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Abstract

In this paper, we analyze the performance of paralel multi-
threaded algorithmsthat use dag-consi stent distributed shared mem-
ory. Specifically, we analyze execution time, page faults, and space
requirements for multithreaded algorithms executed by a work-
stealing thread scheduler and the BACKER algorithm for maintain-
ing dag consistency. We prove that if the accesses to the backing
store are random and independent (the BACKER algorithm actually
uses hashing), the expected execution time Tp(C) of a“fully strict”
multithreaded computation on P processors, each with aLRU cache
of C pages, isO(Ty(C)/P+mCTew), where T; (C) isthe total work of
the computation including page faults, T isits critical-path length
excluding page faults, and misthe minimum pagetransfer time. As
acorallary tothistheorem, we show that the expected number F5(C)
of page faults incurred by a computation executed on P processors
can be related to the number F1(C) of serial page faults by the for-
mula Fp(C) < F;(C) 4+ O(CPTe). Finaly, we give simple bounds
on the number of page faults and the space requirements for “reg-
ular” divide-and-conquer algorithms. We use these bounds to ana-
lyze parallel multithreaded algorithmsfor matrix multiplication and
L U-decomposition.

1 Introduction

In recent work [8, 17], we have proposed dag-consistent dis-
tributed shared memory as a virtual-memory model for multi-
threaded parallel-programming systems such as Cilk, a C-based
multithreaded language and runtime system [7, 9, 17]. A multi-
threaded program defines a partial execution order on its instruc-
tions, and we view this partial order as a directed acyclic graph or
dag. Informally, in the dag-consistency model, a read instruction
can “se€” awrite instruction only if there is some serial execution
order of the dag in which the read sees that write. Moreover, dag
consistency allows different reads to return values that are based on
different serial orders, aslong as the values returned are consistent
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with the dependencies given by the dag. Our previous work pro-
vides a description of the model, coherence agorithms for main-
taining dag consistency, and empirical evidence for their efficiency.
In this paper, we analyze the execution time, page faults, and space
requirements of multithreaded algorithms written with this consis-
tency model when the execution is scheduled by the randomized
work-stealing scheduler from [7, 10] and dag consistency is main-
tained by the BACKER coherence algorithm from [8].

A multithreaded algorithm is a collection of thread definitions.
Analogous to a procedure definition, a thread definition is a block
of seria code, possibly with conditional and looping constructions.
Unlike a procedure, however, athread definition may contain vari-
ous types of “spawn” and “synchronization” statements that allow
the algorithm to exhibit concurrency as follows. To specify paral-
lelism, a thread may spawn child threads. A spawn is the parallel
analogue of a procedure call, but in the case of a spawn, the parent
and child may execute concurrently. From the time that a thread is
spawned until the time that the thread returns, we say the thread is
living or alive. In addition athread may synchronizewith someor al
of its spawned children by suspending its execution until the speci-
fied children return. When the last of the specified children returns,
it enablesits parent to resume execution. A thread that is suspended
waiting for children to return is said to be stalled, and otherwise, a
thread issaid to beready. Ingeneral, athread may synchronizewith
other threads that are not its children, but in our analysis, we shall
focus on the class of fully strict multithreaded algorithms in which
athread may only synchronize with its children as just described.

The resource requirements of a multithreaded algorithm when
used to solve a given input problem are modeled, in graph-theoretic
terms, by a multithreaded computation [7]. A multithreaded com-
putation is composed of two structures: a “spawn tree” of threads
and a dag of instructions. The spawn tree of threads is the paral-
lel analogue of acall tree of procedures. The spawn treeisrooted at
the“main” thread where algorithm execution begins, and in general,
each spawned thread isanodein the spawn tree with the parent-child
rel ationships defined by the spawn operations. The dag of instruc-
tionsisthe parallel analogue of aserial instruction stream. Wethink
of the dag of instructions as being “embedded” in the spawn tree,
since each executed instruction is part of a spawned thread. This
embedding has the following properties. All of the instructions in
any given thread are totally ordered by dag edges that we call con-
tinue edges. For each thread, except the root thread, itsfirst instruc-
tion has exactly one incoming edge that we call a spawn edge, and
this edge comes from an instruction (the spawning instruction) in
the parent thread. For each thread, except the root thread, itslast in-
struction has exactly one outgoing edge that we call areturn edge,
and this edge goes to an instruction (the synchronizing instruction)
in the parent thread. In the case of afully strict multithreaded algo-



rithm, for any input problem, the resulting fully strict multithreaded
computation contains only continue, spawn, and return edges asjust
described.

Before discussing how the BACKER coherence algorithm affects
the performance of fully strict multithreaded algorithmsthat use dag
consistent shared memory, let usfirst review some of the theory of
multithreaded algorithms that do not use shared memory. Any mul-
tithreaded algorithm can be measured in terms of its “work” and
“critical-path length” [5, 9, 10, 20]. Consider the multithreaded
computation that results when a given multithreaded algorithm is
used to solve a given input problem. The work of the computa-
tion, denoted Ty, is the number of instructions in the dag, which
corresponds to the amount of time required by a one-processor
execution.!  The critical-path length of the computation, denoted
Te, is the maximum number of instructions on any directed path in
the dag, which corresponds to the amount of time required by an
infinite-processor execution. Now, for a given multithreaded algo-
rithm, we define the work T;(n) and critical-path length Te.(n) of
thealgorithm asthework and critical-path length respectively of the
multithreaded computation that results when the algorithm is used
to solve an input problem of size n. With any number P of (homo-
geneous) processors, the time to solve a problem of size n cannot
be less than Ty (n)/P or less than T (n). Notice that multithreaded
algorithms and multithreaded computations do not specify when or
on what processor to execute any instruction. Such scheduling deci-
sionsmust be made at runtime, and agood runtime scheduler strives
to achieve performance close to these lower bounds.

The randomized work-stealing scheduler achieves performance
closeto these lower boundsfor the case of fully strict multithreaded
algorithms that do not use shared memory. Specificaly, for any
such algorithm and any number P of processors, the randomized
work-stealing scheduler executes the algorithm in expected time
O(Ty(n)/P+ Tw(n)) [7, 10]. The randomized work-stealing sched-
uler operates as follows. Each processor maintains a ready deque
(doubly-ended queue) of threads from which work is obtained.
When athread is spawned, the parent thread i s suspended and put on
the bottom of the deque and execution commences on the spawned
childthread. When athread returns, execution of the parent resumes
by removing it from the bottom of the deque. On one processor, this
execution order isthe standard, depth-first serial execution order. A
processor that finds its deque empty becomes a “thief” and sends a
steal request to a randomly chosen “victim” processor. If the vic-
tim has athread in its degue, it sends the topmost thread to the thi ef
to execute. Otherwise, the victim has no threads and the thief tries
again with a new random victim. Finally, when athread executing
on a processor enables a thread that was stalled on another proces-
sor, the newly enabled thread is sent to the enabling processor to be
resumed.

All of the threads of a multithreaded algorithm should have ac-
cessto asingle, shared virtual address space, and in order to support
such a shared-memory abstraction on a computer with physically
distributed memory, the runtime scheduler must be coupled with a
coherence algorithm. For our BACKER coherence algorithm, we as-
sumethat each processor’smemory isdivided into two regions, each
containing pages of shared-memory objects. One region is a page
cache of C pages of objectsthat have been recently accessed by that
processor. The rest of each processors memory is maintained as
a backing store of pages that have been alocated in the virtua ad-
dress space. Each allocated page is assigned to the backing store of
a processor chosen by hashing the page’s virtual address. In order
for a processor to operate on an object, the object must be resident
in the processor’s page cache; otherwise, a page fault occurs, and

1For nondeterministic algorithms whose computation dag depends on the scheduler,
we define T; to bethe number of instructionsin the actually occurring computation dag,
and similarly for the other measures we shall define.

BACKER must “fetch” the object’s page from backing storeinto the
page cache. We assume that when a page fault occurs, no progress
can be made on the computation during the time it takes to service
thefault, and thefault time may vary dueto congestion of concurrent
accesses to the backing store. We shall further assume that pages
in the cache are maintained using the popular LRU (least-recently-
used) [19] heuristic. In addition to servicing page faults, BACKER
must “reconcile” pages between the processor page caches and the
backing store so that the semantics of the execution obey the as-
sumptions of dag consistency. The BACKER coherence algorithm
and the work-stealing scheduler have been implemented in the Cilk
runtime system with encouraging empirical results [8].

