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Abstract—DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of

genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene

expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of

genes and the complexity of biological networks greatly increases the challenges of comprehending and interpreting the resulting mass

of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering

techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying

data. Cluster analysis seeks to partition a given data set into groups based on specified features so that the data points within a group

are more similar to each other than the points in different groups. A very rich literature on cluster analysis has developed over the past

three decades. Many conventional clustering algorithms have been adapted or directly applied to gene expression data, and also new

algorithms have recently been proposed specifically aiming at gene expression data. These clustering algorithms have been proven

useful for identifying biologically relevant groups of genes and samples. In this paper, we first briefly introduce the concepts of

microarray technology and discuss the basic elements of clustering on gene expression data. In particular, we divide cluster analysis

for gene expression data into three categories. Then, we present specific challenges pertinent to each clustering category and

introduce several representative approaches. We also discuss the problem of cluster validation in three aspects and review various

methods to assess the quality and reliability of clustering results. Finally, we conclude this paper and suggest the promising trends in

this field.

Index Terms—Microarray technology, gene expression data, clustering.
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1 INTRODUCTION

1.1 Introduction to Microarray Technology

1.1.1 Measuring mRNA Levels

COMPARED with the traditional approach to genomic
research, which has focused on the local examination

and collection of data on single genes, microarray technol-
ogies have now made it possible to monitor the expression
levels for tens of thousands of genes in parallel. The two
major types of microarray experiments are the cDNA
microarray [54] and oligonucleotide arrays (abbreviated oligo
chip) [44]. Despite differences in the details of their
experiment protocols, both types of experiments involve
three common basic procedures [67]:

. Chip manufacture: Amicroarray is a small chip (made
of chemically coated glass, nylon membrane, or
silicon), onto which tens of thousands of DNA
molecules (probes) are attached in fixed grids. Each
grid cell relates to a DNA sequence.

. Target preparation, labeling, and hybridization: Typi-
cally, two mRNA samples (a test sample and a
control sample) are reverse transcribed into cDNA
(targets), labeled using either fluorescent dyes or
radioactive isotopics, and then hybridized with the
probes on the surface of the chip.

. The scanning process: Chips are scanned to read the
signal intensity that is emitted from the labeled and
hybridized targets.

Generally, both cDNA microarray and oligo chip
experiments measure the expression level for each DNA
sequence by the ratio of signal intensity between the test
sample and the control sample, therefore, data sets resulting
from both methods share the same biological semantics. In
this paper, unless explicitly stated, we will refer to both the
cDNA microarray and the oligo chip as microarray technol-
ogy and term the measurements collected via both methods
as gene expression data.

1.1.2 Preprocessing of Gene Expression Data

A microarray experiment typically assesses a large number
of DNA sequences (genes, cDNA clones, or expressed
sequence tags [ESTs]) under multiple conditions. These
conditions may be a time series during a biological process
(e.g., the yeast cell cycle) or a collection of different tissue
samples (e.g., normal versus cancerous tissues). In this
paper, we will focus on the cluster analysis of gene
expression data without making a distinction among
DNA sequences, which will uniformly be called “genes.”
Similarly, we will uniformly refer to all kinds of experi-
mental conditions as “samples” if no confusion will be
caused. A gene expression data set from a microarray
experiment can be represented by a real-valued expression
matrix M ¼ fwij j 1 � i � n; 1 � j � mg (Fig. 1a), where the
rows (G ¼ f~g1g1; . . . ; ~gngng) form the expression patterns of
genes, the columns (S ¼ f~s1s1; . . . ; ~smsmg) represent the expres-
sion profiles of samples, and each cell wij is the measured
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expression level of gene i in sample j. Fig. 1b includes some

notation that will be used in the following sections.
The original gene expression matrix obtained from a

scanning process contains noise, missing values, and

systematic variations arising from the experimental proce-

dure. Data preprocessing is indispensable before any cluster

analysis can be performed. Some problems of data pre-

processing have themselves become interesting research

topics. Those questions are beyond the scope of this survey;

an examination of the problem of missing value estimation

appears in [69], and the problem of data normalization is

addressed in [32], [55]. Furthermore, many clustering

approaches apply one or more of the following preproces-

sing procedures: filtering out genes with expression levels

which do not change significantly across samples, perform-

ing a logarithmic transformation of each expression level, or

standardizing each row of the gene expression matrix with

a mean of zero and a variance of one. In the following

discussion of clustering algorithms, we will set aside the

details of preprocessing procedures and assume that the

input data set has already been properly preprocessed.

1.1.3 Applications of Clustering Gene Expression Data

Clustering techniques have proven to be helpful to under-

stand gene function, gene regulation, cellular processes, and

subtypes of cells. Genes with similar expression patterns

(coexpressed genes) can be clustered together with similar

cellular functions. This approach may further understand-

ing of the functions of many genes for which information

has not been previously available [66], [20]. Furthermore,

coexpressed genes in the same cluster are likely to be

involved in the same cellular processes, and a strong

correlation of expression patterns between those genes

indicates coregulation. Searching for common DNA se-

quences at the promoter regions of genes within the same

cluster allows regulatory motifs specific to each gene cluster

to be identified and cis-regulatory elements to be proposed

[9], [66]. The inference of regulation through the clustering

of gene expression data also gives rise to hypotheses

regarding the mechanism of the transcriptional regulatory

network [16]. Finally, clustering different samples on the

basis of corresponding expression profiles may reveal

subcell types which are hard to identify by traditional

morphology-based approaches [2], [24].

1.2 Introduction to Clustering Techniques

In this section, we will first introduce the concepts of clusters
and clustering. We will then divide the clustering tasks for
gene expression data into three categories according to
different clustering purposes. Finally, we will discuss the
issue of proximity measure in detail.

1.2.1 Clusters and Clustering

Clustering is the process of grouping data objects into a set
of disjoint classes, called clusters, so that objects within a
class have high similarity to each other, while objects in
separate classes are more dissimilar. Clustering is an
example of unsupervised classification. “Classification” refers
to a procedure that assigns data objects to a set of classes.
“Unsupervised” means that clustering does not rely on
predefined classes and training examples while classifying
the data objects. Thus, clustering is distinguished from
pattern recognition or the areas of statistics known as
discriminant analysis and decision analysis, which seek to
find rules for classifying objects from a given set of
preclassified objects.

1.2.2 Categories of Gene Expression Data Clustering

Currently, a typical microarray experiment contains 103 to
104 genes, and this number is expected to reach to the order
of 106. However, the number of samples involved in a
microarray experiment is generally less than 100. One of

the characteristics of gene expression data is that it is

meaningful to cluster both genes and samples. On one
hand, coexpressed genes can be grouped in clusters based
on their expression patterns [7], [20]. In such gene-based

clustering, the genes are treated as the objects, while the
samples are the features. On the other hand, the samples
can be partitioned into homogeneous groups. Each group
may correspond to some particular macroscopic phenotype,
such as clinical syndromes or cancer types [24]. Such
sample-based clustering regards the samples as the objects
and the genes as the features. The distinction of gene-based
clustering and sample-based clustering is based on different
characteristics of clustering tasks for gene expression data.
Some clustering algorithms, such as K-means and hierarch-
ical approaches, can be used both to group genes and to
partition samples. We will introduce those algorithms as
gene-based clustering approaches and will discuss how to
apply them as sample-based clustering in Section 2.2.1.
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Both the gene-based and sample-based clustering ap-
proaches search exclusive and exhaustive partitions of
objects that share the same feature space. However, current
thinking in molecular biology holds that only a small subset
of genes participate in any cellular process of interest and
that a cellular process takes place only in a subset of the
samples. This belief calls for the subspace clustering to
capture clusters formed by a subset of genes across a subset
of samples. For subspace clustering algorithms, genes and
samples are treated symmetrically, so that either genes or
samples can be regarded as objects or features. Further-
more, clusters generated through such algorithms may have
different feature spaces.

While a gene expression matrix can be analyzed from
different angles, the gene-based, sample-based clustering,
and subspace clustering analysis face very different
challenges. Thus, we may have to adopt very different
computational strategies in the three situations. The details
of the challenges and the representative clustering techni-
ques pertinent to each clustering category will be discussed
in Section 2.

