This is because it sacrifices only a little communication
and load imbalance to the benefit of a huge amount of synchro-
nization, and the latter is extremely important on SVM platforms
since synchronization is where protocol activity is incurred and
critical sections are often dilated a lot by page faults thatoc-
cur within them, increasing serialization. In fact, the SPACE al-
gorithm is the only algorithm that delivers effective application
speedups on these page based platforms. The PARTREE algo-
rithm comes next in overall performance portability, and also
because it reduces communication at the cost of some load im-
balance. We might draw some more general conclusions from
this, which corroborate the conclusions in [8]. First, coarse grain
applications that synchronize less frequently have much better
performance portability across the range of systems than fine
grain applications, even at the cost of some load balance andlo-
cality. Second, obtaining good speedup on the more commodity
oriented machines for this class of applications is overallmuch

9

more difficult than on the hardware cache-coherent machines.
Future work includes understanding how the different al-

gorithms compare at large scale even on hardware-coherent
systems—i.e. whether algorithms that port well to commodity-
based platforms are also the right algorithms for tightly-
integrated systems but only reveal this at larger scale—and to
see whether even the best tree-building algorithms allow perfor-
mance to scale up on commodity-based communication archi-
tectures.

7 Acknowledgments
Chris Holt developed earlier versions of some of the tree build-
ing codes. The SPACE algorithm was revisited by us, after hav-
ing earlier shelved a similar approach for hardware-coherent ma-
chines, as a result of discussions with Mukund Raghavachari.
We thank David Wood and Mark Hill for use of the Typhoon-
zero platform.

References
[1] J. Barnes and P.Hut, “A hierarchical O(NlogN) force cal-

culation algorithm”, nature,vol. 324, p.446, 1986.

[2] M. Warren, J. Salmon, “A Parallel Hashed Oct-Tree N-
Body Algorithm”, Proceedings of Supercomputing’93.

[3] JP. Singh, C.Holt, et al, “Load Balancing and Data Locality
in Hierarchical N-body Methods”,Technique Report, Stan-
ford University, CSL-TR-92-505, 1992.

[4] John K. Salmon. “Parallel Hierarchical N-body Methods”,
PhD thesis, California Institute of Technology, Decenber
1990.

[5] K. Li, P.Hudak, “Memory coherence in shared virtual
memory systems”, ACM Transaction on Computer Sys-
tems, 7(4):321-359, 1989

[6] Ioannis Schoinas et al, ”Fine-grain Access Control for Dis-
tributed Shared Memory”, Sixth International Conference
on Architectural Support for Programming Languages and
Operating Systems October, 1994.

[7] D.J.Scales, K. Gharachorloo, And C.A.Thekkath. “Shasta:
A low Overhead, Software-only Approach for supporting
Fine-Grained Shared Memory”, International Conference
on Architectural Support for programming Languages and
Operating systems, October 1996.

[8] D. Jiang, H. Shan, JP. Singh, “Application Restructuring
and Performance Portability on Shared Virtual Memory
and Hardware-Coherent Multiprocessors”, in Proceedings
of Principles and Practice of Parallel Programming, June
1997.

[9] JP Singh, C.Holt, T. Totsuka, A.Gupta and J.L.Hennessy,
“Load Balancing and Data Locality in Adaptive Hierarchi-
cal N-body Methods: Barnes-Hut, Fast Multipole, and Ra-
diosity”, Journal of Parallel and Distributed Computing,
June 1995

[10] Y. Zhou, L. Iftode, and K. Li, “Performance Evaluation
of Two Home-Based Lazy Release Consistency Protocols
for Shared Virtual Memory Systems”, In proceedings of
the Operating Systems Design and Implementation Sym-
posium, October, 1996.

[11] Reinhardt S., Larus J., and Wood D., “Tempest and Ty-
phoon: User-Level Shared Memory”, In proceedings of the
21th International Symposium on Computer Architecture,
April 1994.

[12] “Performance Tuning for the Origin2000”,
http://www.sgi.com

[13] J. Laudon, D. Lenoski, “The SGI Origin2000 : A CC-
NUMA Highly Scalable Server”, In proceedings of the
24th International Symposium on Computer Architecture,
June 1997.

[14] L. Iftode, JP Singh, K. Li, “Understanding Application
Performance on Shared Virtual Memory Systems”, In pro-
ceedings of the 23th International Symposium on Com-
puter Architecture, May 1996.

[15] ROSS Technology, Inc. SPARC RISC User’s Guide:
hyper-SPARC Edition, September 1993.

10

