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Abstract

Planning is a fundamental cognitive function freghe
employed in usual daily activitities. The TraveliBglesman
Problem (TSP), in which the participant decides twraer
between a number of locations optimizes total frdistance,
is a paradigm that allows the study of planning atrdtegy
choice. We present a computational model that siteslthe
human performance observed during the executiona of
variant of the TSP task, including bottom-up ang-down
influences. The performance of the model simulated
continuous monitoring observed in human participant
moreover, after a lesion to the network’s unitsresponding
to the prefrontal cortex, we found a decrease odtexy
changes like those observed in frontal patients.

Keywords: TSP, planning, computational modelling, frontal
damage.

Introduction

L . . . . c
Planning is a mental simulation which envisages the

circumstances and runs possible actions, evaluatieg
consequences and selecting the optimal order fecwgig
them (Cohen, 1989). It depicts the skill of progigcmental
representations of the future behavior prior tdoactind
sequential reasoning about the consequences a@ifgadti
order to properly choose among the possible couofes
action. TSP is a useful tool to investigate plagnimecause,
in this task, participants are required to genesagtrategy
in order to optimize the pathway.

TSP, as a paradigmatic example of non-polynomia

optimization problem, has been extensively studisd
mathematicians and computer scientists (see Laetyat.,
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1985, for a review) and much less by psychologists.
Nevertheless, there has been a growing interesthén
analysis of human performance in TSP-like problems
(Cadwallader, 1975; Garling, 1989, 1994). In thePTS
given a set ohf interconnected towns, represented by nodes
on a graph, the task consists in finding an itinerdat
visits each town exactly once, returning to thetistg town,
ensuring that the total travelled distance is aertshs
possible.

TSP involves essentially visuo-spatial planning, a
particular kind of problem solving in which parpeints try
to optimize a performance measured in spatiallystramed
environments. In comparison with more typical plagn
tasks, spatial planning requires a stronger intenac
between central and peripheral processes: vistiahtave
and motor factors play a fundamental role, in addito
reasoning, in determining the final behavior.

Our research is inspired by a series of studieslwced
with an open version of the TSP task (Basso et2@01),
onsisting in choosing the order of locations vittke start
and end point fixed (fig. 1b). The behavioral datewed
the presence of three distinct spatially-based isées
supporting the production of successful stratedié® first
heuristic, widely described in previous studies r(B&
Feigenbaum, 1981; Hirtle & Garling, 1992) is theakist
Neighbour (NN): it states that each location issgtoon the
basis of the local minimum distance from the actual
location. The other two Direction Heuristics (DH)sgribed
in the studies conducted with the TSP variant tpleze

hen subjects start from a location placed on adroand
each the next locations following one of the mspatial
axes (horizontal or vertical) (Basso et al., 20@hd a
direction (up or down for vertical axis, left orght for



horizontal axis). In the studies we refer to, ttetsg point
was always in the upper left corner; accordingliye t
heuristics have been renamed with Direction Rigbt (
horizontal heuristic) and Direction Down (for vesl
heuristic).

Another interesting finding concerns the
between heuristics: participants often show on-thanges
of heuristic during the execution of the task (BRass al.,

2001). These results confirm that subjects operate

continuous monitoring and flexibly adapt their beba to
the requirements of the task (or environment),astpd out
in previous studies (Hayes-Roth & Hayes-Roth, 1979)
From a neuroanatomical point of view, the substrate
planning skills are located in frontal areas: plagrdeficits
have long been associated with frontal lobe les{@woper
& Shallice, 2000; Duncan, 1986; Goel & Grafman, 399
2000; Shallice, 1982, 1988). More specifically, tracial
role of the frontal lobe in visuo-spatial plannihgs been

demonstrated using the TSP variant described abov

Patients with frontal lesions and normal subjectslen
repetitive transcranial magnetic stimulation (rTM&gr the
frontal lobes showed a significant reduction in thember
of heuristic changes which are usually performedngduthe
execution of the task (fig.1a) (Basso et al., stteu).
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Fig.1. a) Percentage of strategies from the exmarinwith the
TSP variant. From left to right: normal subjectabjects under
rTMS, and traumatic frontal lobe brain injured pats (TBI). b)
An example of an open version of TSP.