1.2.3 Proximity Measurement for Gene Expression Data

Proximity measurement measures the similarity (or distance)
between two data objects. Gene expression data objects, no
matter genes or samples, can be formalized as numerical
vectors ~OOi ¼ foijj1 � j � pg, where oij is the value of the jth
feature for the ith data object and p is the number of
features. The proximity between two objects Oi and Oj is
measured by a proximity function of corresponding vectors
~OOi and ~OOj.

Euclidean distance is one of the most commonly used
methods to measure the distance between two data objects.
The distance between objects Oi and Oj in p-dimensional
space is defined as:

EuclideanðOi;OjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
d¼1

ðoid � ojdÞ2
s

:

However, for gene expression data, the overall shapes of
gene expression patterns (or profiles) are of greater interest
than the individual magnitudes of each feature. Euclidean
distance does not score well for shifting or scaled patterns
(or profiles) [71]. To address this problem, each object
vector is standardized with zero mean and variance one
before calculating the distance [66], [59], [56].

An alternate measure is Pearson’s correlation coefficient,
which measures the similarity between the shapes of two
expression patterns (profiles). Given two data objects Oi

and Oj, Pearson’s correlation coefficient is defined as

PearsonðOi;OjÞ ¼
Pp

d¼1 ðoid � �oiÞðojd � �ojÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
d¼1 ðoid � �oiÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

d¼1 ðojd � �ojÞ
2

q ;

where �oi and �oj are the means for ~OOi and ~OOj, respectively.
Pearson’s correlation coefficient views each object as a
random variable with p observations and measures the
similarity between two objects by calculating the linear
relationship between the distributions of the two corre-
sponding random variables.

Pearson’s correlation coefficient is widely used and has
proven effective as a similarity measure for gene

expression data [36], [64], [65], [74]. However, empirical
study has shown that it is not robust with respect to
outliers [30], thus potentially yielding false positives which
assign a high similarity score to a pair of dissimilar
patterns. If two patterns have a common peak or valley at
a single feature, the correlation will be dominated by this
feature, although the patterns at the remaining features
may be completely dissimilar. This observation evoked an
improved measure called Jackknife correlation [19], [30],
defined as JackknifeðOi;OjÞ ¼ minf�ð1Þij ; . . . ; �

ðlÞ
ij ; . . . ; �

ðpÞ
ij g,

where �
ðlÞ
ij is the Pearson’s correlation coefficient of data

objects Oi and Oj with the lth feature deleted. Use of the
Jackknife correlation avoids the “dominance effect” of
single outliers. More general versions of Jackknife
correlation that are robust to more than one outlier can
similarly be derived. However, the generalized Jackknife
correlation, which would involve the enumeration of
different combinations of features to be deleted, would be
computationally costly and is rarely used.

Another drawback of Pearson’s correlation coefficient is
that it assumes an approximate Gaussian distribution of the
points and may not be robust for non-Gaussian distribu-
tions [14], [16]. To address this, the Spearman’s rank-order
correlation coefficient has been suggested as the similarity
measure. The ranking correlation is derived by replacing
the numerical expression level oid with its rank rid among all
conditions. For example, rid ¼ 3 if oid is the third highest
value among oik, where 1 � k � p. Spearman’s correlation
coefficient does not require the assumption of Gaussian
distribution and is more robust against outliers than
Pearson’s correlation coefficient. However, as a conse-
quence of ranking, a significant amount of information
present in the data is lost. Our experimental results indicate
that, on average, Spearman’s rank-order correlation coeffi-
cient does not perform as well as Pearson’s correlation
coefficient.

Almost all of the clustering algorithms mentioned in this

survey use either Euclidean distance or Pearson’s correla-

tion coefficient as the proximity measure. When Euclidean

distance is selected as proximity measure, the standardiza-

tion process ~OO0
id ¼

~OOid��Oi

�Oi
is usually applied, where ~OOid is

the dth feature of object Oi, while �Oi
and �Oi

are the mean

and standard deviation of ~OOi, respectively. Suppose O0
i and

O0
j are the standardized “objects” of Oi and Oj. Then, we

can prove PearsonðOi;OjÞ ¼ PearsonðO0
i; O

0
jÞ and

EuclideanðO0
i; O

0
jÞ ¼

ffiffiffiffiffi
2p

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PearsonðO0

i; O
0
jÞ

q
Þ:

These two equations disclose the consistency between
Pearson’s correlation coefficient and Euclidean distance
after data standardization, i.e., if a pair of data objects
Oi1; Oj1 has a higher correlation than pair

Oi2; Oj2ðPearsonðO0
i1; O

0
j1Þ > PearsonðO0

i2; O
0
j2ÞÞ;

then pair Oi1; Oj1 has a smaller distance than pair

Oi2; Oj2ðEuclideanðO0
i1; O

0
j1Þ < EuclideanðO0

i2; O
0
j2ÞÞ:

Thus, we can expect the effectiveness of a clustering
algorithm to be equivalent whether Euclidean distance or
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Pearson’s correlation coefficient is chosen as the proximity
measure.

2 CLUSTERING ALGORITHMS

Aswementioned in Section 1.2.2, gene expressionmatrix can
be analyzed in two ways. For gene-based clustering, genes are
treated as data objects, while samples are considered as
features. Conversely, for sample-based clustering, samples
serve as data objects to be clustered, while genes play the role
of features. The third category of cluster analysis applied to
gene expression data, which is subspace clustering, treats
genes and samples symmetrically such that either genes or
samples can be regarded as objects or features. Gene-based,
sample-based, and subspace clustering face very different
challenges, and different computational strategies are
adopted for each situation. In this section, we will introduce
the gene-based clustering, sample-based clustering, and
subspace clustering techniques, respectively.

2.1 Gene-Based Clustering

In this section, we will discuss the problem of clustering
genes based on their expression patterns. The purpose of
gene-based clustering is to group together coexpressed
genes which indicate cofunction and coregulation. We will
first present the challenges of gene-based clustering and
then review a series of clustering algorithms which have
been applied to group genes. For each clustering algorithm,
we will first introduce the basic idea of the clustering
process, and then highlight some features of the algorithm.

2.1.1 Challenges of Gene Clustering

Due to the special characteristics of gene expression data,
and the particular requirements from the biological domain,
gene-based clustering presents several new challenges and
is still an open problem.

. First, cluster analysis is typically the first step in data
mining and knowledge discovery. The purpose of
clustering gene expression data is to reveal the
natural data structures and gain some initial insights
regarding data distribution. Therefore, a good
clustering algorithm should depend as little as
possible on prior knowledge, which is usually not
available before cluster analysis. For example, a
clustering algorithm which can accurately estimate
the “true” number of clusters in the data set would
be more favored than one requiring the predeter-
mined number of clusters.

. Second, due to the complex procedures of micro-
array experiments, gene expression data often
contains a huge amount of noise. Therefore, cluster-
ing algorithms for gene expression data should be
capable of extracting useful information from a high
level of background noise.

. Third, our empirical study has demonstrated that
gene expression data are often “highly connected”
[37], and clusters may be highly intersected with
each other or even embedded one in another [36].
Therefore, algorithms for gene-based clustering
should be able to effectively handle this situation.

. Finally, users of microarray data may not only be
interested in the clusters of genes, but also be
interested in the relationship between the clusters
(e.g., which clusters are more close to each other and
which clusters are remote from each other), and the
relationship between the genes within the same
cluster (e.g., which gene can be considered as the
representative of the cluster and which genes are at
the boundary area of the cluster). A clustering
algorithm, which cannot only partition the data set
but also provides some graphical representation of
the cluster structure would be more favored by the
biologists.

2.1.2 K-Means

The K-means algorithm [46] is a typical partition-based
clustering method. Given a prespecified number K, the
algorithm partitions the data set into K disjoint subsets
which optimize the following objective function:

E ¼
XK
i¼1

X
O2Ci

jO� �ij2:

Here, O is a data object in cluster Ci and �i is the centroid
(mean of objects) of Ci. Thus, the objective function E tries
to minimize the sum of the squared distances of objects
from their cluster centers.

The K-means algorithm is simple and fast. The time
complexity of K-means is Oðl � k � nÞ, where l is the number
of iterations and k is the number of clusters. Our empirical
study has shown that the K-means algorithm typically
converges in a small number of iterations. However, it also
has several drawbacks as a gene-based clustering algorithm.
First, the number of gene clusters in a gene expression data
set is usually unknown in advance. To detect the optimal
number of clusters, users usually run the algorithms
repeatedly with different values of k and compare the
clustering results. For a large gene expression data set
which contains thousands of genes, this extensive para-
meter fine-tuning process may not be practical. Second,
gene expression data typically contain a huge amount of
noise; however, the K-means algorithm forces each gene
into a cluster, which may cause the algorithm to be sensitive
to noise [59], [57].

