
Self-Stabilizing Clock Synchronization in the Presence of Byzantine

Faults�

(Preliminary Version)

Shlomi Dolevy Jennifer L. Welchz

Abstract

We initiate a study of bounded clock synchronization under a more severe fault model than that

proposed by Lamport and Melliar-Smith [LM-85]. Realistic aspects of the problem of synchronizing

clocks in the presence of faults are considered. One aspect is that clock synchronization is an on-going

task, thus the assumption that in any period of the execution at least two thirds of the processors are

nonfaulty is too optimistic. To cope with this reality we suggest self-stabilizing protocols that stabilize

in any (long enough) period in which less than a third of the processors are faulty. Another aspect is

that the clock value is bounded. A single transient fault may cause the clock to reach the upper bound.

Therefore we suggest a bounded clock that wraps around when appropriate.

We present two randomized self-stabilizing protocols for synchronizing bounded clocks in the presence

of Byzantine processor failures. The �rst protocol assumes that processors have a common pulse, while

the second protocol does not. A new type of distributed counter based on the Chinese remainder theorem

is used as part of the �rst protocol.

1 Introduction

In a distributed system, it is often necessary to keep the logical clocks of the processors synchronized.

In such a system physical clocks may drift and messages could have varying delivery times. Moreover,

processors may be faulty, and in many cases the type of failures is not predictable in advance. To handle

this situation, the worst type of failures must be considered, namely Byzantine faults [LSP-82]. In the

presence of Byzantine faults a processor can exhibit arbitrary \malicious", \two faced", behavior.

The problem of keeping clocks synchronized in the presence of Byzantine faults has been extensively

studied (e.g., [HS+-84, LM-85, MS-85, DHS-86, ST-87, WL-88, RSB-90]). Lamport and Melliar-Smith

[LM-85] were the �rst to present the problem and show that 3f + 1 processors are su�cient to tolerate

f Byzantine faults. The necessity of 3f + 1 processors to tolerate f faults was later proved in [DHS-86].

A weaker fault model called authenticated Byzantine allows a protocol that can tolerate any number of

faulty processors [HS+-84]. In that failure model reintegration of repaired processors is only possible if

less than half the processors are faulty. Many of the protocols for this problem assume that the clocks are

initially synchronized and thus focus on keeping them synchronized in the presence of clock drift.

The problem of how to ensure that the clocks are initially synchronized was addressed in, e.g., [ST-87,

WL-88]. In these protocols, some mechanism is assumed that allows all the nonfaulty processors to begin

the protocol within a bounded time period of each other. The mechanism essentially is that the processes

�Supported in part by TAMU Engineering Excellence funds and NSF Presidential Young Investigator Award CCR-9158478.
yDepartment of Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva, 84105, Israel. e-mail:

shlomi@cs.bgu.ac.il.
zDepartment of Computer Science, Texas A&M University, College Station, TX 77843. e-mail: welch@cs.tamu.edu.

1

are assumed to wake up in a distinguished initial state, in which they can uniquely perform initializing

actions, including communication with each other.

In this work we weaken the assumptions made for the design of clock synchronization protocols in the

presence of Byzantine faults. Our goal is protocols that cope with a more severe (and realistic) fault model

than the traditional Byzantine fault model [LSP-82]. Initially, protocols that tolerate Byzantine faults were

designed for ight devices that need to be extremely robust. In such a device the traditional assumptions

could be violated: Is it reasonable to assume that during any period of the execution less than one third

of the processors are faulty? What happens if for a short period more than a third are faulty (perhaps

experience a weaker fault than a Byzantine fault)? What happens if messages sent by nonfaulty processors

are lost in one instant of time?

In this paper we present self-stabilizing protocols that can overcome these problems. Such temporary

violations of the assumptions can be viewed as leaving the system in an arbitrary initial state from which

the protocol resumes. Self-stabilizing protocols work correctly when started in any initial system state.

Thus, even if the system loses its consistency due to an unexpected temporary violation of the assumptions

made (e.g., more than one-third faulty, unexpected message loss) the system synchronizes the clocks when

subsequently the assumptions hold (e.g., less than a third experience Byzantine faults).

Originally, Dijkstra de�ned (in [Dij-74]) a protocol to be self-stabilizing if, when started in an arbitrary

system state, the system converges to a consistent global state that realizes the task. Self-stabilizing

protocols are resilient to transient faults { faults that cause the state of a processor to change arbitrarily

and then from the new state, the processor resumes operation according to its program. A permanent

fault is a fault that causes a processor to permanently misbehave. A protocol tolerates hybrid faults if

it is resilient to both transient and permanent faults (e.g., [DW-93, GP-93] which consider napping and

omission faults, respectively). We are interested in clock synchronization protocols that can tolerate hybrid

faults: they should work from an arbitrary initial con�guration and they should tolerate less than a third

of the processors exhibiting permanent Byzantine faults.

A realistic assumption for a clock synchronization protocol is that a 64-bit clock is \unbounded" for

most possible applications. However, in the context of self-stabilizing protocols transient faults could cause

the system to reach the upper bound of the clock at once. Thus, another aspect of the problem should be

considered: the fact that the clocks are bounded.