The aim of this article is to develop a computagiomodel
simulating the perceptual and cognitive processirnglved
in the human solution of the TSP. The model showsad

match to human performance when tested on the san W(x,y,w(,,B)IJz——

patterns administred to the healthy participantsrédver,
after an artificial lesion to its “frontal lobe” ogponent, the
model accounts for the behavior exhibited by traticna
brain injured patients (TBI) with damage to thenta lobe
(Basso et al., 2001).

The modd

The computational model is
interconnected modules (fig. 2), with a broad highical
organization and feedback connections, that
simulate the occipito-parieto-frontal circuit inved in the
TSP task. These components comprise: 1) a visudulap

525

interactio

in which the input pattern is processed by Gabiter§ to
simulate the processes responsible of perceptoalpgrg;
2) a competitive selection module that simulatesititernal
dynamics for the choice of the heuristic; 3) a matap,
based on population codes, that executes the ppthirnthe
spatial level. Moreover, the presence of saliencgpsn
recurrent connections and inhibitory mechanismewaliis
to simulate the incremental aspect of visuo-spaiahning
and the interaction of bottom-up and top-down psses.

Top Down
Controller

Competitive
Selection

Inhibitory
Feedback

INPUT OUTPUT

Fig. 2. The architecture of the model.
Thevisual module

This module is designed to enhance the directitestlires
intrinsically present in the input pattern. Theuhgonsists
of a two-dimensional image of 161x161 pixels repntisig
the pattern. Each city is represented by a blagioneof
4x4 pixels coded with ones, whereas empty spaceded
with zeros.

The visual image is processed by a family of eigabor
filters. Gabor filters are band-pass filters withn¢able
center frequency, orientation and bandwidth. Gdiltars
provide an excellent approximation of the respownge
simple cells in the primary visual cortex and hawsen
widely used in computer vision. In particular, weed the
family derived by Lee (1996):
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where x and y represent the center of the wavelgeis the
radial frequency in radians per unit length ahds the
wavelet orientation in radians. Moreover, a Gahlberfis

composed by threegefined as a complex function, and its real andgimary

part are used as two real filters (odd and evem)the

looselyyresent work, we varied only the wavelet orientat(6),

Y, Y € ¥m) for a total of eight filters (four even and



four odd). A set of eight maps was then obtaingd b
convolving the input image with the eight Gabotefis.

To calculate the strength of the directional feesur
extracted by the different filters, all local vatuevaluated
from the patterns (composing the training set) wssraled
to the [0 1] range and the highest value was celtedor
each map. This procedure allows to establish whethe
maximum value of a filter is above the average aglob
response, indicating a strong presence of the tibred
features enhanced by the filter. The structuréiaf module
is consistent with the hypothesis of Field (199#att
oriented edge features constitute a sparse repatieenof
the images. This means that for any image, onguwadf the
features are needed to represent that particulageémand
that over an ensemble of images a particular featuit
seldom be significantly active.

The competitive selection module

The simulation of the selection process was imptast
with a self-organizing, competitive learning networ
consisting of feedforward excitatory connectionst{®en
input and output units) and lateral inhibitory centions
(only between the output units). The training sensisted
of 100 randomly created patterns, composed of siten
cities.

This network was able to discover three main catego
of input images on the basis of the features detetly
Gabor filter processing. In the model, the comptit
learning network has one layer of eight input nesro
corresponding to the normalized highest value ef élght
Gabor filter responses, and a layer of output neur&ach
input unit indicates the strength of a particulaientation
axis, whereas each of the three output nodes mEmEean
image class that calls for a specific heuristice (below).
Inserting more than three units in the competitaseer did
not produce substantial changes in the resultsiass of the
patterns (95%) were still classified by three units

In the learning phase the weightare updated according
to the following equation:

AW =n(x —W)y

wheren is the learning rate is the activation of the input
vector andy is the activation of the winning output unit.
Note that in a winner-takes-all circuit, the outpumit
receiving the largest input is assigned the fulugaof 1,
whereas all other units are suppressed to a 0 .vdlne
competitive selection takes place thanks to therdat
inhibition in the output layer.

The result of the competitive selection is produbgdan
entirely bottom-up process (spatial analysis). phesence
of directional features in the input pattern defess the
choice of a heuristic, which in turn biases thecexien of
the pathway by means of a saliency map.