Recently, several new clustering algorithms [51], [31],
[59] have been proposed to overcome the drawbacks of the
K-means algorithm. These algorithms typically use some
global parameters to control the quality of resulting clusters
(e.g., the maximal radius of a cluster and/or the minimal
distance between clusters). Clustering is the process of
extracting all of the qualified clusters from the data set. In
this way, the number of clusters can be automatically
determined and those data objects which do not belong to
any qualified clusters are regarded as outliers. However,
the qualities of clusters in gene expression data sets may
vary widely. Thus, it is often a difficult problem to choose
the appropriate globally constraining parameters.

2.1.3 Self-Organizing Map

The Self-Organizing Map (SOM) was developed by Koho-
nen [39], on the basis of a single layered neural network.
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The data objects are presented at the input and the output
neurons are organized with a simple neighborhood
structure such as a two-dimensional p � q grid. Each neuron
of the neural network is associated with a reference vector,
and each data point is “mapped” to the neuron with the
“closest” reference vector. In the process of running the
algorithm, each data object acts as a training sample which
directs the movement of the reference vectors towards the
denser areas of the input vector space, so that those
reference vectors are trained to fit the distributions of the
input data set. When the training is complete, clusters are
identified by mapping all data points to the output neurons.

One of the remarkable features of SOM is that it
generates an intuitively appealing map of a high-dimen-
sional data set in 2D or 3D space and places similar clusters
near each other. The neuron training process of SOM
provides a relatively more robust approach than K-means
to the clustering of highly noisy data [62], [29]. However,
SOM requires users to input the number of clusters and the
grid structure of the neuron map. These two parameters are
preserved through the training process; hence, improperly-
specified parameters will prevent the recovering of the
natural cluster structure. Furthermore, if the data set is
abundant with irrelevant data points, such as genes with
invariant patterns, SOM will produce an output in which
this type of data will populate the vast majority of clusters
[29]. In this case, SOM is not effective because most of the
interesting patterns may be merged into only one or two
clusters and cannot be identified.

2.1.4 Hierarchical Clustering

In contrast to partition-based clustering, which attempts to
directly decompose the data set into a set of disjoint
clusters, hierarchical clustering generates a hierarchical
series of nested clusters which can be graphically repre-
sented by a tree, called dendrogram. The branches of a
dendrogram not only record the formation of the clusters
but also indicate the similarity between the clusters. By
cutting the dendrogram at some level, we can obtain a
specified number of clusters. By reordering the objects such
that the branches of the corresponding dendrogram do not
cross, the data set can be arranged with similar objects
placed together.

Hierarchical clustering algorithms can be further divided
into agglomerative approaches and divisive approaches based
on how the hierarchical dendrogram is formed. Agglom-
erative algorithms (bottom-up approach) initially regard
each data object as an individual cluster, and at each step,
merge the closest pair of clusters until all the groups are
merged into one cluster. Divisive algorithms (top-down
approach) starts with one cluster containing all the data
objects and, at each step split, only singleton clusters of
individual objects remain. For agglomerative approaches,
different measures of cluster proximity, such as single link,
complete link, and minimum-variance [18], [38], derive
various merge strategies. For divisive approaches, the
essential problem is to decide how to split clusters at each
step. Some are based on heuristic methods such as the
deterministic annealing algorithm [3], while many others
are based on the graph theoretical methods which we will
discuss later.

Eisen et al. [20] applied an agglomerative algorithm
called UPGMA (Unweighted Pair Group Method with
Arithmetic Mean) and adopted a method to graphically
represent the clustered data set. In this method, each cell of
the gene expression matrix is colored on the basis of the
measured fluorescence ratio and the rows of the matrix are
reordered based on the hierarchical dendrogram structure
and a consistent node-ordering rule. After clustering, the
original gene expression matrix is represented by a colored
table (a cluster image) where large contiguous patches of
color represent groups of genes that share similar expres-
sion patterns over multiple conditions.

Alon et al. [3] split the genes through a divisive
approach, called the deterministic-annealing algorithm
(DAA) [53], [52]. First, two initial cluster centroids Cj,
j ¼ 1; 2, were randomly defined. The expression pattern of
gene kwas represented by a vector~ggk, and the probability of
gene k belonging to cluster j was assigned according to a
two-component Gaussian model:

Pjð~ggkÞ ¼ expð��j~ggk � Cjj2Þ=
X
j

expð��j~ggk � Cjj2Þ:

The cluster centroids were recalculated by

Cj ¼
X
k

~ggkPjð~ggkÞ=
X
k

Pjð~ggkÞ:

An iterative process (the EM algorithm) was then applied to
solve Pj and Cj (the details of the EM algorithm will be
discussed later). For � ¼ 0, there was only one cluster,
C1 ¼ C2. When � was increased in small steps until a
threshold was reached, two distinct, converged centroids
emerged. The whole data set was recursively split until each
cluster contained only one gene.

Hierarchical clustering not only groups together genes
with similar expression pattern but also provides a natural
way to graphically represent the data set. The graphic
representation allows users a thorough inspection of the
whole data set and obtain an initial impression of the
distribution of data. Eisen’s method is much favored by
many biologists and has become the most widely used tool
in gene expression data analysis [20], [3], [2], [33], [50].
However, the conventional agglomerative approach suffers
from a lack of robustness [62], i.e., a small perturbation of
the data set may greatly change the structure of the
hierarchical dendrogram. Another drawback of the hier-
archical approach is its high-computational complexity. To
construct a “complete” dendrogam (where each leaf node
corresponds to one data object, and the root node
corresponds to the whole data set), the clustering process
should take n2�n

2 merging (or splitting) steps. The time
complexity for a typical agglomerative hierarchical algo-
rithm is Oðn2lognÞ [34]. Furthermore, for both agglomera-
tive and divisive approaches, the “greedy” nature of
hierarchical clustering prevents the refinement of the
previous clustering. If a “bad” decision is made in the
initial steps, it can never be corrected in the following steps.

2.1.5 Graph-Theoretical Approaches

Given a data set X, we can construct a proximity matrix P ,
where P ½i; j� ¼ proximityðOi;OjÞ, and a weighted graph
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GðV ;EÞ, called a proximity graph, where each data point
corresponds to a vertex. For some clustering methods, each
pair of objects is connected by an edge with weight assigned
according to the proximity value between the objects [56],
[73]. For other methods, proximity is mapped only to either
0 or 1 on the basis of some threshold, and edges only exist
between objects i and j, where P ½i; j� equals 1 [7], [26].
Graph-theoretical clustering techniques are explicitly pre-
sented in terms of a graph, thus converting the problem of
clustering a data set into such graph theoretical problems as
finding minimum cut or maximal cliques in the proximity
graph G.

CLICK. CLICK (CLuster Identification via Connectivity
Kernels) [56] seeks to identify highly connected components
in the proximity graph as clusters. CLICK makes the
probabilistic assumption that after standardization, pair-
wise similarity values between elements (no matter if they
are in the same cluster or not) are normally distributed.
Under this assumption, the weight !ij of an edge ði; jÞ is
defined as the probability that vertices i and j are in the same
cluster. The clustering process of CLICK iteratively finds the
minimum cut in the proximity graph and recursively splits
the data set into a set of connected components from the
minimum cut. CLICK also takes two postpruning steps to
refine the cluster results. The adoption step handles the
remaining singletons and updates the current clusters, while
the merging step iteratively merges two clusters with
similarity exceeding a predefined threshold.

In [56], the authors compared the clustering results of
CLICK on two public gene expression data sets with those
of GENECLUSTER [62] (a SOM approach) and Eisen’s
hierarchical approach [20], respectively. In both cases,
clusters obtained by CLICK demonstrated better quality in
terms of homogeneity and separation (these two concepts
will be discussed in Section 3). However, CLICK has little
guarantee of not going astray and generating highly
unbalanced partitions, e.g., a partition that only separates
a few outliers from the remaining data objects. Further-
more, in gene expression data, two clusters of coexpressed
genes, C1 and C2, may be highly intersected with each
other. In such situations, C1 and C2 are not likely to be split
by CLICK, but would be reported as one highly connected
component.