In order to model performance for multithreaded algorithms that
use dag-consistent shared memory, we observe that running times
will vary as a function of the cache size C, so we must introduce
measures that account for this dependence. Consider again the mul-
tithreaded computation that results when a given multithreaded al-
gorithm is used to solve a given input problem. We shall define a
new work measure, the “total work,” that accounts for the cost of
page faultsin the serial execution, asfollows. Let m be thetime to
service apage fault in the serial execution. We now weight the in-
structions of the dag. Each instruction that generates a page fault
in the one-processor execution with the standard, depth-first serial
execution order and with a cache of size C has weight m+ 1, and
all other instructions have weight 1. Thetotal work, denoted T;(C),
isthe total weight of all instructions in the dag, which corresponds
to the serial execution time if page faults take m units of time to be
serviced. We shall continue to let T; denote the number of instruc-
tions in the dag, but for clarity, we shall refer to T; as the compu-
tational work. (The computational work T; corresponds to the se-
ria execution time if al page faults take zero time to be serviced.)
To relate these measures, we define the serial page faults, denoted
F1(C), to be the number of page faults taken in the serial execution
(that is, the number of instructions with weight m). Thus, we have
T1(C) = Ty + mF{(C). Now, for a given multithreaded algorithm,
we define the total work T;(C, n) and serial page faults F;(C, n) of
the algorithm as the work and serial page faults respectively of the
multithreaded computation that results when the agorithm is used
to solve an input problem of sizen.

The quantity T;(C) isan unusua measure. Unlike Ty, it depends
onthe serial execution order of the computation. The quantity T;(C)
further differs from Ty in that T;(C)/P is not alower bound on the
execution timefor P processors. It ispossibleto construct acompu-
tation containing P subcomputations that run on P separate proces-
sors in which each processor repeatedly accesses C different pages
in sequence. Consequently, with caches of sizeC, no processor ever
faults, except to warm up the cache at the start of the computation.
If we run the same computation serially with a cache of size C (or
any sizelessthan CP), however, the necessary multiplexing among
tasks can cause numerous page faults. Consequently, for this com-
putation, the execution time with P processors is much less than
T1(C)/P. In this paper, we shall forgo the possibility of obtaining
such superlinear speedup on computations. Instead, we shall sim-
ply attempt to obtain linear speedup.

Critical-path length can likewise be split into two notions. We
define the total critical-path length, denoted T, (C), to be the max-
imum over all directed paths in the computational dag, of the time,
including page faults, to execute along the path by a single proces-
sor with cache size C. The computational critical-path length T, is
the same, but where faults cost zero time. Both T, and T (C) are
lower bounds on execution time. Although T.(C) is the stronger
lower bound, it appears difficult to compute and analyze, and our
upper-bound results will be characterized in terms of To,, which we
shall continue to refer to simply as the critical-path length.

In this paper, we analyze the execution time of fully strict multi-



threaded algorithmsthat use dag consistent shared memory. Theal-
gorithm is executed on a parallel computer with P processors, each
with a cache of size C, and a page fault that encounters no conges-
tionisserviced in munitsof time. The execution isscheduled by the
work-stealing scheduler and dag consistency is maintained by the
BACKER coherencea gorithm. Inaddition, we assumethat accesses
to shared memory are distributed uniformly and independently over
the backing store—often a plausible assumption, since BACKER
hashes pages to the backing store. Then, the expected execution
time to solve a problem of size nis O(T;(C,n)/P + mCTw(n)). In
addition, we give a high-probability bound.

This result is not as strong as we would like to prove, because
accesses to the backing store are not necessarily independent. For
example, threads may concurrently access the same pages by algo-
rithm design. We can artificially solve this problem by insisting, as
does the EREW-PRAM model, that the algorithm performs exclu-
siveaccessesonly. Moreseriously, however, congestion delay inac-
cessing the backing store can cause the computation to be scheduled
differently thanif therewere no congestion, thereby perhaps causing
more congestion to occur. It may be possible to prove our bounds
for a hashed backing store without making this independence as-
sumption, but we do not know how at this time. The problem with
independence does not seem to be serious in practice, and indeed,
given the randomized nature of our scheduler, it is hard to conceive
of how an adversary can actually take advantage of thelack of inde-
pendence implied by hashing to slow the execution. Although our
results are imperfect, we are actually analyzing the effects of con-
gestion, and thus our results are much stronger than if we assume,
for example, that accesses to the backing store independently suffer
Poisson-distributed delays.

In this paper, we also analyze the number of page faults that oc-
cur during algorithm execution. Again, execution is scheduled with
the work-stealing scheduler and dag consistency is maintained by
the BACKER coherence algorithm, and we assume that accesses to
backing store are random and independent. Under this assump-
tion, we show that the expected number of page faults to solve a
problem of size n on P processors, each with a LRU cache of size
C, isat most F1(C,n) + O(CPTw(n)). In addition, for “regular”
divide-and-conquer multithreaded algorithms, we derive agood up-
per bound on F;(C, n). For example, we show that the total number
of page faults incurred by a divide-and-conquer matrix multiplica-
tion algorithm when multiplying n x n matrices using P processors
isO(n3/(m?/2,/C) +CPlg?n), assuming that the independence as-
sumption for the backing store holds.

Finally, in this paper, we anayze the space requirements of “sim-
ple” multithreaded algorithms that use dag-consi stent shared mem-
ory. We assume that the computation is scheduled by a sched-
uler, such as the work-stealing algorithm, that maintains the “busy-
leaves’ property [10]. For a given simple multithreaded algorithm,
let S;(n) denote the space required by the standard, depth-first se-
rial execution of the algorithm to solve a problem of sizen. In pre-
vious work, we have shown that the space used by a P-processor
executionisat most S;(n)P intheworst case[10]. Weimprovethis
characterization of the space requirements, and we provide a much
stronger upper bound on the space requirements of regular divide-
and-conquer multithreaded algorithms. For example, we show that
a divide-and-conquer matrix multiplication algorithm multiplying
N x n matrices on P processors uses only ©(n?PY/3) space, which
is tighter than the O(n?P) resuilt obtained by directly applying the
S;(n)P bound.

The remainder of this paper is organized as follows. Section 2
gives a precise definition of dag consistency and describes the
BACKER coherence algorithm for maintaining dag consistency.
Section 3 analyzes the execution time of fully strict multithreaded

algorithms when the execution is scheduled by the randomized
work-stealing scheduler and dag consistency is maintained by the
BACKER coherence algorithm. Section 4 analyzes the number
of page faults taken by paralel divide-and-conquer algorithms.
Section 5 analyzes the space requirements of parallel divide-and-
conguer algorithms. Section 6 presents some sample analyses of al-
gorithms that use dag-consistent shared memory. Finally, Section 7
offers some comparisons with other consistency models and some
ideas for the future.

2 Dag consistency and the Backer algorithm

In this section we give a precise definition of dag consistency, and
we describe the BACKER coherence algorithm for maintaining dag
consistency. Dag consistency isarelaxed consistency model for dis-
tributed shared memory, and the BACKER algorithm collaborates
with the work-stealing scheduler in order to maintain dag consis-
tency for multithreaded computations executing on a parallel com-
puter with physicaly distributed memory.

Shared memory consists of a set of objects that instructions can
read and write. When an instruction performs a read of an object,
it receives some value, but the particular value it receives depends
upon the consistency model. Dag consistency is defined separately
for each object in shared memory.

In order to give the definition, we first define some terminology.
Let G = (V,E) bethedag of amultithreaded computation. Fori, j €
V, if apath of nonzero length from instructionii to j existsin G, we
say that i (strictly) precedes j, whichwewritei < j. We say that two
instructionsi, j € V with i # j areincomparable if we havei £ j
and j £ i. To track which instruction is responsible for an object’s
value, we imagine that each shared-memory object has atag which
thewrite operation setsto the name of theinstruction performing the
write. We make the technical assumption that an initial sequence of
instructions writes a value to every object. We can now define dag
consistency.

Definition 1 The shared memory M of a multithreaded computa-
tionG = (V,E) isdag consistent if for every location xin the shared
memory, there exists a function fy : V — V such that the following
conditions hold.

1. For all instructionsi € V, theinstruction fy(i) writeson x.

2. Ifaninstruction i writes on x, then we have fy(i) = .

3. Ifaninstructioni readsx, it receives a value tagged with fx(i).
4. For all ingtructionsi € V, wehavei 4 fy(i).
5

. For eachtriple of instructionsi, j and k, suchthati < j <k,
if fx(j) # i holds, then we have fx(k) # i.

