
Importing Mathematics from HOL into Nuprl

Douglas J� Howe

Bell Labs� Lucent Technologies
��� Mountain Ave�� Room �B���	
Murray Hill� NJ ��
��� USA�

howe�bell�labs�com

Abstract� Nuprl and HOL are both tactic�based interactive theorem
provers for higher�order logic� and both have been used in many sub�
stantial applications over the last decade� However� the HOL community
has accumulated a much larger collection of formalized mathematics of
the kind useful for hardware and software veri�cation� This collection
would be of great bene�t in applying Nuprl to veri�cation problems of
real practical interest� This paper describes a connection we have im�
plemented between HOL and Nuprl that gives Nuprl e�ective access to
mathematics formalized in HOL� In designing this connection� we had
to overcome a number of problems related to di�erences in the logics�
logical infrastructures and stylistic conventions of Nuprl and HOL�

� Introduction

Nuprl ��� and HOL ��� are general�purpose interactive theorem proving systems
with a number of similarities� their logics are higher�order type theories� their
automated reasoning facilities are based on the tactic mechanism of LCF �	�� and
their main application has been to formal reasoning about computation� Both
systems have been the focus of a great deal of research over the last decade�
However� the overall thrust of the two research communities has been rather
di
erent�

Much of the work of the Nuprl project has involved the core of the system�
There has been work on Nuprl�s constructive type theory� on the proof editors�
and on the basic architecture of Nuprl�s automated reasoning support� In con�
trast� the core of the HOL system has remained stable for many years� The
system has attracted a large number of users� and a great deal of the e
ort in
the HOL community has gone into building the libraries of formal mathematics
that are needed for verifying hardware and software of practical interest� There
have been a number of substantial applications of Nuprl �see �
� for a recent ex�
ample�� but there has been nothing like the HOL community�s sustained e
ort
to formalize mathematics useful for veri�cation�

The mathematics formalized in HOL would be of great bene�t in applying
Nuprl to veri�cation problems of real practical interest� The goal of the present
work is to connect the two systems so that mathematics can be imported from
HOL into Nuprl�

Because of the similarities of the two systems� one might think that this is an
easy thing to do� In one sense� it is� Just about any theorem�prover can embed
the logic of any other simply by formalizing the syntax of proofs� However� the
goal here is a practical one� to be able to e
ectively use HOL mathematics in
Nuprl proofs� Not just any embedding will do� We need a strong connection
between the mathematics developed in Nuprl and the mathematics imported
from HOL� so that HOL facts will be applicable in Nuprl proofs� Furthermore�
Nuprl�s automated reasoning programs must be able to incorporate the HOL
mathematics�

It turns out� perhaps surprisingly� that we have had to deal with a number of
substantial problems� Some of the di�culties stem from the fact that the HOL
and Nuprl type theories are� in fact� very di
erent in some practically important
ways� Nuprl has a constructive type theory� based on a type theory of Martin�
L�of���� The theory contains an untyped programming language� and all objects
have a computational interpretation� Programs are reasoned about directly in
the logic� and the constructivity of the theory means that programs can be
synthesised from proofs� On the other hand� HOL�s theory is classical� and the
way mathematics is encoded is similar to the way ordinary mathematics is done
in ZF set theory� Functions are built in� but other objects� such as integers and
lists� are given set�theory�like encodings with the aid of the �select operator�
�x�T� P �x�� which denotes some x of type T such that P �x��

Aside from the logics� there are other di
erences between HOL and Nuprl
that cause di�culties for importing HOL mathematics� In particular� there are
substantial di
erences in�

� the logical infrastructure� including the de�nition and theory mechanisms�
� tactics�
� stylistic conventions for writing de�nitions and theorems� and
� implementation languages �HOL�� is SML� Nuprl is Common Lisp and �clas�

sic� ML��

Instead of reconciling the two logics� why not just replace Nuprl�s type theory
by HOL�s� One answer is that Nuprl�s type theory o
ers a number of advantages
over HOL�s� These include the following�

� Expressive power of the type system� Nuprl has subtypes and dependent
function types� Also� through the use of universes and �sigma� types� one
can express modules similar to the kind found in Standard ML �����

