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Abstract

Tibshirani (1996) proposed the least absolute
shrinkage and selection operator (LASSO) which es-
timates a vector of regression coefficients by min-
imising the residual sum of squares subject to a con-
straint (penalty) on the sum of the absolute values of
the coefficient estimates. In this paper, we describe
several algorithms that can be used to calculate the
LASSO solution.

1 Introduction

If one uses linear regression to model observations
(xi1, . . . , xim, yi), i = 1, . . . , n, where the xijs are
the regressors and yi the response for the ith obser-
vation, then ordinary least squares regression finds
the linear combination of the xijs that minimises the
residual sum of squares. However, if m is large, per-
haps even m > n, or if the regressor variables are
highly correlated, then the variances of the least-
squares coefficient estimates may be unacceptably
high. Standard methods for addressing this diffi-
culty include ridge regression and, particularly in
cases where a more parsimonious model is desired,
subset selection.

As an alternative to standard ridge regression and
subset selection techniques, Tibshirani (1996) pro-
posed the least absolute shrinkage and selection op-
erator (LASSO), which minimises the residual sum
of squares under a constraint on the L1-norm of co-
efficient vector. Thus the LASSO estimator solves
the optimisation problem

min
β1,...,βm
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m
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(1a)

subject to

m
∑

j=1

|βj | ≤ t. (1b)

To simplify notation, define the response vector as
y = (y1, . . . , yn)′, the β = (β1, . . . , βm)′ and vectors

xj = (x1j , . . . , xnj)
′, j = 1, . . . ,m. Then we can

write the n×m design matrix as X = (x1, . . . ,xm)
and problem (1) in matrix form as follows:

min
β∈Rm

f(β) =
1

2
(y −Xβ)′(y −Xβ) (2a)

subject to g(β) = t− ‖β‖1 ≥ 0. (2b)

In the following, we will assume that the response
vector y is centred (

∑

i yi = 0) and the vectors xj ,
j = 1, . . . ,m, are standardised (

∑

i xij = 0 and
∑

i x
2
ij/n = 1 for all j = 1, . . . ,m). Note that due to

this standardisation, the matrix X can have at most
m = n−1 linear independent columns. If m ≤ n−1,
then we assume that the matrix X has full column
rank, otherwise we assume that there are at least
n − 1 columns such that the sub matrix build from
these columns has full column rank.

The rest of the paper is structured as follows. Sec-
tion 2 give an exact characterisation of the solutions
of (2). It turns out that the solutions β̂(t) of (2) as
functions of t are piecewise linear and in Section 3
we describe an algorithm to calculate the complete
solution path.

However, if the loss function f(·) in (2a) is re-
placed by another loss function, e.g. a likelihood
based loss function to fit a generalised linear model
(McCullagh and Nelder, 1989) under an L1 con-
straint on the parameter vector, then the solution
path β̂(t) is, typically, no longer piecewise linear. In
such situations it is of interest to solve (2), embed-
ded within an iteratively reweighted least squares
(IRLS), for a given t. An algorithm to solve (2) for
a given t is described in Section 4.

In Section 5 we discuss the penalised optimisation
problem that is equivalent to the constrained optimi-
sation problem (2) and discuss an efficient algorithm
to solve the penalised problem in Section 6. Some
final comments are given in Section 7.



2 Characterisation of solutions

The Lagrangian function corresponding to prob-
lem (2) is

L(β, λ) = f(β)− λg(β).

and, together with results from convex analysis
(Rockafellar, 1970; Osborne, 1985; Clarke, 1990), it
can be used to characterise solutions of (2). For

problem (2), β̂ is a solution if, and only if, λ ≥ 0
exists such that

X
′r̂ = λc, (3)

where r̂ = y − X
′β̂ and c = (c1, . . . , cm)′ is such

that

ci











= 1 if β̂i > 0,

= −1 if β̂i < 0,

∈ [−1, 1] if β̂i = 0.

For details see Osborne et al. (2000a,b) and
Efron et al. (2004).

Note that ‖c‖∞ = maxj{|cj |} = 1 and c′β̂ =

‖β̂‖1. Hence

λ = ‖X′r̂‖∞ = r̂
′
Xβ̂/‖β̂‖1.

