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1 IntroductionIt has long been suggested that functional languages, particularly those with non-strictsemantics, provide an excellent tool for parallel computation. The principal motivation forsuch claims is that, because of the lack of side-e�ects, there will often be opportunitiesto evaluate the subexpressions of a given term in parallel without any risk of interference.Furthermore, since there is no explicitmapping of speci�c tasks to particular processing units,a single functional program may be mapped onto a range of di�erent parallel architectures.This mapping can be performed at compile-time or dynamically at run-time to make bestuse of the resources available without any need for reprogramming.On the other hand, the lack of side-e�ects has also been viewed as one of the biggestdisadvantages of functional languages. In particular, many features of traditional imperativelanguages { state, I/O, and exceptions, for example { are most naturally described in termsof side-e�ects. While it is possible to simulate these techniques in a functional language, theresults may not always be satisfactory:� Although it may be possible to code the same algorithm in a di�erent way, the encodedprograms are sometimes more cumbersome since the implicit state, continuations, etc.in an imperative language must be handled explicitly in the functional program.� The resulting programs are not always as e�cient as the corresponding imperativelanguage, and optimization strategies are often complex, hard to reason about, andimplementation dependent.In recent years, there have been several proposals describing how these problems can beavoided without compromising the use of functional languages. In particular, we mention theuse ofmonads [22, 23, 18] and mutable abstract datatypes (MADT's) [8]. The most importantidea in each case is the use of an abstract datatype to control the way the imperative featuresare used. This goes a long way toward solving both problems mentioned above: \hiding"the imperative features in the ADT results in less cumbersome programs, and limiting thekinds of operations on them can lead to guaranteed e�cient performance. Unfortunately,these e�orts were aimed primarily at recovering the expressiveness and e�ciency of sequentialimperative languages, and thus the level of control is somewhat more restrictive than hoped,defeating many important opportunities for parallel execution.In this paper, after a survey of the issues described above in Sections 2 and 3, we identifya class of commutative monads for which parallel computation is still possible, as capturedby a new fork primitive in Haskell's I/O monad (Section 4). The commutativity of thesemonads is what guarantees determinacy in their parallel execution, even in the presence ofside-e�ects. As with sequential computation, however, being able to express non-determinatecomputation is another degree of freedom and expressiveness, and yields even more oppor-tunities for parallelism. As is well-known, this indeterminacy is often only at a local level,2



placing proof obligation of determinacy at a more global level on the programmer (for ex-ample, parallel updates to an array is determinate if no one element is updated more thanonce).Motivated by this, Section 5 outlines an extension to the Haskell I/O monad to supportcommunicating processes in the style Hoare's CSP [5] or occam1 [11, 12]. In particular, wetreat channels as �rst-class values and use them to interconnect processes (functions par-ticipating in the I/O monad). Several examples are given of this explicit style of parallelfunctional programming: pipelines (Section 6), parallel sieve of Eratosthenes (Section 7,demonstrating the ability to generate new parallel process dynamically), and a sorting pro-gram (Section 8).We assume the reader to be familiar with Haskell or similar functional language; wehave in fact implemented the ideas in this paper in Gofer, an \extended subset" of Haskell.Implementation issues are discussed in Section 9. Finally, Section 10 concludes with pointersto areas for further work and investigation.2 Parallel Execution of Functional ProgramsFunctional languages, particularly those with non-strict semantics and an absence of side-e�ects, have often been suggested as powerful tools for programming parallel computer sys-tems.As a simple, almost trivial illustration of this, suppose that we wish to �nd the valueof an expression of the form e1 + e2 . This in turn requires that we evaluate both e1 ande2 . In an imperative language, the evaluation of either of these subexpressions may causea side-e�ect which may a�ect the value of the other subexpression. As a result, if we wanta well-de�ned semantics for the language, then we must arrange for the two expressions tobe evaluated sequentially in some prede�ned order. On the other hand, a pure functionallanguage's semantics guarantees that neither evaluation can interfere with the other so wecan evaluate the arguments in parallel and then, when both argument values are known,calculate their sum.2.1 Implicit ParallelismThe ability to write programs without worrying about how they will be mapped onto partic-ular parallel architectures has obvious bene�ts. However, if this information is not includedexplicitly as part of the program then we need to �nd a good automated strategy for decidingwhen to start new parallel computations. Much work has been done in this area, both staticcompile-time techniques and dynamic run-time techniques, and ranging in degree of paral-lelism from conservative approaches in which parallel computations are started only when1Occam is a trademark of the INMOS group of companies.3



it is certain that their results will be needed, to more liberal approaches where evaluationsare begun speculatively, before it is known for sure that the results will be needed. For lazylanguages, various forms of strictness analysis play a key role in uncovering useful forms ofparallelism. It is beyond the scope of this paper to discuss these issues in any detail, but inthis section we give a few programming examples in which the parallelism is implicit.2.2 A Simple Form of the N-body ProblemConsider a simple form of the n-body problem, modeling the behaviour of a collection ofbodies subject, for example, to mutual gravitational or electrostatic forces. This example isinspired by work on the parallel language Proteus [15].To avoid going into details about any particular physical model, we assume only that wehave already been given functions:between :: (Body;Body)! Forcemove :: Force ! Body ! Bodythat can be used to calculate the force on one body as a result of a second, and the newposition of a particular body subject to a given force for some small, �xed unit of time �t .(We assume that the Body type includes physical attributes of the body such as its mass,velocity and position.)The simulation of a collection of bodies can be modeled as a sequence of di�erent con-�gurations, with the transition from one to the next de�ned as:next :: [Body]! [Body]next bs = [move (sum [ between (b; b 0) j b 0  bs ]) b j b  bs ]In other words, for each body we calculate the sum of the forces acting on it, and use thatto calculate its new position. This de�nition can be used exactly as it is written here in astandard sequential implementation of Haskell. But with an appropriate parallel evaluationstrategy, the same program could be executed on a parallel architecture as well, the nestedlist comprehensions being used to distribute the calculation of inter-body forces over an arrayof processors.2.3 Making Parallelism ExplicitWhile the treatment of parallelism in the example above seems rather attractive, it assumes aparallel implementation good enough to exploit the inherent parallelism. Even if successful,it may be di�cult for the programmer to reason about the resulting behavior, since doingso requires a good understanding of the particular implementation being used.4



One way to try and obtain more reliable performance on parallel architectures is to include\annotations" in the program to indicate when parallel computation might be bene�cial. Forexample, we might choose to write par x y to indicate that the two values x and y are to beevaluated in parallel, returning the evaluated pair (x ; y) only when both components havebeen evaluated. Semantically, the par function can be thought of as the projection:par :: a ! b ! (a; b)par x y = if x 6= ? ^ y 6= ? then (x ; y) else ?The use of annotations such as these is the basis, for example, of para-functional program-ming [7], in which both explicit mapping and explicit scheduling of expression evaluation ispermitted. In this paper we will explore this idea only to the extent implied above: a simpleway to provide a \hint" to the compiler that parallelism is intended.One might argue that providing such a \hint" still does not solve the portability problem:a particular implementation could simply ignore the hint! However, having the hints at leastprovides a precise handle on which implementations can declare to either execute things inparallel or not, and furthermore one could provide a formal parallel operational semanticsthat a valid parallel implementation would be obliged to satisfy.We also note that introducing the par function into a program may a�ect its semantics;for example: fst (1 ; 3=0 ) = 1 6= ? = fst (par 1 (3=0 )):A sophisticated projection-based strictness analyzer may sometimes be able to determinewhen the par projection can be inserted without changing the semantics of the program,but this causes all the same problems with portability and ease-of-reasoning mentionedearlier. Furthermore, as parallel programmers, we may wish to limit the places where suchannotations are inserted in the �rst place.The par function is easily extended to other datatypes. For example, the followingde�nition might be used to describe the parallel evaluation of the elements of a list:parl :: [a]! [a]parl [ ] = [ ]parl (x : xs) = (y : ys) where (y; ys) = par x (parl xs)Of course, for the purposes of compiler optimizations, it might be best if functions like thisare included in the system as primitives, rather than user-de�ned functions whose propertiesmust be determined by static analysis. One way to exploit this may be to explore the appar-ent connection between functions like par and parl and the use of strict data constructors,as provided in some implementations of Haskell [1]. Alternatively, these functions may bede�ned directly using the lower-level annotations of para-functional programming.To illustrate the use of these annotations, the only change to the next function describedin the treatment of the n-body problem in the previous section would be to insert a call to5



