Importing Mathematics from HOL into Nuprl

Douglas J. Howe

Bell Labs, Lucent Technologies
700 Mountain Ave., Room 2B-438
Murray Hill, NJ 07974, USA.
howe@bell-labs.com

Abstract. Nuprl and HOL are both tactic-based interactive theorem
provers for higher-order logic, and both have been used in many sub-
stantial applications over the last decade. However, the HOL community
has accumulated a much larger collection of formalized mathematics of
the kind useful for hardware and software verification. This collection
would be of great benefit in applying Nuprl to verification problems of
real practical interest. This paper describes a connection we have im-
plemented between HOL and Nuprl that gives Nuprl effective access to
mathematics formalized in HOL. In designing this connection, we had
to overcome a number of problems related to differences in the logics,
logical infrastructures and stylistic conventions of Nuprl and HOL.

1 Introduction

Nuprl [2] and HOL [4] are general-purpose interactive theorem proving systems
with a number of similarities: their logics are higher-order type theories, their
automated reasoning facilities are based on the tactic mechanism of LCF [3], and
their main application has been to formal reasoning about computation. Both
systems have been the focus of a great deal of research over the last decade.
However, the overall thrust of the two research communities has been rather
different.

Much of the work of the Nuprl project has involved the core of the system.
There has been work on Nuprl’s constructive type theory, on the proof editors,
and on the basic architecture of Nuprl’s automated reasoning support. In con-
trast, the core of the HOL system has remained stable for many years. The
system has attracted a large number of users, and a great deal of the effort in
the HOL community has gone into building the libraries of formal mathematics
that are needed for verifying hardware and software of practical interest. There
have been a number of substantial applications of Nuprl (see [7] for a recent ex-
ample), but there has been nothing like the HOL community’s sustained effort
to formalize mathematics useful for verification.

The mathematics formalized in HOL would be of great benefit in applying
Nuprl to verification problems of real practical interest. The goal of the present
work is to connect the two systems so that mathematics can be imported from
HOL into Nuprl.

Because of the similarities of the two systems, one might think that this is an
easy thing to do. In one sense, it is. Just about any theorem-prover can embed
the logic of any other simply by formalizing the syntax of proofs. However, the
goal here is a practical one: to be able to effectively use HOL mathematics in
Nuprl proofs. Not just any embedding will do. We need a strong connection
between the mathematics developed in Nuprl and the mathematics imported
from HOL, so that HOL facts will be applicable in Nuprl proofs. Furthermore,
Nuprl’s automated reasoning programs must be able to incorporate the HOL
mathematics.

It turns out, perhaps surprisingly, that we have had to deal with a number of
substantial problems. Some of the difficulties stem from the fact that the HOL
and Nuprl type theories are, in fact, very different in some practically important
ways. Nuprl has a constructive type theory, based on a type theory of Martin-
L6f[9]. The theory contains an untyped programming language, and all objects
have a computational interpretation. Programs are reasoned about directly in
the logic, and the constructivity of the theory means that programs can be
synthesised from proofs. On the other hand, HOL’s theory is classical, and the
way mathematics is encoded is similar to the way ordinary mathematics is done
in ZF set theory. Functions are built in, but other objects, such as integers and
lists, are given set-theory-like encodings with the aid of the “select operator”
@z eT. P(z), which denotes some z of type T such that P(z).

Aside from the logics, there are other differences between HOL and Nuprl
that cause difficulties for importing HOL mathematics. In particular, there are
substantial differences in:

the logical infrastructure, including the definition and theory mechanisms,
tactics,

— stylistic conventions for writing definitions and theorems, and
implementation languages (HOL90 is SML, Nuprl is Common Lisp and “clas-
sic” ML).

Instead of reconciling the two logics, why not just replace Nuprl’s type theory
by HOL’s? One answer is that Nuprl’s type theory offers a number of advantages
over HOL’s. These include the following.