� Constructivity� Experience with Nuprl has shown that for the mathematics
of programs� constructivity comes at essentially no cost� Proofs about com�
putationally meaningful objects such as hardware and software are naturally
constructive� or can be made so with little e
ort� Thus one can� for exam�
ple� build the same kinds of proofs as one does in HOL� with the additional
bene�t that programs can be extracted from the proofs�

� Writing programs� Nuprl includes a programming language which� while
primitive� includes many of the features� such as function de�nition by gen�
eral recursion� of a conventional functional programming language�

Most of these features have been advocated� in some form� as extensions to HOL�
See� for example� ���� �� �	�� Also� some of the type�theoretic features of Nuprl
have been adopted in the PVS system ����� Nuprl also has a large amount of
automated support for making e
ective use of these features� Of course� one of
the constraints on the embedding of HOL is that use of HOL mathematics does
not prevent us from taking advantage of these features�

Another advantage of Nuprl is its user interface� Because of its separation of
display and abstract syntax� Nuprl allows a great deal of �exibility in the use of
notations in both the presentation and editing of mathematical syntax� A key
component is Nuprl�s novel structure editor� For details� see ����

The main motivation for this work has been to make Nuprl more e
ective�
However� another way of viewing the work is as the �rst case study of cooperation
and result�sharing between di
erent interactive theorem provers�

The body of the paper is divided into two parts� The �rst part gives a simple
example illustrating the connection we have implemented between Nuprl and
HOL��� The second part is a more detailed discussion of the problems we en�
countered and how we solved them� The hardest problem was one of semantics�
To accommodate the embedding� we extended the Nuprl semantics to incorpo�
rate an operator similar to HOL�s select� This extension is the subject of another
paper ���� and will only be described brie�y here� The other problems� though
numerous� were not so di�cult to deal with� This section also discusses some
problems which we have not solved�

The work described in this paper is somewhat �in progress�� The basic con�
nection between the systems has been implemented� but it has not yet been
tested in any substantial practical examples� We are currently working on a ver�
i�cation the SCI cache�coherency protocol ��� based on an importation of the
HOL�� theory �List� �and all of its ancestors�� A report on this work will be
available soon via http���www�research�att�com� howe�

� An Example

An HOL theory consists of some type and individual constants� some axioms�
usually de�nitional� constraining the constants� and a set of theorems following
from the axioms �and the axioms of ancestor theories�� In contrast� the Nuprl
logic is �xed� new constants and axioms are not introduced when building Nuprl�s
analogue of HOL theories� Formal mathematics in Nuprl is organized as a single
list of abstractions and theorems� An example of an abstraction is

abs val�x� �� if x � � then �x else x

which de�nes a new operator abs val that takes one argument� This can be
thought of as a one�argument term�macro� Abstractions in Nuprl are extra�
logical� The meaning of an expression containing abstractions is de�ned to be
the meaning of the expressions obtained by expanding all abstractions �i�e� re�
peatedly replacing all occurrences by the corresponding right�hand sides�� Nuprl

also lets us de�ne display forms for abstractions� For example� if we make the
display�form de�nition

jhxij �� abs val�hxi�

then any subsequent occurrence of an expression of the form abs val �e� will ap�
pear to the user as jej� Because Nuprl�s editors are structural� parsing�unparsing
issues do not arise�

Consider now a truncated version of the HOL theory �bool� which introduces�
among other things� some of the usual connectives of higher�order logic�

Parents� min

Types�

Constants� � ���a �� bool	 �� bool

T �bool

 ���a �� bool	 �� bool

�� �bool �� bool �� bool

�� �bool �� bool �� bool

F �bool

����

Axioms� BOOL�CASES�AX ��
t� �t � T	 �� �t � F	

IMP�ANTISYM�AX ��
t� t�� �t� ��� t�	 ��� �t� ��� t�	

��� �t� � t�	

����

Definitions� EXISTS�DEF �� �� � ��P� P ��� P		

TRUTH �� T � ��x� x	 � ��x� x	

FORALL�DEF �� �
 � ��P� P � ��x� T		

AND�DEF �� ��� � ��t� t��
t� �t� ��� t� ��� t	 ��� t	

OR�DEF �� ��� � ��t� t��
t� �t� ��� t	 ��� �t� ��� t	

��� t	

����

Theorems�

The meaning of this theory is that for all values of the constants declared
in the Constants section of the theory �and all ancestor theories�� if the values
satisfy the formulas in the Axioms and Definitions section of the theory �and
all ancestor theories�� then the formulas in the Theorems section are all true�

