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In this paper, we analyze the performance of parallel multi-
threaded algorithms that use dag-consistent distributed shared mem-
ory. Specifically, we analyze execution time, page faults, and space
requirements for multithreaded algorithms executed by a work-
stealing thread scheduler and the BACKER algorithm for maintain-
ing dag consistency. We prove that if the accesses to the backing
store are random and independent (the BACKER algorithm actually
uses hashing), the expected execution time TP(C) of a “fully strict”
multithreaded computation on P processors, each with a LRU cache
of C pages, is O(T1(C)=P+mCT∞), where T1(C) is the total work of
the computation including page faults, T∞ is its critical-path length
excluding page faults, and m is the minimum page transfer time. As
a corollary to this theorem, we show that the expected number FP(C)
of page faults incurred by a computation executed on P processors
can be related to the number F1(C) of serial page faults by the for-
mula FP(C) � F1(C)+O(CPT∞). Finally, we give simple bounds
on the number of page faults and the space requirements for “reg-
ular” divide-and-conquer algorithms. We use these bounds to ana-
lyze parallel multithreaded algorithms for matrix multiplication and
LU-decomposition.1 Introduction
In recent work [8, 17], we have proposed dag-consistent dis-
tributed shared memory as a virtual-memory model for multi-
threaded parallel-programming systems such as Cilk, a C-based
multithreaded language and runtime system [7, 9, 17]. A multi-
threaded program defines a partial execution order on its instruc-
tions, and we view this partial order as a directed acyclic graph or
dag. Informally, in the dag-consistency model, a read instruction
can “see” a write instruction only if there is some serial execution
order of the dag in which the read sees that write. Moreover, dag
consistency allows different reads to return values that are based on
different serial orders, as long as the values returned are consistent
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with the dependencies given by the dag. Our previous work pro-
vides a description of the model, coherence algorithms for main-
taining dag consistency, and empirical evidence for their efficiency.
In this paper, we analyze the execution time, page faults, and space
requirements of multithreaded algorithms written with this consis-
tency model when the execution is scheduled by the randomized
work-stealing scheduler from [7, 10] and dag consistency is main-
tained by the BACKER coherence algorithm from [8].

A multithreaded algorithm is a collection of thread definitions.
Analogous to a procedure definition, a thread definition is a block
of serial code, possibly with conditional and looping constructions.
Unlike a procedure, however, a thread definition may contain vari-
ous types of “spawn” and “synchronization” statements that allow
the algorithm to exhibit concurrency as follows. To specify paral-
lelism, a thread may spawn child threads. A spawn is the parallel
analogue of a procedure call, but in the case of a spawn, the parent
and child may execute concurrently. From the time that a thread is
spawned until the time that the thread returns, we say the thread is
living or alive. In addition a thread may synchronize with some or all
of its spawned children by suspending its execution until the speci-
fied children return. When the last of the specified children returns,
it enables its parent to resume execution. A thread that is suspended
waiting for children to return is said to be stalled, and otherwise, a
thread is said to be ready. In general, a thread may synchronize with
other threads that are not its children, but in our analysis, we shall
focus on the class of fully strict multithreaded algorithms in which
a thread may only synchronize with its children as just described.

The resource requirements of a multithreaded algorithm when
used to solve a given input problem are modeled, in graph-theoretic
terms, by a multithreaded computation [7]. A multithreaded com-
putation is composed of two structures: a “spawn tree” of threads
and a dag of instructions. The spawn tree of threads is the paral-
lel analogue of a call tree of procedures. The spawn tree is rooted at
the “main” thread where algorithm execution begins, and in general,
each spawned thread is a node in the spawn tree with the parent-child
relationships defined by the spawn operations. The dag of instruc-
tions is the parallel analogue of a serial instruction stream. We think
of the dag of instructions as being “embedded” in the spawn tree,
since each executed instruction is part of a spawned thread. This
embedding has the following properties. All of the instructions in
any given thread are totally ordered by dag edges that we call con-
tinue edges. For each thread, except the root thread, its first instruc-
tion has exactly one incoming edge that we call a spawn edge, and
this edge comes from an instruction (the spawning instruction) in
the parent thread. For each thread, except the root thread, its last in-
struction has exactly one outgoing edge that we call a return edge,
and this edge goes to an instruction (the synchronizing instruction)
in the parent thread. In the case of a fully strict multithreaded algo-



rithm, for any input problem, the resulting fully strict multithreaded
computation contains only continue, spawn, and return edges as just
described.

Before discussing how the BACKER coherence algorithm affects
the performance of fully strict multithreaded algorithms that use dag
consistent shared memory, let us first review some of the theory of
multithreaded algorithms that do not use shared memory. Any mul-
tithreaded algorithm can be measured in terms of its “work” and
“critical-path length” [5, 9, 10, 20]. Consider the multithreaded
computation that results when a given multithreaded algorithm is
used to solve a given input problem. The work of the computa-
tion, denoted T1, is the number of instructions in the dag, which
corresponds to the amount of time required by a one-processor
execution.1 The critical-path length of the computation, denoted
T∞, is the maximum number of instructions on any directed path in
the dag, which corresponds to the amount of time required by an
infinite-processor execution. Now, for a given multithreaded algo-
rithm, we define the work T1(n) and critical-path length T∞(n) of
the algorithm as the work and critical-path length respectively of the
multithreaded computation that results when the algorithm is used
to solve an input problem of size n. With any number P of (homo-
geneous) processors, the time to solve a problem of size n cannot
be less than T1(n)=P or less than T∞(n). Notice that multithreaded
algorithms and multithreaded computations do not specify when or
on what processor to execute any instruction. Such scheduling deci-
sions must be made at runtime, and a good runtime scheduler strives
to achieve performance close to these lower bounds.

The randomized work-stealing scheduler achieves performance
close to these lower bounds for the case of fully strict multithreaded
algorithms that do not use shared memory. Specifically, for any
such algorithm and any number P of processors, the randomized
work-stealing scheduler executes the algorithm in expected time
O(T1(n)=P+T∞(n)) [7, 10]. The randomized work-stealing sched-
uler operates as follows. Each processor maintains a ready deque
(doubly-ended queue) of threads from which work is obtained.
When a thread is spawned, the parent thread is suspended and put on
the bottom of the deque and execution commences on the spawned
child thread. When a thread returns, execution of the parent resumes
by removing it from the bottom of the deque. On one processor, this
execution order is the standard, depth-first serial execution order. A
processor that finds its deque empty becomes a “thief” and sends a
steal request to a randomly chosen “victim” processor. If the vic-
tim has a thread in its deque, it sends the topmost thread to the thief
to execute. Otherwise, the victim has no threads and the thief tries
again with a new random victim. Finally, when a thread executing
on a processor enables a thread that was stalled on another proces-
sor, the newly enabled thread is sent to the enabling processor to be
resumed.

All of the threads of a multithreaded algorithm should have ac-
cess to a single, shared virtual address space, and in order to support
such a shared-memory abstraction on a computer with physically
distributed memory, the runtime scheduler must be coupled with a
coherence algorithm. For our BACKER coherence algorithm, we as-
sume that each processor’s memory is divided into two regions, each
containing pages of shared-memory objects. One region is a page
cache of C pages of objects that have been recently accessed by that
processor. The rest of each processors’ memory is maintained as
a backing store of pages that have been allocated in the virtual ad-
dress space. Each allocated page is assigned to the backing store of
a processor chosen by hashing the page’s virtual address. In order
for a processor to operate on an object, the object must be resident
in the processor’s page cache; otherwise, a page fault occurs, and

1For nondeterministic algorithms whose computation dag depends on the scheduler,
we define T1 to be the number of instructions in the actually occurring computation dag,
and similarly for the other measures we shall define.

BACKER must “fetch” the object’s page from backing store into the
page cache. We assume that when a page fault occurs, no progress
can be made on the computation during the time it takes to service
the fault, and the fault time may vary due to congestion of concurrent
accesses to the backing store. We shall further assume that pages
in the cache are maintained using the popular LRU (least-recently-
used) [19] heuristic. In addition to servicing page faults, BACKER
must “reconcile” pages between the processor page caches and the
backing store so that the semantics of the execution obey the as-
sumptions of dag consistency. The BACKER coherence algorithm
and the work-stealing scheduler have been implemented in the Cilk
runtime system with encouraging empirical results [8].