— Ezpressive power of the type system. Nuprl has subtypes and dependent
function types. Also, through the use of universes and “sigma” types, one
can express modules similar to the kind found in Standard ML [11].

— Constructivity. Experience with Nuprl has shown that for the mathematics
of programs, constructivity comes at essentially no cost. Proofs about com-
putationally meaningful objects such as hardware and software are naturally
constructive, or can be made so with little effort. Thus one can, for exam-
ple, build the same kinds of proofs as one does in HOL, with the additional
benefit that programs can be extracted from the proofs.

— Writing programs. Nuprl includes a programming language which, while
primitive, includes many of the features, such as function definition by gen-
eral recursion, of a conventional functional programming language.

Most of these features have been advocated, in some form, as extensions to HOL.
See, for example, [10, 8, 13]. Also, some of the type-theoretic features of Nuprl
have been adopted in the PVS system [12]. Nuprl also has a large amount of
automated support for making effective use of these features. Of course, one of
the constraints on the embedding of HOL is that use of HOL mathematics does
not prevent us from taking advantage of these features.

Another advantage of Nuprl is its user interface. Because of its separation of
display and abstract syntax, Nuprl allows a great deal of flexibility in the use of
notations in both the presentation and editing of mathematical syntax. A key
component is Nuprl’s novel structure editor. For details, see [6].

The main motivation for this work has been to make Nuprl more effective.
However, another way of viewing the work is as the first case study of cooperation
and result-sharing between different interactive theorem provers.

The body of the paper is divided into two parts. The first part gives a simple
example illustrating the connection we have implemented between Nuprl and
HOL90. The second part is a more detailed discussion of the problems we en-
countered and how we solved them. The hardest problem was one of semantics.
To accommodate the embedding, we extended the Nuprl semantics to incorpo-
rate an operator similar to HOL’s select. This extension is the subject of another
paper [5], and will only be described briefly here. The other problems, though
numerous, were not so difficult to deal with. This section also discusses some
problems which we have not solved.

The work described in this paper is somewhat “in progress”. The basic con-
nection between the systems has been implemented, but it has not yet been
tested in any substantial practical examples. We are currently working on a ver-
ification the SCI cache-coherency protocol [1] based on an importation of the
HOL90 theory “List” (and all of its ancestors). A report on this work will be
available soon via http://www.research.att.com/ howe.

2 An Example

An HOL theory consists of some type and individual constants, some axioms,
usually definitional, constraining the constants, and a set of theorems following
from the axioms (and the axioms of ancestor theories). In contrast, the Nuprl
logicis fixed; new constants and axioms are not introduced when building Nuprl’s
analogue of HOL theories. Formal mathematics in Nuprl is organized as a single
list of abstractions and theorems. An example of an abstraction is

abs_val(z) == ifz <0 then —z elsez

which defines a new operator abs_val that takes one argument. This can be
thought of as a one-argument term-macro. Abstractions in Nuprl are extra-
logical. The meaning of an expression containing abstractions is defined to be
the meaning of the expressions obtained by expanding all abstractions (z.e. re-
peatedly replacing all occurrences by the corresponding right-hand sides). Nuprl

also lets us define display forms for abstractions. For example, if we make the
display-form definition
(@) == abs.val((z))

then any subsequent occurrence of an expression of the form abs_val(e) will ap-
pear to the user as |e|. Because Nupr!’s editors are structural, parsing/unparsing
issues do not arise.

Consider now a truncated version of the HOL theory “bool” which introduces,
among other things, some of the usual connectives of higher-order logic.