Suppose that we want to import this theory into Nuprl� We �rst invoke a
program in HOL�� that writes the theory to a �le in an intermediate form more
suitable for Nuprl� This program also takes into account some hints supplied
by the user� For example� for the theory bool some new names were supplied
for some of the constants �most necessary renaming is done automatically�� We
then invoke a program in Nuprl that translates this �le into the following Nuprl
library fragment�

�C bool begin ������������ BOOL ������������

�A h exists �z ��z �� P��z �� �� ��

�A T T �� ��

�A h all �z ��z �� P��z �� �� ��

�A h and P� � P	 �� ��

�A h or P� � P	 �� ��

�A F F �� ��

�����

T h exists wf ��a�S� �z ���a � o� ��z ���a� z ��z ��
 � o

�����

T ��� ��a�S� ��z �� �z ���a� z � z �

� ��P� P��z ���a� P z �

T ��� �T� �� ��x� x
 � ��x�x

T ��� ��a�S� ��z �� �z ���a� z � z �
 � ��P� P � ��x� T

T ��� ��z ��z �� z � � z �

� ��t��t	� �t�o� �t� � t	 � t
 � t

T ��� ��z ��z �� z � � z �

� ��t��t	� �t�o� �t� � t
 � �t	 � t
 � t

T ��� �F� �� ��t�o� �t�

Some of the object names have been elided for the sake of compactness� Also�
Nuprl�s type of booleans has been given the display form o�

Each line in the library fragment describes a single object� The second char�
acter in each line gives the kind of object� C for comment� A for abstraction and T

for theorem� The �rst character is the status� � for complete and
 for incomplete
�e�g� when a theorem�s proof has not been completed��

There are a number of apparent di
erences between this fragment and the
HOL theory� We point out some of these here� but defer the explanations to the
next section�

For each constant in the HOL theory� there are two Nuprl objects� The �rst
is an abstraction with a right hand side which is initially a �xed constant� Corre�
sponding to the constant �� we have the abstraction named h and� The left�hand
side of the abstraction de�nition is actually h and�P��P	
� The system displays
it as P� � P	 because it is using a display form we have associated with the
operator h and� A Nuprl library may contain any number of such user�created
display�form de�nitions� They have no logical signi�cance� their only relevance
is in display and editing of mathematical text�

Corresponding to the HOL existential operator � is the abstraction h exists�
The left�hand side here is actually h exists�z �� z �� P��z ��
� This is a
second�order abstraction� z � ranges over terms� but P� ranges over terms with
a distinguished free variable� and the expression P��z �� stands for the substitu�
tion of z � for the distinguished variable� As an example of the use of this oper�
ator� to express that there exists a natural number n equal to � one would write
h exists�N� n� n��
� On the right�hand side of the de�nition of h exists one
may apply P� to any term� Note that the operator here takes two arguments�
while the HOL constant takes only one�

The second object associated with a HOL constant is a well�formedness theo�
rem� initially unproven� This essentially asserts that the abstraction has �same�
type as the HOL constant� The fragment above shows only one such theorem� for
h exists� Note that we must explicitly quantify over the type �a that is the �rst
argument to h exists� S represents the type of all HOL types� The expression
z ��z ��� after expanding abstractions� is just the function�application of z � to
z ��

Each de�nitional axiom of the HOL theory is mapped to a corresponding
Nuprl theorem� initially unproven� Consider �rst the second theorem following
the second ������ This corresponds to the HOL de�nition TRUTH� Note that an
HOL equality has been replaced by ��� In order to make translations of HOL
theorems more directly applicable in Nuprl proofs� the main logical connectives
of HOL have been translated into their Nuprl analogues� Thus HOL�s �i
�� which
is equality over the type bool� maps to Nuprl�s �i
�� There is also an operator�
denoted by ���� that coerces a value of type bool to a Nuprl proposition�

Note the di
erence between AND DEF and the corresponding Nuprl theorem�
�And� in HOL is just a function of two arguments� In Nuprl� it becomes a binary
operator� and to make this into a function we need to explicitly abstract it�

If there were theorems in the HOL theory� then they would be translated in
the same way as the axioms�

Given this library fragment� the user must now �instantiate� this Nuprl rep�
resentation of an HOL theory with Nuprl objects� In particular� the user must
do the following�

�� Fill in the right hand sides of the abstraction de	nitions� Usually this can be
accomplished by cutting and pasting from the de�nitional axiom for the corre�
sponding HOL constant� The key point here is that we will use computationally
meaningful Nuprl objects to �ll in these abstractions� For example� suppose bool
�declared in the HOL theory �min�� has been given the following de�nition in
Nuprl as a subset of the integers�

bool �� fx�Z j x�� � x��g�

We can then give a computable de�nition for� e�g�� h and�

P� � P	 �� P��P	�

There is a handful of HOL functions that cannot be given computable de�nitions�
h exists is such an example�

� Prove the well�formedness theorems� These proofs are almost always done
automatically by expanding the abstraction and running Nuprl�s catch�all �au�
totactic��

�� Prove the translations of the axioms� In the case of de�nitional axioms� these
proofs are usually trivial� They can� as in the case of type de�nitions� be quite
non�trivial� though�

��
Prove� the translations of the theorems� This is done automatically by using
a �tactic� which works as follows� To prove a theorem � �� the tactic �rst rewrites
all the Nuprl logical operators to their HOL analogues� This reduces proving �
to proving ��� where � is an expression of type bool� Using the name of the
theorem being proven� the tactic then looks up the theorem in Nuprl�s internal
image of the HOL theories loaded so far� It checks that the statement of this
theorem is identical to �� then checks the completeness of the Nuprl import of
the theory containing the theorem as well as the completeness of all ancestors� A
Nuprl library fragment corresponding to a HOL theory is complete if all required
axioms and and well�formedness theorems are present and completely proven� If
the checks succeed� then Nuprl simply marks the theorem as proven�

Note that we are simply trusting HOL that its theorems are true� The cor�
rectness of our connection between HOL and Nuprl also relies on the correctness
of the implementation of three programs� the SML program that preprocesses
HOL theories and writes them to �les� the Lisp�ML program that brings the �les
into Nuprl� and the ML program that marks imported facts as proven� In addi�
tion� soundness depends on the correctness of the semantic connection discussed
in the next section�

� Problems and Solutions

In this section we discuss some of the problems we encountered and how we
solved them� Most of the problems relate to di
erences between the two type
theories and the ways they are applied�

��� Semantics

HOL has a standard set theoretic semantics where propositions are booleans
and function spaces contain all functions in a set�theoretic sense� In Nuprl� all
semantic objects� including types themselves� are terms in an untyped program�
ming language� One can think of this language as something like pure Lisp� or a
variant of the untyped lambda�calculus� Thus� in the Nuprl semantics�

�x� if x�� then true else false

is a member of the type N � bool� The reason is that if we evaluate the ap�
plication of this expression to any natural number� the result is a boolean� In
contrast� the corresponding semantic object in HOL is

f��� true�� ��� false�� ��� false�� � � �g�

In Nuprl� a term having a type is a semantic property� Something has a
function type only if it has the right input�output behaviour� Thus we have the
following typing� which has no direct translation into HOL�

�letrec f�i� � if i���� then i��� else f�f�i������ � N�N

Semantically� the function has this type simply because it terminates with a
natural number on any natural�number input� In Nuprl� this typing requires a
non�trivial proof� similar to what one would do to show termination informally
�it requires a clever choice of well�founded ordering � try it �� This is just an
instance of the general fact that in Nuprl� one can reason directly about functions
de�ned by general recursion� but not in HOL�

Because the programming language is untyped� sensible terms can have
�junk� subterms� as in

if � � � then true else �� !
foo�

which has type bool since it evaluates to true�

We have reconciled these two semantics by extending the Nuprl semantics
to include set�theoretic objects of the kind found in HOL� In particular� we add
a collection of set�theoretic functions as new constants in Nuprl�s programming
language� We need to extend the notion of evaluation in the language� For ex�
ample� we need to be able to evaluate applications like ��e� where � is one of
the injected set theoretic functions and e is an arbitrary term� To do this� we
introduce a notion of approximation� The assertion � � e means that the set
theoretic object � approximates the term e�

The evaluation relation of Nuprl�s programming language is inductively de�
�ned by a set of rules� For example� the rule for ordinary function application
is

f � �x� b b�a	x� � v
f�a� � v

We add rules for � � and add new evaluation rules for set theoretic objects� For
example� we add two rules for set�theoretic functions ��

f � � ���
� � � � � a

f�a� �

� ���
����
 � b��	x�
� � �x� b

We illustrate this extension of evaluation with a few examples� Let � �
f��� ��� ��� ��g� �� � f��� ��g and � � f��� �
�� ���� ���g� We have

� ��� ! �� � � because � � � ! ��

� � � �x� x ! �� but not �� � �x� x ! ��

� ���x� x ! �� � �
�

Another set�theoretic notion we need to deal with is quotienting� Consider
the rational numbers� In set theory� the rationals are represented as a set of pairs
of integers� quotiented by the appropriate equality� The quotient in set theory is
the set of all equivalence classes� In HOL� equivalence classes can be represented
as predicates� This kind of representation of quotients is problematic computa�
tionally� For example� how does one do computations over rational numbers if a
rational is represented as a function of type int� int� bool�

To deal with this� we add equivalence classes � to our language� and for
computational purposes we also add a �polymorphic� equivalence class con�
structor� The polymorphic class ��� can be thought of as standing for any equiv�
alence class � such that � has � as a member� We have the following evalua�
tion�approximation rules for equivalence classes�

� � � � � a
� � �a�

a � �e� f�e� � v
f �a � v

a � � �����
 � f���
f �a �

The �rst rule captures the intuition given above for ���� The second and third
rules describe how to compute with equivalence classes� To evaluate f �a� where
a evaluates to some equivalence class� we want to check that f returns the same
value whenever it is applied to a member of the equivalence class� and then to
return this value� When a evaluates to the polymorphic class �e�� there is no
check to perform� so we just evaluate f�e�� In the case where e evaluates to a
set�theoretic class �� we approximate the check by guessing some set�theoretic
value
 and checking that it approximates f��� for every � � �� This introduces
non�determinism�

Crucial for giving constructive implementations of HOL�de�ned types is
Nuprl�s quotient type� A simple example should su�ce here� The quotient type
�x� y� � N		even�x � y� can be read as the quotient of N by the relation
that equates numbers i
 they have the same parity� Let �� � f�� �� � � �g and
�� � f�� 	� � � �g� The type has as �canonical� members ��� �� and �n� for n 	 ��
We have �� � ��� but not �� � ���� Also� if

f � �x� if evenp�x� then � else �

then f ���� � � and f ��� � ��
This semantics also justi�es introduction of an analogue of HOL�s select

operator� We can extend Nuprl�s programming language with an evaluation rule
for select as follows� Note that non�emptiness of a type is taken to represent
truth of the corresponding proposition�

T � � ����� P ��	x� � �� �� � � of minimum rank such that ���
� �
�x�T� P � ��

Showing that a sensible semantics can be built based on the ideas described
above is the subject of ���� In this semantics� the Nuprl types are exactly the
programs that evaluate to some set �� The members of such a type are the
members of � together with all terms approximated by some � � ��

��� Logic

In HOL logic is given a Tarskian semantics� A proposition is either true or
false� In Nuprl� all propositions are represented as types� False propositions are
empty types� and true propositions are types whose members represent the �com�
putational content� of the proposition� For example� consider the proposition

�x�N� � y �N� x � y " prime �y�� In HOL� the meaning of this is just the
boolean true� In Nuprl� it is the type of all programs taking input x � N and
returning as result a prime y with x � y�

We can give HOL propositions a direct interpretation �a �shallow� embedding
in HOL parlance�� The base logic has three constants

� � �a � �a � bool

��� � bool � bool � bool

� ��a � bool� � �a

for equality� implication� and �select�� respectively� The �a is a type variable�
Given Nuprl�s select operator� and the de�nition of bool from the previous section�
it is trivial to give de�nitions in Nuprl for these constants� and to show that they
have the required types�

This embedding by itself is not enough� however� since Nuprl�s reasoning
machinery is built around Nuprl�s own logical operators� Fortunately� we can
prove in Nuprl that the two di
erent representations of logic are� in a su�cient
sense� equivalent� For example� we can prove

