Parallel Tree Building on a Range of Shared Address Space
Multiprocessors: Algorithms and Application Performance

Hongzhang Shan and Jaswinder Pal Singh
Department of Computer Science

Princeton University
{shz, jpg @cs.princeton.edu

January 15, 1998

Abstract sors. This allows commodity shared memory platforms to per-
form well for hierarchical N-body applications for the fitghe,
and more importantly achieves performance portabilitgsiit

Irregular, particle-based applications that use treesefam- also performs very well on hardware-coherent systems.

ple hierarchical N-body applications, are important caners
of multiprocessor cycles, and are argued to benefit greapyo-
gramming ease from a coherent shared address space program- .

ming model. As more and more supercomputing platforms that | ntrOd uction

can support different programming models become avail@ble

users, from tightly-coupled hardware-coherent machioetus- As hierarchical techniques are applied to more and more-prob
ters of workstations or SMPs, to truly deliver on its easerof p lem domains, and applications in these domains model more
gramming advantages to application users it is importatittte complete and irregular phenomena, building irregularsrfeam
shared address space model not only perform and scale welk@f entries efficiently in parallel becomes more importalt

the tightly-coupled case but also port well in performancmss body problems are among the most important applications of
the range of platforms (as the message passing model can).tFee-based simulation methods today, and we use them as the
tree-based N-body applications, this is currently not:thtébile driving domain in this paper. The performance of N-body ap-
the actual computation of interactions ports well, the jp@ra plications has been well-studied on two kinds of platforms:
tree building phase can become a severe bottleneck on cohegssage passing machines [4, 2] and tightly coupled haedwar
ent shared address space platforms, in particular on phasfo cache-coherent multiprocessors [9]. Due to their irregatzd

with less aggressive, commodity-oriented communicatichia dynamically changing nature, a coherent shared addrese spa
tectures (even though it takes less than 3 percent of theitimgprogramming model has been argued to have substantial Ease o
most sequential executions). We therefore investigatpehfer- programming advantages for them, and to also deliver veoglgo
mance of five parallel tree building methods in the context ofperformance when cache coherence is supported efficiemtly i
complete galaxy simulation on four very different platfarthat hardware.

support this programming model: an SGI Origin2000 (an ag- Recently, clusters of workstations or multiprocessorsehav
gressive hardware cache-coherent machine with physidaly become widely and cheaply available to high-end applicatio
tributed memory), an SGI Challenge bus-based shared memaosgrs as well. Since they are capable of delivering high com-
multiprocessor, an Intel Paragon running a shared virtteahm putational performance, they are important and viableqiats

ory protocol in software at page granularity, and a Wisconsior next-generation supercomputing. As a result, the catiter
Typhoon-zero in which the granularity of coherence can ve vahared address space model (like message passing) has been
ied using hardware support but the protocol runs in softiare supported on a much greater variety of systems with both dif-
the last case using both a page-based and a fine-grained pri@i@nt granularities as well as varying levels of hardwarp-s
col). We find that the algorithms used successfully and widgbort in the communication architecture. The focus is ongisin
distributed so far for the first two platforms cause overpfple more commodity-oriented communication architecturetheei
cation performance to be very poor on the latter two comnyeditby relaxing the integration and specialization of the comioar
oriented platforms. An alternative algorithm briefly cafesied tion controller [11] or by leveraging the virtual memory nhec
earlier for hardware coherent systems but then ignoredah tlanism to produce coherence at page granularity (sharegabirt
context helps to some extent but not enough. Nor does an algemory) [5], or by providing access control in software [, 7
rithm that incrementally updates the tree every time-s&tpar in almost all cases running its protocol in software. For the
than rebuilding it. The best algorithm by far is a new one we prshared address space model to truly deliver on its ease of pro
pose that uses a separate spatial partitioning of the dofoaingramming advantages for complex, irregular applicatiamshs

the tree building phase—which is different than the partitig as tree-based N-body applications to end users—for whom it
used in the major force calculation and other phases—and elimay be important that their codes run well across a range of
inates locking at a significant cost in locality and load hata available platforms—it is very important that performana# n

By changing the tree building algorithm, we achieve improvenly be good on hardware cache-coherent systems but also por
ments in overall application performance of more than factowell across these important platforms. Although message-pa

of 4-40 on commaodity-based systems, even on only 16 procesy may have ease of programming disadvantages, it ports qui

well in performance across all these systems. This perfocema The platforms we study range from fine grained hard-
portability advantage may overcome the ease of programmingre coherent machines to fine-grained software coherent ma
advantages of the coherent shared address space modeéif thehines to page-coherent SVM systems, and from centralized
ter cannot deliver good performance on commodity-based sgbared memory systems to distributed ones. They include the
tems, so users in domains like tree-based N-body applitati®GGl Challenge (centralized shared memory, hardware cache-
may prefer to use the more difficult model. The question of paroherent) [12], SGI Origin 2000 (distributed shared memory
formance portability of a shared address space has begum tdvrdware cache-coherent) [12], Intel Paragon (page gtaine
studied [8], but there is a lot more work to be done. By stud$VM)[10] and Typhoon-zero (hardware support for variable
ing performance across platforms in some detail for hidriaed coherence-granularity but protocols running in softwareeao
N-body applications, we were led to study and develop ne treoprocessor)[11] (in the last case, we use a page-based SVM
building algorithms; these algorithms and the resultinggre protocol as well as a fine-grained sequentially consistestbp
mance of the N-body applications across the range of systernf). We use five different algorithms to build the tree, aeek

are the subject of this paper. the other two phases of a time step the same.