Since the columns of X have been standardised,
the entries in the vector X

′r̂ are proportional to the
empirical correlations between the residual vector r̂

and the regressors variables xj , j = 1, . . . ,m. Thus,
two observation follow from (3):

(P1) at the solution β̂ of (2), a component of β̂ may
be non-zero if, and only if, the absolute value of
the correlation between the residual vector and
the corresponding regressor variables is maxi-
mal; and

(P2) the sign of any non-zero component of β̂ must
equal the sign of the correlation between the
residual vector and the corresponding regressor
variable.

One can also show, although this fact does not fol-
low directly from (3), that if we vary t and consider

the solution β̂(t) of (2) as a function of t, then β̂(t)
is a piecewise linear function (Osborne et al., 2000a;
Efron et al., 2004).

The fact that β̂(t) is a piecewise linear function
of t, together with properties (P1) and (P2), makes
it possible to design algorithms that calculate the
complete solution path β̂ very efficiently. Such an
algorithm is described below in Section 3.

The results stated in this section can be readily ex-
tended to more general problems. For example, the

right hand side of (3) is the gradient of the (loss)
function f(β), while the vector on the left is an el-
ement of the subgradient of g(β) (Osborne, 1985).
Thus, if we would replace the quadratic loss func-
tion f(·) by another loss function (e.g. a likelihood
based loss function to fit generalised linear models
under an L1 constraint on the parameter vector, or
Huber’s ψ function (Rosset and Zhu, 2004) for ro-
bust regression), then the solutions of the modified
problem can be characterised by an equation simi-
lar to (3), albeit with the right hand side replaced
by the gradient of the new loss function. The solu-
tions would have properties similar to (P1) and (P2)
described above.

In general, however, the solution path β̂(t) will
no longer be piecewise linear in t. If one minimises
the quadratic loss function under constraints on the
parameter that are convex polyhedral, then the solu-
tion path will be linear in t (M R Osborne, personal
communication). Rosset and Zhu (2004) discuss for
which pairs of loss functions and penalty/constraint
functions the solution path is piecewise linear. Some
results on how to track a solution path that is not
piecewise linear can be found in Rosset (2004).

3 Homotopy algorithm

Osborne et al. (2000a) showed that the solution β̂(t)
of (2) as a function of t is piecewise linear and de-
scribe an algorithm that calculates the complete so-
lution path. The description of their algorithm con-
centrates heavily on the efficient implementation of
the algorithm via a (partial) QR factorisation of the
matrix X.

Efron et al. (2004) introduce least angle regression
and show how this technique relates to the LASSO
and other recently proposed variable selection meth-
ods. Their discussion provides further insight into
the LASSO and a geometrical interpretation of the
piecewise linear homotopy that describes the com-
plete solution path.

The algorithm for calculating the complete solu-
tion path described below is similar to the one dis-
cussed in Efron et al. (2004) but for a slight modifi-
cation in the way the direction in which one moves
during each iteration is calculated.

The algorithm starts at t = 0. Obviously, for that
value the solution of (2) is β̂ = 0, the fitted values
are µ̂ = 0 and the residual vector is r̂ = y. As the
algorithm progresses, only some components of β are
allowed to be non-zero and we use a set, say σ, to
keep track of the indices of these components. The
question arises how σ should be initialised. As sug-
gested by property (P1), the correct way to initialise



σ is to put all those indices j, j = 1, . . . ,m, into σ
for which the absolute value of the correlation be-
tween the residual vector and the corresponding re-
gressor variables is maximal. These calculations are
described below in step 1 of the algorithm.

Now, as long as σ does not change the correspond-
ing components of β̂(t) change linearly and the other
components remain fixed at zero. Thus, we have to
address two questions. First, at which specific rate
do the components of β̂(t) change? Secondly, when,
i.e. for which values of t, does σ change? The first
question is answered using (3) and property (P1),
whereas the second question is answered using prop-
erties (P1) and (P2).