Informally, the function fx(i) representsthe viewpoint of instruc-
tion i on the contents of location x, that is, the tag of x fromi’s per-
spective. Therefore, if an instruction i writes, the tag of x becomes
i (part 2 of the definition), and when it reads, it reads something
tagged with fy(i) (part 3). Moreover, part 4 requires that future exe-
cution does not have any influence on the current value of the mem-
ory. Therationale behind part 5 is shown in Figure 1. When there
isapath fromi to k through j, then j “masks” i, in the sense that
if i’sview of xisno longer current when j executes, then it cannot
be current when k executes. Instruction k can still have a different
viewpoint on the memory than j, for instance, it can see writes per-
formed by other instructions (such as| in the figure) incomparable
with j.

In previouswork [8, 17], we presented a definition of dag consis-
tency different from Definition 1. Our Definition 1 is stronger than
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Figure 1: Illustration of the definition of dag consistency. When there is
apath from i to k through j, then j “masks” i. Instruction k, however, is

dlowed to see writes performed by an instruction | incomparable with i and
j, and possibly with k itself.

the previous definition, that is, if the shared memory M is dag con-
sistent in the sense of Definition 1, it also satisfies the previous def-
inition. The converseisnot true. The reason we updated our defini-
tion is that Definition 1 “confines’ nondeterminism, in the follow-
ing sense: consider the case of two instructionsiy and i, writing to
amemory location X, and having a common successor j. Suppose
that no instruction other than i, and i, writesto x. In Definition 1, j
isforced to have aview of x, and see one of the two values. All of
j'ssuccessorswill then seethat same value. With the old definition,
two of j’s successors could see different values. A full justification
of Definition 1 and explanation of its propertiesis beyond the scope
of this paper.

We now describe the BACKER coherence algorithm from [8], in
whichtheglobal backing store holds shared-memory objectsthat are
fetched into local processor caches. We state without proof atheo-
rem that BACKER maintains dag consistency (Definition 1).

Inthe BACKER coherence algorithm, versions of shared-memory
objects can reside simultaneously in any of the processor cachesand
the backing store. Each processor’s cache contains objects recently
used by the threads that have executed on that processor, and the
backing store provides default global storage for each object. In or-
der for athread executing on the processor to read or write an object,
the object must be in the processor’s cache. Each object inthe cache
has a dirty bit to record whether the object has been modified since
it was brought into the cache.

BACKER uses three basic operations to manipulate shared-
memory objects: fetch, reconcile, and flush. A fetch copies an
object from the backing store to a processor cache and marks the
cached object as clean. A reconcile copies a dirty object from a
processor cache to the backing store and marks the cached object
as clean. Findly, a flush removes a clean object from a processor
cache.

The BACKER coherencealgorithm operatesasfollows. Whenthe
user code performs aread or write operation on an object, the oper-
ation is performed directly on a cached copy of the object. If the
object isnot in the cache, it isfetched from the backing store before
the operationisperformed. If the operationisawrite, thedirty bit of
theobject isset. To make spaceinthe cachefor anew object, aclean
object can be removed by flushing it from the cache. To remove a
dirty object, it is reconciled and then flushed.

Besides performing these basic operations in response to user
reads and writes, BACKER performs additional reconciles and
flushesto enforce dag consistency. For each edgei — j inthe com-
putation dag, if instructionsi and j are executed on different proces-
sors, say p and g, then BACKER causes p to reconcile al its cached
objects after executing i but before enabling j, and it causes g to
reconcile and flush its entire cache before executing j. Note that if
g's cacheis flushed for some other reason after p has reconciled its
cache but before g executes j (perhaps because of another interpro-
cessor dag edge), it need not be flushed again before executing j.

Thefollowing theorem statesthat BACKER iscorrect. A proof of
the theorem is beyond the scope of the present paper.

Theorem 2 If the shared memory M of a multithreaded computa-
tion is maintained using BACKER, then M is dag consistent.

To understand the performance of BACKER, we posit the follow-
ing environment in which BACKER operates. We have a homoge-
neous parallel computer with P processors. The backing store is
distributed across the processors by hashing, with each processor
managing aproportional share of the objectswhich aregrouped into
fixed-size pages. In addition to backing store, each processor has
a cache of C pages that is maintained using the LRU replacement
heuristic. When pages are transferred between processors, conges-
tion may occur at a destination processor, in which case we assume
that the transfers are serviced at the destination in FIFO (first-in,
first-out) order. A multithreaded computation itself is executed by
the randomi zed, work-stealing schedul er, but with a small technical
modification described in the anaysis.

3 Analysis of execution time

In this section, we bound the execution time of fully strict multi-
threaded algorithmswhen the parallel execution is scheduled by the
work-stealing scheduler and dag consistency is maintained by the
BACKER agorithm, under the assumption that accessesto the back-
ing store are random and independent. Specificaly, for agivenfully
strict multithreaded algorithm, let Tp(C, n) denote the time taken by
the algorithm to solve a problem of size n on a parallel computer
with P processors, each with a LRU cache of C pages, when the
execution is scheduled by the work-stealing scheduler in conjunc-
tion with the BACKER coherence agorithm. In addition, let Te(Nn)
denote the critical-path length of the algorithm. In this section, we
show that if accessesto backing store are random and independent,
then the expected vaue of Tp(C,n) is O(T1(C,n)/P + mMCTw(n))
where m denotes the minimum time to transfer a page. In addition,
we bound the number of page faults. The exposition of the proofs
in this section makes heavy use of results and techniques from [10].

Our analysis of execution timeis organized as follows. First, we
prove a lemma describing how the BACKER algorithm adds page
faultsto aparallel execution. Then, we obtain abound on the num-
ber of “rounds’ that a parallel execution contains. Each round con-
tainsafixed amount of scheduler overhead, so bounding the number
of rounds bounds the total amount of scheduler overhead. To com-
pletetheanalysis, we use an accounting argument to add up thetotal
execution time.

In the following analysis, we consider the fully strict multi-
threaded computation that results when a given fully strict multi-
threaded a gorithm is executed to solve a given input problem. The
computation is executed by the work-stealing scheduler in conjunc-
tion with the BACKER coherence agorithm on a parallel computer
with P processors. Each processor has a LRU cache of C pages.
We assume that a minimum of mtime steps are required to transfer
apage. We let T; denote the computational work of the computa-
tion, T;(C) denote the total work of the computation, T, denote the
critical-path length of the computation, and F;(C) denote the seria
page faults of the computation.

Before proceeding, we must make a dight technical modifica
tion to the work-stealing scheduler. Between successful steals, we
wish to guarantee that a processor performs at least C page trans-
fers (fetches or reconciles) so that it is not stealing too often. Con-
sequently, whenever a processor runs out of work, if it has not per-
formed C page transfers since its last successful stedl, it performs
enough additional “idl€” transfers until it has transferred C pages.
At that point, it can steal again. Similarly, we require that each pro-
cessor perform oneidletransfer after each unsuccessful steal request
to ensure that steal requests do not happen too often.



We now define some new terminology. A task is the fundamen-
tal building block of a computation and is either alocal instruction
(one that does not access shared memory) or a shared-memory op-
eration. If atask isalocal instruction or references an object in the
local cache, it takes 1 step to execute. Otherwise, the task is refer-
encing an object not in the local cache, and a page transfer occurs,
taking at least m steps to execute. A synchronization task is a task
in the dag that forces BACKER to perform a cache flush in order
to maintain dag consistency. Remember that for each interproces-
sor edge i — ] in the dag, a cache flush is required by the proces-
sor executing j sometime after i executes but before j executes. A
synchronization task is thus a task j having an incoming interpro-
cessor edgei — | in the dag, where j executes on a processor that
has not flushed its cache since i was executed. A subcomputation
is the computation that one processor performs from the time it ob-
tainswork to thetimeit goesidle or enables a synchronization task.
We distinguish two kinds of subcomputations. primary subcompu-
tations start when a processor obtains work from arandom steal re-
quest, and secondary subcomputations start when a processor starts
executing from a synchronization task. We distinguish three kinds
of page transfers. An intrinsic transfer is atransfer that would oc-
cur during a 1-processor depth-first execution of the computation.
The remaining extrinsic page transfers are divided into two types.
A primary transfer isany extrinsic transfer that occurs during a pri-
mary subcomputation. Likewise, asecondary transfer isany extrin-
sic transfer that occurs during a secondary subcomputation. We use
these terms to refer to page faults as well.