Having specified the initial positions and velocities of the _ The next section describes the five tree building algorithms
bodies, the classical N-body problem is to find their posiiaf- S€ction 3 introduces the four platforms. The experimergal r
ter a number of time steps. In the last decade, several Ofyloghults are analyzed in section 4, related work is discusseddn
algorithms have been proposed. The Barnes-Hut method [Lji 5, and section 6 summarizes our conclusions.
the one widely used on sequential and parallel machineytoda
while the tree building issues and algorithms we discuss$yapp - .
to all the methods, we use a 3-dimensional Bames-Hut galady Parallel Tree Buildi ng Algor ithms
simulation as an example application.

The sequential Barnes-Hut method has three phases in eHef five methods we use differ from each other in data struc-
time step of a simulation. In the first tree-building phasepe- tures and/or algorithms. We call them as ORIG, ORIG-LOCAL,
tree is built to represent the distribution of all the bodidhis UPDATE, PARTREE, SPACE. The first two algorithms, ORIG

is implemented by recursively partitioning the space irighe and ORIG-LOCAL, come from the Stanford Parallel Applica-
subspaces until the number of particles in the subspace-is #n Suites. They correspond to the versions in the SPLASH
low a threshold value. The lowest level cells contain badiedd SPLASH-2 programs, respectively. The PARTREE and UP-
and higher level cells contain the summary effect of the boBATE algorithms have been developed previously in the odnte
ies in their rooted subtree. The root cell represents thelavh®f efficient hardware cache-coherent systems, but in puevio
computational space . The second phase computes the ferc&Vprk, a small modification to the original algorithm was faun
teractions. In this phase, each body traverses the tretingtarto Work just as well in that context. We examine these albori
from the root. If the distance between the body and a visielid con modern hardware -coherent machines and study their impac
is large enough, the whole subtree rooted at it will be apipro@n commodity-based platforms as well. The SPACE algorithm
mated by that cell; otherwise, the body will visit all theldnen S @ new algorithm we developed motivated by an understgndin
of the cell, computing their effect individually and recwedy in Of performance bottlenecks on the commodity platforms. eHer

this way. In the third phase each body updates its positiah aff€ only discuss the tree building phase; the force calanatnd
velocity according to the computed forces. update phases are the same in all cases and are discussgd in [9

By studying a range of such systems (that support a coherent
shared address space programming model with varying degrge] QORI G
of efficiency in hardware or software) for hierarchical Nelyo
applications, we find that while the sequentially dominant (In this and the next three algorithms, in the tree buildingggh
97%) force calculation phase parallelizes and scales wedllio each processor is responsible for only those particlestwihigre
platforms, the seemingly unimportant tree building phase passigned to it for force calculation (and update) in its es
forms poorly and very quickly becomes the major bottlenetk dime step. (For the first time step, the particles are evesly a
commodity based communication architectures, often takjm signed to processors). The global octree is built by havig p
more than half the execution time even on 16-32 processer sygssors load their particles concurrently into a singleeshtee,
tem and even resulting in application slowdowns comparea teising locks to synchronize as necessary First, the dimesisib
uniprocessor, and not being easily alleviated by runnimgela the root cell of the tree are determined from the current-posi
problems. The parallel tree building algorithms for whitlese tions of the particles. Each processor then adds its owicjest
results are observed were developed for hardware-cohsysnt one by one to the root cell. Whenever the number of particles
tems, and deliver very good application performance onehds a cell exceeds a fixed number k, the cell is subdivided into 8
at least at moderate scale. Programming for portably goed pgub-cells, each of them representing one sub-space, apathe
formance across shared address space systems thus rélgatireticle recursivelly inserted in the appropriate sub-cetieTree is
different tree building algorithms be developed and usede Ttherefore adaptive in that it will have more levels in theldg
goal of this paper is to examine alternative tree buildingpal density regions. When a particle is actually inserted orleace
rithms on the range of coherent shared address space systéuadly subdivided, a lock is required to guarantee that @iy
and substantially improve the performance of the tree lgld processor is modifying the cell at a time.
phase and hence the entire application. As a result of this re All the cells used are allocated from a single contiguous
search, a new and very different tree building algorithmes dshared array (the shared array of global cells in Figure h)chv
signed that dramatically improves performance on pageéass itself allocated at the beginning of the program. A preoes
shared virtual memory (SVM) systems, while still being consbtains the next index in the array dynamically when it needs
petitive on efficient hardware-coherent and other systeand, “create” a new cell in the tree. Each processor has a separate
thus provides performance portability at least at the sesden- array of cell pointers to record which cells are assigned o+
ined. cal arrays of cell pointers in Figure 1). The arrays of bodieg

body pointers are represented similarly. When bodies ds ce2.3 UPDATE

are reassigned across time-steps, only the value of thegpin . . L . .
in the local arrays change. Experience with the application shows that since the gartic

After the tree has been built, the center of mass of the cefi§tributions in N-body computation tend to evolve slowlittw
are computed in parallel from the bottom of the tree to the tojyMe: the number of particles that move out of the cell in ahic
Each processor is responsible for computing the center ssm&€y Were placed in the previous time step is small. In the UP-

of the cells it “created”. DATE algorithm, instead of rebuilding the tree each timeste
we incremently update the tree every time step as neces$sary.
shared array of global cells every particle we start from the cell it was in in the previouse

step, and move it only if it has crossed its cell boundary.c&in
the size of the whole space changes in each time step, togjo thi
we need more variables in the cell and leaf data structures to
record the space bounds they represented in the previogs tim
step. However, the relative positions in the tree structhes
cells represent remain the same across time-steps. If thielpa
must be moved out of its current leaf cell, we compare it with
its parent recursively until a cell in which it should beloimg
local arrays of cell pointers this time step has been found. Then we move it out of the origi-
nal leaf cell and insert it in the subtree represented by éwdyn
Figure 1:The array of global cells and local arrays of cell poin f_oung cel!, IO(.:klng.and even creating new cells as necessary
: . onsidering Figure 3 as an example, the body in the shaded
ers used in ORIG Algorithm. The shaded cells are actuallg USS5x moves to the box above it in the next time step. When up-
while the blank are not. dating the tree, it will be first moved out of the leaf contaimi
it in this time step, and checked whether it will stay in thd ce
Figure 3 shows a 2-dimensional problem, in which a quatkbeled by number 9 in the tree (which represents the box with
tree is built instead of an octree using the body distributiahe thick border in the figure on the left). Since this is noetr
shown on the left part. The 3-dimensional case is very siniis checked with the root, and inserted from there. The ddsh
lar to this (ignore the boxes and dashed lines in the treedat n line in the tree shows the path by which this particle movesaA
they will be useful when describing the UPDATE algorithm). result, the only particle in the source leaf cell disappesuoshe
leaf is reclaimed, and the particle will be added to its nell ce