CAST. Ben-Dor et al. [7] introduced the idea of a
corrupted clique graph data model. The input data set is
assumed to come from the underlying cluster structure by
“contamination” with random errors caused by the com-
plex process of gene expression measurement. Specifically,
it is assumed that the true clusters of the data points can be
represented by a clique graph H, which is a disjoint union of
complete subgraphs with each clique corresponding to a
cluster. The similarity graph G is derived fromH by flipping
each edge/nonedge with probability �. Therefore, cluster-
ing a data set is equivalent to identifying the original clique
graph H from the corrupted version G with as few flips
(errors) as possible.

In [7], Ben-Dor et al. presented both a theoretical

algorithm and a practical heuristic called CAST (Cluster

Affinity Search Technique). CAST takes as input a real,

symmetric, n-by-n similarity matrix SðSði; jÞ 2 ½0; 1�Þ and an

affinity threshold t. The algorithm searches the clusters one at

a time. The currently searched cluster is denoted by Copen.

Each element x has an affinity value aðxÞ with respect to

Copen as aðxÞ ¼
P

y2Copen
Sðx; yÞ. An element x has a high

affinity value if it satisfies aðxÞ � tjCopenj; otherwise, x has

a low affinity value. CAST alternates between adding high-

affinity elements to the current cluster and removing low-

affinity elements from it. When the process stabilizes, Copen

is considered a complete cluster, and this process continues

with each new cluster until all elements have been assigned

to a cluster.
The affinity threshold t of the CAST algorithm is actually

the average of pairwise similarities within a cluster. CAST
specifies the desired cluster quality through t and applies a
heuristic searching process to identify qualified clusters one
at a time. Therefore, CAST does not depend on a user-
defined number of clusters and deals with outliers effec-
tively. Nevertheless, CAST has the usual difficulty of
determining a “good” value for the global parameter t.

2.1.6 Model-Based Clustering

Model-based clustering approaches [21], [76], [23], [45]
provide a statistical framework to model the cluster
structure of gene expression data. The data set is assumed
to come from a finite mixture of underlying probability
distributions, with each component corresponding to a
different cluster. The goal is to estimate the parameters � ¼
f�i j 1 � i � kg and � ¼ f�ir j 1 � i � k; 1 � r � ng that max-
imize the likelihood Lmixð�;�Þ ¼

Pk
i¼1 �

i
rfiðxrj�iÞ, where n

is the number of data objects, k is the number of
components, xr is a data object (i.e., a gene expression
pattern), fiðxrj�iÞ is the density function of xr of component
Ci with some unknown set of parameters �i (model
parameters), and �ir (hidden parameters) represents the prob-
ability that xr belongs to Ci. Usually, the parameters � and
� are estimated by the EM algorithm. The EM algorithm
iterates between Expectation (E) steps and Maximization
(M) steps. In the E step, hidden parameters � are
conditionally estimated from the data with the current
estimated �. In the M step, model parameters � are
estimated so as to maximize the likelihood of complete
data given the estimated hidden parameters. When the
EM algorithm converges, each data object is assigned to
the component (cluster) with the maximum conditional
probability.

An important advantage of model-based approaches is

that they provide an estimated probability �ik that data

object i will belong to cluster k. As we will discuss in

Section 2.1.1, gene expression data are typically “highly-

connected”; there may be instances in which a single gene

has a high correlation with two different clusters. Thus, the

probabilistic feature of model-based clustering is particu-

larly suitable for gene expression data. However, model-

based clustering relies on the assumption that the data set

fits a specific distribution. This may not be true in many

cases. The modeling of gene expression data sets, in

particular, is an ongoing effort by many researchers, and,

to the best of our knowledge, there is currently no well-

established model to represent gene expression data.
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Yeung et al. [76] studied several kinds of commonly used

data transformations and assessed the degree to which

three gene expression data sets fit the multivariant

Gaussian model assumption. The raw values from all three

data sets fit the Gaussian model poorly and there is no

uniform rule to indicate which transformation would best

improve this fit.

2.1.7 A Density-Based Hierarchical Approach: DHC

In [36], the authors proposed a new clustering algorithm,
DHC (a density-based, hierarchical clustering method), to
identify the coexpressed gene groups from gene expression
data. DHC is developed based on the notions of “density”
and “attraction” of data objects. The basic idea is to consider
a cluster as a high-dimensional dense area, where data
objects are “attracted” with each other. At the “core” part of
the dense area, objects are crowded closely with each other
and, thus, have high density. Objects at the peripheral area
of the cluster are relatively sparsely distributed and are
“attracted” to the “core” part of the dense area.

Once the “density” and “attraction” of data objects are
defined, DHC organizes the cluster structure of the data set
in two-level hierarchical structures. At the first level, an
attraction tree is constructed to represent the relationship
between the data objects in the dense area. Each node on the
attraction tree corresponds to a data object, and the parent
of each node is its attractor. The only exception is the data
object which has the highest density in the data set. This
data object becomes the root of the attraction tree. However,
the structure of the attraction tree would be hard to
interpret when the data set becomes large and the data
structure becomes complicated. To address this problem, at
the second structure level, DHC summarizes the cluster
structure of the attraction tree into a density tree. Each node
of the density tree represents a dense area. Initially, the
whole data set is considered as a single dense area and is
represented by the root node of the density tree. This dense
area is then split into several subdense areas based on some
criteria, where each subdense area is represented by a child
node of the root node. These subdense areas are further
split, until each subdense area contains a single cluster.

As a density-based approach, DHC effectively detects
the coexpressed genes (which have relatively higher
density) from noise (which have relatively lower density),
and thus is robust in the noisy environment. Furthermore,
DHC is particularly suitable for the “high-connectivity”
characteristic of gene expression data because it first
captures the “core” part of the cluster and then divides
the borders of clusters on the basis of the “attraction”
between the data objects. The two-level hierarchical
representation of the data set not only discloses the
relationship between the clusters (via density tree), but
also organizes the relationship between data objects within
the same cluster (via attraction tree). However, to compute
the density of data objects, DHC calculates the distance
between each pair of data objects in the data set. The
computational complexity of this step is Oðn2Þ, which
makes DHC not efficient. Furthermore, two global para-
meters are used in DHC to control the splitting process of
dense areas. Therefore, DHC does not escape from the

typical difficulty to determine the appropriate value of
parameters.

2.1.8 Summary

In this section, we have reviewed a series of approaches to
gene clustering. The purpose of clustering genes is to
identify groups of highly coexpressed genes from noisy
gene expression data. Clusters of coexpressed genes
provide a useful basis for further investigation of gene
function and gene regulation. Some conventional clustering
algorithm, such as K-means, SOM, and hierarchical
approaches (UPGMA), were applied in the early stage and
have proven to be useful. However, those algorithms were
designed for the general purpose of clustering, and may not
be effective to address the particular challenges for gene-
based clustering. Recently, several new clustering algo-
rithms, such as CLICK, CAST, and DHC have been
proposed specifically to aim at gene expression data. The
experimental study [56], [36] has shown that these new
clustering algorithms may provide better performance than
the conventional ones on some gene expression data.

However, different clustering algorithms are based on
different clustering criteria and/or different assumptions
regarding data distribution. The performance of each
clustering algorithm may vary greatly with different data
sets and there is no absolute “winner” among the clustering
algorithms reviewed in this section. For example, K-means
or SOM may outperform other approaches if the target data
set contains few outliers and the number of clusters in the
data set is known. While for a very noisy gene expression
data set in which the number of clusters is unknown, CAST
or CLICK may be a better choice. Table 1 lists some gene
expression data sets to which gene-based clustering
approaches have commonly been applied.

2.2 Sample-Based Clustering

Within a gene expression matrix, there are usually several
particular macroscopic phenotypes of samples related to
some diseases or drug effects, such as diseased samples,
normal samples, or drug treated samples. The goal of
sample-based clustering is to find the phenotype structures
or substructures of the samples. Previous studies [24] have
demonstrated that phenotypes of samples can be discrimi-
nated through only a small subset of genes whose
expression levels strongly correlate with the class distinc-
tion. These genes are called informative genes. The remaining
genes in the gene expression matrix are irrelevant to the
division of samples of interest and thus are regarded as
noise in the data set.

Although the conventional clustering methods, such as
K-means, self-organizing maps (SOM), hierarchical cluster-
ing (HC), can be directly applied to cluster samples using
all the genes as features, the signal-to-noise ratio (i.e., the
number of informative genes versus that of irrelevant
genes) is usually smaller than 1 : 10, which may seriously
degrade the quality and reliability of clustering results [73],
[63]. Thus, particular methods should be applied to identify
informative genes and reduce gene dimensionality for
clustering samples to detect their phenotypes.