parl at the outermost level:next :: [Body]! [Body]next bs = parl [move (sum [ between (b; b 0) j b 0  bs ]) b j b  bs ]We might also want to consider adding another call to parl for each of the inner lists involvedin this expression. However, in a parallel implementation, it would be reasonable to expectthat the opportunity to evaluate the elements of these lists in parallel would already beincorporated as part of the de�nition of sum. For example, the sum function might wellbe de�ned using an equation of the form sum = sum 0 : parl for some suitable list-summingfunction sum 0.Of course, even with some annotations, it may still be possible to get better performanceon particular architectures by expressing the algorithm in a di�erent form. Following againthe work in [15], to obtain good performance on a SIMD/vector machine the de�nition ofnext above can be rewritten as:next :: [Body]! [Body]next bs = let qs = parl [ (b; b 0) j b  bs; b 0  bs ]fs = parl (mapbetweenqs)vs = parl (segSum (lengthbs) fs)bs 0 = parl (zipWith move vs bs)in bs 0Although this may appear a bit odd at �rst sight, the idea is that each line in the de�nitioncorresponds to a single vector-level operation, as implied by the explicit parl annotations.Of course, further re�nement may be necessary in some cases, depending on the de�nitionsof between and move and on the underlying architecture. (zipWith is de�ned in the standardprelude for Haskell. The segSum function is not included but is easily de�ned: segsum n fsis evaluated by splitting the list fs into n segments of length n and calculating the sum ofthe values in each segment.)De�ning and applying e�ective transformation rules targeted at particular kinds of pro-cessor architecture is di�cult. This is an important area of current research and will not beaddressed here, other than to point out that transformations such as employed in Proteus[19], for example, are most easily carried out in a functional (as opposed to imperative)framework.3 Functional Programming and Side-E�ectsIn the previous sections, we have seen how the lack of side-e�ects in a functional languageleads to a simple treatment of parallel computation. At the same time, the lack of side-e�ectsis often cited as an inherent weakness of functional languages:6



� I/O, for example, seems to inherently involve side e�ects. Many useful forms of I/Ocan actually be expressed in terms of lazy streams without using side-e�ects, and thisis in fact the basis of the I/O design for Haskell [9]. However, for some applications, ithas been suggested that programming in this style is cumbersome and unnatural.2� E�ciency is another important issue. To illustrate this, consider a very simple treat-ment of arrays in a functional language, using the functions:mkArray :: Int ! Array alookup :: Int ! Array a ! aupdate :: Int ! a ! Array a ! Array awhich describe array construction, indexing and updating, respectively. Although \nat-ural" in a functional setting, this design unfortunately may be very ine�cient, becausein general the update operation will require making a complete copy of its array argu-ment before making the update, which is considerably more expensive than a simplein-place update.This is the well known \aggregate update problem" in functional languages. Manysolutions to the problem have been proposed, but space limitations preclude a detaileddiscussion here. The solution that most interests us, however, is described in the nextsection.3.1 Mutable ADTS, Monads, and ContinuationsIn recent years, it has become clear that many of the problems described above can beavoided without breaking any of the properties of purely functional programs. In short, wecan have our cake and eat it too!3The essential idea is to use an abstract datatype (ADT) to control the way in whichimperative features are used. In particular, the state itself is \hidden" inside the ADT,making it implicit in much the same way that state is implicit in an imperative language.The operations on the ADT are then limited to two kinds: (1) operations that manipulate(read, write, etc.) the state, and (2) combinators that compose the operations in (1). All ofthese operations can be given purely functional semantics, but they are collectively designedin such a way that the state is always \single-threaded," thus permitting a safe and e�cientimplementation using side-e�ects. We will refer to such an ADT as a mutable ADT, orMADT for short.The �rst example of an MADT was discovered by Wadler for an array ADT in his workon monads [22, 23]. Hudak later generalized the approach by discovering both direct and2it often seems that the term unnatural is used as a synonym for \not the same as in C'. In such cases,it might well be fairer to describe functional I/O as being unfamiliar rather than unnatural.3Or, as expressed in [8], \We can have our state and munge it to!" where \munge" is a highly technicalword meaning \to mutate." 7



continuation-passing versions of the array MADT [8]. Hudak was also able to identify alarge class of ADT's for which MADT's in monadic, direct, or continuation-passing stylecould be derived automatically. Wadler and Peyton-Jones, in the meatime, continued withthe monadic style to develop a form of monadic I/O, which has now been adopted by boththe Yale and Glasgow Haskell Projects as the preferred mode of I/O [18]. In our work onparallelism in this paper we will also express things in a monadic style.The discovery of this general technique for incorporating imperative-like features in afunctional language has created somewhat of a new style of functional programming, referredto by Wadler and Peyton-Jones as \imperative functional programming." The idea hasreceived quite a bit of attention because it eliminates many of the criticisms often heardabout functional langauges, and opens up interesting new application areas as well.3.2 Monad BasicsAny monad can be described by a (unary) type constructor m together with a collectionof operations. Using the notation of constructor classes [13], the class of monads can bespeci�ed as: class Monad m whereresult :: a ! m abind :: m a ! (a ! m b)! m bThe constructor class notation is convenient because it allows us to use the same namesfor generic operations on monads. However, no detailed knowledge of constructor classes isrequired to be able to understand this paper.One way to understand the use of monads is to think of values of typem a as representingcomputations which return values of type a. This distinction between computations andvalues re
ects the fact that the use of particular programming language features in a givencalculation is a property of the computation itself and not of the result that it produces.As the de�nition above indicates, everymonad has at least two operations, result and bind{ these are the \combinators" referred to earlier. They are an essential part of the monad,but we will often say simply that a particular type constructor \is a monad" assuming thatsuitable de�nitions of these two operations have been speci�ed for that constructor. Theintuitive meaning for these operations is as follows:� An expression of the form result e represents the trivial computation which producesthe result e with no further action.� The bind operator can be thought of as a way of sequencing two computations. Itis usually convenient to write bind as an in�x operator (just as the semi-colon is thein�x sequencer in an imperative language), which can be accomplished in Haskell byenclosing the operator name between backquotes. An expression of the formm `bind ` f8



