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Abstract 
 

Planning is a fundamental cognitive function frequently 
employed in usual daily activitities. The Traveling Salesman 
Problem (TSP), in which the participant decides what order 
between a number of locations optimizes total travel distance, 
is a paradigm that allows the study of planning and strategy 
choice. We present a computational model that simulates the 
human performance observed during the execution of a 
variant of the TSP task, including bottom-up and top-down 
influences. The performance of the model simulated the 
continuous monitoring observed in human participants; 
moreover, after a lesion to the network’s units corresponding 
to the prefrontal cortex, we found a decrease of strategy 
changes like those observed in frontal patients. 
 
Keywords: TSP, planning, computational modelling, frontal 
damage. 

Introduction 

Planning is a mental simulation which envisages the 
circumstances and runs possible actions, evaluating their 
consequences and selecting the optimal order for executing 
them (Cohen, 1989). It depicts the skill of producing mental 
representations of the future behavior prior to action and 
sequential reasoning about the consequences of acting, in 
order to properly choose among the possible courses of 
action. TSP is a useful tool to investigate planning, because, 
in this task, participants are required to generate a strategy 
in order to optimize the pathway. 

TSP, as a paradigmatic example of non-polynomial 
optimization problem, has been extensively studied by 
mathematicians and computer scientists (see Lawyer et al., 

1985, for a review) and much less by psychologists. 
Nevertheless, there has been a growing interest in the 
analysis of human performance in TSP-like problems 
(Cadwallader, 1975; Gärling, 1989, 1994). In the TSP, 
given a set of n interconnected towns, represented by nodes 
on a graph, the task consists in finding an itinerary that 
visits each town exactly once, returning to the starting town, 
ensuring that the total travelled distance is as short as 
possible.  

TSP involves essentially visuo-spatial planning, a 
particular kind of problem solving in which participants try 
to optimize a performance measured in spatially constrained 
environments. In comparison with more typical planning 
tasks, spatial planning requires a stronger interaction 
between central and peripheral processes: visual, attentive 
and motor factors play a fundamental role, in addition to 
reasoning, in determining the final behavior.  

Our research is inspired by a series of studies conducted 
with an open version of the TSP task (Basso et al., 2001), 
consisting in choosing the order of locations with the start 
and end point fixed (fig. 1b). The behavioral data showed 
the presence of three distinct spatially-based heuristics 
supporting the production of successful strategies. The first 
heuristic, widely described in previous studies (Barr & 
Feigenbaum, 1981; Hirtle & Gärling, 1992) is the Nearest 
Neighbour (NN): it states that each location is chosen on the 
basis of the local minimum distance from the actual 
location. The other two Direction Heuristics (DH) described 
in the studies conducted with the TSP variant take place 
when subjects start from a location placed on a border and 
reach the next locations following one of the main spatial 
axes (horizontal or vertical) (Basso et al., 2001) and a 
direction (up or down for vertical axis, left or right for 
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horizontal axis). In the studies we refer to, the starting point 
was always in the upper left corner; accordingly, the 
heuristics have been renamed with Direction Right (for 
horizontal heuristic) and Direction Down (for vertical 
heuristic).  

Another interesting finding concerns the interaction 
between heuristics: participants often show on-line changes 
of heuristic during the execution of the task (Basso et al., 
2001). These results confirm that subjects operate a 
continuous monitoring and flexibly adapt their behavior to 
the requirements of the task (or environment), as pointed out 
in previous studies (Hayes-Roth & Hayes-Roth, 1979).  

From a neuroanatomical point of view, the substrates of 
planning skills are located in frontal areas: planning deficits 
have long been associated with frontal lobe lesions (Cooper 
& Shallice, 2000; Duncan, 1986; Goel & Grafman, 1995, 
2000; Shallice, 1982, 1988). More specifically, the crucial 
role of the frontal lobe in visuo-spatial planning has been 
demonstrated using the TSP variant described above. 
Patients with frontal lesions and normal subjects under 
repetitive transcranial magnetic stimulation (rTMS) over the 
frontal lobes showed a significant reduction in the number 
of heuristic changes which are usually performed during the 
execution of the task (fig.1a) (Basso et al., submitted). 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. a) Percentage of strategies from the experiment with the 
TSP variant. From left to right: normal subjects, subjects under 
rTMS, and traumatic frontal lobe brain injured patients (TBI). b) 
An example of an open version of TSP. 
 