2.2 ORIG-LOCAL

The ORIG-LOCAL version of the application is an optimize@'4 PARTREE

version of the ORIG program. The main differences from thg the previous three algorithms, particles are loadedctlie
ORIG version are the data structures used to represent lse Cgyiq 5 single shared tree. As a result, whenever a cell is ac-
First, ORIG-LOCAL distinguishes internal cells in the tfeem tually modified (e.g. particles or new children added) a lock
leaf cells and uses different data structures to repres@mt s needed to implement the necessary mutual exclusion. This
Particles can be contained only in the leaves. Second, @aeh By ses a lot of synchronization, contention and remotesagce
cessor allocates and manages its own cell and leaf arraysamh \yhich are usually expensive in these systems. Especially fo
of allocating them in a single global array and local poirer |5rge numbers of processors, a large amount of contentitn wi
rays (See Figure 2). By keeping its assigned cells (shad®®) cye caused at the first few levels of the tree, when processers a
tiguous in the address space, this allows a processor to@asre \yiting at locks to insert their own particles. To reducesthe

ily allocate its cells in its local memory and reduce falsarsfy oyerheads, another algorithm which we call PARTREE can be
among cells, which is particularly important at larger o@mee seq. The following is the code skeleton to build the glohes
granularities. If bodies are reassigned across time-stie@g are

moved from one processors’s array (declared in a sharedren

to another’s. Each processor also maintains a private thatz s MakeGlobalTree(

ture which includes some frequently accessed variablds asic cell *Local Tree:

the number of cells used and the number of leaves used. In the -

ORIG version, these variables are allocated together iregha Local_Tree = InitRoot();

arrays, increasing the potential for false sharing. In tgqg- InsertParticlesInTree(Local_Particles, Local_Tree);
mance section, we will find that these data structure changes MergeLocalTrees (Local_Tree, Global_Tree);
have a great effect on the execution time of N-body appboati BARRIER;

}

cellarrayforprocessorl:‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

In this algorithm, The function InsertParticlesInTree és r
cellarray forprocessor2: [| [[[[[]] \ sponsible for building a local tree (Locd@tee) for each proces-

) sor using only those particles (LocBhrticles) that are currently
assigned to it (from the previous time step). Figure 4 shdws t
local trees built for each processor assuming the partisiei-d
bution shown in Figure 3. The building of the local trees does
.) not require any communication or synchronization. Aftex b
Figure 2: The local cell arrays used in ORIG-LOCAL Algo-ca| trees have been built, they are merged into a global tyee b
rithm. The shaded cells are actually used while the blanls callergelLocalTrees function. The dimensions of the localsiare
are not precomputed to be the same as those in the final global teee (i.

cellarrayforprocessorn:‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

32 32
O

.. Z.: :. . %\f
xO?g. J i) / b o
K et

3 R PZ/AN PN

CELL:O LEAF:0 PARTICLE: @ @0 H

Figure 3:With 4 processors, each subspace at most have 4 partickesuthber beside the cells or leaves indicating the number
of particles contained in it. The bodies assigned to diffepgocessors are represented by different shape.

the space represented by the root cell). This also meansthéwo particles assigned to different processors will nevaretto

cell in one tree represents the same subspace as the cowespue inserted in the same cell and there is no need for locking.
ing cell in another tree. This fact allows the MergeLocaélte The problem, of course, is imbalance in tree-building if m-si
make merging decisions based only on the types of the lochl qufle spatial decomposition is used. To alleviate this, theeth

global cells not have to worry about sizes and positions. dimensional space is first divided into several sub-spamed,
This will result in the same global tree for this distributio the number of particles in each sub-space computed. If tire nu
as that in Figure 3. ber in some sub-space exceeds a threshold, then that stb-spa

The work unit for merging into the global tree has beeis recursively divided again, and so on until the number of pa
changed from a particle to a cell or subtree. The number tigles in every sub-space is below the threshold. This tiesul
global insert operations will therefore be greatly redycadd partitioning tree corresponds exactly to the actual oafisssl in
hence so will the number of synchronizations. This reductidhe application, but of course is subdivided to fewer levetsi-
comes at a potential cost of redundant work. Instead of tiijrecally below 4. The problem with using the existing partitiaas
being loaded into the global tree, particles will be firstded that they are based on load balancing and come for other,plans
into the local tree and then the local trees will be mergethdf and its particle assignments to processors do not corresfgon
partitioning incorporates physical locality, this ovealdeshould disjoint internal space cells.
be small while the reduction in locking overhead can be subst ~ The resulting sub-spaces are assigned to processors. Since
tial. the particles a processor is assigned for tree building er¢he
same as the ones it is assigned for force calculation (thgrass
ment for force calculation is determined after the tree reenb

P2 P3 P4
o o O o

/]\I /& /R %\ built before), which may result in extra communication aoss|
o) ° of data locality, which is the disadvantage of this scheme.