denotes a computation which �rst carries out the computation described bym to obtaina result r . Applying the function f to this result gives a new computation f r whichis executed to obtain a �nal result.3.3 Algebraic Properties of MonadsTechnically, to complete the de�nition of a monad, the bind and result functions are alsorequired to satisfy a small collection of algebraic laws. These laws are not important tounderstanding the rest of the paper, but we include them for completeness. It is particularlyuseful to be able to refer to laws like these during program development and proof.The laws can be stated directly in terms of bind (as is done in [23]), but they are muchsimpler if we �rst introduce an auxiliary function (called the Kleisli composition) de�ned by:(@@) :: Monad m ) (b ! m c)! (a ! m b)! (a ! m c)(f@@g) x = g x `bind ` fThe expression Monad m in the type of this function indicates that the (@@) operator canbe used for any monad m. The algebraic laws that the monad operators must satisfy cannow be stated very simply as:f@@result = f result@@g = g (f@@g)@@h = f@@(g@@h)for any f , g and h of suitable types. In other words, the Kleisli composition is associative,with result as both a left and right identity.3.4 Monads and ArraysTo make some of the descriptions in the previous sections a little more concrete, we willbrie
y outline a monadic implementation of arrays with e�cient array update and lookup.The reader should refer to [22, 23, 8] for further insight and motivation.We start with the de�nition of two abstract types, one for the arrays and one for themonad which will be used to control the way that these arrays are used.data RefArr a - - References to arrays of values of type a, indexed by integersdata A a - - The array monadElements of type RefArr a should be thought of as references, or pointers, to arrays of valuesof type a rather than as the arrays themselves.The three primitives described above for array creation, update and lookup will be rep-resented in this framework by the following operations on the abstract datatype:mkArray :: Int ! A (RefArr a)update :: RefArr a ! Int ! a ! A ()lookup :: RefArr a ! Int ! A a9



There are two interesting points to notice here. First, the return type of each of thesefunctions involves the type constructor A. This illustrates how the abstract datatype helpsto control the way that these values are used; the only operations that can be applied tosuch values are those which are de�ned as part of the ADT. The second point is that thereturn type of update is () rather than RefArr a. There is no need for update to return anew array since the array update will be \hidden," and performed in-place. (We adopt theconvention that functions which are used purely for their e�ect return a value of type ().)By themselves, the operations above do not enable us to carry out any useful compu-tations: they provide various ways of constructing values of type of A a, but there are nooperations that can be used to combine or manipulate such values! Recall, however, thatthis is what the monad combinators are for. Thus we assume that A is a monad:instance Monad A - - de�nes monad operations for AIn e�ect, this declaration indicates that we can use the standard monad operations:result :: a ! A abind :: A a ! (a ! A b)! A bto combine values of type A a and return results.The following de�nition shows how these monadic versions of array operations might beused to implement the swap function described earlier:swap :: RefArr a ! Int ! Int ! A ()swap a i j = lookup a i `bind ` n ai !lookup a j `bind ` n aj !update a i aj `bind ` n ()!update a j ai `bind ` n ()!result ()Finally, we need a mechanism to create a \local imperative scope" where arrays maybe allocated, manipulated, and eventually discarded. We use the function beginArr of typeA a ! a for this purpose. As an example, here is a simple program using all of the functionspresented so far, including a call to the function swap; the reader should verify that theresult is the value True: beginArr(mkArray 10 `bind ` n a !update a 1 True `bind ` n ()!update a 2 False `bind ` n ()!swap a 1 2 `bind ` n ()!lookup a 2 `bind ` n x !result x ) 10



The implementations of these functions, together with the implementation of A, is hidden.However, it may be helpful to think of an expression of type A a as evaluating to a commandthat will produce a value of type a when they are executed. Commands are also sometimesdescribed as state transformers because they can be thought of as functions of type State !(a;State) that map some initial state value to a �nal state, together with the result value.The following (informal) de�nition gives an indication of how the semantics of the monadoperations might be described in this framework:instance Monad A whereresult x = ns ! (x ; s)m `bind ` f = ns ! let (x ; s 0) = m s in f x s 0In practice, since the operations on A a ensure that the state is single-threaded, we canactually avoid passing the state around as a runtime parameter.3.5 Monads and Sequential ComputationTwo of the most fundamental constructs in an imperative language are the skip commandand the ability to sequence one command after another, often represented by a semicolon.These can be de�ned in an arbitrary monad as follows:skip :: Monad m ) m ()skip = result ()bind :: Monad m ) m a ! m b ! m bp `bind ` q = p `bind ` n ! qThe underscore character used for the argument of the �-expression in the de�nition of bindis a \wildcard" and indicates that any value returned by the computation p will be ignored.This, coupled with the fact that the semi-colon symbol is already used for other purposes inHaskell, motivates our use of the name bind .bind can be used to simplify somewhat the programs given earlier. It can also be usedto de�ne a simple way to sequence a list of commands:seq :: Monad m ) [m a]! m ()seq = foldr (bind ) skipA typical application of this might be initializing the elements of an array to zero:initArray :: RefArr Int ! Int ! A ()initArray a n = seq [ update a i 0 j i  [0::n] ]11



4 Parallel Execution in a MonadInitializing the elements of an array as in the example above is an obvious place wherewe might hope to use parallel evaluation. Since each update command changes a di�erentlocation in the array, there is no reason we should not update all of the entries in the arrayat the same time. Unfortunately, the semantics of the monad require that all of the updatesare carried out in strict sequence.The annotations for explicit parallelism discussed in Section 2.3 are not particularly usefulhere either. For example, we might try to write the de�nition of initArray using parl as:initArray :: RefArr Int ! Int ! A ()initArray a n = seq (parl [ update a i 0 j i  [0::n] ]):All this accomplishes is the evaluation of the update commands in parallel; they will still beexecuted sequentially. Removing the call to seq would not solve this problem; the initArrayfunction would just return a list of (unexecuted) commands.To be able to do any useful form of parallel computation in a monad we need some wayof executing commands in parallel. The class of monads which support this kind of parallelexecution might be de�ned as:class Monad m ) ParMonad m wherefork :: m a ! m b ! m (a; b)The basic idea here is that fork executes a command of type m a in parallel with a secondcommand of type m b. When the two processes have both terminated, the fork commandreturns the result of each as a pair. The fork function is essentially a monadic version ofthe par function de�ned in Section 2.3; for example, the types of the two functions are verysimilar, the only di�erence being that the type for fork wraps each argument (and the result)inside the monad constructor.4.1 Commutative MonadsThere are two simple ways that we might de�ne a fork function for an arbitrary monad thatare, at the very least, type correct:fork1 p q = p `bind ` n x ! q `bind ` n y ! result (x ; y)fork2 p q = q `bind ` n y ! p `bind ` n x ! result (x ; y)However, we may be concerned that these de�nitions do not give the correct operationalbehaviour; fork1 appears to run the computation p �rst, followed by q, while fork2 adoptsthe reverse order. 12