In this paper we present two randomized self-stabilizing clock synchronization protocols that work in

the presence of Byzantine faults. Both protocols work for bounded clocks. The �rst assumes the existence

of a common pulse while the second does not make this assumption. The expected stabilization time of

both protocols is exponential in n. This is a drawback when the number of processors is large. However,

in addition to being of theoretical interest, we believe that our protocols could be of practical interest, at

least when the number of backup processors is small.

One of the contributions of this paper is an interesting usage of the Chinese remainder theorem for

implementing a distributed counter. This counter is used to accelerate the �rst protocol.

The remainder of the paper is organized as follows. In the next section we formalize the assumptions and

requirements for the protocol. Section 3 presents a clock synchronization protocol under the assumption of

a common pulse. In Section 4 we present a protocol that does not assume the existence of common pulses.

Conclusions are in Section 5.

2 De�nitions

A distributed system consists of a set of processors that communicate by sending messages to each other.

Messages have a bounded delay. Each processor has a bounded physical clock that is constantly incre-

2

mented, wrapping around when appropriate; the physical clocks at the di�erent processors run at approx-

imately the same rates. Each processor also has a bounded logical clock, which is computed as a function

of the current state and physical clock value. The goal is for the logical clocks of the nonfaulty processors

to become and subsequently remain close to each other, while continuing to progress at a reasonable rate

(wrapping around when appropriate). We consider two types of timing behavior of the system, synchronous

and semi-synchronous. In both models, processors take steps either when they receive a message, or when

their physical clocks reach some predetermined value. In addition, in the synchronous model, there is a

common pulse that periodically occurs simultaneously at all processors, causing them to take a step. We

now proceed more formally.

Each processor Pi, 1 � i � n, is modeled as a state machine. Associated with the processor is its

physical clock, which takes on integral values from 0 to Mpc � 1 for some Mpc. The state contains a

distinguished timer variable that can take on the values 0 toMpc�1 and nil; it indicates that the processor

wants to take a step the next time its physical clock has the given value. A transition takes the current

state of the processor, the current value of its physical clock, and a message received (if any) and produces

a new state of the processor and a set of messages to be sent. The message system holds all messages sent

but not yet received. A con�guration of the system is a set of processor states, one per processor, a set of

physical clock values, one per processor, and a state for the message system.

An execution is an alternating sequence of con�gurations and events C0; e1; C1; � � �. In a semi-

synchronous execution, events happen at real times, taking one con�guration to the next. There are

two types of events. One type is a tick of some processor's physical clock, causing it to increase by 1 mod

Mpc. Nothing else changes. We require that the real time elapsed between two successive ticks of the same

processor be between 1� � and 1 + � for some �xed �.

The other type of event is a step of some processor. No processor can take more than one step at

the same real time. In the step, the processor may or may not receive a message. The real time elapsed

between the sending and receiving of any message must be in the range [d � �; d + �] for some �xed d

and �. There is a �xed set of faulty processors of size f , where n > 3f . If the processor taking the step

is nonfaulty, then the succeeding con�guration must correctly reect the processor's transition function

acting on the message received and the state and physical clock in the preceding con�guration. Thus the

only changes are to the processor's state and the message system (removing the message received and

adding the messages sent). If the processor taking the step is faulty, it can change state arbitrarily and

add arbitrary messages (from itself) to the message system.

In a synchronous execution, in addition to the above constraints, there exists a value � > 0 such that,

for all i, every processor Pi receives a special Pulse message (from a dummy processor) at time i � �. (I.e.,

all the processors take a step at each pulse and the pulses occur regularly with period �.)

We require that for every processor Pi there exist a function clocki that, given a state of Pi and a value

for Pi's physical clock, returns a value in the range 0 to Mlc � 1 for some �xed Mlc. This is the logical

clock of Pi. Given a particular execution C0; e1; : : :, we denote by clocki(t) the value of the function clocki
applied to Pi's state and physical clock value in Cj, where j is the con�guration in the execution whose

real time of occurrence is the largest not exceeding t. We require that there exist a �nite time ts for which

the following two conditions hold:

Clock Agreement: There exists < Mlc=4 such that for all t � ts and all nonfaulty processors Pi and

Pj : clocki(t)� clockj(t) (mod Mlc) � .1

Clock Validity: There exists �, 0 < � �Mlc=4, and there exists a � 0 such that for all real times t > ts
and all i, if clocki(t) = T , then T +�=(1 + a) mod (Mlc) � clocki(t+�) � T + (1 + a)� mod (Mlc).

1The constant 4 is chosen for convenience; any constant larger than 2 is su�cient. Note that if the constant is 2 then this

condition holds for any arbitrary con�guration, since every two clock values are at most Mlc=2 apart.

3

Clock Agreement states that after ts, the di�erence between any two nonfaulty processors' clocks is at

most . Clock Validity states that after ts, the amount of logical clock time that elapses during � real

time is a linear function of �.