Equation (3) and property (P1) imply that for all
j ∈ σ the absolute value of the correlation between
xj and the current residual vector r̂, which is pro-
portional to |x′

j r̂|, must be equal. Let β̄0
j , j ∈ σ,

denote the estimated coefficients if we regress y only
on xj , j ∈ σ, using unconstrained (ordinary) least
squares, and define

β̄j(γ) = β̂j + γ(β̄0
j − β̂j), j ∈ σ, γ ∈ [0, 1]. (4)

Now consider the vector β̄(γ) that we obtain by us-
ing, for j ∈ σ, the β̄j defined above and whose other
components are fixed at 0. Obviously β̄(0) is our

current estimated coefficient vector β̂. If we define
the corresponding residual vector

r̄(γ) = y −Xβ̄(γ)

then, obviously, x′

j r̄(1) = 0 for all j ∈ σ and it
is easy to verify that, for all j ∈ σ and γ ∈ [0, 1],
x′

j r̄(γ) is linear in γ and, thus, |x′

j r̄(γ)| = C(γ) for
some function C(·) independent of j.

It follows that equation (4) answers the first ques-

tion and describes how β̂(t) changes as long as σ
does not change. We have to move into the direction
of β̄(1). Thus, in step 2 of the algorithm we regress
y only on xj , j ∈ σ and calculate β̄(1) (denoted as
β̄(k+1) below).

The calculations are set up such that a full step
along d = β̄(1) − β̂ would take us to β̄(1) as our
new estimated coefficient vector. However, typically
we cannot take a full step since σ will change dur-
ing this step which leads us to the second question.
Essentially, σ will change during the step if either
property (P1) or (P2) becomes violated.

Note that for all j ∈ σ, x′

j r̄(γ) changes linearly
from x′

j r̄(0) to zero for γ ∈ [0, 1] and, thus, these
quantities cannot change signs. It follows that prop-
erty (P2) can only be violated during the move to
β̄(1) if, for some j ∈ σ, β̄j(0) and β̄j(1) have differ-
ent signs. If this happens, we can only take a partial

step along d. In step 3 of the algorithm we calculate
how far we can move along d (namely, γ2d, γ2 ≥ 0)
before property (P2) is violated. If we end up tak-
ing a step of this length, then we have to remove one
component from σ.

Property (P1) can only be violated if for some
j0 /∈ σ and γ ∈ [0, 1], the value of |x′

j0
r̄(γ)| becomes

equal to C(γ). However, for all j /∈ σ, the quantities
x′

j r̄(γ) also change linearly with γ ∈ [0, 1] and thus
it is easy to calculate whether a violation of prop-
erty (P1) happens as we move along d. In step 3
of the algorithm we calculate how far we can move
along d (namely, γ1d, γ1 ≥ 0) before property (P1)
is violated. If we end up taking a step of this length,
then we have to add one component from σ.

In step 4 of the algorithm, we take a step of ap-
propriate length along d, and update our vector of
estimated parameters β̂ and our vector of fitted val-
ues µ̂. Then in step 5 we update σ. To answer our
second question above, note that the values of t at
which σ changes are given by the L1 norm of our
current estimate for β.

Finally, we calculate the current residual vector r̂

and c = X
′r̂. If all components of c are zero, then

we have either reached the unconstrained solution
of (2a) (if m − 1 ≤ n) or the vector of estimated

coefficients with smallest L1 norm such that y = Xβ̂

(if m − 1 ≥ n). In this case we stop the iteration,
otherwise we continue.

Hence, the complete algorithm is:

1. Set µ̂(0) = 0, β̂(0) = 0 and k = 0. Calculate
c = X

′y and set C = ‖c‖∞. Initialise σ = {j :
|cj | = C}.

2. Set Xσ = (· · ·xj · · · )j∈σ and calculate

b̄
(k+1)
σ = (X′

σXσ)−1
X

′

σy

µ̄(k+1) = Xσ b̄
(k+1)
σ

a = X
′

(

µ̄(k+1) − µ̂(k)
)

Set β̄
(k+1)

= P

(

b̄
(k+1)
σ

0

)

; P a suitable permu-

tation matrix.

3. Calculate the step size γ as γ = min(γ1, γ2, 1)
where

γ1 = min
j /∈σ

+

{

C − cj
C − aj

,
C + cj
C + aj

}

and

γ2 = min
j∈σ

+

{

−
β̂

(k)
j

β̄
(k+1)
j − β̂

(k)
j

}

.