Lemma 3 Each primary transfer in an execution can be associ-
ated with a currently running primary subcomputation such that
each primary subcomputation has at most 3C primary transfers as-
sociated with it. Smilarly, each secondary transfer in an execution
can be associated with a currently running secondary subcomputa-
tion such that each secondary subcomputation has at most 3C sec-
ondary transfers associated with it.

Proof:  For this proof, we use a fact shown in [8] that executing
a subcomputation starting with an arbitrary cache can only incur C
more page faults than the same block of code incurred in the serial
execution. Thisfact follows from the observation that a subcompu-
tation isexecuted in the same depth-first order asit would have been
executed in the serial execution, and the fact that the cache replace-
ment strategy isLRU.

We associate each primary transfer with a running primary sub-
computation as follows. During a steal, we associate the (at most)
C reconciles done by the victim with the stealing subcomputation.
In addition, the stolen subcomputation has at most C extrinsic page
faults, because the stolen subcomputation isexecuted in the sameor-
der asthe subcomputation executesin the seria order. At the end of
the subcomputation, at most C pages need be reconciled, and these
reconciles may be extrinsic transfers. In total, at most 3C primary
transfers are associated with any primary subcomputation.

A similar argument holds for secondary transfers. Each sec-
ondary subcomputation must perform at most C reconciles to flush
the cache at the start of the subcomputation. The subcomputation
then hasat most C extrinsic page faults during its execution, because
it executes in the same order as it executes in the serial order. Fi-
nally, at most C pages need to be reconciled at the end of the sub-
computation.

[ |

We now bound the amount of scheduler overhead by counting the
number of rounds in an execution.

Lemma 4 If each page transfer (fetch or reconcile) in the execu-
tionisserviced by a processor chosen independently at random, and

each processor queuesitstransfer requestsin FIFO order, then, for
any € > 0, with probability at least 1 — €, the total number of steal
requests and primary transfersis at most O(CPT., + CPIg(1/¢)).

Proof: To begin, we shall assume that each access to the backing
store takes one step regardless of the congestion. We shall describe
how to handle congestion at the end of the proof.

First, we wish to bound the overhead of scheduling, that is, the
additional work that the one-processor execution would not need
to perform. We define an event as either the sending of a steal re-
quest or the sending of a primary-page-transfer request. In order to
bound the number of events, we divide the execution into rounds.
Round 1 startsat timestep 1 and endsat thefirst timestep at which at
least 27CP events have occurred. Round 2 starts one time step after
round 1 completes and ends when it contains at least 27CP events,
and so on. We shall show that with probability at least 1 — €, an ex-
ecution contains only O(T., + 1g(1/€)) rounds.

To bound the number of rounds, we shall use a delay-sequence
argument. We define amodified dag D’ exactly asin[10]. (Thedag
D’ isfor the purposes of analysisonly and has no effect on the com-
putation.) The critical-path length of D’ isat most 2T... We definea
task with no unexecuted predecessorsin D’ to becritical, anditisby
construction one of thefirst two tasksto be stolen from the processor
on which it resides. Given atask that iscritical at the beginning of
around, we wish to show that it is executed by the start of the next
round with constant probability. Thisfact will enableusto show that
progress s likely to be made on any path of D’ in each round.

We now show that at least 4P steal requests are initiated during
the first 22CP events of around. If at least 4P of the 22CP events
are steal requests, then we are done. If not, then there are at least
18CP primary transfers. By Lemma 3, we know that at most 3CP of
these transfers are associated with subcomputations running at the
start of the round, leaving 15CP for steals that start in this round.
Since at most 3C primary transfers can be associated with any steal,
at least 5P steals must have occurred. At most P of these stealswere
requested in previous rounds, so there must be at least 4P steal re-
questsin this round.

We now argue that any task that is critical at the beginning of
around has a probability of at least 1/2 of being executed by the
end of the round. Since there are at least 4P steal requests during
the first 22CP events, the probability is at least 1/2 that any task
that is critical at the beginning of around isthe target of a stea re-
quest [10, Lemma 10], if it is not executed locally by the processor
on which it resides. Any task takes at most 3mC + 1 < 4mC timeto
execute, since we are ignoring the effects of congestion for the mo-
ment. Since thelast 4CP events of around take at least 4mC timeto
execute, if atask is stolen in thefirst part of the round, it is done by
the end of the round.

We now want to show that with probability at least 1 — €, the to-
tal number of roundsis O(Te + 1g(1/€)). Consider apossible delay
sequence. Recall from [10] that adelay sequence of size Risamax-
imal path U in the augmented dag D’ of length at most 2T, along
with apartition I of R which represents the number of rounds dur-
ing which each task of the path in D' is critical. We now show that
the probability of alarge delay sequenceistiny.

Whenever atask on the path U is critical at the beginning of a
round, it has a probability of at least 1/2 of being executed dur-
ing the round, because it is likely to be the target of one of the 4P
stedsin thefirst part of the round. Furthermore, this probability is
independent of the success of critical tasks in previous rounds, be-
cause victims are chosen independently at random. Thus, the prob-
ability is at most (1/2)R-2" that a particular delay sequence with
size R > 2T, actualy occurs in an execution. There are a most
22T (RE2T-) delay sequences of size R. Thus, the probability that



any delay sequence of size R occursis at most
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which can be made less than € by choosing R = 14T, + Ig(1/€).
Therefore, there are at most O( T 4 19(1/€)) rounds with probabil-
ity at least 1 — €. In each round, there are at most 28CP events, so
there are at most O(CPT., + CPlg(1/¢)) steal requests and primary
transfersin total.

Now, let us consider what happens when congestion occurs at
the backing store. We still have at most 3C transfers per task,
but these transfers may take more than 3mC time to complete be-
cause of congestion. We define the following indicator random
variables to keep track of the congestion. Let x;ip be the indica-
tor random variable that tells whether task u's ith transfer request
is delayed by a transfer request from processor p. The probability
isa most 1/P that one of these indicator variablesis 1. Further-
more, we shall argue that they are nonpositively correlated, that is,
Pr {Xip = 1| Ayirp Xuip = 1} < 1/P, aslongasnoneof the (U, i’)
requests execute at the same time asthe (u, i) request. That they are
nonpositively correlated follows from an examination of the queu-
ing behavior at the backing store. If arequest (U,i’) isdelayed by a
request from processor p' (that is, xyi'y = 1), then once the (U, i")
request has been serviced, processor p'’s request has also been ser-
viced, because we have FIFO queuing of transfer requests. Con-
sequently, p'’s next request, if any, goes to a new, random proces-
sor when the (u,i) request occurs. Thus, along delay for request
(U',i") cannot adversely affect the delay for request (u,i). Finally,
we also have Pr {xip = 1| ApzpXip = 1} < 1/P, becausethere-
questsfrom the other processorsbesides p aredistributed at random.

The execution time X of the transfer requests for apath U in D’
can be written as X < 3 ey (5mMC+ my i, Xip). Rearranging, we
have X < 10mCTe + My i p Xip, because U haslength at most 2Te.
Thissumisjust thesum of 10CPT., indicator random variables, each
with expectation at most 1/P. Sincethetasksuin U do not execute
concurrently, the x;, are nonpositively correlated, and thus, their
sum can be boundecr using combinatorial techniques. The sum is
greater than z only if some z-size subset of these 10CPT,, variables
aredl 1, which happens with probability:

10CPT..\ ([ 1\*
Pr Xuip = Z < ) <—>
p=
10eCPTe \ “( 1)*
z P
< 10eCTe > z
< .

z
This probability can be made less than (1/2)% by choosing z >
20eCTw. Therefore, we have X > (10+ 20e)mCTe with probabil-
ity at most (1/2)*~10mTw  gince there are at most 2T, tasks on the
critical path, at most 2T., + X/mC rounds can be overlapped by the
long execution of page transfers of these critical tasks. Therefore,
the probability of adelay sequenceof sizeRisat most (1/2)R-0(T).
Consequently, we can apply the same argument as for unit-cost

transfers, with dightly different constants, to show that with prob-
ability at least 1 — ¢, there are O(Te + 1g(1/€)) rounds, and hence

IN
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O(CPT. +CPIg(1/¢)) events, during the execution. ]

We now bound the running time of a computation.

Theorem 5 Consider any fully strict multithreaded computation
executed on P processors, each with a LRU cache of C pages, us-
ing the work-stealing scheduler in conjunction with the BACKER
coherence algorithm. Let m be the service time for a page fault that
encounters no congestion, and assume that accesses to the backing
store are random and independent. Suppose the computation has T,
computational work, F1(C) serial pagefaults, T;(C) = Ty + mF(C)
total work, and T critical-path length. Then for any € > 0, the
execution time is O(Ty(C)/P + mCTw 4+ migP + mClg(1/¢)) with
probability at least 1 — €. Moreover, the expected execution time is
O(T1(C)/P+ mCTw).