3 Synchronous Protocol

We �rst describe a protocol for the synchronous system, in which nonfaulty processors have access to a

periodic common pulse. Each pulse triggers the processors to synchronize their clocks. The time between

two successive pulses appears to be an important parameter to the problem. In case two successive pulses

are farther apart than the time required to run a Byzantine agreement protocol, then the following scheme

solves the problem: Every pulse starts a new version of the Byzantine agreement to agree on the common

clock value. However, when the pulses are only on the order of the round trip message delay apart, this

scheme cannot work.

We assume that the pulses are on the order of the round trip delay apart. Recall that � is the time

between two successive pulses. Nonfaulty processors send messages and update their logical clocks only

when a pulse occurs. We assume that � is long enough such that when a pulse takes place, no message sent

by a nonfaulty processor in the previous pulse is present in the system. Whenever a nonfaulty processor

P is triggered by a pulse, P sends a message with its clock value to all its neighbors. Then P waits to

receive all the clock values of the other processors. P waits for a period (1 + �)(d+ �) that is longer than

the bound on the message delay and accounts for clock drift. If during that period P receives more than

one message from some neighbor, say Q, then P uses the latest value that arrives from Q. Thus, at the

end of such a period P has a set of at least n� f logical clock values, at most one value for each nonfaulty

processor including P . P uses the set of the logical clocks received in order to choose its own clock value.

The formal description of the protocol appears in Figure 1. We now describe the protocol informally.

The protocol for a processor P works as follows: (1) if the value of P 's clock appears less than n� f times

in the set of the received logical clocks then P assigns 0 to its clock. Otherwise, (2) in case that the value

of P 's clock appears at least n� f times, we further distinguish between the case (2.1) in which P 's clock

value is not equal to 0 and the case (2.2) in which it is equal to 0. In case (2.1) P increments its clock

by 1 (modulo the number of clock values Mlc). Case (2.2) is further subdivided into two cases: (2.2.1) in

which (according to the state of P) in the previous pulse P incremented its clock by 1 (and the result was

0) and the case (2.2.2), otherwise. In case (2.2.1) P increments its clock by 1 (to be 1). In case (2.2.2) P

tosses a coin and assigns the result (0 or 1) to its clock.

The protocol guarantees (with probability 1) that the system eventually reaches a global state in which

all the nonfaulty processors have the clock value 1. Once such a global state is reached the clocks are

synchronized: In every pulse, every nonfaulty processor P receives messages from at least n � f � 1

processors containing a clock value that is identical to its own clock value. Moreover, a pulse in which

all the nonfaulty processors set their clocks to 0 always follows a pulse in which every nonfaulty processor

increments its clock value by 1 to set it to 0. Thus, case (2.2.2) is not applied.

The main idea of the protocol is to ensure that only when there are \enough" nonfaulty processors with

the same clock value will this value be incremented. It is proved in the sequel that in any pulse at most

one clock value of nonfaulty processors is incremented by 1 while the rest of the values are changed to be

zero. This ensures that after the �rst pulse, the set of clock values of the nonfaulty processors contains at

most two elements. Moreover, if two such elements indeed exist one of them is 0.

At �rst glance this seems to be su�cient and no coin toss is needed; the value that is incremented will

eventually wrap around to 0 and at that time the clocks of all the nonfaulty processors will be 0. However,

we now describe an in�nite execution, E, that does not use coin tosses in which the clocks never become

4

synchronized. Consider a system with four processors P1; P2; P3 and P4 in which P4 exhibits Byzantine

behavior. Let 0; 0; 1 be the clock values of P1; P2; P3, respectively, in the �rst con�guration of E. In the

�rst pulse P4 sends clock value 1 to P1 and P3 and clock value 0 to P2. Thus, P1 receives the clock values

vector 0; 0; 1; 1, P2 receives 0; 0; 1; 0 and P3 0; 0; 1; 1. P2 is the only processor that �nds n�f = 3 processors

with the same clock value (namely, the clock value 0) and increments its clock value by one (to be 1). At

the same time, P1 and P3 �nd two clock values with value 1 and two with value 0 and assign 0 to their

clocks. Hence, a con�guration with clock values 0; 1; 0 for P1; P2; P3, respectively, is obtained. P4 continue

and sends the clock values 1; 1; 0 to P1; P2; P3, respectively. P1 receives the clock values vector 0; 1; 0; 1, P2

receives 0; 1; 0; 1 and P3 receives 0; 1; 0; 0. Similarly, P3 is the only processor that �nds n�f = 3 processors

with the same clock value and assigns 1 to its clock while P1 and P2 assign 0. We reach a con�guration

with clock values 0; 0; 1 for P1; P2; P3 which are identical to the clock values in the �rst con�guration.

Therefore, an in�nite execution in which nonfaulty processors never agree on their clock values is possible.

To overcome the above problem we use coin tosses. In a pulse in which a nonfaulty processor with clock

value 0 receives n� f clock values with value 0 the processor tosses a coin and decides whether to assign

0 or 1 to its clock. This leads to a possible scenario (that has some probability of occurring) in which the

coin toss results cause all the nonfaulty processors to simultaneously assign 1 to their clocks.