Here, min+ indicates that the minimum is taken
only over positive components.

4. Use the calculated step length to update the
estimated parameter and fitted values:

µ̂(k+1) = µ̂(k) + γ
(

µ̄(k+1) − µ̂(k)
)

β̂(k+1) = β̂(k) + γ
(

β̄
(k+1)

− β̂(k)
)

5. If γ = γ1 then, with γj = min+
{

C−cj

C−aj
,

C+cj

C+aj

}

,

σ = σ ∪ {j : j /∈ σ and γj = γ1}

If γ = γ2, then σ = σ \
{

j : β̂
(k+1)
j = 0

}

.

6. Calculate c = X
′
(

y − µ̂(k+1)
)

, set C = ‖c‖∞
and k ← k + 1.
If C = 0 stop, otherwise return to step 2

4 Fixed t

Osborne et al. (2000b) propose the following algo-
rithm which is based on a local linearisation of (2a)
about a current β.

To describe this algorithm, we introduce the fol-
lowing notation. Again, σ denotes a set and a com-
ponent βi of β may be non-zero if, and only if,
i ∈ σ. The vector βσ collects all the components
of β that may be non-zero and is of length |σ|. The
m × m matrix P is a suitable permutation matrix
such that β = P

(

βσ

0

)

. Also θσ = sign(βσ) de-
notes the vector whose components equal the sign
of the corresponding components in βσ . Note that
θ′

σβσ = ‖βσ‖1 = ‖β‖1. At any step of the algorithm
βσ has to be feasible, i.e. θ′

σβσ ≤ t.
Usually, the algorithm is started at β = 0 and

with σ initialised in the same manner as in step 1
of the homotopy algorithm. However, the algorithm
can be started at an arbitrary β as long as this co-
efficient vector is feasible. This fact is useful if this
algorithm is embedded within a loop; as one would
do if one would replace the loss function f(·) in (2a)
by some other loss function, e.g. a likelihood based
loss function to fit generalised linear models under
an L1 constraint on the parameter vector (Lokhorst,
1999; Roth, 2002, 2004).

The algorithm described in Osborne et al. (2000b)
solves at each step the following optimisation prob-
lem:

min
h

f(β + h) (5a)

where θ′

σ(βσ + hσ) ≤ t (5b)

and h = P
(

hσ

0

)

(5c)

Let β̃ = β +h be the solution of (5). We call β̃ sign
feasible if sign(β̃σ) = θσ .

If β̃ is not sign feasible, we proceed as follows:

1. Move to the first new zero component in direc-
tion h, i.e. find the smallest γ, 0 < γ < 1 and
corresponding k ∈ σ such that 0 = βk + γhk.

2. Update σ by deleting k from it, setting β =
β + γh, resetting βσ and θσ accordingly (they
are still both feasible) and recompute h by solv-
ing (5) again.

3. Iterate until a sign feasible β̃ is obtained.

If β̃ is sign feasible, then we can test it for opti-
mality. Calculate the corresponding residual vector
r̃ = y −Xβ̃. If ‖X′r̃‖∞ = 0, then we stop. In this
case we are either at the unconstrained solution (if
m − 1 ≤ n) or at a solution that interpolates y (if
m− 1 ≥ n). Otherwise, calculate

ṽ = X
′r̃/‖X′r̃‖∞

If |ṽi| = 1 for i ∈ σ and −1 ≤ ṽi ≤ 1 for i /∈ σ,
then β̃ is a solution of (2). Otherwise, we proceed
as follows.

1. Determine the most violated condition, i.e. find
s such that ṽs has maximal absolute value.

2. Update σ by adding s to it. βσ and θσ are
updated by appending a zero and sign(ṽs), re-
spectively, as last elements.

3. Solve (5) and iterate.

5 Constrained vs. penalised estima-

tion

The constrained problem (2) is, of course, equivalent
to the penalised problem:

min
β∈Rm

(y −Xβ)′(y −Xβ) + λ‖β‖1 (6)

That is, for a given λ, 0 ≤ λ < ∞, there exists a
t ≥ 0 such that the two problems share the same
solution, and vice versa.