Proof: Asin[10], we shall use an accounting argument to bound
the running time. During the execution, at each time step, each pro-
cessor putsadollar into one of 5 buckets according to its activity at
that time step. Specifically, a processor puts a dollar in the bucket
labeled:

WORK if the processor executes atask;
STEAL if the processor sends a steal request;

STEALWAIT if the processor waits for a response to a steal re-
quest;

XFER if the processor sends a page-transfer request; and
XFERWAIT if the processor waits for a page transfer to compl ete.

When the execution completes, we add up the dollarsin each bucket
and divide by P to get the running time.

We bound the amount of money in each of the buckets at the end
of the computation by using the fact, from Lemma4, that with prob-
ability at least 1 — €', there are O(CPT., + CPlg(1/€')) events.

WoORK. The WORK bucket contains exactly T, dollars, because
there are exactly T, tasksin the computation.

STEAL. We know that there are O(CPT,, + CPlg(1/¢')) sted re-
quests, so there are O(CPT., + CPIg(1/¢’)) dollars in the STEAL
bucket.

STEALWAIT. We use the anadlysis of the recycling game ([10,
Lemma 5]) to bound the number of dollars in the STEALWAIT
bucket. The recycling game says that if N requests are distributed
randomly to P processors for service, with at most P requests out-
standing simultaneously, the total time waiting for the requests to
completeis O(N+ PIgP + Plg(1/¢')) with probability at least 1—
€'. Since steal requests obey the assumptions of the recycling game,
if thereare O(CPT, +CPlg(1/¢')) steals, then thetotal timewaiting
for steal requestsis O(CPT. 4+ PIgP + CPIg(1/¢')) with probabil-
ity at least 1 — €. We must add to this total an extra O(mCPT., +
mCPIg(1/¢')) dollars because the processors initiating a success-
ful steal must also wait for the cache of the victim to be recon-
ciled, and we know that there are O(CPT., + CPIg(1/¢')) such rec-
onciles. Finally, we must add O(mCPT. + mCPIg(1/¢)) dollars be-
cause each steal request might also have up to midle steps associ-
ated with it. Thus, with probability at least 1 — €', we have atotal
of O(mCPTe + PIgP + mCPlg(1/€')) dollars in the STEALWAIT
bucket.



XFER. We know that there are O(F(C) + CPT. + CPIg(1/¢'))
transfers during the execution: a fetch and a reconcile for each
intrinsic fault, O(CPT, + CPIg(1/¢€')) primary transfers from
Lemma 4, and O(CPT. + CPlg(1/¢')) secondary transfers. We
have this bound on secondary transfers, because each secondary
subcomputation can be paired with a unique primary subcomputa-
tion. We construct this pairing as follows. For each synchroniza-
tion task j, we examine each interprocessor edge entering j. Each
of these edges corresponds to some child of j’sthread in the spawn
tree, because the computation is fully strict. At least one of these
children (cal it k) is not finished executing at the time of the last
cache flush by j’s processor, since j is a synchronization task. We
now show that there must be arandom steal of j’sthread just after
k is spawned. If not, then k is completed before j’s thread contin-
ues executing after the spawn. There must be arandom steal some-
where between when Kk is spawned and when j is executed, how-
ever, because j and k execute on different processors. On the last
such random steal, the processor executing j must flush its cache,
but this cannot happen becausek isstill executing whenthelast flush
of the cacheoccurs. Thus, theremust bearandom steal just after kis
spawned. We pair the secondary subcomputation that starts at task
j with the primary subcomputation that starts with the random steal
after k is spawned. By construction, each primary subcomputation
has at most one secondary subcomputation paired with it, and since
each primary subcomputation does at least C extrinsic transfers and
each secondary subcomputation does at most 3C extrinsic transfers,
thereare at most O(CPT. + CPlg(1/¢’)) secondary transfers. Since
each transfer takes mtime, the number of dollarsin the X FER bucket
is O(mF1(C) + mCPT, + mCPIg(1/¢€")).

XFERWAIT. To bound the dollars in the XFERWAIT bucket, we
use the recycling game as we did for the STEALWAIT bucket.
The recycling game shows that there are O(mF((C) + mCPT., +
mPIgP + mCPIg(1/¢')) dollars in the XFERWAIT bucket with
probability at least 1 —¢'.

With probability at least 1— 3¢’, thesum of all thedollarsinall the
bucketsis T; + O(mF;(C) + mCPT., + mPIgP+ mCPlg(1/¢')). Di-
viding by P, weobtainarunningtimeof Tp < O((Ty+mF(C))/P+
MCTe + MIgP +mClg(1/¢')) with probability at least 1 — 3¢’. Us-
ing theidentity T;(C) = Ty + mF(C) and substituting € = 3¢’ yields
the desired high-probability bound. The expected bound follows
similarly. [ |

We now bound the number of page faullts.

Corollary 6 Consider any fully strict multithreaded computation
executed on P processors, each with a LRU cache of C pages, us-
ing the work-stealing scheduler in conjunction with the BACKER
coherence algorithm. Assume that accesses to the backing store are
random and independent. Suppose the computation has F;(C) se-
rial pagefaultsand Te critical-path length. Then for any € > 0, the
number of pagefaultsisat most F;(C) 4+ O(CPT., +CPlg(1/€)) with
probability at least 1 — €. Moreover, the expected number of page
faultsisat most Fy(C) + O(CPT).

Proof: In the parallel execution, we have one fault for each in-
trinsic fault, plus an extra O(CPT., + CPlg(1/¢)) primary and sec-
ondary faults. The expected bound follows similarly.

[

4 Analysis of page faults

This section provides upper bounds on the number of page faults
for “regular” divide-and-conquer multithreaded agorithms when

the parallel execution is scheduled by the randomized work-stealing
scheduler and dag consistency is maintained by the BACKER algo-
rithm. In aregular divide-and-conquer multithreaded algorithm,
each thread, when spawned to solve a problem of size n, operates
asfollows. To solve aproblem of size nwherenislarger than some
constant, the thread divides the problem into a subproblems each of
sizen/b for some constantsa > 1 and b > 1, and then recursively
spawns child threads to solve each subproblem. When al a of the
children have completed, the thread merges their results, and then
returns. In the base case, when n is smaller than some constant, the
thread directly solves the problem, and then returns.

In Coroallary 6, we analyzed the number of page faultsthat afully
strict multithreaded algorithm incurs when run on P processors us-
ing the randomi zed work-stealing schedul er and the BACK ER coher-
ence agorithm. Specifically, for a given fully strict multithreaded
agorithm, let F;(C, n) denote the number of page faults that occur
when the algorithm i sused to solve a problem of sizenwith the stan-
dard, depth-first serial execution order on a single processor with
a LRU cache of C pages. In addition, for any number P > 2 of
processors, let Fp(C, n) denote the number of page faults that oc-
cur when the algorithm is used to solve a problem of size n with the
work-stealing scheduler and BACKER on P processors, each with a
LRU cache of C pages. Corollary 6 then saysthat the expectation of
Fp(C,n) isat most F;(C,n) + O(CPTw(Nn)). The O(CPTw(N)) term
represents faults due to “warming up” the processors’ caches.

Generally, onemust implement and run an algorithmto get agood
estimate of F;(C, n) before one can predict whether it will runwell in
parallel. For regular divide-and-conquer multithreaded algorithms,
however, analysis can provide good asymptotic boundson F;(C, n),
and hence on Fp(C, n).

Theorem 7 Consider any regular divide-and-conquer multi-
threaded algorithm executed on 1 processor with a LRU cache of
C pages, using the standard, depth-first serial execution order. Let
nc be the largest problem size that can be solved wholly within
the cache. Suppose that each thread, when spawned to solve a
problem of size n larger than or egual to nc, divides the problem
into a subproblems each of size n/b for some constantsa > 1 and
b > 1. Additionally, suppose each thread solving a problem of
size n makes p(n) page faults in the worst case. Then, the number
F1(C,n) of page faults taken by the algorithm when solving a
problem of size n can be determined as follows.2

1. 1f p(n) = O(n'°%2#) for some constant € > 0, then Fy (C,n) =
O(C(n/nc)'%%a), if p(n) further satisfiesthe regularity condi-
tion that p(n) < ayp(n/b) for some constant y < 1.