Parents: min
Types:
Constants: ? :(’a -> bool) -> bool

:bool
! :(’a -> bool) -> bool
/\ :bool -> bool -> bool
\/ :bool -> bool -> bool

F :bool
[...]
Axioms: BOOL_CASES_AX |- 't. (¢ =T) \/ (¢t = F)
IMP_ANTISYM_AX |- 't1 t2. (t1 ==> t2) ==> (£t2 ==> t1)
==> (t1 = t2)
[...]
Definitions: EXISTS_DEF |- $7 = (\P. P ($@ P))
TRUTH |- T = (\x. x) = (\x. x)
FORALL_DEF |- $!' = (\P. P = (\x. T))
AND_DEF |- $/\ = (\t1 t2. 't. (t1 ==> t2 ==> t) ==> t)
OR_DEF |- $\/ = (\t1 t2. 't. (1 ==> t) ==> (2 ==> t)
==> t)
[...]

Theorems:

The meaning of this theory is that for all values of the constants declared
in the Constants section of the theory (and all ancestor theories), if the values
satisfy the formulas in the Axioms and Definitions section of the theory (and
all ancestor theories), then the formulas in the Theorems section are all true.

Suppose that we want to import this theory into Nuprl. We first invoke a
program in HOL90 that writes the theory to a file in an intermediate form more
suitable for Nuprl. This program also takes into account some hints supplied
by the user. For example, for the theory bool some new names were supplied
for some of the constants (most necessary renaming is done automatically). We
then invoke a program in Nuprl that translates this file into the following Nuprl
library fragment.

*C bool begin *¥kkkxkkrkks BOOL *kkkkrkkrkks

*4 h_exists dz 0:z_1. P1[z 0] == []

A T = []

*A h_all Vz 0:z_1. P1[z 0] == []
*A h_and P1 A P2 == []

*A h_or P1 V P2 == []

*xA F = []

[...]

#T h_existswf V’a:S. Vz_1:’a — o. (3dz 0:’a. z_1[z0]) € o
[...]

#T ... V?a:S. (Az0. dz_1:’a. z 0 z_1)
= (AP. P(@z 0:’a. P z.0))

#T ... [Tl < (Ax. x) = (Ax.x)
#T ... V?a:S. (Az0. Vz_1:’a. 20 z1) = (AP. P = (Ax. T))
#T ... (Az0,z1. z0 A z_1)

= (At1,t2. Vtio. (t1 = t2 = t) = t)
#T ... (Az0,z1. z0 V z_.1)

= (At1,t2. Vtio. (t1 = t) = (2 = t) = t)
#T ... [F] <= (Vt:o. [t])

Some of the object names have been elided for the sake of compactness. Also,
Nupr!’s type of booleans has been given the display form o.

Each line in the library fragment describes a single object. The second char-
acter in each line gives the kind of object: C for comment, & for abstraction and T
for theorem. The first character is the status: * for complete and # for incomplete
(e.g. when a theorem’s proof has not been completed).

There are a number of apparent differences between this fragment and the
HOL theory. We point out some of these here, but defer the explanations to the
next section.

For each constant in the HOL theory, there are two Nuprl objects. The first
is an abstraction with a right hand side which is initially a fixed constant. Corre-
sponding to the constant /\ we have the abstraction named h_and. The left-hand
side of the abstraction definition is actually h_and(P1;P2). The system displays
it as P1 A P2 because it is using a display form we have associated with the
operator h_and. A Nuprl library may contain any number of such user-created
display-form definitions. They have no logical significance; their only relevance
is in display and editing of mathematical text.

Corresponding to the HOL existential operator ? is the abstraction h_exists.
The left-hand side here is actually h_exists(z 1; z 0. P1[z_0]). This is a
second-order abstraction: z_1 ranges over terms, but P1 ranges over terms with
a distinguished free variable, and the expression P1[z_0] stands for the substitu-
tion of z_0 for the distinguished variable. As an example of the use of this oper-
ator, to express that there exists a natural number n equal to 0 one would write
hexists(N; n. n=0). On the right-hand side of the definition of h_exists one
may apply Pl to any term. Note that the operator here takes two arguments,
while the HOL constant takes only one.