i & A l\. ./i\ . i\. ./: am N. A processor builds one local subtree for each sub-space as-

signed to it, and then attaches these subtrees to the gheleal t
O/Z/O ° (that was partially constructed during the subdivisionjhaut
locking. The synchronization and contention problems ia th
Figure 4:PARTREE: The local trees created by processors wiiéVious four algorithms are almost completely avoided.e Th
the distribution in Figure 3 trade-off between load imbalance and partitioning _tlmenﬂim
enced by the value of the threshold used in subdividing cells
If we set the threshold value to 8 and the number of pro-
cessors to 4, for the particle distribution in Figure 3, the-t
25 SPACE dimensional space will be partitioned as the left part ofuiégy
5, and the subspaces and particles in them assigned to tioe 4 pr
The PARTREE algorithm reduces locking substantially, hillt s cessors. And during the partitioning phase the global sedsio
has a fair amount of it. The space algorithm eliminates lagki partially created as it is the UPPER part in Figure 5. The el-
entirely in the tree building phase by using a completelfedif lipses correspond to the space assigned to processorsnand i
ent partitioning of bodies and cells than that used in themthdicate the subtrees that need to be created by each pracessor
phases (like force calculation and update). Instead ofguia Thus P1, P2, P3, P4 will create two, four, one and two subtrees
same partitions of particles from the previous time stepalbs individually using the particles contained in the corrasgiag
the other algorithms so far, in this case the space itselfis psubspaces. Thus the bodies assigned to processor for ttge bu
titioned among processors anew (differently) for tredding. ing are different from those assigned by the other algorithm
Each processor is responsible for loading into the treetipas- The creating of the local trees does not need any communica-
ticles that are in subspaces assigned to it. The idea isfttra i tion. And after they have been created, these local treebean
subspaces match cells (leaf or hopefully internal) of the aind directly added to the global tree without locking, sinceyonhe
each subspace (cell) is assigned to a different procedsam, tprocessor will attach a subtree to a given cell position.yTdre

P1

UPPER
@\
@N

(63}

0)

5

|
,,,,,,,,,,, i
|
|
|
|
|
|
|

O : O /
NN AERR
A AN AN

P3 HH P4 ma

H3AMOT =

CELL:O LEAF:O0 PARTICLE: e ®@ 0 B

Figure 5:SPACE: the partitioned space and corresponding globattesgted using the body distribution in Figure 3

shown as the LOWER part in Figure 5. Finally by pulling thgranularity through the virtual memory system. The protoco

UPPER and LOWER pieces togather we get the same octresvasused is the Home-based Lazy Release Consistency model

that in Figure 3. (HLRC) [10]. The granularity of coherence is larger (which
causes more false sharing of the data), as are the costs ef com
munication and synchronization, but more data is trandfare

3 Platforms each communication. So protocol actually is delayed tili-sy
chronization points, and the protocol is multiple-writtefhis
3.1 SGI Challenge means that synchronization events are particularly expes

such platforms. In the Paragon system, each node has a com-
The Challenge is a bus-based, cache-coherent design with grite processor and a communication co-processor, whiak sha
tralized memory. It is capable of holding up to 36 MIPS R44084 MB of local memory. Both processors are 50MHz i860 mi-
processors. Our system has 16 150MHz R4400 processarsprocessors with 16k bytes of I-cache and 16 kbytes Decach
They are connected by a 50MHz wide, high speed bus with Z5Ge data caches are coherent between the two processors. The
data bits and 40 address bits, called POWERpath-2. The suemory bus provides a peak bandwidth of 400 MBytes/sec. The
tained bus transfer rate can be 1.22GB/sec. This bus imtercnodes are interconnected with a worm-hole routed 2-D mesh
nects all the major system components and provides supmortrietwork whose peak bandwidth is 200 Mbytes/s per link. The
coherence. The coherence scheme is a 4-state write-iat@licco-processor runs exclusively in kernel mode, dedicatedho-
cache coherence protocol. The memory can be up to 16GB. Thenication. The one way message passing latency of a 4-byte
total miss penalty for a secondary cache miss is about 1100n8IX/2 message is about h@.

3.2 SGI Origin 2000 3.4 Typhoon-0

This is a new hardware-coherent distributed shared menysry Sthis system provides hardware support for coherence(acces
tem from SGI. Each node contains two 200Mhz MIPS R100@@ntrol) at any fixed granularity that is a multiple of the kac
processors connected by a system bus, a fraction of the mgia size(64 bytes), but smaller than a page(4kb), and res t
memory on the machine (1-4GB per node), a combined comM¥intocol in software on a separate co-processor. The system
nication/coherence controller and network interfaceechihe -gnsists of 16 dual-processor SUN SPARCStation 20s. Each
Hub, and an I/O interface called Xbow [13]. Our system has 3@ntains two 66MHz Ross HyperSPARC processors, one used
processors with a 4MB secondary cache per processor. Tk lagr computation and the other to run the coherence protocol.
memory bandwidth is 512MB/s, shared by the local two procegne cache-coherent 50MHz MBus connects all the processors
sors and other devices on the bus. the maximum local memgpg the memory. 1/O devices reside on the 25MHz SBus. Each
access time is 313ns, and the remote maximum access timgdge contains a Myrinet network interface which includes a 7
703ns. The interconnection network has a hypercube topology|ps custom processor(LANai) and 128KB of memory. The 16
The peak bisection bandwidth is over 16GB/s, and the p&r-lifodes are connected by 3 Myrinet 8-port crossbar switches. T
bandwidth is 1.2GB/s. There are 4 virtual channels for eath | ports of each switch are used to connect to other switcheth Wi
and they are bi-directional. The distributed directorytpool is Myrinet hardware, the host(SPARC) processor and Myrinet

used for cache coherence. The page size is 16kb. LANai processor cooperate with each other to send and receiv
data. The uncontended latency for a 4-byte round trip mes-
3.3 paragon sage is 40 microseconds. Bandwidth is limited by the SBus.