2. If p(n) = ©(n'°%2) then
F1(C,n) = O(C(n/nc)"®%2Ig(n/nc)).

3. If p(n) = Q(nl°%a+€) for someconstant & > 0, then Fy(C,n) =
O(C(n/nc)'%%2 1 p(n)), if p(n) further satisfiesthe regularity
condition that p(n) > ayp(n/b) for some constant y > 1.

Proof: If a problem of size n does not fit in the cache, then the
number F; (C, n) of faultstaken by the algorithm in solving the prob-
lem is at most the number F1(C,n/b) of faultsfor each of thea sub-
problems of sizen/b plusan additional p(n) faultsfor thetop thread
itself. If the problem can be solved in the cache, the datafor it need
only be paged into memory at most once. Consequently, we obtain
the recurrence

F(Cin) < { gFl(C, n/b)+ p(n) :;2222 )

2Q0ther cases exist besides the three given here.



We can solve this recurrence using standard techniques[12, Sec-
tion 4.4]. We iterate the recurrence, stopping as soon as we reach
the first value of the iteration count k such that n/ bk < nc holds, or
equivaently when k = [log,(n/nc)] holds. Thus, we have

F:L(C7 n)
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aF1(C,n/bk) + _kiai p(n/b)

IN

ca+ l_(iai p(n/b)

logy(n/nc)

O(C(n/nc)'ogba—l— ; aip(n/bi)>.

If p(n) satisfies the conditions of Case 1, the sum is geometrically
increasing and is dominated by its last term. For p(n) satisfying
Case 2, each term in the sum is the same. Finally, for p(n) satisfy-
ing Case 3, thefirst term of the sum dominates. Using theinequality
p(nc) < C, we get the stated results. [ |

5 Analysis of space utilization

This section provides upper bounds on the memory requirements of
regular divide-and-conquer multithreaded algorithms when the par-
allel execution is scheduled by a “busy-leaves’ scheduler, such as
the work-stealing scheduler used by Cilk. A busy-leaves scheduler
is a scheduler with the property that at all times during the execu-
tion, if athread has no living children, then that thread has a pro-
cessor working on it. The work-stealing scheduler is a busy-leaves
scheduler [10]. We shall proceed through a series of lemmas that
providean exact characterization of the space used by “simple” mul-
tithreaded al gorithms when executed by a busy-leaves scheduler. A
simple multithreaded algorithmis a fully strict multithreaded algo-
rithm in which each thread's control consists of allocating memory,
spawning children, waiting for the children to complete, deallocat-
ing memory, and returning, in that order. We shall then specialize
this characterization to provide space boundsfor regular divide-and-
conquer algorithms.

Previous work [10] has shown that a busy-leaves scheduler can
efficiently execute a fully strict multithreaded algorithm on P pro-
Cessors using no more space than P times the space required to ex-
ecute the algorithm on a single processor. Specificaly, for agiven
fully strict multithreaded algorithm, if S;(n) denotes the space used
by the algorithm to solve a problem of size n with the standard,
depth-first, serial execution order, then for any number P of proces-
sors, abusy leaves scheduler uses at most PS; (n) space. The basic
ideain the proof of this bound isthat a busy-leaves scheduler never
allows morethan P leavesin the spawn tree of the resulting compu-
tation to be living at one time. If we look at any path in the spawn
tree from the root to aleaf and add up all the space allocated on that
path, the largest such value we can obtain is S;(n). The bound then
follows, because each of the at most P leaves living at any time is
responsible for at most S;(n) space, for atotal of PS;(n) space. For
many algorithms, however, the bound PS; (n) is an overestimate of
the true space, because space near the root of the spawn tree may be
counted multipletimes. Inthis section, wetighten thisbound for the
case of regular divide-and-conquer algorithms. We start by consid-
ering the more general case of simple multithreaded algorithms.

We first introduce some terminology. Consider any simple mul-
tithreaded algorithm and input problem, and let T be the spawn tree
of the simple multithreaded computation that resultswhen the given
algorithm is executed to solve the given problem. Let A be any
nonempty set of the leaves of T. A node (thread) u € T is covered

by A if u lies on the path from some leaf in A to the root of T. The
cover of A\, denoted C(A), isthe set of nodes covered by A. Since
all nodes on the path from any nodein C(A) to the root are covered,
it followsthat C(A) is connected and forms a subtree of T. If each
node u allocates f(u) memory, then the space used by A is defined

> S(N) = f(u).
ue%/\)

The following lemma shows how the notion of a cover can be
used to characterize the space required by a simple multithreaded
algorithm when executed by a busy leaves scheduler.

Lemma 8 Let T bethe spawn tree of a ssimple multithreaded com-
putation, and let f(u) denote the memory allocated by nodeu € T.
For any number P of processors, if the computation is executed us-
ing a busy-leaves scheduler, then the total amount of allocated mem-
ory at any time during the execution is at most §*, which we define
by the identity
S* = max S(A),
IN<P

with the maximum taken over all sets A of leaves of T of size at
most P.

Proof: Consider any giventimeduring the execution, andlet A de-
note the set of leaves living at that time, which by the busy-leaves
property has cardinality at most P. The total amount of allocated
memory is the sum of the memory allocated by the leavesin A plus
the memory alocated by all their ancestors. Since both leaves and
ancestorsbelongto C(A) and |A| < P holds, thelemmafollows. =

The next few definitions will help us characterize the structure of
C(N\) when A maximizesthe spaceused. Let T be the spawn tree of
asimple multithreaded computation, and let f(u) denote the mem-
ory alocated by node u € T, where we shall henceforth make the
technical assumption that f(u) = O holdsif uisaleaf and f(u) >0
holds if u is an internal node. When necessary, we can extend the
spawn tree with a new level of leaves in order to meet this techni-
ca assumption. Define the serial-space function S(u) inductively
on thenodes of T asfollows:

0 ifuisaledf;
f(u) + max{§v) : visachild of u}
if uisaninternal node of T.

Su) =

The serial-space function assumes a strictly increasing sequence of
valueson the path from any leaf to theroot. Moreover, for each node
u€ T, thereexistsaleaf suchthat if Ttisthe unique simple path from
uto that leaf, then we have S(u) = $ycr f(v). We shall denote that
leaf (or an arbitrary such leaf, if more than one exists) by A(u). The
u-induced dominator of aset A of leavesof T isdefined by

D(A,u) = {veT:3we C(A)suchthat wisachild
of vand Sw) < S(u) < §v)} .

The next lemma shows that every induced dominator of A isin-
deed a“dominator” of A.

Lemma 9 Let T be the spawn tree of a simple multithreaded
computation encompassing more than one node, and let A be a
nonempty set of leaves of T. Then, for any internal nodeu € T, re-
moval of D(A,u) from T disconnects each leaf in A from the root
of T.

Proof: Let r be the root of T, and consider the path 1t from any
leaf | € A tor. We shall show that some node on the path belongs
to D(A,u). Sinceuisnot aleaf and Sis strictly increasing on the
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Figure 2: Anillustration of the definition of a dominator set. For the tree
shown, let f begiven by thelabelsat theleft of thenodes, and let A = {F,H}.
Then, the serial space Sis given by the labels at the right of the nodes,
C(M) = {A,B,C,D,F,H} (the shaded nodes), and D (A,G) = {C,D}. The
spacerequired by AisS(A) = 12.

nodes of the path T, we must have 0 = §(1) < Su) < §(r). Letw
be the node lying on 1t that maximizes S(w) such that Sw) < S(u)
holds, and let v beits parent. We have Sw) < Su) < Sv) andw €
C(N), because al nodes lying on thelong to C(A\), which implies
that v e D(A,u) holds. ]

The next lemma shows that whenever we have a set A of leaves
that maximizes space, every internal node u not covered by A in-
duces adominator that is at least aslarge as A.

Lemma 10 Let T bethe spawn treeof a simple multithreaded com-
putation encompassing more than one node, and for any integer
P> 1, let A be a set of leaves such that S (A) = S* holds. Then,
for all internal nodesu & C(A), we have | D (A, u)| > |A|.

Proof:  Suppose, for the purpose of contradiction, that | D (A, u)| <
|A| holds. Lemma 9 implies that each leaf in A is a descendant
of some nodein D (A, u). Consequently, by the pigeonhole princi-
ple, there must exist anodev € D (A, u) that is ancestor of at least
two leaves in A. By the definition of induced dominator, a child
w e C(A) of vmust exist such that S(\w) < S(u) holds.