It is important to realize that, in the context of a non-strict language, these assumptionsabout the order of evaluation need not be true. In the general case, there is no reason why themonadic bind operator should induce a strict, left-to-right, sequential order of evaluation.There are already a number of examples in the literature which illustrate this point; forexample:� Launchbury [14] has investigated the use of a non-strict bind operator to give a seman-tics for state-based computations that is analogous to lazy evaluation.� Wadler [23] describes the use of a form of state monad in which the state propagatesfrom right-to-left as the computation proceeds from left-to-right.� Fasel [4] describes an array monad that permits parallel updates on contiguous, butdisjoint, portions of an array, as well as fork and wait primitives for spawning paralleltasks; Fasel's work is most similar to ours.As an example of a monad in which the bind operator does not require any form of sequentialevaluation, consider the following speci�cation for a Gensym monad, motivated in part bythe work reported in [21]:data Gensym a - - the Gensym monadinstance Monad Gensymdata Name - - An abstract type of names withinstance Eq Name - - equality as the only operationgensym :: Gensym Name - - A process to generate new namesThe Gensym monad is useful in applications where it is necessary to be able to obtain \newnames" as a computation proceeds. Typical applications include renaming, converting a treeto a DAG, and generating \fresh" type variables in a type checker. Names are represented bythe abstract datatype Name. Adapting an example presented in [13], and given a datatypeof trees de�ned by: data Tree a = Leaf a j Tree a :^: Tree athe Gensym monad might be used to label each node of the tree with a distinct Name usingthe function: label :: Tree a ! Gensym(Tree (a;Name))label (Leaf x ) = gensym `bind ` n n !result (Leaf (x ;n))label (l :^: r) = label l `bind ` n l 0 !label r `bind ` n r 0!result (l 0 :^: r 0)13



New names are obtained using gensym, and the only other operation on names is an equalitytest. As a result, it is impossible to distinguish between the two functions fork1 and fork2when using this monad, and thus fork1 = fork2 . So, using either of these as a de�nition forfork , the last case in the de�nition of label can be rewritten as:label (l :^: r) = fork (label l) (label r) `bind ` n (l 0; r 0)!result (l 0 :^: r 0)The use of fork serves to highlight the fact that the left and right subtrees can be labeled inparallel; a single name supply will still be required to implement this, but the interleavingof names used by the two subprocesses may be chosen arbitrarily.Monads in which the equation fork1 = fork2 holds are often described as commutativemonads. This property can be expressed more elegantly using the notation of monad com-prehensions [22, 13]:[ (x ; y) j x  xs; y  ys ] = [ (x ; y) j y  ys; x  xs ]In addition, this formulation probably makes it a little easier to see why such monads mightbe described as being commutative.Clearly, computations in commutative monads are well-suited for parallel execution. Un-fortunately, very few of the monads that are useful in functional programming are commuta-tive. Of the nine or so di�erent monads described in [22], for example, only two { the identityand strictness monads4 { are commutative. The strictness monad is particularly interestingfor our purposes because it can be used to de�ne the par and parl functions described inSection 2.3: par p q = [ (x ; y) j x  p; y  q ]Strparl [ ] = [ [ ] ]Strparl (x : xs) = [ z : zs j z  x ; zs  xs ]Str4.2 Algebraic Properties of forkWith the discussion of the previous section in mind, we consider brie
y the kinds of algebraicproperties that we would expect an implementation of fork to satisfy. Intuitively, we expectthe order of the two parallel processes not to be signi�cant, but we have to be carefulto get the types correct: If p :: IO a and q :: IO b, then fork p q :: IO (a; b) while4The result function for each of these monads is just the identity function. The bind operator for theidentity monad is just function application, (nx f ! f x ). In the strictness monad, bind = nx f ! strict f xwhere strict is the (non �-de�nable) function described by:strict f x = if x = ? then ? else f x14



fork q p :: IO (b; a). So the closest we can come to a commutative law is that, for all p andq of the appropriate types: fork p q = fork q p `bind ` exchwhere exch = n(x ; y)! result (y; x ). In a similar way, we can express a kind of associativitylaw for fork , as follows. For all p, q and r of the appropriate types:fork (fork p q) r = fork p (fork q r) `bind ` n ((x ; y); z )! result (x ; (y; z ))fork p (fork q r) = fork (fork p q) r `bind ` n (x ; (y; z ))! result ((x ; y); z )Once again, the monad comprehension notation provides a more concise and elegant way toexpress both commutativity and associativity:[ (x ; y) j (x ; y) fork p q ] = [ (x ; y) j (y; x ) fork q p ][ (x ; y; z ) j ((x ; y); z ) fork (fork p q) r ] = [ (x ; y; z ) j (x ; (y; z )) fork p (fork q r) ]4.3 Forks and Side-E�ectsNow let us return to the array initialization problem discussed at the beginning of thissection. We cannot hope to be able to de�ne a safe fork function for the array monad A. Tounderstand why, suppose that we wrote a program fragment of the form:fork (update a i x ) (update a j y)The basic idea here is to update the array locations i and j with values x and y in parallel.But what does this command actually mean? If the values of i and j are distinct, then theresult is equivalent to both of the following expressions:fork1 (update a i x ) (update a j y)fork2 (update a i x ) (update a j y)But what if the values of i and j coincide? In that case, there is no obvious way to de�ne adeterministic semantics for the original expression.The problem here is as before: the array monad is simply not cummutative. Some side-e�ecting monads are commutative, however. As an example, consider a \histogram" monadin which all one can do is increment positions in an array { i.e. general update is disallowed.It is easy to see that the increment operation is commutative (in the same way that additionis commutative), even though the array is being updated destructively. For this monad highdegrees of parallelism are possible with a deterministic semantics.The frustrating aspect of the array monad, however, is that, if used with caution, it mayin fact be commutative (for example if it's never the case that i and j coincide in the aboveexample). However, in the general case, we cannot expect a compiler to detect this situation;15



instead we must rely on the programmer. Another possibility is to install dynamic run-timechecks, as is done in [4], but this is an added computational overhead.We are faced with two con
icting alternatives. On the one hand, a purist would argue thatwe should not include fork in any non-commutativemonad since it would compromise safety.In reply, a pragmatist might suggest that this loses valuable opportunities for parallelism.For the remaining sections of this paper, we will take the second position, accepting that,wherever a fork is used, there is a proof obligation on the programmer.To simplify the development of the programs in the rest of this paper we will introducesome additional utility functions. We will often be interested in processes that are executedfor their e�ect rather than for their �nal result. The (<k>) operator de�ned below can beused to run two such computations, discarding the �nal result from each:(<k>) :: ParMonad m ) m a ! m b ! m ()p <k> q = fork p q `bind ` skipIt follows immediately from the algebraic properties of fork in the previous section that(<k>) is both associative and commutative.Using the de�nition of seq in Section 3.5 as a guide, the parallel execution of a list ofcommands can be described using the following function:parCmds :: ParMonad m ) [m a]! m ()parCmds = foldr (<k>) skipAssuming now that a fork function has been de�ned for the array monad, we can writea parallel version of the initArray function:initArray :: RefArr Int ! Int ! A ()initArray a n = parCmds [ update a i 0 j i  [0::n] ]It is easy to see that the use of parCmds (and hence indirectly of fork) is safe in thisexample since the elements of [0 ::n] are distinct. With a change of notation, this de�nitionof initArray coincides with the array initialization operation described in [6].5 Communicating Sequential ProcessesIn this and subsequent sections, we restrict our attention to a single monad that supportsparallel execution using fork together with interprocess communication channels. The designhas been strongly in
uenced by some of the ideas used in the programming language occamand in Hoare's study of communicating sequential processes, CSP.We have constructed a prototype implementation (described in further detail in Section 9)of these ideas using an extension of the I/O monad in the current version of Gofer (a pared16