The aim of this article is to develop a computational model 
simulating the perceptual and cognitive processing involved 
in the human solution of the TSP. The model shows a good 
match to human performance when  tested on the same 
patterns administred to the healthy participants. Moreover, 
after an artificial lesion to its “frontal lobe” component, the 
model accounts for the behavior exhibited by traumatic 
brain injured patients (TBI) with damage to the frontal lobe 
(Basso et al., 2001).  
 

The model 

The computational model is composed by three 
interconnected modules (fig. 2), with a broad hierarchical 
organization and feedback connections, that loosely 
simulate the occipito-parieto-frontal circuit involved in the 
TSP task. These components comprise: 1) a visual module, 

in which the input pattern is processed by Gabor filters to 
simulate the processes responsible of perceptual grouping; 
2) a competitive selection module that simulates the internal 
dynamics for the choice of the heuristic; 3) a motor map, 
based on population codes, that executes the pathway at the 
spatial level. Moreover, the presence of saliency maps, 
recurrent connections and inhibitory mechanisms allow us 
to simulate the incremental aspect of visuo-spatial planning 
and the interaction of bottom-up and top-down processes. 
 

 
 

Fig. 2. The architecture of the model. 
 
The visual module 
 
This module is designed to enhance the directional features 
intrinsically present in the input pattern. The input consists 
of a two-dimensional image of 161x161 pixels representing 
the pattern. Each city is represented by a black region of 
4x4 pixels coded with ones, whereas empty space is coded 
with zeros. 

The visual image is processed by a family of eight Gabor 
filters. Gabor filters are band-pass filters with tuneable 
center frequency, orientation and bandwidth. Gabor filters 
provide an excellent approximation of the response of 
simple cells in the primary visual cortex and have been 
widely used in computer vision. In particular, we used the 
family derived by Lee (1996): 
 

 
 
where x and y represent the center of the wavelet, ω

o is the 
radial frequency in radians per unit length and 

θ
 is the 

wavelet orientation in radians. Moreover, a Gabor filter is 
defined as a complex function, and its real and imaginary 
part are used as two real filters (odd and even). In the 
present work, we varied only the wavelet orientation (0, 
¼ , ½  e ¾ ) for a total of eight filters (four even and 
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four odd).  A set of eight maps was then obtained by 
convolving the input image with the eight Gabor filters.  
To calculate the strength of the directional features 
extracted by the different filters, all local values evaluated 
from the patterns (composing the training set) were scaled 
to the [0 1] range and the highest value was collected for 
each map. This procedure allows to establish whether the 
maximum value of a filter is above the average global 
response, indicating a strong presence of the directional 
features enhanced by the filter. The structure of this module 
is consistent with the hypothesis of Field (1994) that 
oriented edge features constitute a sparse representation of 
the images. This means that for any image, only a few of the 
features are needed to represent that particular image, and 
that over an ensemble of images a particular feature will 
seldom be significantly active. 
 
The competitive selection module 
 
The simulation of the selection process was implemented 
with a self-organizing, competitive learning network 
consisting of feedforward excitatory connections (between 
input and output units) and lateral inhibitory connections 
(only between the output units). The training set consisted 
of 100 randomly created patterns, composed of six to ten 
cities.   

This network was able to discover three main categories 
of input images on the basis of the features detected by 
Gabor filter processing. In the model, the competitive 
learning network has one layer of eight input neurons 
corresponding to the normalized highest value of the eight 
Gabor filter responses, and a layer of output neurons. Each 
input unit indicates the strength of a particular orientation 
axis, whereas each of the three output nodes represents an 
image class that calls for a specific heuristic (see below). 
Inserting more than three units in the competitive layer did 
not produce substantial changes in the results, as most of the 
patterns (95%) were still classified by three units. 
   In the learning phase the weights w are updated according 
to the following equation: 
                                                                         

       (2) 
 

where ηηηη     is the learning rate, x is the activation of the input 
vector and y is the activation of the winning output unit. 
Note that in a winner-takes-all circuit, the output unit 
receiving the largest input is assigned the full value of 1, 
whereas all other units are suppressed to a 0 value. The 
competitive selection takes place thanks to the lateral 
inhibition in the output layer.      

The result of the competitive selection is produced by an 
entirely bottom-up process (spatial analysis). The presence 
of directional features in the input pattern determines the 
choice of a heuristic, which in turn biases the execution of 
the pathway by means of a saliency map.  