We shall now show that anew set A’ of leaves can be constructed
such that we have S (A") > S (A), thus contradicting the assumption
that § achievesits maximum value on A. Since w is covered by A,
the subtree rooted a w must contain aleaf | € A. Define ' = A—
{I3U{A(u)}. Adding A(u) to A causesthevalueof S (A) toincrease
by at least S(u), and the removal of | causesthe path from| to some
descendant of w (possibly w itself) to be removed, thus decreasing
the value of S(A) by at most S(w). Therefore, we have S(A") >
S(N\) —Sw) + Su) > S(A), since Sw) < Su) holds. ]

We now restrict our attention to regular divide-and-congquer mul-
tithreaded algorithms, as introduced in Section 4. In a regular
divide-and-conquer multithreaded algorithm, each thread, when
spawned to solve a problem of size n, allocates an amount of space
s(n) for some function s of n. The following lemma characterizes
the structure of the worst-case space usage for this class of algo-
rithms.

Lemma 11 Let T be the spawn tree of a regular divide-and-
conguer multithreaded computation encompassing more than one
node, and for any integer P > 1, let A be a set of leaves such that
S(N\) = 5* holds. Then, C(A\) contains every node at every level of
the tree with P or fewer nodes.

Proof: If T has fewer than P leaves, then A consists of all the
leaves of T and the lemma follows trivially. Thus, we assume that
T has at least P leaves, and we have |A| = P.

Suppose now, for the sake of contradiction, that thereisanode u
at alevel of thetreewith P or fewer nodes suchthat u ¢ C(A) holds.
Since all nodes at the samelevel of the spawn tree allocate the same
amount of space, the set D (A, u) consists of all covered nodes at
the same level as u, all of which have the same serial space Su).
Lemma 10 then saysthat there are at least P nodes at the same level
as uthat are covered by A. Thisfact contradicts our assumption that
the tree has P or fewer nodes at the same level as u. [ |

Finally, we state and prove a theorem that bounds the worst-case
space used by aregular divide-and-conquer multithreaded algorithm
when it is scheduled using a busy-leaves scheduler.

Theorem 12 Consider any regular divide-and-conquer multi-
threaded algorithm executed on P processors using a busy-leaves
scheduler. Supposethat each thread, when spawned to solve a prob-
lemof sizen, allocates s(n) space, and if nislarger than some con-
stant, then thethread dividesthe probleminto a subproblemseach of
sizen/bfor some constantsa > 1 and b > 1. Then, thetotal amount
Sp(n) of spacetaken by thealgorithmin the wor st casewhen solving
a problem of size n can be determined as follows.3

1. If s(n) = ©(Igkn) for some constant k > 0, then Sp(n) =
O(PIgt(n/P)).

2. 1f s(n) = O(n'°%3-#) for some constant € > 0, then Sp(n) =
O(Ps(n/PY10%:2)) if, in addition, s(n) satisfies the regular-
ity condition y;S(n/b) < s(n) < ay,s(n/b) for some constants
y1>landy, < 1.

3. If s(n) = O(n'%%2), then Sy(n) = O(s(n)IgP).

4. If s(n) = Q(nl°%a+€) for some constant £ > 0, then Sp(n) =
O(s(n)), if, in addition, s(n) satisfies the regularity condition
that s(n) > ays(n/b) for some constant y > 1.

Proof: Consider the spawn tree T of the multithreaded computa-
tion that results when the algorithm is used to solve a given input
problem of size n. The spawn tree T is a perfectly balanced a-ary
tree. A node u at level k in the tree allocates space f(u) = s(n/bk).
From Lemma8 we know that the maximum space usage is bounded
by $*, which we defined as the maximum value of the space func-
tion S(A\) over dl sets A of leaves of the spawn tree having size at
most P.

In order to bound the maximum value of $(A), we shall appeal
to Lemma 11 which characterizes the set A at which this maximum
occurs. Lemma 11 states that for this set A, the set C(A) contains
every node in thefirst [log, P| levels of the spawn tree. Thus, we
have

[log,P|-1

Sm< 3 as(n/b) + O(PSy(n/PY1%2)) . (2)

To determine which term in Equation (2) dominates, we must
evaluate S;(n), which satisfies the recurrence

Si(n) = Si(n/b) +s(n) ,

because with serial execution the depth-first discipline allows each
of the a subproblems to reuse the same space. The solution to this
recurrence[12, Section 4.4] is

e S(n)=0O(Igct1n), if s(n) = O(Ig*n) for some constant k > 0,
and

3Other cases exist besides those given here.



e Si(n) = O(s(n)), if s(n) = Q(nf) for some constant € > 0
and in addition satisfies the regularity condition that s(n) >
ys(n/b) for some constant y > 1.

The theorem follows by evaluating Equation (2) for each of the
cases. We only sketch the essentia ideas in the algebraic manipula-
tions. For Cases 1 and 2, the serial space dominates, and we simply
substitute appropriate values for the serial space. In Cases 3 and 4,
the space at the top of the spawn tree dominates. In Case 3, the to-
tal space at each level of the spawn treeisthe same. In Case 4, the
space at each level of the spawn tree decreases geometrically, and
thus, the space allocated by the root dominatesthe entiretree. =

6 Example analyses of algorithms

In this section we show how to apply the analysis techniques of
this paper to specific algorithms. We focus first on analyzing ma-
trix multiplication, and then we examine LU-decomposition. We
show that both of these matrix problems can be solved efficiently
with respect to the measures of time, page faults, and space using
recursive divide-and-conquer algorithms. In our analyses, we shall
assume that the cache memory of each of the P processors contains
C pages, and each page can hold m matrix elements. We shall also
assume that the accesses to backing store behave as if they were
random and independent, so that the expected bounds Tp(C,n) =
O(T1(C,n)/P+ mCTw(n)) and Fp(C,n) = F1(C,n) + O(CPT»(N))
are good models for the performance of agorithms.

Multiplying two n x n matrices (using theordinary algorithm, and
not a variant of Strassen’s algorithm [28]) can be performed using
O(n3) work and can be done in ©(Ign) time [24]. Thus, for this
problem, wehave T, (n) = ©(n®) and T, (n) = ©(Ign). If therewere
no page faults, we would see Tp(n) = O(n3/P +Ign).

We must also account for page faults, however. Let us consider
first the number of page faults for the naive “blocked” seria algo-
rithm for computing C = AB in which the three matrices A, B, and
C are partitioned into /m x /m submatrix blocks. We perform
the familiar triply nested loop on the blocked matrix—indexing i
through the row blocks of C, j through the column blocks of C, and
k through the row blocks of A and column blocks of B—updating
Cli, j] < CIi, j] + Ali,K - Bk, j] on the matrix blocks. If the matrix
B does not fit into the cache, that is, mC < n2, then every accessto a
block of B causes a page fault. Consequently, the number of serial
page faults is F;(C,n) = (n/,/m)3 = n3/m?/2, even if we assume
that A and C never fault.

The divide-and-conquer matrixmul algorithm from [8] usesthe
processor cache much more effectively. To multiply the n x n ma-
trix Aby similar matrix B, matrixmul divides each matrix into four
n/2 x n/2 submatrices and uses the identity

{ A A }{ B B }
Axnr Ax B Bz
_ { AinBin  AuBp } _|_{ A12B1  A1aBy
Ax1Bin  AxBpp AoBo1  ApoBx

The idea of matrixmul is to recursively compute the 8 products
of the submatrices of A and B in parallel, and then add the sub-
products together in pairs to form the result using recursive matrix
addition. We can apply Theorem 7 to analyze matrixmul using
a=8,b=2,nc=v/mC, and p(n) = ©(n?/m). Case 1 of the theo-
rem applieswith € = 1, which yields F;(C,n) = O(C(n/+/mC)3) =
O(n3/(m*2,/C)), afactor of /C fewer faults than the naive algo-
rithm.
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To analyze the space for matrixmul, we use Theorem 12. For
this algorithm, we obtain a recurrence with a = 8, b = 2, and
s(n) = ©(n?). Case 2 applies, yielding a worst-case space bound
of Sp(n) = ©(P(n/PY3)2) = ©(n2pPL/3) 4

The work and critical-path length for matrixmul can also be
computed using recurrences. The computational work Ti(n) to
multiply n x n matrices satisfies T;(n) = 8T1(n/2) + ©(n?), since
adding two matrices in parallel can be done using O(n?) computa-
tional work, and thus, T1(n) = ©(n®). Consequently, the total work
isTy(C,n) = Ty(n) + mF(C,n) = ©(n3).