01 when pulse occurs:

02 broadcast clocki
03 collect clock values until (1 + �)(d+ �) time has elapsed on the physical clock

04 if jfjjclocki = clockjgj < n� f then (*case (1)*)

05 fclocki := 0; last incrementi := falseg

06 else (*case (2)*)

07 if clocki 6= 0 then (*case (2.1)*)

08 fclocki := (clocki+ 1) modMlc; last incrementi := trueg

09 else (*case (2.2)*)

10 if last incrementi = true then (*case (2.2.1)*) clocki := 1

11 else (*case 2.2.2*) clocki := toss(0; 1)

12 if clocki = 1 then last incrementi := true

13 else last incrementi := false

Figure 1: The Synchronous Protocol for Pi

3.1 Correctness Proof of the Synchronous Protocol

Throughout the proof we say that a processor Pi increments its clock by 1 in a certain pulse, if Pi assigns

last increment := true during this pulse. Otherwise, we say that Pi assigns 0 to clocki.

Lemma 3.1 If nonfaulty processors Pi and Pj increment their clocks by 1 during some pulse P, then

immediately after P, clocki = clockj.

Proof: Assume towards contradiction that clocki = (x+1) mod Mlc 6= clockj = (y+1) mod Mlc following

P . Hence, during P , Pi �nds at least n�f clock values that are equal to x. At least n�2f of them belong

to nonfaulty processors. Thus, Pj also receives n� 2f clock values that are equal to x. Hence, Pj receives

at most n� (n� 2f) = 2f clock values that are equal to y. Since n > 3f , it holds that n� f > 2f , which

contradicts the possibility of Pj receiving at least n� f clock values that are equal to y.

5

Lemma 3.1 implies in a straightforward manner the correctness of the next two corollaries.

Corollary 3.2 After every pulse, the set of clock values of the nonfaulty processors contains at most two

elements. In case there are such two values, one of them is 0.

Corollary 3.3 If during a pulse P a nonfaulty processor P increments its clock value by 1 and the result

is 0, then immediately following P the clock values of all the nonfaulty processors are 0.

Claim 3.4 If during a pulse P that follows the �rst pulse, a nonfaulty processor P increments its clock to

be 1 without tossing a coin, then just before P all the nonfaulty processors' clock values were 0.

Proof: The variable last increment is assigned during every pulse. Thus, since P follows the �rst pulse,

P indeed increments during Q, the pulse before P . Thus by Lemma 3.1 all the nonfaulty processors have

clock values 0 after Q and before P .

The next theorem uses the scheduler-luck game of [DIM-91, DIM-95] to analyze the randomized pro-

tocol. The scheduler-luck game has two competitors, scheduler (adversary) and luck. The goal of the

scheduler is to prevent the protocol from reaching a safe con�guration while the goal of luck is to help the

protocol reach a safe con�guration. For the synchronous protocol a con�guration is safe if for all nonfaulty

processors, the logical clocks are equal and last increment is true. For our system the scheduler chooses

the message delays and clock drifts during the execution (within the prede�ned limitations). Each time

the processor, activated by the scheduler, tosses a coin, luck may intervene and determine the result of

the coin toss. It is proved in [DIM-91, DIM-95] that if, starting with any possible con�guration c, luck

has a strategy to win the scheduler-luck game within i interventions and expected time t, then the system

reaches a safe con�guration within expected time t � 2i. The main observation used for this proof is the

fact that if a coin toss result di�ers from the desired result (according to luck strategy) a con�guration is

reached from which a new game can begin.

Theorem 3.5 In expected Mlc � 2
2(n�f) pulses, the system reaches a con�guration in which the value of

every nonfaulty processor's clock is 1.

Proof: The proof is by the use of Lemma 1 of [DIM-91] (Theorem 5 of [DIM-95]). We present a strategy

for luck to win the scheduler-luck game with 2(n�f) interventions and within Mlc+2� time. The strategy

of luck is (1) wait for the �rst pulse to elapse. Thereafter, (2) luck waits till a pulse P in which a nonfaulty

processor with clock value 0 receives n�f clock values that are 0. This occurs within the nextMlc pulses (if

it does not occur by then, there is at least one nonfaulty processor that does not assign 0 to its clock during

Mlc successive pulses, which is impossible). In case (2.1) during this pulse all the nonfaulty processors are

either tossing a coin or assigning 1 without tossing. Then luck intervenes at most n� f times and �xes the

coin toss results of all the nonfaulty processors to be 1. Otherwise, (2.2) if there is a nonfaulty processor

P that is neither about to toss a coin nor about to assign 1 without tossing, then luck intervenes and �xes

all the coin toss results (less than n� f) to be 0. Note that before P , P 's clock is not equal to 0. Thus, by

Claim 3.4 no processor assigns 1 without tossing a coin. By Lemma 3.1 and the fact that some nonfaulty

processor tosses a coin during P , it holds that following P the clock values of all the nonfaulty processors

are 0. Therefore, in the next pulse case (2.1) is reached and luck could intervene and �x at most n � f

coin toss results to ensure that the desired global state is reached.