In order to model performance for multithreaded algorithms that
use dag-consistent shared memory, we observe that running times
will vary as a function of the cache size C, so we must introduce
measures that account for this dependence. Consider again the mul-
tithreaded computation that results when a given multithreaded al-
gorithm is used to solve a given input problem. We shall define a
new work measure, the “total work,” that accounts for the cost of
page faults in the serial execution, as follows. Let m be the time to
service a page fault in the serial execution. We now weight the in-
structions of the dag. Each instruction that generates a page fault
in the one-processor execution with the standard, depth-first serial
execution order and with a cache of size C has weight m+ 1, and
all other instructions have weight 1. The total work, denoted T1(C),
is the total weight of all instructions in the dag, which corresponds
to the serial execution time if page faults take m units of time to be
serviced. We shall continue to let T1 denote the number of instruc-
tions in the dag, but for clarity, we shall refer to T1 as the compu-
tational work. (The computational work T1 corresponds to the se-
rial execution time if all page faults take zero time to be serviced.)
To relate these measures, we define the serial page faults, denoted
F1(C), to be the number of page faults taken in the serial execution
(that is, the number of instructions with weight m). Thus, we have
T1(C) = T1 + mF1(C). Now, for a given multithreaded algorithm,
we define the total work T1(C;n) and serial page faults F1(C;n) of
the algorithm as the work and serial page faults respectively of the
multithreaded computation that results when the algorithm is used
to solve an input problem of size n.

The quantity T1(C) is an unusual measure. Unlike T1, it depends
on the serial execution order of the computation. The quantity T1(C)
further differs from T1 in that T1(C)=P is not a lower bound on the
execution time for P processors. It is possible to construct a compu-
tation containing P subcomputations that run on P separate proces-
sors in which each processor repeatedly accesses C different pages
in sequence. Consequently, with caches of size C, no processor ever
faults, except to warm up the cache at the start of the computation.
If we run the same computation serially with a cache of size C (or
any size less than CP), however, the necessary multiplexing among
tasks can cause numerous page faults. Consequently, for this com-
putation, the execution time with P processors is much less than
T1(C)=P. In this paper, we shall forgo the possibility of obtaining
such superlinear speedup on computations. Instead, we shall sim-
ply attempt to obtain linear speedup.

Critical-path length can likewise be split into two notions. We
define the total critical-path length, denoted T∞(C), to be the max-
imum over all directed paths in the computational dag, of the time,
including page faults, to execute along the path by a single proces-
sor with cache size C. The computational critical-path length T∞ is
the same, but where faults cost zero time. Both T∞ and T∞(C) are
lower bounds on execution time. Although T∞(C) is the stronger
lower bound, it appears difficult to compute and analyze, and our
upper-bound results will be characterized in terms of T∞, which we
shall continue to refer to simply as the critical-path length.

In this paper, we analyze the execution time of fully strict multi-2



threaded algorithms that use dag consistent shared memory. The al-
gorithm is executed on a parallel computer with P processors, each
with a cache of size C, and a page fault that encounters no conges-
tion is serviced in m units of time. The execution is scheduled by the
work-stealing scheduler and dag consistency is maintained by the
BACKER coherence algorithm. In addition, we assume that accesses
to shared memory are distributed uniformly and independently over
the backing store—often a plausible assumption, since BACKER
hashes pages to the backing store. Then, the expected execution
time to solve a problem of size n is O(T1(C;n)=P+mCT∞(n)). In
addition, we give a high-probability bound.

This result is not as strong as we would like to prove, because
accesses to the backing store are not necessarily independent. For
example, threads may concurrently access the same pages by algo-
rithm design. We can artificially solve this problem by insisting, as
does the EREW-PRAM model, that the algorithm performs exclu-
sive accesses only. More seriously, however, congestion delay in ac-
cessing the backing store can cause the computation to be scheduled
differently than if there were no congestion, thereby perhaps causing
more congestion to occur. It may be possible to prove our bounds
for a hashed backing store without making this independence as-
sumption, but we do not know how at this time. The problem with
independence does not seem to be serious in practice, and indeed,
given the randomized nature of our scheduler, it is hard to conceive
of how an adversary can actually take advantage of the lack of inde-
pendence implied by hashing to slow the execution. Although our
results are imperfect, we are actually analyzing the effects of con-
gestion, and thus our results are much stronger than if we assume,
for example, that accesses to the backing store independently suffer
Poisson-distributed delays.

In this paper, we also analyze the number of page faults that oc-
cur during algorithm execution. Again, execution is scheduled with
the work-stealing scheduler and dag consistency is maintained by
the BACKER coherence algorithm, and we assume that accesses to
backing store are random and independent. Under this assump-
tion, we show that the expected number of page faults to solve a
problem of size n on P processors, each with a LRU cache of size
C, is at most F1(C;n) + O(CPT∞(n)). In addition, for “regular”
divide-and-conquer multithreaded algorithms, we derive a good up-
per bound on F1(C;n). For example, we show that the total number
of page faults incurred by a divide-and-conquer matrix multiplica-
tion algorithm when multiplying n�n matrices using P processors
is O(n3=(m3=2

p
C)+CP lg2 n), assuming that the independence as-

sumption for the backing store holds.
Finally, in this paper, we analyze the space requirements of “sim-

ple” multithreaded algorithms that use dag-consistent shared mem-
ory. We assume that the computation is scheduled by a sched-
uler, such as the work-stealing algorithm, that maintains the “busy-
leaves” property [10]. For a given simple multithreaded algorithm,
let S1(n) denote the space required by the standard, depth-first se-
rial execution of the algorithm to solve a problem of size n. In pre-
vious work, we have shown that the space used by a P-processor
execution is at most S1(n)P in the worst case [10]. We improve this
characterization of the space requirements, and we provide a much
stronger upper bound on the space requirements of regular divide-
and-conquer multithreaded algorithms. For example, we show that
a divide-and-conquer matrix multiplication algorithm multiplying
n� n matrices on P processors uses only Θ(n2P1=3) space, which
is tighter than the O(n2P) result obtained by directly applying the
S1(n)P bound.

The remainder of this paper is organized as follows. Section 2
gives a precise definition of dag consistency and describes the
BACKER coherence algorithm for maintaining dag consistency.
Section 3 analyzes the execution time of fully strict multithreaded

algorithms when the execution is scheduled by the randomized
work-stealing scheduler and dag consistency is maintained by the
BACKER coherence algorithm. Section 4 analyzes the number
of page faults taken by parallel divide-and-conquer algorithms.
Section 5 analyzes the space requirements of parallel divide-and-
conquer algorithms. Section 6 presents some sample analyses of al-
gorithms that use dag-consistent shared memory. Finally, Section 7
offers some comparisons with other consistency models and some
ideas for the future.2 Dag consistency and the Backer algorithm
In this section we give a precise definition of dag consistency, and
we describe the BACKER coherence algorithm for maintaining dag
consistency. Dag consistency is a relaxed consistency model for dis-
tributed shared memory, and the BACKER algorithm collaborates
with the work-stealing scheduler in order to maintain dag consis-
tency for multithreaded computations executing on a parallel com-
puter with physically distributed memory.

Shared memory consists of a set of objects that instructions can
read and write. When an instruction performs a read of an object,
it receives some value, but the particular value it receives depends
upon the consistency model. Dag consistency is defined separately
for each object in shared memory.

In order to give the definition, we first define some terminology.
Let G = (V;E) be the dag of a multithreaded computation. For i; j 2
V , if a path of nonzero length from instruction i to j exists in G, we
say that i (strictly) precedes j, which we write i� j. We say that two
instructions i; j 2 V with i 6= j are incomparable if we have i 6� j
and j 6� i. To track which instruction is responsible for an object’s
value, we imagine that each shared-memory object has a tag which
the write operation sets to the name of the instruction performing the
write. We make the technical assumption that an initial sequence of
instructions writes a value to every object. We can now define dag
consistency.De�nition 1 The shared memory M of a multithreaded computa-
tion G =(V;E) is dag consistent if for every location x in the shared
memory, there exists a function fx : V 7! V such that the following
conditions hold.

1. For all instructions i 2V, the instruction fx(i) writes on x.

2. If an instruction i writes on x, then we have fx(i) = i.

3. If an instruction i reads x, it receives a value tagged with fx(i).
4. For all instructions i 2V, we have i 6� fx(i).
5. For each triple of instructions i, j and k, such that i � j � k,

if fx( j) 6= i holds, then we have fx(k) 6= i.