Each node also contains a Typhoon-0 card that logically per-
Unlike previous systems, the Paragon was designed withémtms fine-grain access control checks on all loads andstiyre
hardware support for a shared address space [15]. The shaegsically snooping memory bus transactions and expbpiti
address space and coherence are provided in software at mhggion. Several coherence protocols have been implehémte

softwares from protocol based on sequentially consistard-h that even on hardware cache-coherent machines, the tetalex
ware coherence at fine grain (but running in software) togrottion time is highly affected by tree building cost, but not foe
cols like HLRC based on SVM at coarse grain. We will examirgood algorithms (ORIG-LOCAL, PARTREE, SPACE and even

both these schemes. UPDATE at this scale).
8- .
4 Performance]
:S\ —-e—- ORIG-LOCAL
We now discuss the results on the four platforms. We repert th 5. . o A
actual execution times and the speedups obtained over k& sing g T T UroaTe
processor on the same platform. We use the sequential @éxecut L
time (in seconds) from the best sequential version of thédi-app
cation to measure speedups. Table 1 shows the sequential exe 0
8p 16p

cution time for all four platforms. All times and most spepdu »
in this section are for the entire application (though rumgriior
only a few time steps), and some time speedups are Shownff?éure 7: Tree-building cost for 128k particles and 16 proces-

only the tree building phase. Timing is begun after two time R
ste)pl)s to eliminate ur?rgpresentative ?:old-stgrt and leptrs- sors on SGI Challenge, as a percentage of total executian tim

tioning scheme settle down. We also present the percenfagé 6 COst percentages of ORIG-LOCAL, PARTREE and SPACE
time that is spent in the tree building phase for each algorit algorithms are the same

On some platforms, we can not run all the data sets due to mem-

ory limitations. These are marked with dashes in the table.

Processors

platform no. of particles 42 SGI Origin 2000

— glé 176;3(f?Zkl gglé 17278;;(;’igkz The Origin machine we use currently has 30 processors. $n thi
Origin 2000 : . : : : “ 1l section we examine how the algorithms compare and how the
cralenge | 16.0 | 34.9 | 76.1 | 161.3] 339.3 - comparison changes with the data set size and with the number
Typhoon-0 154 354 729 1542 3307 - Of prOCESSOfS.

Paragon 80.1| 168.4| 366.2 | 862.5 - -

Table 1:The Best Sequential Time on the four Platforms 4.2.1 Effect of Data Set Size

The speedups on 30 processors of these five algorithms for dif
ferent data set sizes is shown in Figure 8.

4.1 SGI Challenge .-

On this platform, all the five versions deliver good speedisps
Figure 6), ranging from 12 to 15 on 16 processors, and the data
set size does not have much effect on it. The ORIG-LOCAL
version gets the best result (15), followed by the SPACE and
PARTREE versions; the ORIG version is the worst. The algo-
rithms do not change performance very much because synchro-
nization is supported in hardware and does not involve atraex 0
communication or software protocol activity, and hencele 8 16k 3k 64k 128k 51
inexpensive. Load imbalance plays a larger role, but shoatd No.of Particles

be very large.

———

N
o
I

—+-- PARTREE
- -e- ORIG-LOCAL
SPACE
—#— UPDATE
--+-- ORIG

Speedup (30 processors)
5
Il

Figure 8:Speedups on SGI Origin 2000

We find that the ORIG-LOCAL, PARTREE and SPACE ver-
sions all work quite well, their performance is very closetxh

- -e—- ORIG-LOCAL

g 197 —x— SPACE other, and they scale very well with larger data sets. Theyman
E Z3Z Uboate synchronizations needed in building the tree do not affeet t
5 e ORIG performance very much here either since locks are suppefted

ficiently in hardware. In fact, SPACE does a little worse than
PARTREE and ORIG-LOCAL due to load imbalance and local-
8k 16k 32k 64k 128k ity.
No-of Particies The interesting thing is that unlike on the Challenge there
. . is a big gap between the performance of ORIG version and the
Figure 6:Speedups for 16 processors on SGI Challenge. performance of the other four versions. The reason heratsith
"remote” (communication) cache miss costs much more than a
The ORIG version performs a little worse than the otherlacal miss on the Origin, and also causes contention in tiee-in
the reason is that its data structures cause more falsenghacionnect, while on the Challenge the costs and contentiectsff
and communication as discussed earlier. Figure 7 showsdbe tn the two cases are quite similar. There are many more remote
building cost for the 128k data set for each algorithm. We findisses in the ORIG version than the others, mostly because of

false sharing in the data structure and to a lesser exteatibec ” b ’
a processor’s cells are not allocated locally. :

Greater “remote access” will also further exacerbate thd lo %‘0* v “eoRe
imbalance. Table 2 shows the time spent for the BARRIER op- € ' ~e- ORIGLOCAL
eration for 64k and 512k data sets using 16 processors. The ;5; 20 e 3T avree
time used for ORIG version is highest, almost 15 times longer ©
than ORIG-LOCAL version and it is followed (distantly) byeth
SPACE version. 0

1p 8p 16p 24p 30p
Processors
ORIG ORIG-LOCAL UPDATE PARTREE SPACE
64k | 0.51| 0.022 | 0.044] 0.025| 0.076 Figure 11:Percentage of execution time spent in Tree Building
512k | 5.25| 0.340 | 0.412] 0.231] 0.862 on Origin 2000 for 512k particles on 30 processors

Table 2: Time (in seconds) spent for BARRIER operations in
the application program for 64k and 512k data set 4.3 Paragon

. - With the shared address space supported in software at page
Figure 9 shows the speedup for the tree building phase all‘_iﬂgnularity using shared virtual memory, the performartuarc

(accumulated on the measured time-steps). Comparing Wgth Fycreristics of this platform reveals a completely diffrstory.