By Theorem 3.5 the system reaches a con�guration in which the value of every nonfaulty processor's

clock is 1, in expected time Mlc � 2
2(n�f). It is easy to see that in any successive pulse, all the nonfaulty

processors have the same clock value. Thus the clock agreement requirement holds with = 0. Since the

clocks of the nonfaulty processors are incremented by 1 in every pulse and the pulses are constant time

apart, the clock validity requirement also holds. Note that the clock value could be multiplied by � (if �

is known), the time di�erence between two successive pulses, in order to yield a clock value that reects

real time. Otherwise, the value of a of the clock validity requirement encodes 1=�.

6

3.2 Accelerating the Protocol

If Mlc = 264, our protocol converges after expected 264 � 22(n�f) synchronization pulses. Certainly, because

of this time complexity this protocol cannot be used in practice. However, if Mlc, n, and f are all small2

then the expected number of pulses required is reasonably small. For instance, if Mlc = 2, n = 4, and

f = 1, then the expected number of pulses is 128. We use the above observation to accelerate our protocol.

We achieve synchronization of clock values in the range of Mlc = 264 values within expected number of

pulses that is less than 381 � 22(n�f). (For Mlc = 216, synchronization occurs within expected number of

pulses that is less than 58 � 22(n�f) pulses).

We de�ne the Chinese remainder counter by the use of the Chinese remainder theorem, which appears

in [Kn-81] p. 270:

Theorem 3.6 Let m1, m2, ..., mr be positive integers that are relatively prime in pairs, i.e.,

gcd(mj; mk)=1 when j 6= k. Let m = m1m2 � � �mr, and let a, u1, u2,...,ur be integers. Then there is

exactly one integer u that satis�es the conditions a � u < a+m, and u � uj(modulo mj) for 1 � j � r.

We use the Theorem for the case a = 0 and m � Mlc. Let 2; 3; 5; :::; pj be the series of prime numbers

up to the j-th prime such that 2 � 3 � 5 � ::: � pj�1 < Mlc � 2 � 3 � 5 � ::: � pj . We run j parallel versions

of our protocol. The i-th version runs the protocol with Mlc = pi. Each message carries the value of j

clocks, one clock value for each version. The computation of the new clock value of some version i uses

the values received for this particular version and is independent from the computation of all the other

versions. Thus, the i-th version converges within expected pi � 2
2(n�f) pulses. Therefore, the expected time

for all the versions to be synchronized is less than (p1 + p2 + � � �+ pj) � 2
2(n�f). This is an upper bound

on the expectation since it corresponds to a scenario in which version i starts to synchronize after every

version k < i is already synchronized.

Now we apply the Chinese remainder theorem to show that every combination of those values is mapped

to one and only one number in the range 0 to 2 � 3 � 5 � � �pj . A well-known technique could be used in order

to convert such a representation to its mapping (e.g., by Garner methods, c.f. p. 274 [Kn-81]).

The Chinese remainder theorem could be used for other implementations of distributed counters based

on the number presentation method suggested in [ST-67]. One possible use is as a memory and communica-

tion e�cient distributed counter. Let DC be a distributed counter that is maintained by a set of processors

P1; P2; : : : ; Pj that are triggered by a common pulse. Pi increments the counter mod pi in every trigger.

Pi does not need to store the entire bits of the clock or to send messages to indicate the carry (when its

counter wraps around). Thus, when the counter is incremented no communication between processors is

needed. Only when the value of the counter is to be scanned is communication required.

4 Semi-synchronous Protocol

In this section we drop the assumption of common pulses. We present a self-stabilizing randomized protocol

for semi-synchronous systems. Due to space constraints, the formal description of the protocol and the full

correctness proof are excluded from this section.

2It is reasonable to think of n and f as being small when a single processor can e�ciently compute a task and additional

processors are added only to ensure reliability. Let the reliability be f=(n+ f), the ratio of the number of faulty processors

to the total number of processors. To reach a reliability of 0.25, the number of processors needed (and thus, in general terms,
the blowup in the hardware and cost) is four. To improve the reliability to 2/7�0.28 the blowup would be 7. Asymptotically,

we need an in�nite blowup to reach reliability of 1/3. Thus, most devices would use a relatively small number of processors

for which our protocol stabilizes in a relatively short time.

7

Our protocol uses the fault-tolerant averaging function �rst introduced in [DL+-86] for solving ap-

proximate agreement and later used for clock synchronization in [WL-88]. Given a multiset of values, a

processor applies the function by discarding the f highest and f lowest values and then taking the midpoint

of the remaining values. It has been shown that this function, when used in the context of the protocols

of [DL+-86, WL-88], approximately halves the range of values held by the nonfaulty processors.

In our situation, with bounded clocks, the notions of \highest" and \lowest" must be appropriately

modi�ed. But the real di�culty in directly applying the previous result is that the analysis showing the

range is cut in half depends on all nonfaulty processors working with approximately the same multisets at

each \round". The multisets can di�er arbitrarily in the values corresponding to the faulty processors, but

the values corresponding to nonfaulty processors must be close to the same (allowing for error introduced

by clock drift and uncertain message delays). This \round" structure can be achieved because the actions

of the processors are roughly synchronized in time in the [WL-88] protocols, due to the assumption of

initial synchronization or of distinguished initial states.