The existing methods of selecting informative genes to
cluster samples fall into two major categories: supervised
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analysis (clustering based on supervised informative gene

selection) and unsupervised analysis(unsupervised clustering

and informative gene selection).

2.2.1 Clustering Based on Supervised Informative Gene

Selection

The supervised approach assumes that phenotype informa-

tion is attached to the samples, for example, the samples are

labeled as diseased versus normal. Using this information, a

“classifier” which only contains the informative genes can

be constructed. Based on this “classifier,” samples can be

clustered to match their phenotypes and labels can be

predicted for the future coming samples from the expres-

sion profiles. Supervised methods are widely used by

biologists to pick up informative genes. The major steps to

build the classifier include:

. Training sample selection. In this step, a subset of
samples is selected to form the training set. Since the
number of samples is limited (less than 100), the size
of the training set is usually at the same order of
magnitude with the original size of samples.

. Informative gene selection. The goal of informative
gene selection step is to pick out those genes whose
expression patterns can distinguish different pheno-
types of samples. For example, a gene is uniformly
high in one sample class and uniformly low in the
other [24]. A series of approaches to select informa-
tive genes include: the neighborhood analysis
approach [24], the supervised learning methods
such as the support vector machine (SVM) [10],
and a variety of ranking-based methods [6], [43],
[47], [49], [68], [70].

. Sample clustering and classification. After about 50 �
200 [24], [42] informative genes which manifest the
phenotype partition within the training samples are

selected, the whole set of samples are clustered
using only the informative genes as features. Since
the feature volume is relatively small, conventional
clustering algorithms, such as K-means or SOM, are
usually applied to cluster samples. The future
coming samples can also be classified based on the
informative genes, thus the supervised methods can
be used to solve sample classification problem.

2.2.2 Unsupervised Clustering and Informative Gene

Selection

Unsupervised sample-based clustering assumes no pheno-

type information being assigned to any sample. Since the

initial biological identification of sample classes has been

slow, typically evolving through years of hypothesis-driven

research, automatically discovering samples’ phenotypes

presents a significant contribution in gene expression data

analysis [24]. As an unsupervised learning method, clustering

also serves as an exploratory task intended to discover

unknown substructures in the sample space.
Unsupervised sample-based clustering is much more

complex than a supervised manner since no training set of

samples can be utilized as a reference to guide informative

gene selection. Many mature statistic methods and other

supervised methods cannot be applied without the pheno-

types of samples known in advance. The following two new

challenges of unsupervised sample-based clustering make it

very hard to detect phenotypes of samples and select

informative genes.

. Since the number of samples is very limited while
the volume of genes is very large, such data sets are
very sparse in high-dimensional genes space. No
distinct class structures of samples can be properly
detected by the conventional techniques (for exam-
ple, density-based approaches).
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. Most of the genes collected may not necessarily be of
interest. A small percentage (less than 10 percent
[24]) of genes which manifest meaningful sample
phenotype structure are buried in large amount of
noise. Uncertainty about which genes are relevant
makes it difficult to select informative genes.

Two general strategies have been employed to address
the problem of unsupervised clustering and information
gene selection: unsupervised gene selection and interrelated
clustering.

Unsupervised gene selection. The first strategy differ-
entiates gene selection and sample clustering as indepen-
dent processes. First, the gene (feature) dimension is
reduced, then the conventional clustering algorithms are
applied. Since no training samples are available, gene
selection only relies on statistical models to analyze the
variance in the gene expression data.

Alter et al. [4] applied the principal component analysis
(PCA) to capture the majority of the variations within the
genes by a small set of principal components (PCs), called
“eigengenes.” The samples are then projected on the new
lower-dimensional PC space. However, eigengenes do not
necessarily have a strong correlation with informative
genes. Due to the large number of irrelevant genes,
discriminatory information of gene expression data is not
guaranteed to be the type of user-interested variations. The
effectiveness of applying PCA before clustering is discussed
in [75].

Ding [17] used a F -statistic method to select the genes
which show large variance in the expression matrix. Then, a
min-max cut hierarchical divisive clustering approach is
applied to cluster samples. Finally, the samples are ordered
such that adjacent samples are similar and samples far
away are different. However, this approach relies on the
assumption that informative genes exhibit larger variance
than irrelevant genes which is not necessarily true for the
gene expression data sets [75]. Therefore, the effectiveness
of this approach also depends on the data distribution.

Interrelated clustering. When we have a closer look at
the problems of informative gene selection and sample
clustering, we will find they are closely interrelated. Once
informative genes have been identified, then it is relatively
easy to use conventional clustering algorithms to cluster
samples. On the other hand, once samples have been
correctly partitioned, some supervised methods such as t-
test scores and separation scores [68] can be used to rank the
genes according to their relevance to the partition. Genes
with high relevance to the partition are considered as
informative genes. Based on this observation, the second
strategy has been suggested to dynamically use the
relationship between the genes and samples and iteratively
combine a clustering process and a gene selection process.
Intuitively, although we do not know the exact sample
partition in advance, for each iteration, we can expect to
obtain an approximate partition that is close to the target
sample partition. The approximate partition allows the
selection of a moderately good gene subset, which will,
hopefully, draw the approximate partition even closer to
the target partition in the next iteration. After several
iterations, the sample partition will converge to the true

sample structure and the selected genes will be feasible
candidates for the set of informative genes.

Xing and Karp [73] presented a sample-based clustering
algorithm named CLIFF (CLustering via Iterative Feature
Filtering) which iteratively use sample partitions as a
reference to filter genes. In [73], noninformative genes were
divided into the following three categories:

1. nondiscriminative genes (genes in the “off” state),
2. irrelevant genes (genes do not respond to the

physiological event), and
3. redundant genes (genes that are redundant or

secondary responses to the biological or experimen-
tal conditions that distinguish different samples).

CLIFF first uses a two-component Gaussian model to rank all
genes in terms of their discriminability and then select a set
of most discriminant genes. It then applies a graph-
theoretical clustering algorithm, NCut(Approximate Nor-
malized Cut), to generate an initial partition for the samples
and enters an iteration process. For each iteration, the input
is a reference partition C of the samples and the selected
genes. First a scoring method, named information gain
ranking, is applied to select a set of most “relevant” genes
based on the sample partition C. The Markov blanket filter is
then used to filter “redundant” genes. The remaining genes
are used as the features to generate a new partition C0 of the
samples by NCut clustering algorithm. The new partition C0

and the remaining genes will be the input of the next
iteration. The iteration ends if this new partition C0 is
identical to the input reference partition C. However, this
approach is sensitive to the outliers and noise of the
samples since the gene filtering highly depends on the
result of the NCut algorithm which is not robust to the noise
and outliers.

Tang et al. [64], [65] proposed iterative strategies for
interrelated sample clustering and informative gene selec-
tion. The problem of sample-based clustering is formulated
via an interplay between sample partition detection and
irrelevant gene pruning. The interrelated clustering ap-
proaches contained three phases: an initialization partition
phase, an interrelated iteration phase, and a class validation
phase. In the first phase, samples and genes are grouped into
several exclusive smaller groups by conventional clustering
methods K-means or SOM. In the iteration phase, the
relationship between the groups of the samples and the
groups of the genes are measured and analyzed. A
representation degree measurement is defined to detect the
sample groups with high internal coherence as well as a
large difference between each other. Sample groups with a
high representation degree are posted to form a partial or
approximate sample partition called representative pattern.
The representative pattern is then used to direct the elimina-
tion of irrelevant genes. In turn, the remaining meaningful
genes were used to guide further representative pattern
detection. The termination of the series of iterations is
determined by evaluating the quality of the sample parti-
tion. This is achieved in the class validation phase by
assigning coefficient of variation (CV) to measure the
“internally similar and well-separated” degree of the
selected genes and the related sample partition. The formula
for the coefficient of variation is: CV ¼ 1

K

PK
t¼1

�t
jj~��tjj , whereK
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represents the number of sample groups, ~��t indicates the
center sample vector of group k, and �t represents the
standard deviation of group t. When a stable and significant
sample partition emerges, the iteration stops, and the finial
sample partition become the result of the process. This
approach delineates the relationships between sample
groups and gene groups while conducting an iterative
search for samples’ phenotypes and informative genes. Since
the representative pattern identified in each step is only
formed by “internally similar and well-separated” sample
groups, this approach is robust to the noise and outliers of
the samples.