The second object associated with a HOL constant is a well-formedness theo-
rem, initially unproven. This essentially asserts that the abstraction has “same”
type as the HOL constant. The fragment above shows only one such theorem, for
h_exists. Note that we must explicitly quantify over the type ’a that is the first
argument to h_exists. S represents the type of all HOL types. The expression
z_1[z_0], after expanding abstractions, is just the function-application of z_1 to
z_0.

Each definitional axiom of the HOL theory is mapped to a corresponding
Nuprl theorem, initially unproven. Consider first the second theorem following
the second [...]. This corresponds to the HOL definition TRUTH. Note that an
HOL equality has been replaced by <=>. In order to make translations of HOL
theorems more directly applicable in Nuprl proofs, the main logical connectives
of HOL have been translated into their Nuprl analogues. Thus HOL’s “iff”, which
is equality over the type bool, maps to Nuprl’s “iff”. There is also an operator,
denoted by [-], that coerces a value of type bool to a Nuprl proposition.

Note the difference between AND DEF and the corresponding Nuprl theorem.
“And” in HOL is just a function of two arguments. In Nuprl, it becomes a binary
operator, and to make this into a function we need to explicitly abstract it.

If there were theorems in the HOL theory, then they would be translated in
the same way as the axioms.

Given this library fragment, the user must now “instantiate” this Nuprl rep-
resentation of an HOL theory with Nuprl objects. In particular, the user must
do the following.

1. Fill in the right hand sides of the abstraction definitions. Usually this can be
accomplished by cutting and pasting from the definitional axiom for the corre-
sponding HOL constant. The key point here is that we will use computationally
meaningful Nuprl objects to fill in these abstractions. For example, suppose bool
(declared in the HOL theory “min”) has been given the following definition in
Nuprl as a subset of the integers.

bool == {x:Z | x=0 V x=1}.
We can then give a computable definition for, e.g., h_and:
P1 A P2 == P1%P2.

There is a handful of HOL functions that cannot be given computable definitions.
h_exists is such an example.

2. Prove the well-formedness theorems. These proofs are almost always done
automatically by expanding the abstraction and running Nuprl’s catch-all “au-
totactic”.

8. Prove the translations of the arioms. In the case of definitional axioms, these
proofs are usually trivial. They can, as in the case of type definitions, be quite
non-trivial, though.

4. “Prove” the translations of the theorems. This is done automatically by using
a “tactic” which works as follows. To prove a theorem - ¢, the tactic first rewrites
all the Nuprl logical operators to their HOL analogues. This reduces proving ¢
to proving [¢] where 9 is an expression of type bool. Using the name of the
theorem being proven, the tactic then looks up the theorem in Nuprl’s internal
image of the HOL theories loaded so far. It checks that the statement of this
theorem is identical to v, then checks the completeness of the Nuprl import of
the theory containing the theorem as well as the completeness of all ancestors. A
Nuprl library fragment corresponding to a HOL theory is complete if all required
axioms and and well-formedness theorems are present and completely proven. If
the checks succeed, then Nuprl simply marks the theorem as proven.

Note that we are simply trusting HOL that its theorems are true. The cor-
rectness of our connection between HOL and Nuprl also relies on the correctness
of the implementation of three programs: the SML program that preprocesses
HOL theories and writes them to files, the Lisp/ML program that brings the files
into Nuprl, and the ML program that marks imported facts as proven. In addi-
tion, soundness depends on the correctness of the semantic connection discussed
in the next section.

3 Problems and Solutions

In this section we discuss some of the problems we encountered and how we
solved them. Most of the problems relate to differences between the two type
theories and the ways they are applied.

3.1 Semantics

HOL has a standard set theoretic semantics where propositions are booleans
and function spaces contain all functions in a set-theoretic sense. In Nuprl, all
semantic objects, including types themselves, are terms in an untyped program-
ming language. One can think of this language as something like pure Lisp, or a
variant of the untyped lambda-calculus. Thus, in the Nuprl semantics,

Az. if =0 then true else false

is a member of the type N — bool. The reason is that if we evaluate the ap-
plication of this expression to any natural number, the result is a boolean. In
contrast, the corresponding semantic object in HOL is

{(0, true), (1, false), (2, false), .. .}.