Since our protocol is self-stabilizing, it cannot rely on either of those assumptions. Thus using the fault-

tolerant averaging function in the obvious manner, with the processors starting with arbitrary information

and collecting clock values at arbitrary times, would not ensure that the function is applied at the processors

in rounds. For instance, P could apply the function to a multiset M , then subsequently Q could apply the

function to a multiset M 0 that reects P 's new value instead of P 's old value.

To achieve some sort of approximate rounds for applying the fault-tolerant averaging function, we �rst

use randomization to bring all the clock values of the nonfaulty processors close to each other. Once this

is achieved, all the nonfaulty processors collect (approximately) the same multisets from all the nonfaulty

processors. In this stage the midpoint averaging function can be shown (cf. [WL-88]) to approximately

halve the nonfaulty clock values, thus overcoming the ongoing e�ects of clock drift and uncertainty of

message delay.

We now describe the protocol. A processor Pi has two synchronization procedures. The �rst is called

the averaging procedure and the second is the jumping procedure. The averaging procedure is executed

when the value of clocki is in a range greater than 0 and smaller than � and Ta time has elapsed since the

previous time that clocki had a value in this range. The jumping procedure is executed when Tj time has

elapsed since the previous execution of the jumping procedure and Pi is not currently in the range dedicated

for executing the averaging function. Pi measures Ta and Tj using its physical clock. Roughly speaking,

the jumping procedure causes the clocks of the nonfaulty processors to be within a small range. Then the

averaging procedure keeps the clocks of the nonfaulty processors in a small range by approximately halving

the range each time the clock values wrap around.

Both the synchronization procedures of processor Pi start with a request for clock values. During the

execution of the averaging procedure, a processor measures 2(d+ � + �) time in order to make sure that

all the requests for clock values arrive at their destinations and the responses return before it proceeds to

decide on a new clock value. Thus each execution of the averaging procedure takes some period of time.

We de�ne the symmetric clock of clocki to be clocki +Mlc=2 (mod Mlc). In both procedures, if Pi �nds

n � f clock values within a small range � from clocki, then Pi eliminates f values from each side of the

symmetric clock value3. Then, in the jumping procedure, Pi chooses one of the clock values at random

from the reduced clock values list, while in the averaging procedure, Pi chooses the midpoint of the reduced

clock values list. In both procedures, if less than n�f processors are found within � from clocki, Pi chooses

randomly one of the clock values.

3For instance, if the collected values are 2,3,10,11, the symmetric clock value is 7 and f = 1, then 3 and 10 are eliminated.

8

4.1 Correctness Proof Sketch of the Semi-synchronous Protocol

A period of time is a jumping period if no nonfaulty processor executes the averaging procedure during this

period. We choose Ta to be 2(n� f)(5Tj + d+ �)(1 + �)2. The next lemma proves that the above choice

yields the existence of a period of length 5Tj(1 + �) that is a jumping period.

Lemma 4.1 Every Ta time there is a jumping period that is at least 5Tj(1 + �) long.

Proof: A processor measures time by the use of its physical clock, whose drift rate from real time is at

most �. Thus, if a processor measures a period of time T on its physical clock, then the real time elapsed

during the measurement is at least T=(1 + �) and at most T (1 + �). By the way Ta is chosen, in every

period of length 2(n� f)(5Tj+d+ �+ �)(1+�)2=(1+�) = 2(n� f)(5Tj+d+ �+ �)(1+�), every nonfaulty

processor executes the averaging function at most once. A processor measures 2(d+ � + �) time in order

to make sure that the requests for clock values arrive at their destinations and the responses arrive before

it decides on a new clock value. Thus, the time that the averaging function is executed by each processor

in a period of 2(n � f)(5Tj + d + � + �)(1 + �) is no more than 2(d + � + �)(1 + �). Hence, the total

time of averaging of all the processors during a period of 2(n� f)(5Tj + d+ �+ �)(1 + �) is no more than

(n� f)2(d+ �+ �)(1+ �). Therefore, the total non averaging time is at least 2(n� f)(5Tj + d+ �+ �)(1+

�)� (n � f)2(d+ � + �)(1 + �) = 2(n� f)5Tj(1 + �). By the pigeon hole principle at least one jumping

period is of length 2(n� f)5Tj(1 + �)=(n� f + 1) > 5Tj(1 + �).

A safe con�guration is a system con�guration in which the nonfaulty processors' clocks are within �=8

of each other. Moreover, in case a processor is in the middle of collecting clock values then all the clock

values in transit sent by nonfaulty processors are within this range too.

We use the following assumptions in our correctness proof:

Assumption 1: (1 + �)2 < 6=5, thus � < 0:095.

Assumption 2: (n� f)�+ 2Tj(1 + �)� < �=8.

Lemma 4.2 During any jumping period of length 5Tj(1+�), with probability at least 1=n
6(n�f), the system

reaches a safe con�guration.

Sketch of proof: We prove the lemma by presenting a sequence of random choice results, that forces

the system to reach a con�guration in which the clocks of all the nonfaulty processors are less than �=8

apart. This sequence of random choice results has probability of at least 1=n6(n�f) to occur. Let c be the

con�guration at the beginning of the jumping period.