 

The saliency maps 

The saliency maps have been implemented to simulate the 
influence of the chosen heuristic through the sequential 
selection of stimuli. The saliency maps have the same size 
of the motor output map (see below): each unit in the motor 
map is pre-activated  by the corresponding unit of the 
saliency map. The Nearest Neighbor (NN) is implemented 
as a Gaussian-shaped hill of activity centered on the last 
visited city, whereas Direction Right (DR) and Direction 
Down (DD) saliency maps consist of linear gradients that 
cover the entire visual space.  

The effect of a saliency map is to relatively enhance the 
activation of one city by reducing (in accordance with the 
specific gradient) that of all other cities on the map. The 
competition among neurons in the motor output map 
produces a single winning location that corresponds to the 
most salient city, which constitutes the next target. Each unit 
of the competitive selection module activates the heuristic 
(that is, a saliency map) that corresponds most closely to its 
coded directional feature.  

 We have observed that most of the subjects tend to select 
the DR heuristic when the cities are principally distributed 
along the diagonal axis from upper-left to lower-right, while 
the DD is often chosen when the cities are principally 
distributed along the opposite diagonal axis. In intermediate 
or ambiguous situations, subjects tend to use the NN 
heuristic. Similarly, after training on the visual patterns, two 
output units of the competitive network are mainly driven 
by the Gabor filters oriented at 45° and 135°, respectively. 
Accordingly, they have been connected to the DR and DD 
saliency maps. The last unit, being equally driven by many 
Gabor filter outputs, has been connected to the NN saliency 
map. 
 
The Motor Output 

The output map is composed of 21 x 21 units. The location 
of the activations correspond to the positions of the cities in 
the pattern. Each neuron Oi receives inputs from the 
corresponding units of the visual input, and from all the 
other output units.  

These different inputs are combined in the following way:   

   1
1

2 −
+

= − iNetInputi e
O                                (3) 

 
  (if NetInput i<= 0   Oi = 0) 
 

            ∑++
j

jijii OWSaliencyV )1(         (4) 

where NetInputi is the input to the unit and Saliencyi is the 
activation value of the i-th unit in the Saliency map.  

All the saliency maps consist in a gradient that produces a 
pre-activation of 0.2 at motor level in the position of 
maximum enhancement. In particular, the DR saliency map 
produces a preactivation of 0.2 at the extreme left side that 
decreases linearly to zero at the extreme right side. The DD 

ywxw iii )( −=∆ η

Net Inputi = 

526



saliency map employs an equivalent gradient from the upper 
to the lower side of the output map. The NN saliency map is 
represented by a broad Gaussian-shaped hill of activity 
centered on the last visited city, with a peak of 0.2. The left-
hand side of equation (4) computes the visual input Vi 
modulated by the corresponding Salience unit, while the 
right-hand side computes the internal input, resulting from 
the connections W with the other output units. Indeed, the 
output map contains symmetric lateral connections with 
fixed-value inhibitory weights that depend on the distance 
between neurons. When more than one stimulus is presented 
to the network, the competition between neurons belonging 
to different populations resolves over time in favor of one of 
the stimuli. 

Every time a city is visited, the corresponding population 
code is subsequently suppressed in the motor map and 
inhibition spreads to the input module via a feedback 
connection. This ensures that the city with the highest 
activation value will be visited and that the same population 
will not be selected again during the sequential selection 
process.  
 
The Top-Down Controller 

After each step, The Top-Down Controller resets the 
activation of the heuristic units in the competitive selection 
module. This endorses the required flexibility of the model 
in order to make it capable of a change of heuristic during 
the execution of the task.   
 
Simulation 

The model is able to perform planning as an incremental 
process. For each pattern, the visual input is analyzed with 
Gabor filters to enhance the most influential spatial features, 
then the competitive selection module chooses the most 
appropriate heuristic for the pattern. The winning heuristic 
is implemented in terms of a saliency map, whose activation 
influences the motor map in determining the city to be 
visited.  

At the end of each step, the units in the motor map 
corresponding to the visited city are inhibited and the 
activation of the same city in the input pattern is reduced via 
the inhibitory feedback loop (fig. 2). This reduction allows a 
possible change of heuristic: indeed, the visual input is 
processed again in the visual module and, if a different 
heuristic emerges from the competitive selection, the Top 
Down Controller inhibits the previously selected heuristic to 
foster the new heuristic. This process takes place at every 
single step; therefore, heuristics can be changed more times 
during the execution of a single path.  
 

Results 

The performance of the computational model has been 
compared with the behavioral data of the experiments based 
on the TSP variant (Basso et al., submitted). The percentage 
of heuristics chosen by the model in performing the TSP on 

the set of input images, using the selection mechanism 
described above, was compared with the data collected on 
both healthy and impaired participants.  