Informally, the function fx(i) represents the viewpoint of instruc-
tion i on the contents of location x, that is, the tag of x from i’s per-
spective. Therefore, if an instruction i writes, the tag of x becomes
i (part 2 of the definition), and when it reads, it reads something
tagged with fx(i) (part 3). Moreover, part 4 requires that future exe-
cution does not have any influence on the current value of the mem-
ory. The rationale behind part 5 is shown in Figure 1. When there
is a path from i to k through j, then j “masks” i, in the sense that
if i’s view of x is no longer current when j executes, then it cannot
be current when k executes. Instruction k can still have a different
viewpoint on the memory than j, for instance, it can see writes per-
formed by other instructions (such as l in the figure) incomparable
with j.

In previous work [8, 17], we presented a definition of dag consis-
tency different from Definition 1. Our Definition 1 is stronger than3
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lFigure 1: Illustration of the definition of dag consistency. When there is
a path from i to k through j, then j “masks” i. Instruction k, however, is
allowed to see writes performed by an instruction l incomparable with i and
j, and possibly with k itself.

the previous definition, that is, if the shared memory M is dag con-
sistent in the sense of Definition 1, it also satisfies the previous def-
inition. The converse is not true. The reason we updated our defini-
tion is that Definition 1 “confines” nondeterminism, in the follow-
ing sense: consider the case of two instructions i1 and i2, writing to
a memory location x, and having a common successor j. Suppose
that no instruction other than i1 and i2 writes to x. In Definition 1, j
is forced to have a view of x, and see one of the two values. All of
j’s successors will then see that same value. With the old definition,
two of j’s successors could see different values. A full justification
of Definition 1 and explanation of its properties is beyond the scope
of this paper.

We now describe the BACKER coherence algorithm from [8], in
which the global backing store holds shared-memory objects that are
fetched into local processor caches. We state without proof a theo-
rem that BACKER maintains dag consistency (Definition 1).

In the BACKER coherence algorithm, versions of shared-memory
objects can reside simultaneously in any of the processor caches and
the backing store. Each processor’s cache contains objects recently
used by the threads that have executed on that processor, and the
backing store provides default global storage for each object. In or-
der for a thread executing on the processor to read or write an object,
the object must be in the processor’s cache. Each object in the cache
has a dirty bit to record whether the object has been modified since
it was brought into the cache.

BACKER uses three basic operations to manipulate shared-
memory objects: fetch, reconcile, and flush. A fetch copies an
object from the backing store to a processor cache and marks the
cached object as clean. A reconcile copies a dirty object from a
processor cache to the backing store and marks the cached object
as clean. Finally, a flush removes a clean object from a processor
cache.

The BACKER coherence algorithm operates as follows. When the
user code performs a read or write operation on an object, the oper-
ation is performed directly on a cached copy of the object. If the
object is not in the cache, it is fetched from the backing store before
the operation is performed. If the operation is a write, the dirty bit of
the object is set. To make space in the cache for a new object, a clean
object can be removed by flushing it from the cache. To remove a
dirty object, it is reconciled and then flushed.

Besides performing these basic operations in response to user
reads and writes, BACKER performs additional reconciles and
flushes to enforce dag consistency. For each edge i! j in the com-
putation dag, if instructions i and j are executed on different proces-
sors, say p and q, then BACKER causes p to reconcile all its cached
objects after executing i but before enabling j, and it causes q to
reconcile and flush its entire cache before executing j. Note that if
q’s cache is flushed for some other reason after p has reconciled its
cache but before q executes j (perhaps because of another interpro-
cessor dag edge), it need not be flushed again before executing j.

The following theorem states that BACKER is correct. A proof of
the theorem is beyond the scope of the present paper.

Theorem 2 If the shared memory M of a multithreaded computa-
tion is maintained using BACKER, then M is dag consistent.

To understand the performance of BACKER, we posit the follow-
ing environment in which BACKER operates. We have a homoge-
neous parallel computer with P processors. The backing store is
distributed across the processors by hashing, with each processor
managing a proportional share of the objects which are grouped into
fixed-size pages. In addition to backing store, each processor has
a cache of C pages that is maintained using the LRU replacement
heuristic. When pages are transferred between processors, conges-
tion may occur at a destination processor, in which case we assume
that the transfers are serviced at the destination in FIFO (first-in,
first-out) order. A multithreaded computation itself is executed by
the randomized, work-stealing scheduler, but with a small technical
modification described in the analysis.3 Analysis of execution time
In this section, we bound the execution time of fully strict multi-
threaded algorithms when the parallel execution is scheduled by the
work-stealing scheduler and dag consistency is maintained by the
BACKER algorithm, under the assumption that accesses to the back-
ing store are random and independent. Specifically, for a given fully
strict multithreaded algorithm, let TP(C;n) denote the time taken by
the algorithm to solve a problem of size n on a parallel computer
with P processors, each with a LRU cache of C pages, when the
execution is scheduled by the work-stealing scheduler in conjunc-
tion with the BACKER coherence algorithm. In addition, let T∞(n)
denote the critical-path length of the algorithm. In this section, we
show that if accesses to backing store are random and independent,
then the expected value of TP(C;n) is O(T1(C;n)=P + mCT∞(n))
where m denotes the minimum time to transfer a page. In addition,
we bound the number of page faults. The exposition of the proofs
in this section makes heavy use of results and techniques from [10].

Our analysis of execution time is organized as follows. First, we
prove a lemma describing how the BACKER algorithm adds page
faults to a parallel execution. Then, we obtain a bound on the num-
ber of “rounds” that a parallel execution contains. Each round con-
tains a fixed amount of scheduler overhead, so bounding the number
of rounds bounds the total amount of scheduler overhead. To com-
plete the analysis, we use an accounting argument to add up the total
execution time.

In the following analysis, we consider the fully strict multi-
threaded computation that results when a given fully strict multi-
threaded algorithm is executed to solve a given input problem. The
computation is executed by the work-stealing scheduler in conjunc-
tion with the BACKER coherence algorithm on a parallel computer
with P processors. Each processor has a LRU cache of C pages.
We assume that a minimum of m time steps are required to transfer
a page. We let T1 denote the computational work of the computa-
tion, T1(C) denote the total work of the computation, T∞ denote the
critical-path length of the computation, and F1(C) denote the serial
page faults of the computation.

Before proceeding, we must make a slight technical modifica-
tion to the work-stealing scheduler. Between successful steals, we
wish to guarantee that a processor performs at least C page trans-
fers (fetches or reconciles) so that it is not stealing too often. Con-
sequently, whenever a processor runs out of work, if it has not per-
formed C page transfers since its last successful steal, it performs
enough additional “idle” transfers until it has transferred C pages.
At that point, it can steal again. Similarly, we require that each pro-
cessor perform one idle transfer after each unsuccessful steal request
to ensure that steal requests do not happen too often.4



We now define some new terminology. A task is the fundamen-
tal building block of a computation and is either a local instruction
(one that does not access shared memory) or a shared-memory op-
eration. If a task is a local instruction or references an object in the
local cache, it takes 1 step to execute. Otherwise, the task is refer-
encing an object not in the local cache, and a page transfer occurs,
taking at least m steps to execute. A synchronization task is a task
in the dag that forces BACKER to perform a cache flush in order
to maintain dag consistency. Remember that for each interproces-
sor edge i! j in the dag, a cache flush is required by the proces-
sor executing j sometime after i executes but before j executes. A
synchronization task is thus a task j having an incoming interpro-
cessor edge i! j in the dag, where j executes on a processor that
has not flushed its cache since i was executed. A subcomputation
is the computation that one processor performs from the time it ob-
tains work to the time it goes idle or enables a synchronization task.
We distinguish two kinds of subcomputations: primary subcompu-
tations start when a processor obtains work from a random steal re-
quest, and secondary subcomputations start when a processor starts
executing from a synchronization task. We distinguish three kinds
of page transfers. An intrinsic transfer is a transfer that would oc-
cur during a 1-processor depth-first execution of the computation.
The remaining extrinsic page transfers are divided into two types.
A primary transfer is any extrinsic transfer that occurs during a pri-
mary subcomputation. Likewise, a secondary transfer is any extrin-
sic transfer that occurs during a secondary subcomputation. We use
these terms to refer to page faults as well.Lemma 3 Each primary transfer in an execution can be associ-
ated with a currently running primary subcomputation such that
each primary subcomputation has at most 3C primary transfers as-
sociated with it. Similarly, each secondary transfer in an execution
can be associated with a currently running secondary subcomputa-
tion such that each secondary subcomputation has at most 3C sec-
ondary transfers associated with it.

Proof: For this proof, we use a fact shown in [8] that executing
a subcomputation starting with an arbitrary cache can only incur C
more page faults than the same block of code incurred in the serial
execution. This fact follows from the observation that a subcompu-
tation is executed in the same depth-first order as it would have been
executed in the serial execution, and the fact that the cache replace-
ment strategy is LRU.