down version of the ideas described in [18]). The type constructor part of this monad iswritten IO and we will assume that suitable implementations of:result :: a ! IO abind :: IO a ! (a ! IO b)! IO bfork :: IO a ! IO b ! IO (a; b)have also been provided.We should mention that the decision to implement these ideas as an extension of theIO monad was motivated largely by the desire to speed up the process of developing theprototype. It may well be sensible to reconsider this decision in the future to provide a morecoherent framework for programmers (for example, to reduce the overlap between channelI/O and conventional operating system I/O).5.1 Communication ChannelsTo allow otherwise independent parallel processes to interact with one another, we introducea simple form of channel for point-to-point communication. Channels carrying values oftype a will be represented by the type Chan a. Notice that all of the values transmittedon a single channel are required to have the same type. The original de�nition of occam[11] only allows single machine words to be transmitted on a channel. In contrast, we allowarbitrary types of value to be passed down a channel, including lists, functions, arbitrarydata structures, IO processes, and even other channels! The sequential and variant protocolsof occam 2 [12] are easily dealt with in this framework by de�ning a suitable datatype ofvalues to be sent over the channel using product and sum types, respectively.New channels are created using the newChan primitive function:newChan :: IO (Chan a)while the following primitives are used to deal with channel input and output:input :: Chan a ! IO aoutput :: Chan a ! a ! IO ()Obviously, the execution of an input commandmay require the input process to be suspendeduntil a value has been output on that channel. We will make the relationship betweeninput and output more symmetric by making a similar requirement for output commands.Speci�cally, any output command will be suspended until another process is ready to receivethe output value. It is an error for two processes to make use of a single channel at thesame time unless one is using the channel for input and the other is using it for output. Inshort, channels provide exclusive, synchronous, unbu�ered communication between parallelprocesses. 17



The following two expressions illustrate the use of these primitives in a simple example:prog1 = newChan `bind ` n c !fork (input c) (output c 42) `bind ` n (v ; )!result vprog2 = newChan `bind ` n c !fork (output c 42) (input c) `bind ` n ( ; v)!result vEach of these programs generates a new channel and then runs two parallel processes, oneto output a value on that channel, and another to input it. It is a simple exercise using thealgebraic laws of Sections 3.1 and 4.2 to show that these two programs are equivalent.A program which cannot make any progress because all of its subprocesses are waiting,either for an input or an output, is said to be deadlocked . It is relatively easy to detect dead-lock at run-time and to terminate the program with a suitable error message. Nevertheless,it will often be preferable to try to prove in advance that a given program cannot becomedeadlocked. A simple example of a program that is guaranteed to reach deadlock is:newChan `bind ` n c ! output c \Is anybody there?00The newChan, input and output primitives all work at a fairly low level but can easily beused to build higher level operators. For example, the following two functions can be usedto broadcast a copy of a particular message to a list of channels, or to send a list of messagesdown a single channel:broadcast :: a ! [Chan a]! IO ()broadcast m cs = parCmds [ output m c j c  cs ]outputs :: Chan a ! [a]! IO ()outputs c ms = seq [ output c m j m  ms ]Notice that the broadcast function outputs to each channel in parallel. On the other hand,the individual output commands used in outputs must be executed sequentially because theyall use the same channel.Two more useful commands { this time for allocating a number of new channels andgathering the inputs from a collection of channels (a form of inverse to broadcast) { can bede�ned as follows: newChans :: Int ! IO [Chan a]newChans n = parList (copy n newChan)gather :: [Chan a]! IO [a]gather = parList : map input18



where copy n x = [ x j i  [1 ::n] ]. Both of these functions return a list of values whichcan be collected in parallel; this is re
ected by the use of the parList function, de�ned by:parList :: ParMonad m ) [m a]! m [a]parList = foldr parCons (result [ ])where parCons p ps = fork p ps `bind ` n (x ; xs)!result (x : xs)This function is an analogue of the parl function in Section 2.3, in much the same way asfork corresponds to par .5.2 To Input, or to Output: That is the Question!Note that, in addition to allowing arbitrary values to be transmitted along a channel, thereis no distinction between channels used for input and channels used for output. This isparticularly important for the purposes of the type system because it means that we are freeto connect an output channel from one process to an input channel of another without anytype incompatibility.In fact, it is quite possible for two processes to communicate with one another using asingle process, so long as a suitable protocol is used to ensure that the two processes will notsimultaneously attempt to read or write from the same channel. For example, the followingcode might be used to model two competing bidders at an auction, neither of whom isprepared to let the other win. All of the bids between the two parties are transmitted inboth directions using the same channel:auction = newChan `bind ` n c !let opener = output c 100 `bind `bidderbidder = input c `bind ` n yourBid !output c (yourBid + 1) `bind `bidderin opener <k> bidderThe result, of course, is non-termination.5 While it is safe to use two way communication ona single channel in this particular example, there are many other examples where it is not.For example:bad = newChan `bind ` n c !input c <k> input c <k> output c 0 <k> output c 1This program violates the condition that a single channel can only accept at most one outputrequest and one input request at any given time. In other words, the subprocesses involved5Or, perhaps, bankruptcy for one of the participants.19



in this program may interfere with one another and, as described in Section 4.3, it is notsafe to run these programs in parallel.One way for a programmer to avoid this problem is to adopt the convention that, withina given logical process, each channel is always used either for input or output, but not forboth. If this rule is followed, no run-time error can ever occur as a result of two simultaneousinput or output requests on a single channel. The auction program above does not satisfythis rule but it is very easy to rewrite it so that it does, using two one-way communicationchannels rather than one two-way channel.Ideally, we would hope that programs could be checked automatically at compile-timeto ensure that this condition is satis�ed. However, since channels are �rst class values,determining whether a program satis�es these conditions is not decidable. Once again, theburden of proof lies with the programmer, as it does in CSP or occam.(Another solution is to base the communication primitives on something other than aCSP/occam paradigm. In particular, a paradigm which supported unbounded communica-tion requests on individual channels could avoid these problems.)5.3 Why Not Use Lazy Streams?Most, if not all, of the examples of parallelism and channel I/O in this paper can be codedsafely in terms of lazy streams. For example, something resembling the auction programmight be written as follows using lazy streams:let opener = 100 : beat bidderbidder = beat openerbeat (yourBid : bids) = (yourBid + 1) : beat bidsin : : :Indeed, there are some programs { a bu�er with unbounded storage capacity, for example {that can be expressed using lazy streams, but not using the form of channel I/O presentedhere.Why then should we be interested in the use of channel I/O? There are three reasons, allof which have been mentioned before, but it is certainly worth summarizing them again here.The �rst is the interaction with the use of monads. For the \toy" examples considered here,the use of a monad is not essential. In realistic programming examples, it may be considerablymore important. The second is an issue of programming style; for some programmers orapplications, explicit parallelismand channel I/O may provide a more natural way to describean algorithm than stream processing. The third reason is that the use of explicit parallelismcan provide a compiler with valuable hints (or precise operational semantics in the case thatit has been de�ned for a particular language) about how a given program should be mappedonto a particular parallel architecture. 20



6 PipelinesOne of the most e�ective ways to map a program onto a parallel computer system is to splitit into a number of separate passes (each of which can be executed on a di�erent processor),with the output from each pass connected to the input of the next. The following diagramillustrates two processes p and q with the output of p connected to the input of q to form apipeline: - p - q -Neglecting communication costs, the time taken to produce an output result from a giveninput value will be the same for both parallel and sequential implementations. However,given a steady stream of input values and assuming that p and q take approximately thesame time to map inputs to outputs, a two processor version of the pipeline can calculatetwice as many output values as a single processor version in any �xed time period.Pipelines with exactly one input channel and one output channel can be represented aselements of type: type Pipe a b = Chan a ! Chan b ! IO ()This allows the type of values produced on the output channel to be di�erent from thosereceived on the input channel.The following program is a simple pipeline with only one component that outputs thesquare of each integer value received on its input channel:squarer :: Pipe Int Intsquarer ic oc = input ic `bind ` n v !output oc (v � v) `bind `squarer ic ocTo illustrate the close correspondence between our notation and that of occam, the sameprogram written in the syntax of [11] is:PROC squarer (CHAN ic, CHAN oc) =WHILE TRUEVAR v :SEQic ? voc ! v * v :Pipelines can be combined using the (�) operator de�ned by:(�) :: Pipe a b ! Pipe b c ! Pipe a c(p � q) ic oc = newChan `bind ` nmid !p ic mid <k> q mid oc21