2.2.3 Summary

In this section, we reviewed a series of approaches to
sample-based clustering. The goal of sample-based cluster-
ing is to find the phenotype structures of the samples. The
clustering techniques can be divided into the following
categories and subcategories:

1. clustering based on supervised informative gene
selection and

2. unsupervised clustering and informative gene
selection

. unsupervised gene selection and

. interrelated clustering.

Since the percentage of the informative genes is rather
low, the major challenge of sample-based clustering is
informative gene selection. Supervised informative gene
selection techniques which use samples’ phenotype infor-
mation to select informative genes is widely applied and
relatively easy to use to get a high clustering accuracy rate
since the majority of the samples are used as the training set
to select informative genes.

Unsupervised sample-based clustering as well as in-
formative gene selection is complex since no prior knowl-
edge is supposed to be known in advance. Basically, two
strategies have been adopted to address this problem. The
first strategy reduces the number of genes before clustering
samples. However, since these approaches rely on some
statistical models [4], [17], the effectiveness of them heavily
depends on the data distribution [75]. Another strategy
utilizes the relationship between the genes and samples to

perform gene selection and sample clustering simulta-
neously in an iterative paradigm. Two novel approaches
based on the this idea were proposed by Xing and Karp [73]
and Tang and Zhang [65]. For both approaches, the iteration
converges into an accurate partition of the samples and a set
of informative genes as well. One drawback of these
approaches is that the gene filtering process is noninver-
tible. The deterministic filtering will cause data to be
grouped based on local decisions.

There are two more issues regarding the quality of
sample-based clustering techniques that need to be further
discussed:

. The number of clusters K. Usually, the number of
phenotypes within a gene expression matrix is very
small and known in advance. For example, the
number of phenotypes is 2 for the well-known
leukemia microarray set [24], [58] which often serves
as the benchmark for microarray analysis methods.
Thus, for sample-based analysis, the number of
clusters K is always predefined, namely, as an input
parameter of the clustering method.

. Time complexity of the sample-based clustering techni-
ques. Since the number of samples m is far less than
the volume of genes n in a typical gene expression
data set, we only investigate the time complexity of
the algorithms with respect to the volume of genes n.
The time complexity of supervised informative gene
selection and unsupervised gene selection ap-
proaches is usually OðnÞ because each gene only
needs to be checked once. The time complexity of
interrelated clustering methods is Oðn � lÞ, while l is
the number of iterations which usually is hard to
estimate.

Table 2 lists some widely used gene expression data sets
for sample-based clustering methods. Since there are many
supervised clustering methods, their applications are not
exhaustively listed.

2.3 Subspace Clustering

The clustering algorithms discussed in the previous sections
are examples of “global clustering”; for a given data set to be
clustered, the feature space is globally determined and is
shared by all resulting clusters, and the resulting clusters
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are exclusive and exhaustive. However, it is well known in
molecular biology that only a small subset of the genes
participates in any cellular process of interest and that any
cellular process takes place only in a subset of the samples.
Furthermore, a single gene may participate in multiple
pathways that may or may not be coactive under all
conditions, so that a gene can participate in multiple
clusters or in none at all. Recently, a series of subspace
clustering methods have been proposed [22], [11], [40] to
capture coherence exhibited by the “blocks” within gene
expression matrices. In this context, a “block” is a submatrix
defined by a subset of genes on a subset of samples.

Subspace clusteringwas first proposed by Agrawal et al. in
general data mining domain [1] to find subsets of objects
such that the objects appear as a cluster in a subspace
formed by a subset of the features. Fig. 2 shows an example
of the subspace clusters (A and B) embedded in a gene
expression matrix. In subspace clustering, the subsets of
features for various subspace clusters can be different. Two
subspace clusters can share some common objects and
features, and some objects may not belong to any subspace
cluster.

For a gene expression matrix containing n genes and
m samples, the computational complexity of a complete
combination of genes and samples is 2nþm so that the
problem of globally optimal block selection is NP-hard. The
subspace clustering methods usually define models to
describe the target block and then adopt some heuristics
to search in the gene-sample space. In the following section,
we will discuss some representative subspace clustering
algorithms proposed for gene expression matrices. In these
representative subspace clustering algorithms, genes and
samples are treated symmetrically such that either genes or
samples can be regarded as objects or features.

2.3.1 Coupled Two-Way Clustering (CTWC)

Getz et al. [22] model the block as a stable cluster with
features (F i) and objects (Oj), where both F i and Oj can be
either genes or samples. The cluster is “stable” in the sense
that, when only the features in F i are used to cluster the
corresponding Oj, Oj does not split below some threshold.
CTWC provides a heuristic to avoid brute-force enumera-
tion of all possible combinations. Only subsets of genes or
samples that are identified as stable clusters in previous
iterations are candidates for the next iteration.

CTWC begins with only one pair of gene set and sample
set (G0,S0), where G0 is the set containing all genes and S0 is

the set that contains all samples. A hierarchical clustering
method, called the superparamagnetic clustering algorithm
(SPC) [8], is applied to each set and the stable clusters of
genes and samples yielded by this first iteration are Gi

1 and
Sj
1. CTWC dynamically maintains two lists of stable clusters

(gene list GL and sample list SL) and a pair list of pairs of
gene and sample subsets (Gi

n, S
j
m). For each iteration, one

gene subset from GL and one sample subset from SL that
have not been previously combined are coupled and
clustered mutually as objects and features. Newly gener-
ated stable clusters are added to GL and SL, and a pointer
that identifies the parent pair is recorded in the pair list to
indicate the origin of the clusters. The iteration continues
until no new clusters are found which satisfy some
criterion, such as stability or critical size.

CTWC was applied to a leukemia data set [24] and a
colon cancer data set [3]. For the leukemia data set, CTWC
converges to 49 stable gene clusters and 35 stable sample
clusters in two iterations. For the colon cancer data set,
76 stable sample clusters and 97 stable gene clusters were
reported by CTWC in two iterations. The experiments
demonstrated the capability of CTWC to identify substruc-
tures of gene expression data which cannot be clearly
identified when all genes or samples are used as objects or
features.

However, CTWC searches for blocks in a deterministic
manner and the clustering results are therefore sensitive to
initial clustering settings. For example, suppose (G, S) is a
pair of stable clusters. If, during the previous iterations, G
was separately assigned to several clusters according to
features S0, or S was separated in several clusters according
to features G0, then (G, S) can never be found by CTWC in
the following iterations. Another drawback of CTWC is that
clustering results are sometimes redundant and hard to
interpret. For example, for the colon cancer data, a total of
76 sample clusters and 97 gene clusters were identified.
Among these, four different gene clusters partitioned the
samples in a normal/cancer classification and were there-
fore redundant, while many of the clusters were not of
interest, i.e., hard to interpret. More satisfactory results
would be produced if the framework can provide a
systematic mechanism to minimize redundancy and rank
the resulting clusters according to significance.

2.3.2 Plaid Model

The plaid model [40] regards gene expression data as a sum of
multiple “layers,” where each layer may represent the
presence of a particular biological process with only a subset
of genes and a subset of samples involved. The generalized
plaid model is formalized as Yij ¼

PK
k¼0 �ijk�ik�jk, where the

expression level Yij of gene i under sample j is considered
coming from multiple sources. To be specific, �ij0 is the
background expression level for the whole data set, and �ijk
describes the contribution from layer k. The parameter �ik (or
�jk) equals 1 when gene i (or sample j) belongs to layer k,
and equals 0 otherwise.

The clustering process searches the layers in the data set
one after another, using the EM algorithm to estimate the
model parameters. Suppose the first K � 1 layers have been
extracted, theKth layer is identified by minimizing the sum
of squared errors Q ¼ 1

2

Pn
i¼1

Pm
j¼1 ðZij � �ijK�iK�jkÞ2, where
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Zij ¼ Yij � �ij0 �
PK�1

k¼1 �ijk�ij�jk is the residual from the first
K � 1 layers. The clustering process stops when the
variance of expression levels within the current layer is
smaller than a threshold.

The plaid model was applied to a yeast gene expression
data set combined from several time series under different
cellular processes [40]. Totally, 34 layers were extracted
from the data set, among which interesting clusters were
found. For example, the second layer was recognized as
dominated by genes that produce ribosomal proteins
involved in protein synthesis in which mRNA is translated.
However, the plaid model is based on the questionable
assumption that, if a gene participates in several cellular
processes, then its expression level is the sum of the terms
involved in the individual processes. Thus, the effectiveness
and interpret ability of the discovered layers need further
investigation.