We associate each primary transfer with a running primary sub-
computation as follows. During a steal, we associate the (at most)
C reconciles done by the victim with the stealing subcomputation.
In addition, the stolen subcomputation has at most C extrinsic page
faults, because the stolen subcomputation is executed in the same or-
der as the subcomputation executes in the serial order. At the end of
the subcomputation, at most C pages need be reconciled, and these
reconciles may be extrinsic transfers. In total, at most 3C primary
transfers are associated with any primary subcomputation.

A similar argument holds for secondary transfers. Each sec-
ondary subcomputation must perform at most C reconciles to flush
the cache at the start of the subcomputation. The subcomputation
then has at most C extrinsic page faults during its execution, because
it executes in the same order as it executes in the serial order. Fi-
nally, at most C pages need to be reconciled at the end of the sub-
computation.

We now bound the amount of scheduler overhead by counting the
number of rounds in an execution.Lemma 4 If each page transfer (fetch or reconcile) in the execu-
tion is serviced by a processor chosen independently at random, and

each processor queues its transfer requests in FIFO order, then, for
any ε > 0, with probability at least 1� ε, the total number of steal
requests and primary transfers is at most O(CPT∞ +CP lg(1=ε)).
Proof: To begin, we shall assume that each access to the backing
store takes one step regardless of the congestion. We shall describe
how to handle congestion at the end of the proof.

First, we wish to bound the overhead of scheduling, that is, the
additional work that the one-processor execution would not need
to perform. We define an event as either the sending of a steal re-
quest or the sending of a primary-page-transfer request. In order to
bound the number of events, we divide the execution into rounds.
Round 1 starts at time step 1 and ends at the first time step at which at
least 27CP events have occurred. Round 2 starts one time step after
round 1 completes and ends when it contains at least 27CP events,
and so on. We shall show that with probability at least 1� ε, an ex-
ecution contains only O(T∞ + lg(1=ε)) rounds.

To bound the number of rounds, we shall use a delay-sequence
argument. We define a modified dag D0 exactly as in [10]. (The dag
D0 is for the purposes of analysis only and has no effect on the com-
putation.) The critical-path length of D0 is at most 2T∞. We define a
task with no unexecuted predecessors in D0 to be critical, and it is by
construction one of the first two tasks to be stolen from the processor
on which it resides. Given a task that is critical at the beginning of
a round, we wish to show that it is executed by the start of the next
round with constant probability. This fact will enable us to show that
progress is likely to be made on any path of D0 in each round.

We now show that at least 4P steal requests are initiated during
the first 22CP events of a round. If at least 4P of the 22CP events
are steal requests, then we are done. If not, then there are at least
18CP primary transfers. By Lemma 3, we know that at most 3CP of
these transfers are associated with subcomputations running at the
start of the round, leaving 15CP for steals that start in this round.
Since at most 3C primary transfers can be associated with any steal,
at least 5P steals must have occurred. At most P of these steals were
requested in previous rounds, so there must be at least 4P steal re-
quests in this round.

We now argue that any task that is critical at the beginning of
a round has a probability of at least 1=2 of being executed by the
end of the round. Since there are at least 4P steal requests during
the first 22CP events, the probability is at least 1=2 that any task
that is critical at the beginning of a round is the target of a steal re-
quest [10, Lemma 10], if it is not executed locally by the processor
on which it resides. Any task takes at most 3mC+1� 4mC time to
execute, since we are ignoring the effects of congestion for the mo-
ment. Since the last 4CP events of a round take at least 4mC time to
execute, if a task is stolen in the first part of the round, it is done by
the end of the round.

We now want to show that with probability at least 1� ε, the to-
tal number of rounds is O(T∞ + lg(1=ε)). Consider a possible delay
sequence. Recall from [10] that a delay sequence of size R is a max-
imal path U in the augmented dag D0 of length at most 2T∞, along
with a partition Π of R which represents the number of rounds dur-
ing which each task of the path in D0 is critical. We now show that
the probability of a large delay sequence is tiny.

Whenever a task on the path U is critical at the beginning of a
round, it has a probability of at least 1=2 of being executed dur-
ing the round, because it is likely to be the target of one of the 4P
steals in the first part of the round. Furthermore, this probability is
independent of the success of critical tasks in previous rounds, be-
cause victims are chosen independently at random. Thus, the prob-
ability is at most (1=2)R�2T∞ that a particular delay sequence with
size R > 2T∞ actually occurs in an execution. There are at most
22T∞

�R+2T∞
2T∞

�
delay sequences of size R. Thus, the probability that5



any delay sequence of size R occurs is at most
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which can be made less than ε by choosing R = 14T∞ + lg(1=ε).
Therefore, there are at most O(T∞ + lg(1=ε)) rounds with probabil-
ity at least 1� ε. In each round, there are at most 28CP events, so
there are at most O(CPT∞ +CP lg(1=ε)) steal requests and primary
transfers in total.

Now, let us consider what happens when congestion occurs at
the backing store. We still have at most 3C transfers per task,
but these transfers may take more than 3mC time to complete be-
cause of congestion. We define the following indicator random
variables to keep track of the congestion. Let xuip be the indica-
tor random variable that tells whether task u’s ith transfer request
is delayed by a transfer request from processor p. The probability
is at most 1=P that one of these indicator variables is 1. Further-
more, we shall argue that they are nonpositively correlated, that is,
Pr
�

xuip = 1
��V

u0i0 p0 xu0i0 p0 = 1
	� 1=P, as long as none of the (u0; i0)

requests execute at the same time as the (u; i) request. That they are
nonpositively correlated follows from an examination of the queu-
ing behavior at the backing store. If a request (u0; i0) is delayed by a
request from processor p0 (that is, xu0i0 p0 = 1), then once the (u0; i0)
request has been serviced, processor p0’s request has also been ser-
viced, because we have FIFO queuing of transfer requests. Con-
sequently, p0’s next request, if any, goes to a new, random proces-
sor when the (u; i) request occurs. Thus, a long delay for request(u0; i0) cannot adversely affect the delay for request (u; i). Finally,
we also have Pr

�
xuip = 1

��V
p0 6=p xuip0 = 1

	� 1=P, because the re-
quests from the other processors besides p are distributed at random.

The execution time X of the transfer requests for a path U in D0
can be written as X � ∑u2U(5mC+ m∑ip xuip). Rearranging, we
have X � 10mCT∞ +m∑uip xuip, because U has length at most 2T∞.
This sum is just the sum of 10CPT∞ indicator random variables, each
with expectation at most 1=P. Since the tasks u in U do not execute
concurrently, the xuip are nonpositively correlated, and thus, their
sum can be bounded using combinatorial techniques. The sum is
greater than z only if some z-size subset of these 10CPT∞ variables
are all 1, which happens with probability:

Pr

(
∑
uip

xuip � z

) � �
10CPT∞

z

��
1
P

�z� �
10eCPT∞

z

�z� 1
P

�z� �
10eCT∞

z

�z :
This probability can be made less than (1=2)z by choosing z �
20eCT∞. Therefore, we have X > (10+ 20e)mCT∞ with probabil-
ity at most (1=2)X�10mCT∞ . Since there are at most 2T∞ tasks on the
critical path, at most 2T∞ +X=mC rounds can be overlapped by the
long execution of page transfers of these critical tasks. Therefore,
the probability of a delay sequence of size R is at most (1=2)R�O(T∞).
Consequently, we can apply the same argument as for unit-cost
transfers, with slightly different constants, to show that with prob-
ability at least 1� ε, there are O(T∞ + lg(1=ε)) rounds, and hence

O(CPT∞ +CP lg(1=ε)) events, during the execution.

We now bound the running time of a computation.Theorem 5 Consider any fully strict multithreaded computation
executed on P processors, each with a LRU cache of C pages, us-
ing the work-stealing scheduler in conjunction with the BACKER
coherence algorithm. Let m be the service time for a page fault that
encounters no congestion, and assume that accesses to the backing
store are random and independent. Suppose the computation has T1
computational work, F1(C) serial page faults, T1(C) = T1+mF1(C)
total work, and T∞ critical-path length. Then for any ε > 0, the
execution time is O(T1(C)=P + mCT∞ + m lgP + mC lg(1=ε)) with
probability at least 1� ε. Moreover, the expected execution time is
O(T1(C)=P+mCT∞).
Proof: As in [10], we shall use an accounting argument to bound
the running time. During the execution, at each time step, each pro-
cessor puts a dollar into one of 5 buckets according to its activity at
that time step. Specifically, a processor puts a dollar in the bucket
labeled:

WORK if the processor executes a task;

STEAL if the processor sends a steal request;

STEALWAIT if the processor waits for a response to a steal re-
quest;

XFER if the processor sends a page-transfer request; and

XFERWAIT if the processor waits for a page transfer to complete.