)
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The saliency maps

The saliency maps have been implemented to simthate
influence of the chosen heuristic through the sefiake
selection of stimuli. The saliency maps have thmesaize
of the motor output map (see below): each unih@arotor
map is pre-activated by the corresponding unitthef
saliency map. The Nearest Neighbor (NN) is implet@en
as a Gaussian-shaped hill of activity centered han last
visited city, whereas Direction Right (DR) and [itien
Down (DD) saliency maps consist of linear gradiethizst
cover the entire visual space.

The effect of a saliency map is to relatively erdeathe
activation of one city by reducing (in accordancighvihe
specific gradient) that of all other cities on timap. The
competition among neurons in the motor output map
produces a single winning location that correspaiodthe
most salient city, which constitutes the next targach unit
of the competitive selection module activates tkeristic
(that is, a saliency map) that corresponds mosetjao its
coded directional feature.

We have observed that most of the subjects tesdlext
the DR heuristic when the cities are principallgtdbuted
along the diagonal axis from upper-left to loweghti, while
the DD is often chosen when the cities are priflipa
distributed along the opposite diagonal axis. berimediate
or ambiguous situations, subjects tend to use ti N
heuristic. Similarly, after training on the visysdtterns, two
output units of the competitive network are maidhwen
by the Gabor filters oriented at 45° and 135°, eetigely.
Accordingly, they have been connected to the DR Rbd
saliency maps. The last unit, being equally dribgrmany
Gabor filter outputs, has been connected to theshli¢ncy
map.

The Motor Output

The output map is composed of 21 x 21 units. Thatlon
of the activations correspond to the positionshef ¢ities in
the pattern. Each neurof, receives inputs from the
corresponding units of the visual input, and froththe
other output units.

These different inputs are combined in the folloywivay:

2
Oi = 1+ e—NetInputi - 3)
(if Netlnput ;<=0 Oi = 0)
Net Input = Vi (1+ Saliency,) + Z\Nijoj 4)
i

whereNetlnput; is the input to the unit and Saliendy the
activation value of the i-th unit in the Saliencgm

All the saliency maps consist in a gradient thatprces a
pre-activation of 0.2 at motor level in the positiof
maximum enhancement. In particular, the DR salianep
produces a preactivation of 0.2 at the extremesieti¢ that
decreases linearly to zero at the extreme riglg. Sithe DD



saliency map employs an equivalent gradient froenughper
to the lower side of the output map. The NN safemap is
represented by a broad Gaussian-shaped hill ofitycti
centered on the last visited city, with a peak .@f @he left-
hand side of equation (4) computes the visual ingut
modulated by the corresponding Salience unit, wHile
right-hand side computes the internal input, résgilfrom

the set of input images, using the selection meshan
described above, was compared with the data cetlech
both healthy and impaired participants.

We evaluated the heuristics considering the reiatigpps
among the cities: the heuristic used to move froaityato
another was judged considering the distance fraah ¢hy
and the other cities not yet visited. At each stem

the connection®V with the other output units. Indeed, the determined the horizontally closest city, the ity

output map contains symmetric lateral connectiornth w
fixed-value inhibitory weights that depend on thistahce
between neurons. When more than one stimulus septed
to the network, the competition between neuronstighg
to different populations resolves over time in fagbone of
the stimuli.

Every time a city is visited, the corresponding plagon

closest city and the absolute closest city, wigpeet to the
last visited city. Following this method, we obtaih a
precise description of the heuristics used by tloeleh at
every single step.

Skilled performance

code is subsequently suppressed in the motor map al:|'he resulting percentage of heuristics used byntioelel

inhibition spreads to the input module via a feattba

was very close to that observed in healthy adtigs 8a).

connection. This ensures that the city with the highest'Ve @lso analyzed the overall pathways chosen byntiel

activation value will be visited and that the sgmoeg@ulation
will not be selected again during the sequentidction
process.

The Top-Down Controller

(fig. 4). The test consisted in comparing each \wath
executed by the model with the frequencies of fmhst
produced by the human participants for the cornedjpg
pattern. For this test, we used the patterns white been
administered to the largest number of subjectseendd for
these patterns the frequencies of the pathways«ohogthe

After each step, The Top-Down Controller resets theparticipants were clearly more reliable.

activation of the heuristic units in the compettiselection
module. This endorses the required flexibility lbé tmodel
in order to make it capable of a change of heuaridtiring
the execution of the task.