We evaluated the heuristics considering the relationships 
among the cities: the heuristic used to move from a city to 
another was judged considering the distance from that city 
and the other cities not yet visited. At each step, we 
determined the horizontally closest city, the vertically 
closest city and the absolute closest city, with respect to the 
last visited city. Following this method, we obtained a 
precise description of the heuristics used by the model at 
every single step. 
 
Skilled performance 

The resulting percentage of heuristics used by the model 
was very close to that observed in healthy adults (fig. 3a). 
We also analyzed the overall pathways chosen by the model 
(fig. 4). The test consisted in comparing each pathway 
executed by the model with the frequencies of solutions 
produced by the human participants for the corresponding 
pattern. For this test, we used the patterns which have been 
administered to the largest number of subjects: indeed, for 
these patterns the frequencies of the pathways chosen by the 
participants were clearly more reliable.  
 

     
 
 
Fig. 3. Percentage of heuristics chosen by a) the unimpaired model 
and b) the lesioned model.  
 
The results demonstrate that the pathways chosen by the 
model are often among the most frequently produced by 
healthy adults. In particular, in 50% of patterns, the pathway 
chosen by the model is the most frequently executed by the 
human participants.  
 
 
 
 
 
 
 
 
 
 
Fig. 4. Examples of pathways performed by the skilled model. 
These pathways correspond to those most frequently observed in 
human subjects. 

b a 
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Moreover, in order to distinguish the type of strategy used 
by subjects to solve the TSP task, the number of heuristics 
used in every single trial has been examined: if, during the 
pathway, participants operated a switch between two or 
more heuristics, the resulting strategy was considered with 
changes; otherwise, the strategy was classified as unique. 
The ratio between unique strategies and strategies with 
changes showed by the model is very close to the 
performance showed by healthy adults (compare fig.1a with 
fig. 5a).  
 
Lesioned model 

We simulated a lesion to the Top Down Controller by 
decreasing its capacity to reset the competitive selection 
module. This damage produced a conspicuous decrease of 
strategies with changes (fig. 5b). This matches the decline 
of changes observed by Basso et al. (2001) in frontal 
patients and in normal subjects under rTMS over the frontal 
lobe (fig. 1a). As for the behavior of frontal patients, the 
performance of the model was still adequate because of the 
preserved bottom-up mechanism (fig. 3b), but the damage 
of the Top Down Controller caused a loss of flexibility and 
adaptivity in the behavior, resulting in a greater difficult in 
switching between heuristics. 
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Fig. 5. Performance of a) the unimpaired model and b) the lesioned 
model. 

 
Discussion 

Overall, the simulations closely mirrored  human 
performance in both normal and pathological states. This 
suggests that the model captures the basic cognitive 
processes involved in the human solution of the TSP. There 
are several points that deserve consideration. First of all, the 
spatial analysis performed in the visual module through the 
Gabor filters appears to successfully account for bottom-up 
influences in the TSP. That is, the directional features of the 
input pattern, enhanced by perceptual grouping, are the 
main determinants of the TSP solution. Note that Gabor 
filters have been previously used to successfully simulate 
perceptual grouping (Carreira et al., 1998).  

Another remarkable finding concerns the selection among 
the possible heuristics. Even inserting more than three units 
in the competitive layer, most of the patterns (95%) were 
still classified by three units. This means that the images can 
be divided into three broad categories with respect to their 
directional features. 

 However, the most intriguing characteristic of the model 
regards its capacity to change heuristics during the 
execution of a single pathway. The flexibility of the model 
is based on the online updating of the problem 
representations. Healthy adults appear to execute the TSP in 
an iterative manner; the incremental process requires a 
minimum cognitive load because participants do not need to 
generate a comprehensive plan resolving the entire situation 
but only the next move. The model executes the pathway 
operating the same incremental process observed in human 
participants, by selecting and having the chance to choose 
among different heuristics at every point of the pathway. 
The interaction of bottom-up (Gabor filters and competitive 
selection module) and top-down (Top Down Controller) 
influences have been successfully implemented in our 
model.  

Finally, there are strong similarities between our 
computational model and the ATA model (Norman & 
Shallice, 1986). In our model, the Top Down Controller 
allowed the inhibition of the previously chosen heuristic, 
when at a given point the use of another heuristic was more 
appropriate. The rare use of strategies with changes showed 
by the damaged model confirmed the key role of the Top 
Down Controller in this task, in agreement with Norman 
and Shallice’s (1986) proposal regarding the Supervisor 
Attentional System. 
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