When the execution completes, we add up the dollars in each bucket
and divide by P to get the running time.

We bound the amount of money in each of the buckets at the end
of the computation by using the fact, from Lemma 4, that with prob-
ability at least 1� ε0, there are O(CPT∞ +CP lg(1=ε0)) events.

WORK. The WORK bucket contains exactly T1 dollars, because
there are exactly T1 tasks in the computation.

STEAL. We know that there are O(CPT∞ +CP lg(1=ε0)) steal re-
quests, so there are O(CPT∞ +CP lg(1=ε0)) dollars in the STEAL
bucket.

STEALWAIT. We use the analysis of the recycling game ([10,
Lemma 5]) to bound the number of dollars in the STEALWAIT
bucket. The recycling game says that if N requests are distributed
randomly to P processors for service, with at most P requests out-
standing simultaneously, the total time waiting for the requests to
complete is O(N+P lgP+P lg(1=ε0)) with probability at least 1�
ε0. Since steal requests obey the assumptions of the recycling game,
if there are O(CPT∞+CP lg(1=ε0)) steals, then the total time waiting
for steal requests is O(CPT∞ +P lgP+CP lg(1=ε0)) with probabil-
ity at least 1� ε0. We must add to this total an extra O(mCPT∞ +
mCP lg(1=ε0)) dollars because the processors initiating a success-
ful steal must also wait for the cache of the victim to be recon-
ciled, and we know that there are O(CPT∞ +CP lg(1=ε0)) such rec-
onciles. Finally, we must add O(mCPT∞+mCP lg(1=ε)) dollars be-
cause each steal request might also have up to m idle steps associ-
ated with it. Thus, with probability at least 1� ε0, we have a total
of O(mCPT∞ + P lgP + mCP lg(1=ε0)) dollars in the STEALWAIT
bucket.

6



XFER. We know that there are O(F1(C) +CPT∞ +CP lg(1=ε0))
transfers during the execution: a fetch and a reconcile for each
intrinsic fault, O(CPT∞ + CP lg(1=ε0)) primary transfers from
Lemma 4, and O(CPT∞ + CP lg(1=ε0)) secondary transfers. We
have this bound on secondary transfers, because each secondary
subcomputation can be paired with a unique primary subcomputa-
tion. We construct this pairing as follows. For each synchroniza-
tion task j, we examine each interprocessor edge entering j. Each
of these edges corresponds to some child of j’s thread in the spawn
tree, because the computation is fully strict. At least one of these
children (call it k) is not finished executing at the time of the last
cache flush by j’s processor, since j is a synchronization task. We
now show that there must be a random steal of j’s thread just after
k is spawned. If not, then k is completed before j’s thread contin-
ues executing after the spawn. There must be a random steal some-
where between when k is spawned and when j is executed, how-
ever, because j and k execute on different processors. On the last
such random steal, the processor executing j must flush its cache,
but this cannot happen because k is still executing when the last flush
of the cache occurs. Thus, there must be a random steal just after k is
spawned. We pair the secondary subcomputation that starts at task
j with the primary subcomputation that starts with the random steal
after k is spawned. By construction, each primary subcomputation
has at most one secondary subcomputation paired with it, and since
each primary subcomputation does at least C extrinsic transfers and
each secondary subcomputation does at most 3C extrinsic transfers,
there are at most O(CPT∞+CP lg(1=ε0)) secondary transfers. Since
each transfer takes m time, the number of dollars in the XFER bucket
is O(mF1(C)+mCPT∞ +mCP lg(1=ε0)).
XFERWAIT. To bound the dollars in the XFERWAIT bucket, we
use the recycling game as we did for the STEALWAIT bucket.
The recycling game shows that there are O(mF1(C) + mCPT∞ +
mP lgP + mCP lg(1=ε0)) dollars in the XFERWAIT bucket with
probability at least 1� ε0.

With probability at least 1�3ε0, the sum of all the dollars in all the
buckets is T1+O(mF1(C)+mCPT∞+mP lgP+mCP lg(1=ε0)). Di-
viding by P, we obtain a running time of TP�O((T1+mF1(C))=P+
mCT∞ +m lgP+mC lg(1=ε0)) with probability at least 1�3ε0. Us-
ing the identity T1(C) = T1 +mF1(C) and substituting ε = 3ε0 yields
the desired high-probability bound. The expected bound follows
similarly.

We now bound the number of page faults.Corollary 6 Consider any fully strict multithreaded computation
executed on P processors, each with a LRU cache of C pages, us-
ing the work-stealing scheduler in conjunction with the BACKER
coherence algorithm. Assume that accesses to the backing store are
random and independent. Suppose the computation has F1(C) se-
rial page faults and T∞ critical-path length. Then for any ε > 0, the
number of page faults is at most F1(C)+O(CPT∞+CP lg(1=ε))with
probability at least 1� ε. Moreover, the expected number of page
faults is at most F1(C)+O(CPT∞).
Proof: In the parallel execution, we have one fault for each in-
trinsic fault, plus an extra O(CPT∞ +CP lg(1=ε)) primary and sec-
ondary faults. The expected bound follows similarly.4 Analysis of page faults
This section provides upper bounds on the number of page faults
for “regular” divide-and-conquer multithreaded algorithms when

the parallel execution is scheduled by the randomized work-stealing
scheduler and dag consistency is maintained by the BACKER algo-
rithm. In a regular divide-and-conquer multithreaded algorithm,
each thread, when spawned to solve a problem of size n, operates
as follows. To solve a problem of size n where n is larger than some
constant, the thread divides the problem into a subproblems each of
size n=b for some constants a � 1 and b > 1, and then recursively
spawns child threads to solve each subproblem. When all a of the
children have completed, the thread merges their results, and then
returns. In the base case, when n is smaller than some constant, the
thread directly solves the problem, and then returns.

In Corollary 6, we analyzed the number of page faults that a fully
strict multithreaded algorithm incurs when run on P processors us-
ing the randomized work-stealing scheduler and the BACKER coher-
ence algorithm. Specifically, for a given fully strict multithreaded
algorithm, let F1(C;n) denote the number of page faults that occur
when the algorithm is used to solve a problem of size n with the stan-
dard, depth-first serial execution order on a single processor with
a LRU cache of C pages. In addition, for any number P � 2 of
processors, let FP(C;n) denote the number of page faults that oc-
cur when the algorithm is used to solve a problem of size n with the
work-stealing scheduler and BACKER on P processors, each with a
LRU cache of C pages. Corollary 6 then says that the expectation of
FP(C;n) is at most F1(C;n)+O(CPT∞(n)). The O(CPT∞(n)) term
represents faults due to “warming up” the processors’ caches.

Generally, one must implement and run an algorithm to get a good
estimate of F1(C;n) before one can predict whether it will run well in
parallel. For regular divide-and-conquer multithreaded algorithms,
however, analysis can provide good asymptotic bounds on F1(C;n),
and hence on FP(C;n).Theorem 7 Consider any regular divide-and-conquer multi-
threaded algorithm executed on 1 processor with a LRU cache of
C pages, using the standard, depth-first serial execution order. Let
nC be the largest problem size that can be solved wholly within
the cache. Suppose that each thread, when spawned to solve a
problem of size n larger than or equal to nC, divides the problem
into a subproblems each of size n=b for some constants a � 1 and
b > 1. Additionally, suppose each thread solving a problem of
size n makes p(n) page faults in the worst case. Then, the number
F1(C;n) of page faults taken by the algorithm when solving a
problem of size n can be determined as follows.2

1. If p(n)= O(nlogb a�ε) for some constant ε> 0, then F1(C;n)=
O(C(n=nC)logb a), if p(n) further satisfies the regularity condi-
tion that p(n)� aγp(n=b) for some constant γ < 1.

2. If p(n) = Θ(nlogb a), then
F1(C;n) = O(C(n=nC)logb a lg(n=nC)).

3. If p(n)=Ω(nlogb a+ε) for some constant ε> 0, then F1(C;n)=
O(C(n=nC)logb a+ p(n)), if p(n) further satisfies the regularity
condition that p(n)� aγp(n=b) for some constant γ > 1.