ure 8, they reflect almost the same characteristics. Thelepse gyen for 16k particles, the time needed for ORIG-LOCAL,

for the whole application have relatively similar curves@®s oR|G, UPDATE versions is almost intolerably long given the

schemes to the speedups of tree building phase, though |fBfieq access we had to the machine. They lead to very sub-

speedups for the tree building are much lower. stantial slowdown over a uniprocessor execution. So we only
collect data for the SPACE and PARTREE versions. The reason

15 for poor performance is that we use a software protocol with a
relaxed memory consistency model on this platform. All a&f th

. PARTREE (expensive) communication and protocol activity occursyai-

g OB LOCAL chronization events such as locks with the relaxed softpere

e - UPDATE tocol (to reduce false sharing at page granularity which ldiou
i

otherwise have destroyed performance anyway). Also ttere i
tremendous serialization at locks because critical sestere
greatly dilated by expensive page faults and protocol dgtiv

8k 16k 32k 64k 128k 512k

o ot within them [14]. The ORIG, ORIG-LOCAL, and UPDATE al-
' gorithms use a lot of locking, so they perform very poorlyeg(se

Figure 9: Speedups on Origin 2000 for the tree building pha@e end of section 4 for measurements of dynamic lock counts)

ince the PARTREE version is more coarse grained and needs
less locking, it performs better. However, the only alduorit
that performs well is the SPACE algorithm, since it compiete
avoids using locks during the tree building phase.
Figure 12 gives the speedups for the application using the
SPACE and PARTREE versions, showing that the former per-

Figure 10 shows the speedups for 16, 24, and 30 processd)rS\&j ms much better. The reduction in synchronization far- out

; D . - ighs any increase in load imbalance or in communicati@ du
different tree building algorithms for a 512k particle dat. to loss of locality across phases.

with 30 processors

4.2.2 Effect of Number of Processors

30

60
15 - - SPACE
25

—x— PARTREE /x\(

- - SPACE
—%— PARTREE

= 16p
= 24p
15 = 30p

,_.
S
\
'
.
\
N
3

-

SPEEDUP
SPEEDUP

N
S

5
@
PERCENTAGE

—— [S, o----""*

ORIG-LOCAL SPACE ORIG UPDATE PARTREE

8k 16k 32 64k 8k 16k 32 64k
No. of particles No. of particles

Figure 10:Speedups on Origin 2000 for 16, 24, 30 Processors
with a 512k-particle data set Figure 12: Speedups and Percentage of Time spent in Tree
Building on Paragon with 16 Processors

The PARTREE, ORIG-LOCAL, and SPACE versions scale
very well with the number of processors, with the PARTREE For the SPACE algorithm, the tree building cost is usually
version always yielding the best speedup (it has the least cdess than 20% of the total execution time. But for the PARTREE
munication, which is more expensive here). The UPDATE veaigorithm, the tree-building cost usually approximatespg®d-
sion behaves a little worse. The corresponding tree bgjldost cent. Tree building clearly becomes the bottleneck quitekdy
is shown in Figure 11, and clearly correlates well with olleraand it is important to use algorithms with very little synchr
performance. In the ORIG version, the tree bulding costgakeization on such SVM platforms. Another page-grained SVM
up almost 60% of the total execution time at 30 processors. platform will be examined next.

2.0

4.4 Typhoon-0 ~

In this system, the granularity of coherence can be varied (i g ///' o
powers of two) with hardware support for access control bat t = —+-- PARTREE
protocol runs in software. We test two protocols on this plat g G-y
form. One is the same HLRC SVM protocol as on the Paragon g | e ORG
with 4k pages. This allows us to examine the same protocol on & i

platforms with very different performance characteristiche R D

other is sequential consistency with 64 bytes coherence-gra o 16k % o4k

ularity, the protocol for which this machine was designdd[1

With sequential consistency, protocol activity occurs ammory Figure 14:Speedups for the tree building phase on 16 proces-
operations and is not delayed till synchronization poihisrge sors using the page-grained HLRC SVM protocol

coherence granularities like 4k bytes would thus performy ve

poorly due to false sharing, but synchronization operatiare

not nearly as expensive as in relaxed SVM protocols. on the same platform, under the Sequential Consistencp-prot
col with a granularity of 64bytes the performance differehe-
4.41 HLRC SVM tween algorithms becomes much smaller. The ORIG-LOCAL

version gets the best speedup (7 on 16 processors with 16k par
We obtain results for all five algorithms from 8k to 64k pae& cles), the SPACE, PARTREE, and UPDATE are almost the same
on this platform. 64k particles is the largest data set siee€an with a speedup of 4, the ORIG version a little worse. In this
run due to memory limitations. Figure 13 shows the speedup®del the synchronization cost is greatly reduced sinceethe

on 16 processors across problem sizes. is no protocol overhead incurred in implementing the syachr
- nization as discussed earlier, (the consistency modeltiseio
. _Adi;;;;ziiff* laxed), and all the communication does not happen at syachro
1 T w]" nization points but at the memory operations themselvese Th
. wl poor performance of the ORIG version is caused by whatever
§ e §’ T false sharing occurs at 64 byte granularity, since comnatigic
& & <o T Panrmee is much more expensive here than on the Origin. Even on the
ol “3 omen same platform, the picture is very different than that of LR
e s ——— where synchronization is far more important than load hagan
° 8k 16k SZI\E\\:M(0 8k 16k 32k 64k Or false Shanng'
o of particles No. of particies To conclude this performance section, we present the num-

) ber of locks dynamically used for each processor by differen
Figure 13: Speedups and Percentage of Time spent in Trgkjorithms in the tree building phase on two platforms, S& O
Building on Typhoon-Zero for 16 Processors using the paggin2000 and Typhoon-zero with HLRC protocol (Figure 15). On
based HLRC SVM protocol the Typhoon-zero platform, more locks are required tharhen t

Origin because the HLRC protocol requires additional symch
Once again the application with the SPACE version of tré#zation to make the code release consistent. At synchatoiz
building vastly outperforms all the others. And the one witd Points, the shared pages will be invalidated if they havenbee
PARTREE version is second. The other three usually delivéfitten by others. Thus more locks will potentially causereno
a slowdown. With the 64k data set, they are almost 16 timeage faults, as will greater communication and false sasin
slower than the sequential time. The results verify thatepaghe Typhoon-zero platform.
grained SVM platforms are not suitable for fine-grained pang

10000¢ 10000¢

phases with high frequency of synchronization. .—"w .