In Nuprl, a term having a type is a semantic property. Something has a
function type only if it has the right input-output behaviour. Thus we have the
following typing, which has no direct translation into HOL.

(letrec f(i) = if ©>100 then i—10 else f(f(i+11))) € N—N

Semantically, the function has this type simply because it terminates with a
natural number on any natural-number input. In Nuprl, this typing requires a
non-trivial proof, similar to what one would do to show termination informally
(it requires a clever choice of well-founded ordering — try it!). This is just an
instance of the general fact that in Nuprl, one can reason directly about functions
defined by general recursion, but not in HOL.

Because the programming language is untyped, sensible terms can have
“junk” subterms, as in

if 0 = 0 then true else 17 4+ “foo”

which has type bool since it evaluates to true.

We have reconciled these two semantics by extending the Nuprl semantics
to include set-theoretic objects of the kind found in HOL. In particular, we add
a collection of set-theoretic functions as new constants in Nuprl’s programming
language. We need to extend the notion of evaluation in the language. For ex-
ample, we need to be able to evaluate applications like ¢(e) where ¢ is one of
the injected set theoretic functions and e is an arbitrary term. To do this, we
introduce a notion of approximation. The assertion a <l e means that the set
theoretic object o approximates the term e.

The evaluation relation of Nuprl’s programming language is inductively de-
fined by a set of rules. For example, the rule for ordinary function application
is

flrz. b bla/z] v
fla) 4 v

We add rules for <1, and add new evaluation rules for set theoretic objects. For
example, we add two rules for set-theoretic functions ¢:

flg (,B8)ed a<a V(a,p)ed. B<blajz]
fla) U8 oAz b

We 1illustrate this extension of evaluation with a few examples. Let ¢ =

{(0,4),(1,5)}, ¢' = {(0,2)} and ¢ = {(¢,17), (¢, 18)}. We have

— ¢(040) J 4 because 0 <1 0+ 0.
— ¢ < dz.z+ 4, but not ¢' < Az. z + 4.
— p(hz. z +4) 17,

Another set-theoretic notion we need to deal with is quotienting. Consider
the rational numbers. In set theory, the rationals are represented as a set of pairs
of integers, quotiented by the appropriate equality. The quotient in set theory is
the set of all equivalence classes. In HOL, equivalence classes can be represented
as predicates. This kind of representation of quotients is problematic computa-
tionally. For example, how does one do computations over rational numbers if a
rational is represented as a function of type int x int — bool?

To deal with this, we add equivalence classes £ to our language, and for
computational purposes we also add a “polymorphic” equivalence class con-
structor. The polymorphic class [a] can be thought of as standing for any equiv-
alence class £ such that £ has a as a member. We have the following evalua-
tion/approximation rules for equivalence classes.

acef ada alle fle)dv alé Vacl B« fla)
£ < [a] falw falp

The first rule captures the intuition given above for [-]. The second and third
rules describe how to compute with equivalence classes. To evaluate f-a, where
a evaluates to some equivalence class, we want to check that f returns the same
value whenever it is applied to a member of the equivalence class, and then to
return this value. When a evaluates to the polymorphic class [e], there is no
check to perform, so we just evaluate f(e). In the case where e evaluates to a
set-theoretic class £, we approximate the check by guessing some set-theoretic
value 8 and checking that it approximates f(a) for every a € €. This introduces
non-determinism.

Crucial for giving constructive implementations of HOL-defined types is
Nuprl’s quotient type. A simple example should suffice here. The quotient type
(z,y) : N//even(z — y) can be read as the quotient of N by the relation
that equates numbers iff they have the same parity. Let £ = {0,2,...} and
& = {1,3,...}. The type has as (canonical) members i, &2 and [n] for n > 0.
We have &; <1 [2] but not & <1 [2]. Also, if

f = Xz. if evenp(z) then 0 else 1

then f-[2] | 0 and f-& | 1.