To derive arecurrence for the critical-path length Te(n), we ob-
serve that with an infinite number of processors, only one of the
8 submulltiplications is the bottleneck, because the 8 multiplica
tions can execute in parallel. Consequently, the critical-path length
Te () satisfies Tw (N) = Two (N/2) + ©(Ign), because the parallel ad-
dition can be accomplished recursively with acritical path of length
©(Ign). The solution to this recurrenceis Te, () = ©(Ig2n).

Using our performance model, the total expected time for
matrixmul on P processorsistherefore Tp(C,n) = O(Ty(C,n)/P+
MCT.(n)) = O(n®/P + mClg?n). Consequently, if we have P =
O(n3/(mClg?n)), the algorithm runsin O(n3/P) time. A paralle
version of the naive algorithm has a dlightly shorter critical path,
and therefore it can achieve O(n3/P) time even with slightly more
processors. But matrixmul commits fewer page faults, which in
practice may mean better actual performance. Moreover, thecodeis
more portable, because it requires no knowledge of the page sizem.
What isimportant, however, isthat the performance models for dag
consistency allow us to analyze algorithm behavior.

With asimple change, matrixmul can be modified to use no aux-
iliary space, but at the cost of alonger critical path. Theideaisto
spawn 4 of the 8 subproducts which place their results in the out-
put matrix, wait for them to complete, and then spawn the other 4
to add their results into the output matrix. Since we must wait for
the first 4 to complete, the critical-path length for this computation
is Teo(N) = 2Tw(N/2) + ©(1), which has solution Tw (N) = O(n). If
the number P of processorsis not too large, this agorithm may be
preferable to matrixmul becauseit uses only ©(n?) space.

L et usnow examinethe more complicated problem of performing
an LU-decomposition of ann x nmatrix Awithout pivoting. Theor-
dinary parallel agorithm for thisproblem pivotson thefirst diagonal
element. Next, in paralld it updates the first column of A to be the
first column of L and thefirst row of Ato bethefirst row of U. Then,
it forms a Schur complement to update the remainder of A, whichit
recursively (or iteratively) factors. Thisstandard algorithm requires
O(n3) computational work and it has acritical path of length ©(n).
Unfortunately, even when implemented in ablocked fashion, theal-
gorithm does not display good locality for a hierarchica memory
system. Each step causes updates to the entire matrix, resulting in
F1(C,n) = ©(n3/m?®/2) serial page faults, similar to blocked matrix
multiplication.

A divide-and-conquer algorithm for the problem uses fewer page
faults, at the cost of adightly longer critical path. Divide the matrix
AanditsfactorsL and U into four partsso that A= LU iswritten as

Bl LTl

Ap  An Ui
The paralel algorithm computes L and U asfollows. It recursively
factors Agg into Lgg - Ugg. Then, it uses back substitution to solve

Lo O
Lo Ln

4Inrecent work, Blelloch, Gibbons, and Matias[6] haveshown that “ series-parallel”
dag computations can be scheduled to achieve substantially better space bounds than
we report here. For example, they give abound of Sp(n) = O(n? + Plg?n) for matrix
multiplication. Their improved space bounds come at the cost of substantially more
communication and overhead than is used by our scheduler, however.



for Ug; in the formula Ag; = LggUgz, while smultaneously using
forward substitution to solve for Lig in Ajg = L1gUgo. Findly, it
recursively factors the Schur complement Aj; — L1gUqg into Lyq -
Ujy;. If the variant of matrixmul that uses no auxiliary storage is
used in forming the Schur complement, the entire algorithm can be
performed in place with no extra storage.

To analyze this algorithm, we must first understand the perfor-
mance of back and forward substitution. To solvethese problemson
an n x n matrix, we can use a straightforward parallel divide-and-
conquer algorithm to achieve computational work @(n?), critical-
path length ©(n), and serial page faults ©(n?/m). Thus, we ob-
tain the recurrence Ty (n) = 2Ty (n/2) 4+ ©(n3) for the computational
work of the algorithm, since thetwo recursive callsto the algorithm
must execute in series and the matrix multiplication to compute the
Schur complement requires ©(n3) computational work. Thisrecur-
rence gives us a solution of Ty(n) = ©(n®) for the computational
work. The critical-path length has recurrence T (N) = 2T (n/2) +
©(n), which has solution ®(nlgn), sightly worse than the standard
algorithm. More importantly, however, we can show that the num-
ber of serial page faults is ©(n3/(m*2,/C)). The result follows
from the observation that the dominant page fault cost is due to the
matrix multiplications. Therefore we can apply Case 3 of Theo-
rem7 witha=b=2and p(n) = O(n3/(m*2,/C)). Likematrix-
mul, many fewer page faults occur with the divide-and-conquer al-
gorithm than with the standard algorithm, and the algorithm also
uses much less communication for paging.

7 Conclusion

We briefly relate dag consistency to other distributed shared mem-
ories, and then we offer some ideas for the future.

Like Cilk’s dag consistency, most distributed shared memories
(DSM’s) employ arelaxed consistency model in order to realize per-
formance gains, but unlike dag consistency, most distributed shared
memories take a low-level view of parallel programs and cannot
give analytical performance bounds.

Relaxed shared-memory consistency models are motivated by
the fact that sequential consistency [22] and various forms of pro-
cessor consistency [16] are too expensive to implement in a dis-
tributed setting. (Even modern SMP’s do not implement sequen-
tial consistency.) Relaxed models, such aslocation consistency [14]
and various forms of release consistency [1, 13, 15], ensure consis-
tency (to varying degrees) only when explicit synchronization op-
erations occur, such as the acquisition or release of alock. Causal
memory [2] ensures consistency only to the extent that if a pro-
cess A reads a value written by another process B, then all subse-
quent operations by A must appear to occur after the write by B.
Most DSM’s implement one of these relaxed consistency models
[11, 18, 21, 27], though some implement a fixed collection of con-
sistency models [4], while others merely implement a collection of
mechanisms on top of which userswritetheir own DSM consistency
policies [23, 26]. All of these consistency models and the DSM’s
that implement these modelstake alow-level view of aparallel pro-
gram as a collection of cooperating processes.

In contrast, dag consistency takesthe high-level view of aparallel
program as a dag, and this dag exactly defines the memory consis-
tency required by the program. Like some of these other DSM'’s,
dag consistency allows synchronization to affect only the synchro-
nizing processors and does not require a global broadcast to update
or invalidate data. Unlike these other DSM’s, however, dag con-
sistency requires no extra bookkeeping overhead to keep track of
which processors might be involved in a synchronization operation,
because thisinformation is encoded explicitly in the dag. By lever-
aging this high-level knowledge, the BACKER algorithm in con-
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junction with the work-stealing scheduler is able to execute multi-
threaded a gorithms with the performance bounds shown here. The
BLAZE parallel language[25] and the Myrias parallel computer [3]
defineahigh-level relaxed consistency model much likedag consis-
tency, but we do not know of any efficient implementation of either
of these systems. After an extensive literature search, we are aware
of no other distributed shared memory with analytical performance
bounds for any nontrivial algorithms.

We are currently working on various extensions of dag consis-
tency and improvements to our implementation of dag consistency
in Cilk. We are considering possible extensions to dag-consistent
shared memory, since some operations are impossible to express
with dag-consistent reads and writes alone. For example, con-
current threads cannot increment a shared counter with only dag-
consistent reads and writes. We are considering the possibility of
dag-consistent “atomic updates” in order to support such operations.
In addition, the idea of dag consistency can be extended to the do-
main of filel/O. We anticipate that it should be possibleto memory-
map files and use our existing dag-consistency mechanisms to pro-
vide a paralléel, asynchronous /O capability for Cilk. We are also
currently working on supporting dag-consistent shared memory in
our Cilk-NOW runtime system [7] which executes Cilk programs
in an adaptively parallel and fault-tolerant manner on networks of
workstations. We expect that the “well-structured” nature of Cilk
computationswill allow the runtime system to maintain dag consis-
tency efficiently, even in the presence of processor faults.

Finally, we observe that our work to date |eaves open a number
of analytical questions regarding the performance of multithreaded
algorithms that use dag consistent shared memory. We would like
toimprove the analysis of execution time to directly account for the
cost of page faults when pages are hashed to backing store instead
of assuming that accesses to backing store “appear” to be indepen-
dent and random as assumed here. We conjecture that the bound
of Theorem 5 holds when pages are hashed to backing store pro-
vided the algorithm is EREW in the sense that concurrent threads
never read or write to the same page. We would also like to obtain
tight bounds on the number of page faults and the memory require-
mentsfor classes of multithreaded al gorithmsthat are different from
or more general than the class of regular divide-and-conquer algo-
rithms analyzed here.
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