Without loss of generality we assume that the number of faulty processors f is the maximal possible4

that does not violate the inequality n > 3f . Let c be the �rst con�guration in a choosing period. For

every nonfaulty processor P , luck counts the number of other nonfaulty processors that have clocks within

Tr = � + 4(Tj(�+ �2)) + � of P 's clock in the con�guration c. Each nonfaulty processor that has at least

n� 2f � 1 such surrounding clock values is called an anchor.

We claim that all the anchor processors are at most 2Tr apart. Assume towards contradiction that there

are two nonfaulty anchor processors, P and Q, such that their clock values are more than 2Tr apart. Thus,

P is surrounded by n� 2f � 1 nonfaulty processors and Q is surrounded by n� 2f � 1 di�erent nonfaulty

4In case there are fewer faulty processors, one could assume that some of the nonfaulty processors \only behave" like

nonfaulty processors.

9

processors. Therefore, the total number of nonfaulty processors is at least 2(n� 2f) = 2n � 4f > n � f ,

contradiction.

Note that it is possible that no anchor processor exists. In this case luck chooses one nonfaulty processor

to be an anchor processor.

Then luck chooses a single anchor processor A out of the anchor processors.

Until every nonfaulty processor executes the jump procedure twice luck uses the following strategy:

Every time a processor, Pj , chooses a clock value and the value of the clock of A is a possible choice (i.e.,

either Pj does not �nd n� f within � range or A is in the reduced clock values list), this value is chosen;

otherwise the value of clockj is not changed. Let c1 be the �rst con�guration reached from c after each

processor executes the jump procedure at least twice with results according to the strategy of luck. Let E1

be the execution that starts with c and ends with c1. Since in a jumping period every nonfaulty processor

chooses a clock value at least once in every period of length Tj(1 + �), c1 occurs at most 2Tj(1 + �) time

after c.

We now show that in c1 all the nonfaulty processors are within 2Tr + 2Tj(1 + �)2� of each other. We

�rst show that any nonanchor processor, P , assigns the value of A's clock to P 's clock either in the �rst

execution of the jump procedure or in the second one. Every processor collects the clock values during

every execution of the jump procedure. In particular a nonanchor processor, Pj , receives the value of the

clock of A before the second execution of the jump procedure. Next we show that, in the second execution

of the jump procedure Pj can choose the value of A's clock.

The choice of Pj is restricted to a subset of the clock values that Pj read, only if Pj �nds n � f clock

values within � range of clockj. Since Pj is a nonanchor processor it holds in c1 that there are less than

n�f processors within � range of clockj. Moreover, no nonfaulty processor can assign a clock value within

� range of clockj since: (1) Every nonfaulty processor Pk that changes its clock value by the use of the

jump procedure assigns the clock value of A (with up to � range from the clock of A). (2) Every nonfaulty

processor Pk that does not change its clock value by the use of the jump procedure can have a rate of drift

from the clock of Pj of at most 2�. Thus, the di�erence between clockj and clockk can be shorten by at

most 2Tj(1 + �)2� = 4(Tj(�+ �2)). Thus, if Pk was more than Tr = � + 4(Tj(�+ �2)) + � apart from Pj

in c then Pj cannot consider Pk to have a clock in � range from clockj during E1 (unless Pj assigns clockj
by the value of the clock of A).

This proves that in c1 all the nonanchor processors are within � + 4Tj� from A's clock. The anchor

processors that do not assign the clock value of A to their clock during E1 were at most 2Tr apart in c,

thus they are at most 2Tr + 2Tj(1 + �)2� apart in c1.

The fact that all the nonfaulty processors are within a small range of each other is used to de�ne a

new anchor processor A0. A0 is the nonfaulty processor left after removing f nonfaulty processors with the

highest clock values (mod Mlc) and f nonfaulty processors with the smallest values (mod Mlc).

>From c1 and until every processor executes the jump procedure at least twice, luck continues as follows:

Any processor Pi that is in the process of collecting clock values in c1 does not change clocki in the �rst

execution of the jump procedure. For any other execution of the jump function, luck intervenes to �x the

result to be the clock of A0 or a clock of a processor that has already set its clock to the value of A0's clock

since c1. We have to prove that the above is a possible result of the jump function. This is obvious when

the processor does not �nd n � f processors within � from its clock, since the choice is not restricted. It

is also clear for the �rst set of processors that execute the jump procedure and use the clock values in c1
as the base for the decision on the new clock value. Moreover, since luck intervenes and �xes all those

results to be the value of the clock of A0, the reduced list of every processor that uses the new clock values

includes either the clock of A0 or a clock of a processor that assigned its clock by the clock of A0.

Hence, in the �rst con�guration, c2, that follows the �rst two executions of the jump function of all the

processors following c1, all the nonfaulty processors are within (n� f)�+2Tj(1+ �)� of each other, which,

by assumption 2, is less than �=8.

10

Following c2 any processor that is waiting for answers in the process of collecting clocks does not change

its clock value. Thus, (d+ �)(1 + �) time after c2 a safe con�guration is reached.