Proof: If a problem of size n does not fit in the cache, then the
number F1(C;n) of faults taken by the algorithm in solving the prob-
lem is at most the number F1(C;n=b) of faults for each of the a sub-
problems of size n=b plus an additional p(n) faults for the top thread
itself. If the problem can be solved in the cache, the data for it need
only be paged into memory at most once. Consequently, we obtain
the recurrence

F1(C;n)� � aF1(C;n=b)+ p(n) if n > nC ;
C if n� nC : (1)

2Other cases exist besides the three given here.7



We can solve this recurrence using standard techniques [12, Sec-
tion 4.4]. We iterate the recurrence, stopping as soon as we reach
the first value of the iteration count k such that n=bk � nC holds, or
equivalently when k = dlogb(n=nC)e holds. Thus, we have

F1(C;n) � akF1(C;n=bk)+ k�1

∑
i=0

ai p(n=bi)� Cak + k�1

∑
i=0

ai p(n=bi)= O

 
C(n=nC)logb a +logb(n=nC)

∑
i=0

ai p(n=bi)! :
If p(n) satisfies the conditions of Case 1, the sum is geometrically
increasing and is dominated by its last term. For p(n) satisfying
Case 2, each term in the sum is the same. Finally, for p(n) satisfy-
ing Case 3, the first term of the sum dominates. Using the inequality
p(nC)�C, we get the stated results.5 Analysis of space utilization
This section provides upper bounds on the memory requirements of
regular divide-and-conquer multithreaded algorithms when the par-
allel execution is scheduled by a “busy-leaves” scheduler, such as
the work-stealing scheduler used by Cilk. A busy-leaves scheduler
is a scheduler with the property that at all times during the execu-
tion, if a thread has no living children, then that thread has a pro-
cessor working on it. The work-stealing scheduler is a busy-leaves
scheduler [10]. We shall proceed through a series of lemmas that
provide an exact characterization of the space used by “simple” mul-
tithreaded algorithms when executed by a busy-leaves scheduler. A
simple multithreaded algorithm is a fully strict multithreaded algo-
rithm in which each thread’s control consists of allocating memory,
spawning children, waiting for the children to complete, deallocat-
ing memory, and returning, in that order. We shall then specialize
this characterization to provide space bounds for regular divide-and-
conquer algorithms.

Previous work [10] has shown that a busy-leaves scheduler can
efficiently execute a fully strict multithreaded algorithm on P pro-
cessors using no more space than P times the space required to ex-
ecute the algorithm on a single processor. Specifically, for a given
fully strict multithreaded algorithm, if S1(n) denotes the space used
by the algorithm to solve a problem of size n with the standard,
depth-first, serial execution order, then for any number P of proces-
sors, a busy leaves scheduler uses at most PS1(n) space. The basic
idea in the proof of this bound is that a busy-leaves scheduler never
allows more than P leaves in the spawn tree of the resulting compu-
tation to be living at one time. If we look at any path in the spawn
tree from the root to a leaf and add up all the space allocated on that
path, the largest such value we can obtain is S1(n). The bound then
follows, because each of the at most P leaves living at any time is
responsible for at most S1(n) space, for a total of PS1(n) space. For
many algorithms, however, the bound PS1(n) is an overestimate of
the true space, because space near the root of the spawn tree may be
counted multiple times. In this section, we tighten this bound for the
case of regular divide-and-conquer algorithms. We start by consid-
ering the more general case of simple multithreaded algorithms.

We first introduce some terminology. Consider any simple mul-
tithreaded algorithm and input problem, and let T be the spawn tree
of the simple multithreaded computation that results when the given
algorithm is executed to solve the given problem. Let Λ be any
nonempty set of the leaves of T . A node (thread) u 2 T is covered

by Λ if u lies on the path from some leaf in Λ to the root of T . The
cover of Λ, denoted C (Λ), is the set of nodes covered by Λ. Since
all nodes on the path from any node in C (Λ) to the root are covered,
it follows that C (Λ) is connected and forms a subtree of T . If each
node u allocates f (u) memory, then the space used by Λ is defined
as

S (Λ) = ∑
u2C (Λ) f (u) :

The following lemma shows how the notion of a cover can be
used to characterize the space required by a simple multithreaded
algorithm when executed by a busy leaves scheduler.Lemma 8 Let T be the spawn tree of a simple multithreaded com-
putation, and let f (u) denote the memory allocated by node u 2 T.
For any number P of processors, if the computation is executed us-
ing a busy-leaves scheduler, then the total amount of allocated mem-
ory at any time during the execution is at most S �, which we define
by the identity

S
� = maxjΛj�P

S (Λ) ;
with the maximum taken over all sets Λ of leaves of T of size at
most P.

Proof: Consider any given time during the execution, and let Λ de-
note the set of leaves living at that time, which by the busy-leaves
property has cardinality at most P. The total amount of allocated
memory is the sum of the memory allocated by the leaves in Λ plus
the memory allocated by all their ancestors. Since both leaves and
ancestors belong to C (Λ) and jΛj �P holds, the lemma follows.

The next few definitions will help us characterize the structure of
C (Λ) when Λ maximizes the space used. Let T be the spawn tree of
a simple multithreaded computation, and let f (u) denote the mem-
ory allocated by node u 2 T , where we shall henceforth make the
technical assumption that f (u) = 0 holds if u is a leaf and f (u)> 0
holds if u is an internal node. When necessary, we can extend the
spawn tree with a new level of leaves in order to meet this techni-
cal assumption. Define the serial-space function S(u) inductively
on the nodes of T as follows:

S(u) =8<: 0 if u is a leaf;
f (u)+maxfS(v) : v is a child of ug

if u is an internal node of T .

The serial-space function assumes a strictly increasing sequence of
values on the path from any leaf to the root. Moreover, for each node
u2 T , there exists a leaf such that if π is the unique simple path from
u to that leaf, then we have S(u) = ∑v2π f (v). We shall denote that
leaf (or an arbitrary such leaf, if more than one exists) by λ(u). The
u-induced dominator of a set Λ of leaves of T is defined by

D (Λ;u) = fv 2 T : 9w 2 C (Λ) such that w is a child

of v and S(w)< S(u)� S(v)g :
The next lemma shows that every induced dominator of Λ is in-

deed a “dominator” of Λ.Lemma 9 Let T be the spawn tree of a simple multithreaded
computation encompassing more than one node, and let Λ be a
nonempty set of leaves of T. Then, for any internal node u 2 T, re-
moval of D (Λ;u) from T disconnects each leaf in Λ from the root
of T.

Proof: Let r be the root of T , and consider the path π from any
leaf l 2 Λ to r. We shall show that some node on the path belongs
to D (Λ;u). Since u is not a leaf and S is strictly increasing on the8
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Figure 2: An illustration of the definition of a dominator set. For the tree
shown, let f be given by the labels at the left of the nodes, and let Λ= fF;Hg.
Then, the serial space S is given by the labels at the right of the nodes,
C (Λ) = fA;B;C;D;F;Hg (the shaded nodes), and D (Λ;G) = fC;Dg. The
space required by Λ is S (Λ) = 12.

nodes of the path π, we must have 0 = S(l) < S(u) � S(r). Let w
be the node lying on π that maximizes S(w) such that S(w) < S(u)
holds, and let v be its parent. We have S(w)< S(u)� S(v) and w 2
C (Λ), because all nodes lying on π belong to C (Λ), which implies
that v 2D (Λ;u) holds.

The next lemma shows that whenever we have a set Λ of leaves
that maximizes space, every internal node u not covered by Λ in-
duces a dominator that is at least as large as Λ.Lemma 10 Let T be the spawn tree of a simple multithreaded com-
putation encompassing more than one node, and for any integer
P � 1, let Λ be a set of leaves such that S (Λ) = S � holds. Then,
for all internal nodes u 62 C (Λ), we have jD (Λ;u)j � jΛj.
Proof: Suppose, for the purpose of contradiction, that jD (Λ;u)j<jΛj holds. Lemma 9 implies that each leaf in Λ is a descendant
of some node in D (Λ;u). Consequently, by the pigeonhole princi-
ple, there must exist a node v 2 D (Λ;u) that is ancestor of at least
two leaves in Λ. By the definition of induced dominator, a child
w 2 C (Λ) of v must exist such that S(w)< S(u) holds.