Fu (1998) discusses an iterative algorithm that

solves (6). However, this algorithm starts at β̂0,
the solution of the unconstrained problem, and is
therefore not suitable for the case where n < m, i.e.
if one has more variables than observations; a situ-
ation which is nowadays common in chemometrics,
microarray applications and other situations.

However, in the n < m case it is advantageous to
use the penalised version. The solutions of (6) have



the same characterisation (3) as the solutions of (2).
Using this characterisation, it is easy to show that
if λ ≥ ‖X′y‖∞, then the solution to (6) is β̂ = 0.
Thus, even if n < m, it makes only sense in (6)
to choose λ between 0 and λmax = ‖X′y‖∞ and
one could reparameterise the problem such that the
penalty parameter is specified relative to λmax and
always between 0 or 1.

By way of contrast, for the constrained prob-
lem (2), it is only possible to specify a priori a sensi-
ble range for the bound t in the case n > m. In that
case, only values of t between 0 and ‖β̂0‖1 are of
interest, since larger values of t would simply yield
the unconstrained solution β̂0.

6 Fixed λ

The algorithm of Osborne et al. (2000b) for solving
(2) for fixed t, which is described above in Section 4,
can be easily adapted to calculate the solution of (6)
for a given λ.

We use the same notation as in Section 4. Namely,
βi may be non-zero if and only if i ∈ σ, P is the
permutation matrix such that β = P

(

βσ

0

)

and θσ =
sign(βσ).

Again, the algorithm is started at β = 0 and with
σ initialised in the same manner as in step 1 of the
homotopy algorithm. However, the algorithm can
be started at an arbitrary β. This fact is useful
if this algorithm is embedded within an iteratively
reweighted least squares (IRLS) loop.

Now we solve at each step the following optimisa-
tion problem:

min
h

f(β + h) + λθ′

σ(βσ + hσ) (7a)

where h = P
(

hσ

0

)

(7b)

Let β̃ = β +h be the solution of (7). We call β̃ sign
feasible if sign(β̃σ) = θσ .

If β̃ is not sign feasible, we proceed as follows:

1. Move to the first new zero component in direc-
tion h, i.e. find the smallest γ, 0 < γ < 1 and
corresponding k ∈ σ such that 0 = βk + γhk.

2. Update σ by deleting k from it, setting β =
β + γh, resetting βσ and θσ accordingly and
recompute h by solving (7) again.

3. Iterate until a sign feasible β̃ is obtained.

If β̃ is sign feasible, then we can test it for opti-
mality. Calculate, with r̃ = y −Xβ̃,

c̃ = X
′r̃.

If c̃i = sign(β̃i)λ for i ∈ σ and −λ ≤ c̃i ≤ λ for
i /∈ σ, then β̃ is a solution of (6). Otherwise, we
proceed as follows.

1. Determine the most violated condition, i.e. find
s such that c̃s has maximal absolute value.

2. Update σ by adding s to it. βσ and θσ are
updated by appending a zero and sign(c̃s), re-
spectively, as last elements.

3. Solve (7) and iterate.

7 Concluding remarks

The presented algorithms are specifically designed
to solve (2) or (6) and are very efficient in doing so.
They can be easily adapted to problems where the
quadratic loss function is replaced by another loss
function by embedding them within an IRLS loop
(Lokhorst, 1999; Roth, 2002, 2004).

However, other algorithms have been proposed.
In particular, in the wavelet literature Chen et al.
(1999) and Sardy et al. (2000) use interior point al-
gorithms to solve LASSO problems (i.e. either (2)
or (6)). An interesting feature of these algorithms is
that they do not construct the design matrix X ex-
plicitly. All necessary calculations are done via the
fast wavelet transform.

By way of contrast, all the available implementa-
tions of the algorithms described in Osborne et al.
(2000a,b) and Efron et al. (2004) construct the de-
sign matrix X explicitly and work with a (partial)
QR factorisation of this matrix to perform all nec-
essary computations fast and efficiently.

Other algorithms that have been proposed to
solve LASSO problems are special cases of gen-
eralisations that allow either a more general
penalty or a more general loss function (Fu, 1998;
Fan and Li, 2001). Finally, Grandvalet (1998) and
Grandvalet and Canu (1999) propose to use adap-
tive ridge regression procedures to solve LASSO
problems.
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