�x� y�bool� �x
 y� � ��x�
 �y��

where
 is overloaded notation� standing for HOL�s version of implication on
the left� and Nuprl�s on the right� and where �b� �not to be confused with the
equivalence class constructor� is de�ned to be the proposition b � true� Also� we
can prove

�A�S� �P �A� bool� ��x�A� P �x�� � ��x�A� �P �x����

Putting a direct embedding of an HOL proposition into a form more suitable
for Nuprl�s tactics is thus just a matter of exhaustively applying rewrite rules
such as the above�

��� Constructive vs Classical

In dealing with logic as we have above� we run the risk of losing the ability
to extract programs from proofs� The program extracted is a member of the
type representing the theorem proved� With our new semantics� we can always
extract some �program�� and it will have the right properties under evaluation�
but the problem is that it might contain instances of the select operator� which is
not computable� Nevertheless� we want to retain the ability to prove a theorem
constructively and be assured that the extraction is computable�

The equivalence of the two representations of logic is highly non�constructive�
In general� the object extracted from a proof of equivalence of two formulas will
contain the select operator� Thus if we have tactics making unrestricted use of
facts imported from HOL� it would be easy to unwittingly introduce a non�
computable element�

The main reason we can solve this problem is because equalities in Nuprl have
no computational content� So� for example� if a universally quanti�ed equation is
proved� then the program extracted from the proof is simply a constant function�
This has two main consequences� First� if we are proving an equation �possibly
under assumptions� in Nuprl� we can safely use any HOL theorem whatsoever�
Second� no matter what we are proving� it is always safe to use HOL facts�
such as universally quanti�ed equations� that have no computational content�
Fortunately� the vast majority of HOL theorems �t this category� and the vast
majority of the work in proving any theorem about software involves compu�
tationally trivial facts �mostly equations and inequations�� Most of the work
in Nuprl proofs is done by term rewriting� All the programs that apply term
rewriting can safely use any HOL theorem�

It is easy to modify the Nuprl system to ensure that non�computable �pro�
grams� are not inadvertently extracted from proofs� For example� we can add
a bit to each proof node� where a true bit means that the extracted program
of the subproof rooted at the node must not contain the select operator� The
user sets the bit at the root� and the system computes the bit when the proof
is extended by re�nement� setting it to false when the node being re�ned has a
conclusion which is computationally trivial� and simply propagating it otherwise�
Inference steps may not mention the select operator� or use lemmas whose top
bit is false� if the bit at the node being re�ned is true� This scheme for containing
non�constructive reasoning has not yet been implemented� so it is currently up
to the user to exercise appropriate care�

��� Constructivizing HOL Type De�nitions

When new types are introduced in HOL� they are often given non�constructive
implementations� Fortunately� when we translate into Nuprl we are not stuck
with these implementations� This is because types in HOL are only de�ned up
to isomorphism�

Consider the disjoint union A ! B of types A and B� In HOL� members of
A ! B are represented as functions of type bool� A� B � bool� For example�
the injection of a � A into A!B is represented as the function which returns true
i
 its �rst argument is true and its second argument is a� A ! B is axiomatized
to be isomorphic to the collection of such representations by the following�

IS�SUM�REP

�� �f�

IS�SUM�REP f �

��v� v	�

�f � ��b x y� �x � v�
 �� b

 ��

�f � ��b x y� �y � v	
 �� �b

sum�TY�DEF �� �rep� TYPE�DEFINITION IS�SUM�REP rep

IS SUM REP is thus de�ned to be predicate that picks out the members of bool�
A � B � bool that serve as representations� and the second axiom states the

existence of a bijection between A ! B and collection the objects satisfying
IS SUM REP�

In contrast� Nuprl has a built�in type for disjoint union� with members
inl �a�� inr �b�� We use this as a de�nition of the disjoint union imported from
HOL� We are then left with proof obligations to show that the above two axioms
hold for this implementation� i�e� to show that Nuprl�s disjoint union type and
the HOL representation are in bijective correspondence� The Nuprl proof of this
is non�constructive� but we will never need to refer to these axioms in other
proofs�

��� Polymorphism and Type Inference

Although Nuprl�s programming language is itself untyped� in practice the typ�
ing of programs follows a rather familiar type assignment style �a la Curry� A
di
erence is that types must be explicitly quanti�ed in Nuprl� Since Nuprl has
type universes� we can de�ne a type S that contains all �small� types that are
non�empty� The set S is su�ciently large to represent all HOL types� So� in HOL
the polymorphic identity has the following typing