With the SPACE algorithm, the percentage of time spentin swoyyse s ™ " e L I S
tree building is close to 10 percent for most problem sizeson, .| ~*7 T " PR iy 5
16 processor systems, but for PARTREE it again reaches 50 pef . - : N v
cent. For UPDATE, ORIG, and ORIG-LOCAL, with increas- £ “r*_._/ \\A,/N’/ g o) et e
ing data set size almost all the time is spent on the tree -build . ——
ing (which takes<3% of the time on an uniprocessor). The e T I P
speedups for tree building phase alone are shown in Figure 14 "% %" = # m e riz e b0 P2 i Pe Po Pl0 P2 P

PROCESSORS(Typhoon-0) PROCESSORS(Origin 2000)

Speedups are poor. With 16 processors, the SPACE version can
get 1.5 times faster, and all the other versions lead to a-sl .
down. In this case the data structure difference betweerﬂ)g_\TN'gure 15: The number of locks of each processor executed
and ORIG-LOCAL are unimportant compared with the synchrd? the tree building phase for two time steps with 64k pagsicl
nization cost, the opposite of efficient hardware coherést dusing 16 processors
tributed machines like the Origin 2000.

Figure 15 show that from the ORIG version to the SPACE

; ; ; ; version, the number of locks falls off very quickly. This igstes

442 Fine-grained Sequential Consistency the design strategy of our algorithms: For commodity-ceen
The coherence granularity, coherence protocol and cemgigt SVM platforms, the goal is to reduce synchronization fregye
model in this case are similar to those on the Origin, but tlim addition to providing load balance and reducing comroani
protocol is run in software and with less aggressive hardwation), even if this impacts load balance a little. The SPAGE a
support. Latencies and communication controller occuigancgorithm runs dramatically better on page-based SVM platfor
are much larger, and bandwidth is smaller. Compared to HLRI@at other algorithms and well enough on the other platforms

From ORIG, ORIG-LOCAL, UPDATE, PARTREE to SPACE programming is to port effectively to these commodity commu

in order to avoid the expensive synchronization on commyoditication architectures like message passing does, whieérys

hardware oriented machines, the number of lock operatiens bmportant in making this attractive model well accepted py a

comes less and less. plication users (so a single code, hopefully made much etsie
develop by the shared memory model, will perform well enough
on all available systems), then for these applications ke t

5 Related Work building performance problem must be solved in a perforreanc
portable manner.

Parallelizing hierarchical N-body applications for hamste- This paper studied several different tree-building altyoris
coherent (CC-NUMA) and message passing machines has bgeg qata structures on four very different platforms thansine
well studied earlier. Salmon [4] implemented a Bames-Huit & ange of commercial and research shared address spaceisyste
plication on a message passing machine. He usedlBg- \ye found that the original algorithms developed and distet
onal recursive bisection partitioning technique to obtain goodpefore perform quite well on efficient hardware-cohererg-sy
speedups on a 512 processor NCUBE. Singh et al studied {f$s they do not perform well at all on commodity page-based
application on a prototype CC-NUMA machine, the Stanforghaeq virtual memory systems. An algorithm called PARTREE
DASH, for both Barnes-Hut and the Fast Multipole Methodyas previously discussed. It improves performance a lohen t
and_developed anew partitioning technique cad:lmizonesthat ommodity platforms, but not enough. An algorithm that in-
achieved better performance and ease of programming [&t TRrementally updates the tree based on particle movements in
paper also introduced the PARTREE algorithm in an appenditeaq of rebuilding it every time step doesn’t do even as well
and showed it to improve performance when only a single pgls pARTREE. By understanding that lock-based synchroniza-
ticle was allowed per leaf cell in the Barnes-Hut tree. H®¥eV o, in the tree building phase is the key performance bottle
later it was found that allowing multiple particles per l&&fl hocy on shared virtual memory platforms, we developed and im
improved application performance substantially and &880 jemented a new, space-based tree-building method céiéed t
eliminated the difference between tree-building algon$h at SpACE method that uses different partitions for tree-bingd
least on hardware CC-NUMA machines at the time, so the algfa, for the rest of the computation in a time-step. This wgth
rithm was no longer used and distributed. Finally, Warred ag|iminates synchronization within the tree-building phasut at
Salmon implemented an approach very similacaetzones us- the cost of some communication, locality and load balance.

Ing message passing and a hashing approach to maintairad glo Our goal was to understand what algorithms might best be

tree [2]. There has been other research in parallel N-bogii-a|
[2] p a plperformance portable across all the platforms, and howeifft

cations, but none focusing on tree building methods forestha X : L X
address space systems. algorithms interact with different platforms. All the algihms