(Of course, the type of values output by p must coincide with the type of input valuesexpected by q.) This is essentially the same notation as used in CSP in which the �-abstraction for mid corresponds to hiding in CSP.One simple application of (�) is to implement a process for calculating the fourth powerof each input value using two squarer processes:squarer � squarerWe can think of the components in a pipeline as functions mapping a sequence of inputvalues to a sequence of output values. Many useful pipelines correspond directly to standardlist processing idioms:mapChan :: (a ! b)! Pipe a bmapChan f ic oc = input ic `bind ` n x !output oc (f x ) `bind `mapChan f ic oc�lterChan :: (a ! Bool)! Pipe a a�lterChan p ic oc = input ic `bind ` n x !if (p x ) thenoutput oc x `bind `�lterChan p ic ocelse�lterChan p ic ocWith these de�nitions, the squarer function de�ned above could have been de�ned as simplymapChan (nx ! x � x ).7 The sieve of EratosthenesThe sieve of Eratosthenes is a standard algorithm for enumerating prime numbers. The basicidea is to count through the list of integers, starting with 2 , the smallest prime, and �lterout any values which are multiples of previously discovered primes. Any number which isnot a multiple of a previous prime must itself be prime. Many parallel implementations ofthis algorithm have been provided in the literature; we will provide yet another.We will split the task of enumerating the list of primes into two separate parallel tasks.The �rst just counts through the integers starting with 2 , outputting these values on achannel ints. The second process inputs values from ints and �lters out all but the primenumbers which it outputs on a channel out :sieve :: Chan Int ! IO ()sieve out = newChan `bind ` n ints !outputs ints [2::] <k> p�lter ints out22



The next problem is to work out how to de�ne the p�lter process. One way to do this isto consider a slightly more general case. Consider a process of the form p�lter c out andsuppose that the values input on channel c are in ascending order with �rst element p andsuch that none of the following values are multiples of any smaller prime. (It is easy toverify that these conditions hold for the initial p�lter process.) Obviously, the �rst thingthat p�lter c out should do is to input the prime p from c and output this value on the outchannel. Any subsequent values received on c that are multiples of p can be discarded sincethey are certainly not prime.What should we do with the remaining values? The easiest thing is to pass them on toa new p�lter process. This leads to the following de�nition for p�lter :p�lter :: Pipe Int Intp�lter c out = input c `bind ` n p !output out p `bind `newChan `bind ` n c 0 !(�lterChan (divis p) c c 0)<k>(p�lter c0 out)divis :: Int ! Int ! Booldivis n m = m `mod ` n 6= 0Note the use of the �lterChan function, introduced in the previous section, to describe thetask of �ltering out the multiples of p from the input channel c.We can picture the state of the sieve process immediately after the nth prime numberpn has been output using the following diagram:[2 ::] - 2 - 3 - 5 - � � � - pnThe dashed box on the right represents the original p�lter process which has expanded intoa pipeline of n processes each �ltering out all the multiples of a particular prime numberfrom the stream of integers produced by the process on the left.This particular example has limited practical applications. But it demonstrates a verypowerful technique { the ability to generate new processes as a program executes { whichhas many practical uses. 23



8 Parallel SortingSorting algorithms have many practical applications. This section, describes a simple sortingalgorithm expressed as a network of parallel processes and suitable for implementation on aparallel computer system.The sorting algorithm described here uses a network of simple processes called compara-tors, each of which can be used to sort a pair of input values into the correct order. Forthe purposes of this section, individual comparators will be illustrated using diagrams of theform: ? -- ?x y hiloThe comparator process reads the values supplied on its two input channels (labeled x andy in the diagram above) and outputs the largest value on the output channel hi and thesmaller of the two values on the output channel lo. Formally, a comparator can be de�nedas: comparator x y lo hi = loopwhere loop = fork (input x ) (input y) `bind ` n (u; v)!(output lo (min u v))`fork `(output hi (max u v)) `bind `loopNotice that the inputs from the channels x and y are performed in parallel; we cannotbe certain in which order these inputs will be received so we must be prepared for eitherpossibility to avoid deadlock. A similar argument motivates the decision to output the resultvalues on channels lo and hi in parallel.Comparators can be connected in various con�gurations to build larger components. Forexample, the following diagram illustrates a way of inserting a value into a sorted list:x - ? -?y0z0 ? -?y1z1 ? -?y2z2 ?z3If the values input on channels y0 , y1 and y2 are already arranged in ascending order, then thesame values will be output on the z0 , z1 , z2 and z3 , together with the value input on channel24



x , inserted at the appropriate point to maintain the correct ordering. Obviously, di�erentnumbers of comparators can be used to deal with di�erent numbers of input channels.Comparators can also be connected in columns as illustrated in the following diagram.The overall e�ect in this case is to take input values (not necessarily in any particular order)from the channels x0 , x1 , x2 and x3 , \bubbling" the smallest value out on the channel y0with the remaining values output on channels z1 , z2 and z3 :?- ? -- ? -- ? -
x0x1x2x3 y0

z1z2z3The second smallest value can be produced by passing the values output on channels z1 ,z2 and z3 into a second column with one less comparator. Continuing in this manner, thecomplete set of input values can be sorted into ascending order using a network of the form:?- ? ?- ? - ? ?- ? - ? - ? ?
x0x1x2x3 y0 y1 y2 y3(Aside: We have chosen to break up the diagram above into columns. As such, thenetwork of comparators can be thought of as an implementation of the traditional \bubblesort" algorithm. It is worth pointing out that the same diagram can be broken up in a25



di�erent way as a sequence of rows, each of which implements a simple insertion operationof the kind described above. As such, the network of comparators can also be thought ofas an implementation of the \insertion sort'. These two sorting methods have traditionallybe considered as distinct algorithms. In truth, the only di�erence between them is theorder in which certain comparisons are made. Expressed in a parallel language where datadependencies alone determine the order of evaluation, we see that they are just di�erentviews (i.e. sequentialized versions) of the same process.)Each of the nested boxes, outlined by lines of dashes, in the diagram above contains anetwork of comparators for sorting a particular number of input values. And each of theseboxes, except in the simplest case where there is only one input, can be broken down intoa column of comparators combined with a sorting network for one fewer input values. Thispattern suggests one way of describing the construction of a sorting network as a recursiveprocedure (there are several di�erent ways to do the same thing).We will describe the construction of the sorting network by a function which takes alist of input channels as its argument and returns both a process to implement the sortingnetwork and the list of channels that the output values are sent to. The most interestingcase, illustrated by the diagram below, is when there are several input channels:?- ? -- ? -- ? -y0 ?y1 ?y2 ?y3
x0x1x2x3 e0e1e2d1d2Given a list of input channels (x : xs) (with xs non-empty), the �rst step is to allocatetwo lists of channels ds and es to be used as the output channels for the lo and hi outputsrespectively of the column of comparators on the left. One d channel and one e channel isneeded for each channel in cs. The smallest value input on channels cs will be output onthe last channel in ds, written last ds. The remaining values can be sorted by constructinga sorting network (represented by the box on the right) using the channels es as input. This26