We shall now show that a new set Λ0 of leaves can be constructed
such that we have S (Λ0)> S (Λ), thus contradicting the assumption
that S achieves its maximum value on Λ. Since w is covered by Λ,
the subtree rooted at w must contain a leaf l 2 Λ. Define Λ0 = Λ�flg[fλ(u)g. Adding λ(u) to Λ causes the value of S (Λ) to increase
by at least S(u), and the removal of l causes the path from l to some
descendant of w (possibly w itself) to be removed, thus decreasing
the value of S (Λ) by at most S(w). Therefore, we have S (Λ0) �
S (Λ)�S(w)+S(u)> S (Λ), since S(w)< S(u) holds.

We now restrict our attention to regular divide-and-conquer mul-
tithreaded algorithms, as introduced in Section 4. In a regular
divide-and-conquer multithreaded algorithm, each thread, when
spawned to solve a problem of size n, allocates an amount of space
s(n) for some function s of n. The following lemma characterizes
the structure of the worst-case space usage for this class of algo-
rithms.Lemma 11 Let T be the spawn tree of a regular divide-and-
conquer multithreaded computation encompassing more than one
node, and for any integer P � 1, let Λ be a set of leaves such that
S (Λ) = S � holds. Then, C (Λ) contains every node at every level of
the tree with P or fewer nodes.

Proof: If T has fewer than P leaves, then Λ consists of all the
leaves of T and the lemma follows trivially. Thus, we assume that
T has at least P leaves, and we have jΛj= P.

Suppose now, for the sake of contradiction, that there is a node u
at a level of the tree with P or fewer nodes such that u 62 C (Λ) holds.
Since all nodes at the same level of the spawn tree allocate the same
amount of space, the set D (Λ;u) consists of all covered nodes at
the same level as u, all of which have the same serial space S(u).
Lemma 10 then says that there are at least P nodes at the same level
as u that are covered by Λ. This fact contradicts our assumption that
the tree has P or fewer nodes at the same level as u.

Finally, we state and prove a theorem that bounds the worst-case
space used by a regular divide-and-conquer multithreaded algorithm
when it is scheduled using a busy-leaves scheduler.Theorem 12 Consider any regular divide-and-conquer multi-
threaded algorithm executed on P processors using a busy-leaves
scheduler. Suppose that each thread, when spawned to solve a prob-
lem of size n, allocates s(n) space, and if n is larger than some con-
stant, then the thread divides the problem into a subproblems each of
size n=b for some constants a� 1 and b > 1. Then, the total amount
SP(n) of space taken by the algorithm in the worst case when solving
a problem of size n can be determined as follows.3

1. If s(n) = Θ(lgk n) for some constant k � 0, then SP(n) =
Θ(P lgk+1(n=P)).

2. If s(n) = O(nlogb a�ε) for some constant ε > 0, then SP(n) =
Θ(Ps(n=P1= logb a)), if, in addition, s(n) satisfies the regular-
ity condition γ1s(n=b)� s(n)� aγ2s(n=b) for some constants
γ1 > 1 and γ2 < 1.

3. If s(n) = Θ(nlogb a), then SP(n) = Θ(s(n) lgP).
4. If s(n) = Ω(nlogb a+ε) for some constant ε > 0, then SP(n) =

Θ(s(n)), if, in addition, s(n) satisfies the regularity condition
that s(n)� aγs(n=b) for some constant γ > 1.

Proof: Consider the spawn tree T of the multithreaded computa-
tion that results when the algorithm is used to solve a given input
problem of size n. The spawn tree T is a perfectly balanced a-ary
tree. A node u at level k in the tree allocates space f (u) = s(n=bk).
From Lemma 8 we know that the maximum space usage is bounded
by S �, which we defined as the maximum value of the space func-
tion S (Λ) over all sets Λ of leaves of the spawn tree having size at
most P.

In order to bound the maximum value of S (Λ), we shall appeal
to Lemma 11 which characterizes the set Λ at which this maximum
occurs. Lemma 11 states that for this set Λ, the set C (Λ) contains
every node in the first bloga Pc levels of the spawn tree. Thus, we
have

SP(n)� bloga Pc�1

∑
i=0

ais(n=bi)+Θ(PS1(n=P1= logb a)) : (2)

To determine which term in Equation (2) dominates, we must
evaluate S1(n), which satisfies the recurrence

S1(n) = S1(n=b)+ s(n) ;
because with serial execution the depth-first discipline allows each
of the a subproblems to reuse the same space. The solution to this
recurrence [12, Section 4.4] is� S1(n)=Θ(lgk+1 n), if s(n)=Θ(lgk n) for some constant k� 0,

and
3Other cases exist besides those given here.9



� S1(n) = Θ(s(n)), if s(n) = Ω(nε) for some constant ε > 0
and in addition satisfies the regularity condition that s(n) �
γs(n=b) for some constant γ > 1.

The theorem follows by evaluating Equation (2) for each of the
cases. We only sketch the essential ideas in the algebraic manipula-
tions. For Cases 1 and 2, the serial space dominates, and we simply
substitute appropriate values for the serial space. In Cases 3 and 4,
the space at the top of the spawn tree dominates. In Case 3, the to-
tal space at each level of the spawn tree is the same. In Case 4, the
space at each level of the spawn tree decreases geometrically, and
thus, the space allocated by the root dominates the entire tree.6 Example analyses of algorithms
In this section we show how to apply the analysis techniques of
this paper to specific algorithms. We focus first on analyzing ma-
trix multiplication, and then we examine LU-decomposition. We
show that both of these matrix problems can be solved efficiently
with respect to the measures of time, page faults, and space using
recursive divide-and-conquer algorithms. In our analyses, we shall
assume that the cache memory of each of the P processors contains
C pages, and each page can hold m matrix elements. We shall also
assume that the accesses to backing store behave as if they were
random and independent, so that the expected bounds TP(C;n) =
O(T1(C;n)=P+mCT∞(n)) and FP(C;n) = F1(C;n)+O(CPT∞(n))
are good models for the performance of algorithms.

Multiplying two n�n matrices (using the ordinary algorithm, and
not a variant of Strassen’s algorithm [28]) can be performed using
Θ(n3) work and can be done in Θ(lgn) time [24]. Thus, for this
problem, we have T1(n) =Θ(n3) and T∞(n)= Θ(lgn). If there were
no page faults, we would see TP(n) = O(n3=P+ lgn).

We must also account for page faults, however. Let us consider
first the number of page faults for the naive “blocked” serial algo-
rithm for computing C = AB in which the three matrices A, B, and
C are partitioned into

p
m�pm submatrix blocks. We perform

the familiar triply nested loop on the blocked matrix—indexing i
through the row blocks of C, j through the column blocks of C, and
k through the row blocks of A and column blocks of B—updating
C[i; j] C[i; j] +A[i;k] �B[k; j] on the matrix blocks. If the matrix
B does not fit into the cache, that is, mC < n2, then every access to a
block of B causes a page fault. Consequently, the number of serial
page faults is F1(C;n) = (n=pm)3 = n3=m3=2, even if we assume
that A and C never fault.

The divide-and-conquer matrixmul algorithm from [8] uses the
processor cache much more effectively. To multiply the n� n ma-
trix A by similar matrix B, matrixmul divides each matrix into four
n=2�n=2 submatrices and uses the identity�

A11 A12
A21 A22

� �� B11 B12
B21 B22

�= �
A11B11 A11B12
A21B11 A21B12

�+� A12B21 A12B22
A22B21 A22B22

� :
The idea of matrixmul is to recursively compute the 8 products
of the submatrices of A and B in parallel, and then add the sub-
products together in pairs to form the result using recursive matrix
addition. We can apply Theorem 7 to analyze matrixmul using
a = 8, b = 2, nC =pmC, and p(n) = Θ(n2=m). Case 1 of the theo-
rem applies with ε = 1, which yields F1(C;n) = O(C(n=pmC)3) =
O(n3=(m3=2

p
C)), a factor of

p
C fewer faults than the naive algo-

rithm.

To analyze the space for matrixmul, we use Theorem 12. For
this algorithm, we obtain a recurrence with a = 8, b = 2, and
s(n) = Θ(n2). Case 2 applies, yielding a worst-case space bound
of SP(n) = Θ(P(n=P1=3)2) = Θ(n2P1=3).4

The work and critical-path length for matrixmul can also be
computed using recurrences. The computational work T1(n) to
multiply n� n matrices satisfies T1(n) = 8T1(n=2)+ Θ(n2), since
adding two matrices in parallel can be done using O(n2) computa-
tional work, and thus, T1(n) = Θ(n3). Consequently, the total work
is T1(C;n) = T1(n)+mF1(C;n) = Θ(n3).