2.3.3 Biclustering and 	-Clusters

Cheng and Church [11] introduced the bicluster concept to
model a block, along with a score called the mean-squared
residue to measure the coherence of genes and conditions in
the block. Let G0 and S0 be subsets of genes and samples.
The pair ðG0; S0Þ specifies a submatrix with the mean-
squared residue score

HðG0; S0Þ ¼ 1

jG0jjS0j
X

i2G0;j2S0

ðwij � 
iS0 � 
G0j þ 
G0S0 Þ2;

where


iS0 ¼ 1

jS0j
X
j2J

wij; 
G0j ¼
1

jG0j
X
i2I

wij; 
S0J ¼ 1

jG0jjS0j
X

i2G0;j2S0

wij

are the row and column means and the means in the
submatrix. A submatrix is called a 	-bicluster if HðG0; S0Þ �
	 for some 	 > 0. A low mean-squared residue score
together with a large variation from the constant suggest
a good criterion for identifying a block.

However, the problem of finding a minimum set of
biclusters to cover all the elements in a data matrix has been
shown to be NP-hard. A greedy method which provides an
approximation of the optimal solution and reduces the
complexity to polynomial-time has been introduced in [11].
To find a bicluster, the score H is computed for each
possible row/column addition/deletion, and the action that
decreasesH the most is applied. If no action will decreaseH
or if H � 	, a bicluster is returned. However, this algorithm
(the brute-force deletion and addition of rows/columns)
requires computational time OððnþmÞ �mnÞ, where n and

m are the number of genes and samples, respectively, and it
is time-consuming when dealing with a large gene expres-
sion data sets. A more efficient algorithm based on multiple
row/column addition/deletion (the biclustering algorithm)
with time-complexity OðmnÞ was also proposed in [11].
After one bicluster is identified, the elements in the
corresponding submatrix are replaced (masked) by random
numbers. The biclusters are successively extracted from the
raw data matrix until a prespecified number of clusters
have been identified. However, the biclustering algorithm
also has several drawbacks. First, the algorithm stops when
a prespecified number of clusters have been identified. To
cover the majority of elements in the data matrix, the
specified number is usually large. However, the bicluster-
ing algorithm does not guarantee that the biclusters
identified earlier will be of superior quality to those
identified later, which adds to the difficulty of the
interpretation of the resulting clusters. Second, biclustering
“mask” the identified biclusters with random numbers,
preventing the identification of overlapping biclusters.

Yang et al. [74] present a subspace clustering method
named “	-clusters” to capture K embedded subspace
clusters simultaneously. They use average residue across
every entry in the submatrix to measure the coherence
within a submatrix. A heuristic move-based method
called FLOC (FLexible Overlapped Clustering) is applied
to search K embedded subspace clusters. FLOC starts
with K randomly selected submatrices as the subspace
clusters then iteratively tries to add/remove each row/
column into/out of the subspace clusters to lower the
residue value, until a local minimum residue value is
reached. The time complexity of the 	-clusters algorithm is
OððnþmÞ � n �m � k � lÞ, where k is the number of
clusters and l is the number of iterations. The 	-clusters
algorithm also requires that the number of clusters be
prespecified. The advantage of the “	-clusters” approach
is that it is robust to missing values since the residue of a
submatrix only computed by existing values. “	-clusters”
can also detect overlapping embedded subspace clusters.

2.3.4 Summary

For the subspace clustering techniques applied to gene
expression data, a cluster is a “block” formed by a subset of
genes and a subset of experimental conditions, where the
genes in the “block” illustrate coherent expression patterns
under the conditions within the same “block.” Different
approaches adopt different greedy heuristics to approx-
imate the optimal solution and make the problem tractable.
The commonly used data sets are listed in Table 3.

JIANG ET AL.: CLUSTER ANALYSIS FOR GENE EXPRESSION DATA: A SURVEY 1381

TABLE 3
Some Data Sets for Subspace Clustering



3 CLASS VALIDATION

The previous sections have reviewed a number of clustering
algorithms which partition the data set based on different
clustering criteria. For gene expression data, clustering
results in groups of coexpressed genes, groups of samples
with a common phenotype, or “blocks” of genes and
samples involved in specific biological processes. However,
different clustering algorithms, or even a single clustering
algorithm using different parameters, generally result in
different sets of clusters. Therefore, it is important to
compare various clustering results and select the one that
best fits the “true” data distribution. Cluster validation is
the process of assessing the quality and reliability of the
cluster sets derived from various clustering processes.

Generally, cluster validity has three aspects. First, the
quality of clusters can be measured in terms of homogeneity
and separation on the basis of the definition of a cluster:
Objects within one cluster are similar to each other, while
objects in different clusters are dissimilar with each other.
The second aspect relies on a given “ground truth” of the
clusters. The “ground truth” could come from domain
knowledge, such as known function families of genes or
from other sources such as the clinical diagnosis of normal
or cancerous tissues. Cluster validation is based on the
agreement between clustering results and the “ground
truth.” The third aspect of cluster validity focuses on the
reliability of the clusters or the likelihood that the cluster
structure is not formed by chance. In this section, we will
discuss these three aspects of cluster validation.

3.1 Homogeneity and Separation

There are various definitions for the homogeneity of
clusters which measures the similarity of data objects in
cluster C. For example,

H1ðCÞ ¼
P

Oi;Oj2C;Oi 6¼Oj
SimilarityðOi;OjÞ

jjCjj � ðjjCjj � 1Þ :

This definition represents the homogeneity of cluster C by
the average pairwise object similarity within C. An alternate
definition evaluates the homogeneity with respect to the
“centroid” of the cluster C, i.e.,

H2ðCÞ ¼ 1

jjCjj
X
Oi2C

SimilarityðOi; �OOÞ;

where �OO is the “centroid” of C. Other definitions, such as
the representation of cluster homogeneity via maximum or
minimum pairwise or centroid-based similarity within C
can also be useful and perform well under certain
conditions. Cluster separation is analogously defined from
various perspectives to measure the dissimilarity between
two clusters C1, C2. For example,

S1ðC1; C2Þ ¼
P

Oi2C1;Oj2C2
SimilarityðOi;OjÞ

jjC1jj � jjC2jj

and S2ðC1; C2Þ ¼ Similarityð �OO1; �OO2Þ. Since these definitions
of homogeneity and separation are based on the similarity
between objects, the quality of C increases with higher
homogeneity values within C and lower separation values
between C and other clusters. Once we have defined the

homogeneity of a cluster and the separation between a pair
of clusters, for a given clustering result C¼ fC1; C2; . . . ; CKg,
we can define the homogeneity and the separation of C. For
example, Shamir and Sharan [56] used definitions of Have ¼
1
N

P
Ci2C jjCijj �H2ðCiÞ and

Save ¼
1P

Ci 6¼Cj
jjCijj � jjCjjj

X
Ci 6¼Cj

ðjjCijj � jjCjjjÞS2ðCi; CjÞ

to measure the average homogeniety and separation for the
set of clustering results C.

3.2 Agreement with Reference Partition

If the “ground truth” of the cluster structure of the data
set is available, we can test the performance of a
clustering process by comparing the clustering results
with the “ground truth.” Given the clustering results
C ¼ fC1; . . . ; Cpg, we can construct a n � n binary matrix
C, where n is the number of data objects, Cij ¼ 1 if Oi

and Oj belong to the same cluster, and Cij ¼ 0 otherwise.
Similarly, we can build the binary matrix P for the
“ground truth” P ¼ fP1; . . . ; Psg. The agreement between
C and P can be disclosed via the following values:

. n11 is the number of object pairs ðOi;OjÞ, where
Cij ¼ 1 and Pij ¼ 1.

. n10 is the number of object pairs ðOi;OjÞ, where
Cij ¼ 1 and Pij ¼ 0.

. n01 is the number of object pairs ðOi;OjÞ, where
Cij ¼ 0 and Pij ¼ 1.

. n00 is the number of object pairs ðOi;OjÞ, where
Cij ¼ 0 and Pij ¼ 0.