The length of the execution is 2Tj(1 + �) until c1 is reached, 2Tj(1 + �) from c1 to c2 and additional

(d+ �)(1 + �) until a safe con�guration is reached. Thus, a safe con�guration is reached following (4Tj +

d+ �)(1 + �) < 5Tj(1 + �) from c. By Assumption 1, 5Tj(1 + �) < 6Tj=(1 + �). Thus any processor could

choose at most six times in such a range. Thus the total number of interventions is 6(n� f).

Lemma 4.3 In any con�guration of any execution that starts with a safe con�guration, the clock values

of all the nonfaulty processors are within at most �=2 of each other.

The main observation made for the proof of the above lemma is that starting in a safe con�guration

every processor that either executes the jumping or the averaging procedure �nds n�f clock values within

� from its clock value. Thus, the new clock value chosen when jumping or averaging is in the range of clock

values of the nonfaulty processors. The averaging procedure approximately halves the range of the clock

values of the nonfaulty processors whenever they pass the zero clock value.

Theorem 4.4 In expected O(Tan
6(n�f)) time the system stabilizes.

5 Concluding Remarks

Extensive research has been done to �nd e�cient clock synchronization protocols in the presence of Byzan-

tine faults. In this work we considered a more severe (and realistic) model of faults, i.e., one that takes

into account transient faults as well as Byzantine faults. When arbitrary corruption of state is possible,

as is often the case with transient faults, it is no longer reasonable to approximate unbounded clocks with

bounded clocks, no matter how large. Consequently, clocks that can take on only a bounded number of

values (and wrap around when appropriate) have been assumed in this paper. We presented two random-

ized self-stabilizing protocols for synchronizing bounded clocks in the presence of f Byzantine processor

failures, where n > 3f .

We believe that our observations and de�nitions for the types of faults to be considered and the type

of clocks (namely, bounded) reect reality and open new directions for research. Protocols designed under

our fault tolerance model are more robust than existing clock synchronization protocols. Therefore, such

protocols might be preferred by the system implementer over protocols that cope with only Byzantine

faults.

Acknowledgment: Many thanks to Brian Coan, Injong Rhee and Swami Natarajan for helpful discus-

sions.

11

References

[Dij-74] E. W. Dijkstra, \Self stabilizing systems in spite of distributed control," Communication of the

ACM, vol. 17, 1974, pp. 643{644.

[DHS-86] D. Dolev, J. Y. Halpern, and H. R. Strong, \On the possibility and impossibility of achieving

clock synchronization," Journal of Computer and Systems Science, vol. 32, no. 2, 1986, pp. 230{250.

[DIM-91] S. Dolev, A. Israeli and S. Moran, \Uniform dynamic self stabilizing leader election," Proc. of

the 5th International Workshop on Distributed Algorithms, 1991, pp. 167{180.

[DIM-95] S. Dolev, A. Israeli, and S. Moran, \Analyzing Expected Time by Scheduler-Luck Games," IEEE

Transactions on Software Engineering, vol. 21, no. 5, May 1995.

[DL+-86] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl, \Reaching approximate

agreement in the presence of faults," Journal of the ACM, vol. 33, 1986, pp. 499{516.

[DW-93] S. Dolev and J. L. Welch, \Wait-free clock synchronization," Proc. of the Twelfth ACM Symp.

on Principles of Distributed Computing, 1993, pp. 97{108.

[GP-93] A. S. Gopal and K. J. Perry, \Unifying self-stabilization And fault-tolerance," Proc. of the Twelfth

ACM Symp. on Principles of Distributed Computing, 1993, pp. 195{206.

[HS+-84] J. Halpern, B. Simons, R. Strong, and D. Dolev, \Fault-tolerant clock synchronization," Proc.

of the Third ACM Symp. on Principles of Distributed Computing, 1984, pp. 89{102.

[Kn-81] D. E. Knuth, The art of computer programming, Vol. 2, 2nd edition, Addison-Wesley, 1981.

[LM-85] L. Lamport and P. M. Melliar-Smith, \Synchronizing clocks in the presence of faults," Journal of

the ACM, vol. 32, no. 1, 1985, pp. 1{36.

[LSP-82] L. Lamport, R. Shostak and M. Pease, \The Byzantine generals problem," ACM Trans. on Prog.

Lang. and Sys., vol. 4, no. 3, July 1982, 382-401.

[MS-85] S. Mahaney and F. Schneider, \Inexact agreement: accuracy, precision and graceful degradation,"

Proc. of the Fourth ACM Symp. on Principles of Distributed Computing, 1985, pp. 237{249.

[RSB-90] P. Ramanathan, K. G. Shin, and R. W. Butler, \Fault-tolerant clock synchronization in dis-

tributed systems," IEEE Computer, October, 1990, pp. 33{42.

[ST-87] T. K. Srikanth and S. Toueg, \Optimal clock synchronization," Journal of the ACM, vol. 34, no.

3, 1987, pp. 626{645.

[ST-67] S. Szabo, and R. I. Tanaka, Residue arithmetic and its applications to computer technology ,

McGraw-Hill, 1967.

[WL-88] J. L. Welch and N. Lynch, \A new fault-tolerant algorithm for clock synchronization," Information

and Computation, vol. 77, no. 1, 1988, pp. 1{36.

12