To derive a recurrence for the critical-path length T∞(n), we ob-
serve that with an infinite number of processors, only one of the
8 submultiplications is the bottleneck, because the 8 multiplica-
tions can execute in parallel. Consequently, the critical-path length
T∞(n) satisfies T∞(n) = T∞(n=2)+Θ(lgn), because the parallel ad-
dition can be accomplished recursively with a critical path of length
Θ(lgn). The solution to this recurrence is T∞(n) = Θ(lg2 n).

Using our performance model, the total expected time formatrixmul on P processors is therefore TP(C;n) = O(T1(C;n)=P+
mCT∞(n)) = O(n3=P + mC lg2 n). Consequently, if we have P =
O(n3=(mC lg2 n)), the algorithm runs in O(n3=P) time. A parallel
version of the naive algorithm has a slightly shorter critical path,
and therefore it can achieve O(n3=P) time even with slightly more
processors. But matrixmul commits fewer page faults, which in
practice may mean better actual performance. Moreover, the code is
more portable, because it requires no knowledge of the page size m.
What is important, however, is that the performance models for dag
consistency allow us to analyze algorithm behavior.

With a simple change, matrixmul can be modified to use no aux-
iliary space, but at the cost of a longer critical path. The idea is to
spawn 4 of the 8 subproducts which place their results in the out-
put matrix, wait for them to complete, and then spawn the other 4
to add their results into the output matrix. Since we must wait for
the first 4 to complete, the critical-path length for this computation
is T∞(n) = 2T∞(n=2)+Θ(1), which has solution T∞(n) = Θ(n). If
the number P of processors is not too large, this algorithm may be
preferable to matrixmul because it uses only Θ(n2) space.

Let us now examine the more complicated problem of performing
an LU-decomposition of an n�n matrix A without pivoting. The or-
dinary parallel algorithm for this problem pivots on the first diagonal
element. Next, in parallel it updates the first column of A to be the
first column of L and the first row of A to be the first row of U . Then,
it forms a Schur complement to update the remainder of A, which it
recursively (or iteratively) factors. This standard algorithm requires
Θ(n3) computational work and it has a critical path of length Θ(n).
Unfortunately, even when implemented in a blocked fashion, the al-
gorithm does not display good locality for a hierarchical memory
system. Each step causes updates to the entire matrix, resulting in
F1(C;n) = Θ(n3=m3=2) serial page faults, similar to blocked matrix
multiplication.

A divide-and-conquer algorithm for the problem uses fewer page
faults, at the cost of a slightly longer critical path. Divide the matrix
A and its factors L and U into four parts so that A = LU is written as�

A00 A01
A10 A11

�= � L00 0
L10 L11

� �� U00 U01
0 U11

� :
The parallel algorithm computes L and U as follows. It recursively
factors A00 into L00 �U00. Then, it uses back substitution to solve

4In recent work, Blelloch, Gibbons, and Matias [6] have shown that “series-parallel”
dag computations can be scheduled to achieve substantially better space bounds than
we report here. For example, they give a bound of SP(n) = O(n2 +P lg2 n) for matrix
multiplication. Their improved space bounds come at the cost of substantially more
communication and overhead than is used by our scheduler, however.10



for U01 in the formula A01 = L00U01, while simultaneously using
forward substitution to solve for L10 in A10 = L10U00. Finally, it
recursively factors the Schur complement A11 � L10U01 into L11 �
U11. If the variant of matrixmul that uses no auxiliary storage is
used in forming the Schur complement, the entire algorithm can be
performed in place with no extra storage.

To analyze this algorithm, we must first understand the perfor-
mance of back and forward substitution. To solve these problems on
an n� n matrix, we can use a straightforward parallel divide-and-
conquer algorithm to achieve computational work Θ(n2), critical-
path length Θ(n), and serial page faults Θ(n2=m). Thus, we ob-
tain the recurrence T1(n) = 2T1(n=2)+Θ(n3) for the computational
work of the algorithm, since the two recursive calls to the algorithm
must execute in series and the matrix multiplication to compute the
Schur complement requires Θ(n3) computational work. This recur-
rence gives us a solution of T1(n) = Θ(n3) for the computational
work. The critical-path length has recurrence T∞(n) = 2T∞(n=2)+
Θ(n), which has solution Θ(n lgn), slightly worse than the standard
algorithm. More importantly, however, we can show that the num-
ber of serial page faults is Θ(n3=(m3=2

p
C)). The result follows

from the observation that the dominant page fault cost is due to the
matrix multiplications. Therefore we can apply Case 3 of Theo-
rem 7 with a = b = 2 and p(n) = O(n3=(m3=2

p
C)). Like matrix-mul, many fewer page faults occur with the divide-and-conquer al-

gorithm than with the standard algorithm, and the algorithm also
uses much less communication for paging.7 Conclusion
We briefly relate dag consistency to other distributed shared mem-
ories, and then we offer some ideas for the future.

Like Cilk’s dag consistency, most distributed shared memories
(DSM’s) employ a relaxed consistency model in order to realize per-
formance gains, but unlike dag consistency, most distributed shared
memories take a low-level view of parallel programs and cannot
give analytical performance bounds.

Relaxed shared-memory consistency models are motivated by
the fact that sequential consistency [22] and various forms of pro-
cessor consistency [16] are too expensive to implement in a dis-
tributed setting. (Even modern SMP’s do not implement sequen-
tial consistency.) Relaxed models, such as location consistency [14]
and various forms of release consistency [1, 13, 15], ensure consis-
tency (to varying degrees) only when explicit synchronization op-
erations occur, such as the acquisition or release of a lock. Causal
memory [2] ensures consistency only to the extent that if a pro-
cess A reads a value written by another process B, then all subse-
quent operations by A must appear to occur after the write by B.
Most DSM’s implement one of these relaxed consistency models
[11, 18, 21, 27], though some implement a fixed collection of con-
sistency models [4], while others merely implement a collection of
mechanisms on top of which users write their own DSM consistency
policies [23, 26]. All of these consistency models and the DSM’s
that implement these models take a low-level view of a parallel pro-
gram as a collection of cooperating processes.

In contrast, dag consistency takes the high-level view of a parallel
program as a dag, and this dag exactly defines the memory consis-
tency required by the program. Like some of these other DSM’s,
dag consistency allows synchronization to affect only the synchro-
nizing processors and does not require a global broadcast to update
or invalidate data. Unlike these other DSM’s, however, dag con-
sistency requires no extra bookkeeping overhead to keep track of
which processors might be involved in a synchronization operation,
because this information is encoded explicitly in the dag. By lever-
aging this high-level knowledge, the BACKER algorithm in con-

junction with the work-stealing scheduler is able to execute multi-
threaded algorithms with the performance bounds shown here. The
BLAZE parallel language [25] and the Myrias parallel computer [3]
define a high-level relaxed consistency model much like dag consis-
tency, but we do not know of any efficient implementation of either
of these systems. After an extensive literature search, we are aware
of no other distributed shared memory with analytical performance
bounds for any nontrivial algorithms.

We are currently working on various extensions of dag consis-
tency and improvements to our implementation of dag consistency
in Cilk. We are considering possible extensions to dag-consistent
shared memory, since some operations are impossible to express
with dag-consistent reads and writes alone. For example, con-
current threads cannot increment a shared counter with only dag-
consistent reads and writes. We are considering the possibility of
dag-consistent “atomic updates” in order to support such operations.
In addition, the idea of dag consistency can be extended to the do-
main of file I/O. We anticipate that it should be possible to memory-
map files and use our existing dag-consistency mechanisms to pro-
vide a parallel, asynchronous I/O capability for Cilk. We are also
currently working on supporting dag-consistent shared memory in
our Cilk-NOW runtime system [7] which executes Cilk programs
in an adaptively parallel and fault-tolerant manner on networks of
workstations. We expect that the “well-structured” nature of Cilk
computations will allow the runtime system to maintain dag consis-
tency efficiently, even in the presence of processor faults.

Finally, we observe that our work to date leaves open a number
of analytical questions regarding the performance of multithreaded
algorithms that use dag consistent shared memory. We would like
to improve the analysis of execution time to directly account for the
cost of page faults when pages are hashed to backing store instead
of assuming that accesses to backing store “appear” to be indepen-
dent and random as assumed here. We conjecture that the bound
of Theorem 5 holds when pages are hashed to backing store pro-
vided the algorithm is EREW in the sense that concurrent threads
never read or write to the same page. We would also like to obtain
tight bounds on the number of page faults and the memory require-
ments for classes of multithreaded algorithms that are different from
or more general than the class of regular divide-and-conquer algo-
rithms analyzed here.Acknowledgments
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