Some commonly used indices [25], [60] have been defined
to measure the degree of similarity between C and P:

Rand index : Rand ¼ n11 þ n00

n11 þ n10 þ n01 þ n00
;

Jaccard coefficient : JC ¼ n11

n11 þ n10 þ n01
;

Minkowski measure : Minkowski ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n10 þ n01

n11 þ n01

r
:

The Rand index and the Jaccard coefficient measure the
extent of agreement between C and P, while the Minkowski
measure illustrates the proportion of disagreements to the
total number of object pairs ðOi;OjÞ, where Oi, Oj belong to
the same set in P. It should be noted that the Jaccard
coefficient and the Minkowski measure do not (directly)
involve the term n00. These two indices may be more
effective in gene-based clustering because a majority of
pairs of objects tend to be in separate clusters and the term
n00 would dominate the other three terms in both good and
bad solutions. Other methods are also available to measure
the correlation between the clustering results and the
“ground truth” [25]. Again, the optimal index selection is
application dependent.

3.3 Reliability of Clusters

While a validation index can be used to compare different
clustering results, this comparison will not reveal the
reliability of the resulting clusters; that is, the probability
that the clusters are not formed by chance. In the following
section, we will review two approaches to measuring the
significance of the derived clusters.
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P -value of a cluster. In [66], Tavazoie et al. mapped the
genes in each resulting cluster to the 199 functional
categories in the Martinsried Institute of Protein Sciences
function classification scheme (MIPS) database. For each
cluster, P -values were calculated to measure the statistical
significance for functional category enrichment. To be
specific, the authors used the hypergeometric distribution
to calculate the probability of observing at least k genes
from a functional category within a cluster of size n:

P ¼ 1�
Xk�1

i¼0

f
i

� �
g� f
n� i

� �
g
n

� � ;

where f is the total number of genes within a functional
category and g is the total number of genes within the
genome. Since the expectation of P within the cluster would
be higher than 0:05%, the authors regarded clusters with
P -values smaller than 3 � 10�4 as significant. Jakt et al. [35]
integrated the assessment of the potential functional
significance of both gene clusters and the corresponding
postulated regulatory motifs (common DNA sequence
patterns), and developed a method to estimate the prob-
ability (P -value) of finding a certain number of matches to a
motif in all of the gene clusters. A smaller probability
indicates a higher significance of the clustering results.

Prediction strength. A novel approach to evaluating the
reliability of sample clusters is based on the concept that if a
clustering result reflects true cluster structure, then a
predictor based on the resulting clusters should accurately
estimate the cluster labels for new test samples. For gene
expression data, extra data objects are rarely used as test
samples since the number of available samples is limited.
Rather, a cross-validation method is applied. The generated
clusters are assessed by repeatedly measuring the prediction
strengthwith one or a few of the data objects left out, in turn,
as “test samples” while the remaining data objects are used
for clustering.

Golub et al. introduced a method based on this idea.

Suppose a clustering algorithm partitions the samples into

two groups C1 and C2, with samples ~ss1; . . . ;~ssk belonging to

C1 and samples ~sskþ1; . . . ;~ssp�1 belonging to C2, ~ssp being the

left out test sample, and G being a set of genes most

correlated with the current partition. Given the test sample

~ssp, each gene~ggi 2 G votes for either C1 or C2, depending on

whether the gene expression level wip of ~ggi in ~ssp is closer to

�1 or �2 (which denote, respectively, the mean expression

levels of~ss1; . . . ;~ssk (C1) and~sskþ1; . . . ;~ssp�1 (C2)). The votes for

C1 and C2 are summed as V1 and V2, respectively, and the

prediction strength for~ssp is defined as j V1�V2

V1þV2
j. Clearly, if most

of the genes in G uniformly vote ~ssp for C1 (or for C2), the

value of the predication strength will be high. High values

of prediction strength with respect to sufficient test samples

indicate a biologically significant clustering.
Golub’s method constructs a predictor based on derived

clusters and converts the reliability assessment of sample
clusters to a “supervised” classification problem. In [77],
Yeung et al. extended the idea of “prediction strength” and
proposed an approach to cluster validation for gene

clusters. Intuitively, if a cluster of genes has possible
biological significance, then the expression levels of the
genes within that cluster should also be similar to each
other in “test” samples that were not used to form the
cluster. Yeung et al. proposed a specific figure of merit
(FOM), to estimate the predictive power of a clustering
algorithm. Suppose C1; . . . ; Ck are the resulting clusters
based on samples 1; . . . ; ðe� 1Þ; ðeþ 1Þ; . . . ;m, and sample e
is left out to test the prediction strength. Let Rðg; eÞ be the
expression level of gene g under sample e in the raw data
matrix. Let �Ci

ðeÞ be the average expression level in sample
e of the genes in cluster Ci. The figure of meritwith respect to
e and the number of clusters k is defined as

FOMðe; kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
Xk
i¼1

X
x2Ci

ðRðx; eÞ � �Ci
ðeÞÞ2

vuut :

Each of the m samples can be left out, in turn, and the
aggregate figure of merit is defined as

FOMðkÞ ¼
Xm
e¼1

FOMðe; kÞ:

The FOM measures the mean deviation of the expression
levels of genes in e relative to their corresponding cluster
means. Thus, a small value of FOM indicates a strong
prediction strength and, therefore, a high-level reliability of
the resulting clusters. Levine and Domany [41] proposed
another figure of merit M based on a resampling scheme.
The basic idea is that the cluster structure derived from the
whole data set should be able to “predict” the cluster
structure of subsets of the full data. M measures the extent
to which the clustering assignments obtained from the
resamples (subsets of the full data) agree with those from
the full data. A high value of M against a wide range of
resampling indicates a reliable clustering result.

4 CURRENT AND FUTURE RESEARCH DIRECTIONS

Recent DNA microarray technologies have made it possible
to monitor transcription levels of tens of thousands of genes
in parallel. Gene expression data generated by microarray
experiments offer tremendous potential for advances in
molecular biology and functional genomics. In this paper,
we reviewed both classical and recently developed cluster-
ing algorithms, which have been applied to gene expression
data, with promising results.

Gene expression data can be clustered on both genes and
samples. As a result, the clustering algorithms can be
divided into three categories: gene-based clustering, sam-
ple-based clustering, and subspace clustering. Each cate-
gory has specific applications and present specific
challenges for the clustering task. For each category, we
have analyzed its particular problems and reviewed several
representative algorithms.

Given the variety of available clustering algorithms, one
of the problems faced by biologists is the selection of the
algorithm most appropriate to a given gene expression data
set. However, there is no single “best” algorithmwhich is the
“winner” in every aspect. Researchers typically select a few
candidate algorithms and compare the clustering results.
Nevertheless, we have shown that there are three aspects of
cluster validation and, for each aspect, various approaches
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can be used to assess the quality or reliability of the
clustering results. In this instance as well, there are no
existing standard validity metrics. In fact, the performance
of different clustering algorithms and different validation
approaches is strongly dependent on both data distribution
and application requirements. The choice of the clustering
algorithm and validity metric is often guided by a combina-
tion of evaluation criteria and the user’s experience.

A gene expression data set typically contains thousands
of genes. However, biologists often have different require-
ments on cluster granularity for different subsets of genes.
For some purpose, biologists may be particularly interested
in some specific subsets of genes and prefer small and tight
clusters while for other genes, people may only need a
coarse overview of the data structure. However, most of the
existing clustering algorithms only provide a crisp set of
clusters and may not be flexible to different requirements
for cluster granularity on a single data set. For gene
expression data, it would be more appropriate to avoid
the direct partition of the data set and instead provide a
scalable graphical representation of the data structure,
leaving the partition problem to the users. Several existing
approaches, such as hierarchical clustering, SOM, and
Optics [5], can graphically represent the cluster structure.
However, these algorithms may not be able to adapt to
different user requirements on cluster granularity for
different subsets of the data.

Clustering is generally recognized as an “unsupervised”
learning problem. Prior to undertaking a clustering task,
“global” information regarding the data set, such as the total
number of clusters and the complete data distribution in the
object space, is usually unknown. However, some “partial”
knowledge is often available regarding a gene expression
data set. For example, the functions of some genes have
been studied in the literature, which can provide guidance
to the clustering. Furthermore, some groups of the experi-
mental conditions are known to be strongly correlated and
the differences among the cluster structures under these
different groups may be of particular interest. If a clustering
algorithm could integrate such partial knowledge as some
clustering constraints when carrying out the clustering task,
we can expect that the clustering results would be more
biologically meaningful. In this way, clustering could cease
to be a “pure” unsupervised process and become an
interactive exploration of the data set.
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