description corresponds directly to the following Haskell implementation:sorter :: Ord a ) [Chan a]! IO (IO (); [Chan a])sorter [x ] = result (skip; [c])sorter (x : xs) = dupChans xs `bind ` n ds !dupChans xs `bind ` n es !sorter es `bind ` n (p; ys)!result (parCmds (zipWith4 comparator xs (x : ds) ds es)<k> p;last ds : ys)The zipWith4 function is de�ned in the Haskell standard prelude [9]. It is used here to builda list of comparators with the inputs and outputs taken from corresponding elements in eachof the four lists xs, (x : ds), ds and es.The dupChans function allocates a new channel for each value in its argument list:dupChans :: [a]! IO [Chan b]dupChans cs = parList [newChan j c  cs ]An alternative (less e�cient) de�nition is dupChans cs = newChans (length cs).9 ImplementationIn this section we describe an implementation of the IO monad on a sequential machine thatincludes the fork function and primitives for channel I/O. This implementation is almostcompletely written in Haskell and has been used to experiment with the examples in theprevious sections. Given the observation that any implementation of fork for this monadmust be unsafe, at least to some degree, it follows that some parts of the implementationcannot be written in a purely functional language and so must be supplied as primitives. Wehave tried to keep this set of primitives to a bare minimum; only �ve primitives are involved.Three of these are used to support reference cells (allocation, update and dereference). Theremaining two primitives are used to control process scheduling and have almost trivialimplementations in the underlying run-time system (written in C).9.1 Implementation of the IO MonadOne of the most important requirements for a sequential implementation of a parallel lan-guage is the ability to switch from one process to another with a minimum of overhead.This is often referred to as context switching, and plays a signi�cant role in the choice of asuitable implementation for the IO monad. 27



In their paper [18], Peyton Jones and Wadler concentrate on an implementation of IOusing state transformers. In concrete terms, their implementation is based on the monad:type IO a = World ! (a;World)result x = nw ! (x ;w)m `bind ` f = nw ! let (x ;w 0) = m w in f x w 0The World datatype used here represents the complete state of the world at a particularpoint in time. (These de�nitions are used to describe the semantics of the monad operations.As we indicated in Section 3.4, there is no need to provide a concrete representation for theWorld type in the actual implementation; it is su�cient to use a dummy token in its placeand to update the world in-place. The discipline of passing a dummy token simply ensuresthat the updates are carried out in the correct order.)Unfortunately, it is di�cult to implement context switching with this \world-passing"implementation of IO . Consider, for example, the execution of an input command in acontext of the form: (: : : ((input c `bind ` f1 ) `bind ` f2 ) : : : `bind ` fn)The context in this case is the sequence of pending calls to be executed once an input valuehas been received. In a concrete implementation, this will typically correspond to a sequenceof stack frames which must be saved and later restored to implement a context switch.What we really need is a simple way of capturing the remaining part of the computationto be performed once the input value has been received. This is precisely the role of acontinuation! With this in mind, we adopt an implementation for IO which makes directuse of continuations: type IO a = (a ! Ans)! Ansbind :: IO a ! (a ! IO b)! IO bm `bind ` n = nk ! m (na ! n a k)result :: a ! IO aresult x = nk ! k xThe answer type, Ans, is the type that we assign to a computation and will be discussedin more detail in Section 9.4. Values of type a ! Ans correspond to continuations. Forexample, in this framework, a call to the input command on a channel c :: Chan Int takesthe form: input c kwhere k :: Int ! Ans is a continuation that describes the computation to be performedonce the input value of type Int has been received. In other words, the context for this28



command is captured directly as one of the arguments of the input function. It is equallystraightforward to restore a captured context once the continuation argument is known. Allthat we need to do is apply the continuation to its argument.From a low-level perspective, the main di�erence between these two implementations ofIO is that the continuation-based version uses an explicit representation for the continuationof a command as a heap allocated closure, while the world-passing version represents thiscontinuation implicitly as a sequence of stack frames. The continuation-based implementa-tion of IO is discussed by Peyton Jones and Wadler in [18]. However, for their particularimplementation, and without the need for context switching, the world-passing version seemspreferable because it reduces the need for heap allocation.9.2 Implementation of forkBoth the implementation of fork in this section and of the channel I/O primitives in the nextwill be described in terms of some simple primitives for dealing with references. This requiresan abstract datatype Ref a, the type of references to values of type a, and operations forallocation, update and dereferencing:data Ref anewvar :: IO (Ref a)assign :: Ref a ! a ! IO ()deref :: Ref a ! IO aReferences have many applications other than those described here and might well havebeen included in the IO monad anyway as general purpose utilities (see [18, 16] for sampleapplications).To model parallelism in a sequential implementation, we will assume that the runtimesystem maintains a set of values (each of type Ans) corresponding to suspended (but readyto execute) computations in addition to the current process. We will refer to this as the taskset . Two further primitives are necessary to control switching between di�erent tasks:schedule :: Ans ! Ans ! Ansresched :: ()! AnsThe schedule function is used to add processes to the task set suspended computations. Forexample, schedule p q might be implemented by adding p to the set and then executing q.The resched primitive terminates the current process and removes and resumes a previouslysuspended computation from the task set. A call to resched will fail if the task set is empty.However, with the implementations presented below, this is only possible when a programreaches deadlock. This makes it very easy to detect deadlock at run-time and to abortthe current program with an appropriate diagnostic message. Both of these functions havesimple implementations that can be described in just a few lines of C code.29



The dummy parameter which makes resched a function with domain type () rather thanjust a value of type Ans arose naturally from a need to use resched as a continuation. Asit happens, this extra parameter would have been needed anyway to guarantee the correctsequencing to calls of resched .In an attempt to provide a reasonable degree of fairness, it may be appropriate to imple-ment the task set as a queue, or to use a random number generator in the implementationof resched to decide which process should be executed next. We will not concern ourselvesfurther with such issues here.At last! We are �nally in a position to describe the implementation of fork . First, weintroduce a datatype whose values can be used to record the status of an executing processof the form fork p q:data Fork a b = Running j LDone a j RDone b:Running represents the situation where neither branch of the fork command has terminated.A value of the form LDone x indicates that the left process, p, has terminated with resultx . In a similar way, a value of the form RDone y is used to indicate that the right processq has terminated with result y. There is no need to provide a representation for the casewhere both component processes have terminated because, as soon as this happens, the forkprocess will also terminate.The �rst step in the execution of a fork command is to allocate a new reference cell,initialized to Running. The two subprocesses are then scheduled for execution using specialcontinuations lDone k v and rDone k v that capture both the reference cell and the originalcontinuation for the fork command:fork :: IO a ! IO b ! IO (a; b)fork p q k = newvar (n v !assign v Running (n()!schedule (p (lDone k v))(q (rDone k v))))The continuations involving lDone and rDone are invoked when the left and right processes(respectively) terminate but it is not possible to predict which of these will be called �rst.Suppose, for the sake of argument, that the left process terminates �rst with result x . In thiscase, the continuation simply updates the status reference cell from Running to LDone xand then uses resched to continue with the execution of another process. Sometime later,the right process terminates with value y and the rDone continuation is invoked. Checkingthe value in the status reference cell reveals that the left process has already terminated andhence execution continues by passing the pair (x ; y) to the original continuation for the forkprocess.Taking the other possibility { that the right process may sometimes terminate before the30