Simulation

The model is able to perform planning as an increale
process. For each pattern, the visual input isyaedl with
Gabor filters to enhance the most influential sidéatures,
then the competitive selection module chooses tlstm
appropriate heuristic for the pattern. The winnireristic
is implemented in terms of a saliency map, whosi@a®on
influences the motor map in determining the city bte
visited.

a Normal Model
<1%

p Frontal Lesion
1%

T,
%
3% \
\40%
\

)
/

/

[ Direction Right

E Direction Down

[ Nearest Neighborood
Il No strategy

29% 26%

Fig. 3. Percentage of heuristics chosen by a) tirapaired model
and b) the lesioned model.

At the end of each step, the units in the motor map he results demonstrate that the pathways chosethdoy

corresponding to the visited city are inhibited atick
activation of the same city in the input patterneduced via
the inhibitory feedback loop (fig. 2). This redwactiallows a
possible change of heuristic: indeed, the visugluinis
processed again in the visual module and, if aeudfit
heuristic emerges from the competitive selectidne, Top
Down Controller inhibits the previously selectedihistic to
foster the new heuristic. This process takes pkicevery
single step; therefore, heuristics can be changem tmes
during the execution of a single path.

Results

model are often among the most frequently produzgd
healthy adults. In particular, in 50% of patternh® pathway
chosen by the model is the most frequently exechiethe

human participants.

e

The performance of the computational model has been

compared with the behavioral data of the experimbased
on the TSP variant (Basso et al., submitted). Téregntage
of heuristics chosen by the model in performing T on
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Fig. 4. Examples of pathways performed by the ettilimodel.

These pathways correspond to those most frequeb#grved in

human subjects.



Moreover, in order to distinguish the type of stpt used
by subjects to solve the TSP task, the number ofistes
used in every single trial has been examined:ufing) the
pathway, participants operated a switch between dwo
more heuristics, the resulting strategy was comsitlevith
changes; otherwise, the strategy was classifiednégue.
The ratio between unique strategies and strategids

changes showed by the model is very close to theegards

performance showed by healthy adults (comparedigith
fig. ba).

L esioned mode

Another remarkable finding concerns the selectimorg
the possible heuristics. Even inserting more tthaeet units
in the competitive layer, most of the patterns (95%&re
still classified by three units. This means that ithages can
be divided into three broad categories with respedheir
directional features.

However, the most intriguing characteristic of thedel
its capacity to change heuristics during th
execution of a single pathway. The flexibility dfet model
is based on the online updating of the problem
representations. Healthy adults appear to exehetd $P in
an iterative manner; the incremental process regqui
minimum cognitive load because participants donesd to

We simulated a lesion to the Top Down Controller byyenerate a comprehensive plan resolving the esitiration

decreasing its capacity to reset the competitidectien

module. This damage produced a conspicuous dectfase

strategies with changes (fig. 5b). This matchesdbeine
of changes observed by Basso et al. (2001) in dtont
patients and in normal subjects under rTMS overfrinatal
lobe (fig. 1a). As for the behavior of frontal patis, the
performance of the model was still adequate becafitee
preserved bottom-up mechanism (fig. 3b), but theatse
of the Top Down Controller caused a loss of fleitijpiand
adaptivity in the behavior, resulting in a greaddficult in
switching between heuristics.

80+
a b
60
% 40- O
Unique Strategies
20+ .
0- Strategies  with
Health model Lesioned changes
model

Fig. 5. Performance of a) the unimpaired modellanithe lesioned
model.
Discussion

Overall, the simulations closely mirrored
performance in both normal and pathological staldss

human

but only the next move. The model executes thewmath
operating the same incremental process observadnran
participants, by selecting and having the chancehtmose
among different heuristics at every point of thehpay.
The interaction of bottom-up (Gabor filters and patitive
selection module) and top-down (Top Down Contrdller
influences have been successfully implemented in ou
model.

Finally, there are strong similarities between our
computational model and the ATA model (Norman &
Shallice, 1986). In our model, the Top Down Coréol
allowed the inhibition of the previously chosen fistic,
when at a given point the use of another heurigtis more
appropriate. The rare use of strategies with cheusgewed
by the damaged model confirmed the key role of Thp
Down Controller in this task, in agreement with hhan
and Shallice’s (1986) proposal regarding the Superv
Attentional System.
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