This research focuses on performance across a whole rafg4e been described (some for the first time) in this paper.
of coherent shared address space platforms, from modem, co We found that no single version always delivers absolutely
mercial hardware cache-coherent machines with centchéine the best performance on all platforms: hardware-coheredt a
distributed memory to page-based software shared virteahm commodity-based. From the analysis of the results, the impo
ory systems. The particular focus is on the tree buildingsphatant bottlenecks are different on different platforms, gtedent
which brings down overall performance on commodity-basedgorithms do better. The ORIG-LOCAL version is best on SGI
systems. Previously proposed algorithms are tested, améire Challenge, the PARTREE version is best on the SGI Origin 2000
gorithms proposed that outperform them and are the bessacrmlatform, the SPACE version is the best on the Paragon and on
the range of systems. Typhoon-Zero for the HLRC shared virtual memory (SVM) pro-
Another recent paper made a start on studying performartoeol, and the ORIG-LOCAL version is the best on Typhoon-
portability for a shared address space [8]. It includes aahie zero under sequential consistency. However, while thediff
chical N-body application as one of its many applications egnces are small on the Challenge and the Origin (except éor th
amined, but it does not describe the tree-building algoritior original ORIG version on Origin2000), they are especiadisge
examine performance on real commodity-based systems (ootythe SVM platforms. Overall, the new SPACE algorithm has
through simulation, and only for page-based shared virtuaf far the best overall performance portability acrossystems.
memory). This paper is a much more in-depth study of pdts performance is dramatically better on commodity system
allel tree-building algorithms, describes the new aldoris for when itis better, and not much worse on other systems wheniiti
the first time , and quite comprehensively studies the regult worse. This is because it sacrifices only a little commuigcat
performance of N-body applications across a wide rangeaif r@nd load imbalance to the benefit of a huge amount of synchro-
platforms. nization, and the latter is extremely important on SVM piatfis
since synchronization is where protocol activity is ineatiand
. critical sections are often dilated a lot by page faults that
6 Conclusions cur within them, increasing serialization. In fact, the $F2al-
gorithm is the only algorithm that delivers effective apglion
While tree building is not a significant portion of the sequerspeedups on these page based platforms. The PARTREE algo-
tial execution time in hierarchical N-body applicationsdalso rithm comes next in overall performance portability, andoal
not very significant on efficient hardware-coherent systamsbecause it reduces communication at the cost of some load im-
moderate scale, it becomes crucial to parallel performaftiee balance. We might draw some more general conclusions from
whole application on modern commodity-based cohereneshathis, which corroborate the conclusions in [8]. First, c@agrain
address space platforms such as networks of workstatiaths applications that synchronize less frequently have mudtebe
SMPs. On these platforms, which implement coherence in sqferformance portability across the range of systems than fin
ware, using the tree building algorithms that are accepbted fjrain applications, even at the cost of some load balancéoand
hardware-coherent systems often leads to either poorcasplicality. Second, obtaining good speedup on the more comgnodit
tion speedups or even substantial slowdowns. If shared memoriented machines for this class of applications is overalth

more difficult than on the hardware cache-coherent machineq11] Reinhardt S., Larus J., and Wood D., “Tempest and Ty-

Future work includes understanding how the different al-
gorithms compare at large scale even on hardware-coherent

systems—i.e. whether algorithms that port well to commadity

based platforms are also the right algorithms for tightl

integrated systems but only reveal this at larger scale—and't
see whether even the best tree-building algorithms allafope

mance to scale up on commodity-based communication ardAs]

tectures.

v

Acknowledgments

Chris Holt developed earlier versions of some of the treddbui
ing codes. The SPACE algorithm was revisited by us, after hav
ing earlier shelved a similar approach for hardware-caftare-

15
chines, as a result of discussions with Mukund Raghavacheglri

We thank David Wood and Mark Hill for use of the Typhoon-
zero platform.

References

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

J. Barnes and P.Hut, “A hierarchical O(NlogN) force cal-
culation algorithm”, nature,vol. 324, p.446, 1986.

M. Warren, J. Salmon, “A Parallel Hashed Oct-Tree N-
Body Algorithm”, Proceedings of Supercomputing’93.

JP. Singh, C.Holt, et al, “Load Balancing and Data Ldyali
in Hierarchical N-body Methods”, Technique Report, Stan-
ford University, CSL-TR-92-505, 1992.

John K. Salmon. “Parallel Hierarchical N-body Methods”
PhD thesis, California Institute of Technology, Decenber
1990.

K. Li, P.Hudak, “Memory coherence in shared virtual
memory systems”, ACM Transaction on Computer Sys-
tems, 7(4):321-359, 1989

loannis Schoinas et al, "Fine-grain Access Control fis-D
tributed Shared Memory”, Sixth International Conference
on Architectural Support for Programming Languages and
Operating Systems October, 1994.

D.J.Scales, K. Gharachorloo, And C.A.Thekkath. “Shast
A low Overhead, Software-only Approach for supporting
Fine-Grained Shared Memory”, International Conference
on Architectural Support for programming Languages and
Operating systems, October 1996.

D. Jiang, H. Shan, JP. Singh, “Application Restructgrin
and Performance Portability on Shared Virtual Memory
and Hardware-Coherent Multiprocessors”, in Proceedings
of Principles and Practice of Parallel Programming, June
1997.

JP Singh, C.Holt, T. Totsuka, A.Gupta and J.L.Hennessy,
“Load Balancing and Data Locality in Adaptive Hierarchi-
cal N-body Methods: Barnes-Hut, Fast Multipole, and Ra-
diosity”, Journal of Parallel and Distributed Computing,
June 1995

Y. Zhou, L. Iftode, and K. Li, “Performance Evaluation
of Two Home-Based Lazy Release Consistency Protocols
for Shared Virtual Memory Systems”, In proceedings of
the Operating Systems Design and Implementation Sym-
posium, October, 1996.

10

f12]

[14]

phoon: User-Level Shared Memory”, In proceedings of the
21th International Symposium on Computer Architecture,
April 1994.

“Performance Tuning
http://www.sgi.com

J. Laudon, D. Lenoski, “The SGI Origin2000 : A CC-

NUMA Highly Scalable Server”, In proceedings of the

24th International Symposium on Computer Architecture,
June 1997.

L. Iftode, JP Singh, K. Li, “Understanding Application
Performance on Shared Virtual Memory Systems”, In pro-
ceedings of the 23th International Symposium on Com-
puter Architecture, May 1996.

for the Origin2000”,

] ROSS Technology, Inc. SPARC RISC User's Guide:

hyper-SPARC Edition, September 1993.