left { into account, we obtain the following de�nitions for lDone and rDone:lDone :: ((a; b)! Ans)! Ref (Fork a b)! a ! AnslDone k v a = deref v (nf !case f ofRunning ! assign v (LDone a) reschedRDone b ! k (a; b))rDone :: ((a; b)! Ans)! Ref (Fork a b)! b ! AnsrDone k v b = deref v (nf !case f ofRunning ! assign v (RDone b) reschedLDone a ! k (a; b))9.3 Implementation of ChannelsOne simple way to implement channel input would be for the input process to check thestatus of a channel and loop until an output value has been sent. Obviously, the inputroutine would need to be suspended each time before looping so that other processes havean opportunity to make some progress before the channel is examined again. This approachhas the disadvantage that we may have to poll the input channel many times before a valuearrives. It will also be necessary to keep track of which processes in the task set are suspendedwaiting for I/O so that we can detect deadlock and not enter an in�nite loop.A much better approach is to store the suspended input process (or rather, the continu-ation for the input process) in the channel itself. Sometime later, when an output commandhas been executed, we can move the input process (formed by applying the input continua-tion to the output value) into the task set, ready for further execution. This avoids the needfor repeated polling of the input channel and does not clutter up the task set with processeswaiting for input, making it easier to detect deadlock.It is also possible for an output command to be executed before the corresponding inputcommand. We can use the same basic approach to deal with this situation except that thistime we have both an output value and an output continuation to be saved in the channel.It follows that there are three possible states for a channel: inactive, waiting for anoutput process or waiting for an input process. The channel status may change betweenthese three alternatives as the program executes. These observations lead us to the followingimplementation of channels, described using reference cells:type Chan a = Ref (ChanStatus a)data ChanStatus a = Inactivej InReady (a ! Ans)j OutReady a (()! Ans)31



With this representation, constructing a new channel simply requires allocating a newreference cell and setting the initial channel status to Inactive:newChan :: IO (Chan a)newChan = newvar `bind ` n c !assign c Inactive `bind `result cThe implementation of input is also straightforward. First we examine the current status ofthe channel. If the channel is inactive then we store the request for input in the channel anduse resched to switch to a di�erent parallel task. If the channel already contains an outputvalue then we reschedule the execution of both the input and output processes using theappropriate arguments for each continuation and set the channel status back to Inactive.Finally, if the channel already contains another input request, then a run-time error occurs.input :: Chan a ! IO ainput c k = deref c (ncs !case cs ofInactive ! assign c (InReady k) reschedOutReady v k 0 ! schedule (k 0 ())(schedule (k v)(assign c Inactive resched))InReady k 0 ! error \simultaneous inputs 00)The de�nition of output is very similar:output :: Chan a ! a ! IO ()output c e k = deref c (ncs !case cs ofInactive ! assign c (OutReady e k) reschedInReady k 0 ! schedule (k 0 e)(schedule (k ())(assign c Inactive resched))OutReady v k 0 ! error \simultaneous outputs 00)9.4 The Answer Type, AnsThe answer type Ans was used in the de�nition of the IO monad in Section 9.1 and we haveinformally described values of this type as representing executable processes. It is actuallyrather surprising that we have not had to go in to more detail than this to produce theimplementation described in the previous sections!In the interests of completeness, we will end with a description of one possible imple-mentation for the Ans type and for the primitives schedule and resched . The �rst step is to32



think of an answer as a function of type:type Ans = World !World :Starting in a world w , the execution of program a :: Ans results in a new world a w . Ifthe program a has side-e�ects then the new world will not be the same as the old world.However, because of the sequencing of side-e�ecting operations enforced by the use of themonad ADT, these side-e�ects can be implemented directly by updating the world in-place.What then does the World type represent? In theory, it may have many di�erent compo-nents including, for example, a mapping from reference cells to values and a representationof the task set. However, as has already been observed, in practice, these individual compo-nents can be implemented within the runtime system and it su�ces to use a single token asa representation of the World .To describe the implementation of schedule and resched we will instead use a representa-tion of the world that suppresses all of these di�erent components except the task set. Forsimplicity, we will represent this using a list:data World = World [Ans]Given this de�nition, a process p :: IO a can be executed by evaluating the expression:p (na w ! w) (World [ ]):In other words, the process is executed with a continuation, (na w ! w) that ignores theresult obtained by the program p and leaves the world unchanged, and starting with anempty task set.The de�nitions for schedule and resched follow directly from the informal descriptionsgiven in Section 9.2:resched :: ()! Ansresched () (World [ ]) = error \deadlock !00resched () (World (q : qs)) = q (World qs)schedule :: Ans ! Ans ! Ansschedule p q (World ps) = q (World (ps++[p]))10 Conclusions and Future WorkMany of the ideas presented here are still in a preliminary stage and we anticipate that somere�nements will be suggested by further work. The main contributions of this report are asfollows: 33



� First, motivated by the observation that programs written using monads or similartechniques often destroy important opportunities for parallel execution, we have pro-posed the use of a class of monads in which parallelism can be captured explicitly usingthe fork function.� Second, we have investigated the use of unsafe implementations of fork in monadsthat also support side e�ects. This places an unavoidable burden of proof on theprogrammer. On the other hand, it allows parallel algorithms to be expressed moredirectly and may be useful in the implementation of compilers for parallel machines,guiding the mapping from source programs to particular parallel architectures.The con
ict between safety and parallel execution is very unfortunate. One of the greatestadvantages of \pure" functional languages is the ability to reason about programs usingsimple algebraic laws. If these laws are invalidated by the introduction of unsafe primitives,we may need to reassess our motivations for using such \pure" languages in the �rst place.On a more positive note, there are still many opportunities for di�erent approaches thatmay, for example, help to limit the impact of unsafe primitives or even to eliminate themaltogether without sacri�cing the use of parallelism.There are a number of areas that would be interesting topics for investigation in furtherwork:� Non-determinism: The reason that fork is unsafe in a monad with side-e�ects isthat it introduces an element of non-determinism into the language. For example, wecan come fairly close to de�ning a (monadic) version of McCarthy's amb function:amb :: IO a ! IO a ! IO aa `amb` b = newvar `bind ` n v !fork (assign v a) (assign v b) `bind `deref vExamples like this are well-known sources of di�culty in pure functional languages.Further studies of the use of non-determinism in such languages (such as the workdescribed in [10]) may help us to deal with some of the most signi�cant problemsdescribed in this report.� Local parallel computation: With the primitives described in this paper, there isno way for a computation, described in terms of the IO monad to be encapsulated aspart of a purely functional subprogram. This kind of problem is dealt with in [18] byintroducing an unsafe primitive function:delayIO :: IO a ! a:The pure construct in [16] is closely related to this but again, it is not clear whetherpure can be implemented safely without imposing signi�cant restrictions on its use34



(based perhaps on the type system described in [3]). Riecke [20] addresses the sameissues using the concept of an e�ects delimiter . Finding a satisfactory way to deal withthese problems in practical work may be possible, but it is unlikely to be easy { thetask of determining whether the use of one of these constructs in a particular situationis safe is not decidable.� Formal semantics: Despite a fairly precise presentation of the implementation offork , we have often relied rather heavily on our intuitions about parallelism and lessso on any formal semantics. Such a semantics would be useful in giving a properdescription of the proof obligations needed to justify the use of unsafe primitives. Itwould also be useful to validate some of the algebraic laws for the monad operators,as described in a number of places in this report. Related work in this area includes[2, 17].
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