�x� x � �a� �a�

whereas in Nuprl we would write

� �a�S� �x� x � �a� �a�

Despite this similarity� there is still the crucial di
erence that type assign�
ments can be statically determined in HOL� Given any expression� most�general
types can be determined for the expression and all of its subexpressions� This is
not possible in Nuprl� This gives rise to a slightly nasty problem with the select
operator�

Consider the HOL expression #x�P �x�� Whenever this expression is used in
some other expression� we can determine a type T for it� and the expression will
denote some value in �the meaning of� T � In Nuprl� we cannot determine such
a type in general� and the type must be passed in as an argument� Thus the
expression is translated into Nuprl as �x�T� P �x��

Because of this� a de�nition whose right�hand side mentions the select oper�
ator may translate to an operator that passes type arguments� Fortunately� this
happens relatively rarely� The default behaviour of the translator is to not pass
type arguments� Exceptions must be indicated by the user through the �hint�
mechanism�

��	 Constants vs Operators

As indicated by the example in Section �� de�nitions in Nuprl are typically op�
erators with arguments� In HOL� de�ned objects that take arguments are rep�
resented as functions� This could also be done in Nuprl� by simply making each
abstraction ��ary and using ��abstractions on the right�hand side� The reason

this is not done is partly because of the undecidability of type�checking and type�
inference in Nuprl� The details are somewhat technical� but it has turned out
to be easier to organize facts related to typability �and a few other properties�
around operators with arguments� This approach has also allowed us to incor�
porate second�order pattern matching in a straightforward way in type checking
and rewriting�

Whether or not this di
erence is valuable� Nuprl�s tactic collection relies
on it heavily� so to incorporate HOL facts the constants need to be adjusted
accordingly� For each constant in an HOL theory to be imported� an arity is
computed� The arity is simply the number of �curried� arguments indicated by
the type of the HOL constant� The user can also supply arities for cases when
this default arity is undesirable� For example� the type of the operator o for
composing two functions gives a default arity of 	� while the desired value is ��
Also� occasionally one will want the constant to map to a binding operator� This
is the case� for example� for a constant declared to be a �binder� in HOL� e�g�
h exists in Section ��

The arities are used when translating HOL expressions to Nuprl ones� When
a constant of arity n is applied to at least n arguments� the n�ary application is
replaced by an instance of the corresponding n�ary operator� If there are fewer
than n arguments�
�expansions are �rst done to add a su�cient number of
arguments�

��
 Partial Functions

In Nuprl� as in HOL� function types are total� a function of type A� B produces
a value of type B for every input of type A� However� most partial functions
can be given convenient types in Nuprl because of Nuprl�s subset type� For
example� consider hd� the function that takes the head of a list� In Nuprl� hd ����
is unde�ned� but we can give hd the type

f l�N list j l
� nil g � N�

for example�
In HOL� hd is de�ned on all lists� hd ���� is #x� �a� true� This is a problem

because when the theory containing hd is translated into Nuprl� we have to
prove the well�formedness theorem for hd� and this requires showing that the
Nuprl�de�ned hd is de�ned on the empty list� This forces us into giving the
uncomputable HOL de�nition for hd in Nuprl� This kind of use of � appears to
be frowned on in the HOL community and does not seem to arise much�

Nevertheless� such cases do arise� Fortunately� in all the cases we have exam�
ined so far� we can work around the problem� Consider again the example of hd�
We make the uncomputable de�nition for hd� but we also de�ne a computable
version� call it hd�� and use this version in all subsequent de�nitions and in all
theorems except for the de�nitional axiom for hd� This works because� although
hd is de�ned on the empty list� this property is not taken advantage of� Consider
a theorem asserting that the head of the list formed by consing x onto l is x�

The theorem that is directly justi�ed by imported HOL theories is something
like

�x�A� � l�A list� hd �x � � l� � x�

But in Nuprl this formula can be proved equal to

�x�A� � l�A list� hd� �x � � l� � x

by using the following lemma as a conditional rewrite rule�

� l�A list� l
� nil
 hd �l� � hd� �l��

Note that this equivalence is within Nuprl� so it is irrelevant whether the HOL
proof of the theorem relied on hd being de�ned on the empty list�

��� Theorems and Tactics

A number of tactics require additional information to make e
ective use of the
theorems in Nuprl�s library� For instance� some tactics require theorems of a
certain kind to be annotated with special abstractions that have no logical sig�
ni�cance but provide guidance to the tactic� More commonly� tactics require
explicit indications� either by naming conventions or by explicit updates to refer�
ence variables via ML objects in the library� of relevant theorems and associated
information� Currently� this must be dealt with by hand for imported theorems�
just as with ordinary Nuprl theorems�

��� Unsolved Problems

One immediate problem we have not dealt with yet is HOL de�nitional pack�
ages� For example� there are packages that simulate various convenient forms of
inductive de�nition and provide useful tactics for reasoning about the de�nition�
While the theory objects generated by these packages can be readily imported
using our scheme� the result is too low�level in some ways� The connection of the
translated objects with the original higher�level de�nition is lost� It remains to
be seen how e
ective Nuprl�s tactics will be with such theories�

Other problems to be addressed in the future include abstract theories and
making importation more incremental� Also� it might be interesting to try to
import HOL tactics as well� The main obstacle to doing so is that HOL�s tactic
mechanism is incompatible with Nuprl�s� In Nuprl� each time a tactic is applied
by the user to re�ne a node in a proof tree� one is guaranteed by the system
that the inference is sound� There is no such guarantee in HOL� soundness is
guaranteed only for complete proofs� One way to �x this would be to rede�ne
HOL�s tactic type to be like Nuprl�s� replacing the type thm with the type proof
of �possibly incomplete� proofs� Making such a change would probably only
a
ect the lowest levels of the system� Another way� incurring only a slight risk
of unsoundness� is to take the approach of HOL�s subgoal package�

References

� Part IIIA� SCI Coherence Overview� ����� Unapproved draft IEEE�P
�
��
��Nov
��doc

��iii�

�� R� L� Constable� et al� Implementing Mathematics with the Nuprl Proof Develop�

ment System� Prentice�Hall� Englewood Cli�s� New Jersey�

	��
�� M� J� Gordon� R� Milner� and C� P� Wadsworth� Edinburgh LCF� A Mechanized

Logic of Computation� volume �	 of Lecture Notes in Computer Science� Springer�
Verlag�

�
�

�� M� J� C� Gordon and T� F� Melham� Introduction to HOL� A Theorem Proving

Environment for Higher Order Logic� Cambridge University Press� Cambridge�
UK�

��

�� D� J� Howe� Semantics foundations for embedding hol in nuprl� Proceedings of

AMAST����

�� �to appear��
�� P� Jackson� Nuprl 	
� Reference Manual� Cornell University�

�� Available from

ftp���cs�cornell�edu�pub�nuprl�doc�
�� P� B� Jackson� Exploring abstract algebra in constructive type theory� In

A� Bundy� editor� ��th Conference on Automated Deduction� Lecture Notes in Ar�
ti�cal Intelligence� Springer� June

��

	� B� Jacobs and T� Melham� Translating dependent type theory into higher order
logic� In Proceedings of the Second International Conference on Typed Lambda

Calculi and Applications� volume ��� of Lecture Notes in Computer Science� pages
��
���
� Springer�

��

� P� Martin�L�of� Constructive mathematics and computer programming� In Sixth

International Congress for Logic� Methodology� and Philosophy of Science� pages

���
��� Amsterdam�

	�� North Holland�

�� T� Melham� The HOL logic extended with quanti�cation over type variables� For�
mal Methods in System Design� ��
��������� August

��

� R� Milner� M� Tofte� and R� Harper� The De�nition of Standard ML� MIT Press�

��

�� S� Owre� S� Rajan� J� Rushby� N� Shankar� and M� Srivas� PVS� Combining spec�
i�cation� proof checking� and model checking� In Proceedings of CAV���� Lecture
Note in Computer Science� Springer Verlag�

��

�� M� van der Voort� Introducing well�founded function de�nitions in HOL� In Higher
Order Logic Theorem Proving and Its Applications� volume A��� of IFIP Transac�

tions� pages

��
�
� North�Holland�

��

This article was processed using the LaTEX macro package with LLNCS style