This semantics also justifies introduction of an analogue of HOL’s select
operator. We can extend Nuprl’s programming language with an evaluation rule
for select as follows. Note that non-emptiness of a type is taken to represent
truth of the corresponding proposition.

Ty Vaecy. Pla/z]va ao €7 of minimum rank such that vo, 7 0
@QrcT. P | ao

Showing that a sensible semantics can be built based on the ideas described
above is the subject of [5]. In this semantics, the Nuprl types are exactly the
programs that evaluate to some set 7. The members of such a type are the
members of v together with all terms approximated by some a € 7.

3.2 Logic

In HOL logic is given a Tarskian semantics. A proposition is either true or
false. In Nuprl, all propositions are represented as types. False propositions are
empty types, and true propositions are types whose members represent the “com-
putational content” of the proposition. For example, consider the proposition

VeeN. JyeN. z < y & prime(y). In HOL, the meaning of this is just the
boolean true. In Nuprl, it is the type of all programs taking input z € N and
returning as result a prime y with z < y.

We can give HOL propositions a direct interpretation (a “shallow” embedding
in HOL parlance). The base logic has three constants

=:"’a = ’a — bool
==>: bool — bool — bool
@: ('a — bool) = a

for equality, implication, and “select”, respectively. The ’a is a type variable.
Given Nuprl’s select operator, and the definition of bool from the previous section,
it is trivial to give definitions in Nuprl for these constants, and to show that they
have the required types.

This embedding by itself is not enough, however, since Nuprl’s reasoning
machinery is built around Nuprl’s own logical operators. Fortunately, we can
prove in Nuprl that the two different representations of logic are, in a sufficient
sense, equivalent. For example, we can prove

Ve,ycbool [z =yl < ([z] = [y])

where = is overloaded notation, standing for HOL’s version of implication on
the left, and Nuprl’s on the right, and where [b] (not to be confused with the
equivalence class constructor) is defined to be the proposition b = true. Also, we
can prove

VAeS. VPcA— bool. [AzcA. P(z)] < (FzcA. [P(z)]).

Putting a direct embedding of an HOL proposition into a form more suitable
for Nuprl’s tactics is thus just a matter of exhaustively applying rewrite rules
such as the above.

3.3 Constructive vs Classical

In dealing with logic as we have above, we run the risk of losing the ability
to extract programs from proofs. The program extracted is a member of the
type representing the theorem proved. With our new semantics, we can always
extract some “program”, and it will have the right properties under evaluation,
but the problem is that it might contain instances of the select operator, which is
not computable. Nevertheless, we want to retain the ability to prove a theorem
constructively and be assured that the extraction is computable.

The equivalence of the two representations of logic is highly non-constructive.
In general, the object extracted from a proof of equivalence of two formulas will
contain the select operator. Thus if we have tactics making unrestricted use of
facts imported from HOL, it would be easy to unwittingly introduce a non-
computable element.

The main reason we can solve this problem is because equalities in Nuprl have
no computational content. So, for example, if a universally quantified equation is
proved, then the program extracted from the proof is simply a constant function.
This has two main consequences. First, if we are proving an equation (possibly
under assumptions) in Nuprl, we can safely use any HOL theorem whatsoever.
Second, no matter what we are proving, it is always safe to use HOL facts,
such as universally quantified equations, that have no computational content.
Fortunately, the vast majority of HOL theorems fit this category, and the vast
majority of the work in proving any theorem about software involves compu-
tationally trivial facts (mostly equations and inequations). Most of the work
in Nuprl proofs is done by term rewriting. All the programs that apply term
rewriting can safely use any HOL theorem.

It is easy to modify the Nuprl system to ensure that non-computable “pro-
grams” are not inadvertently extracted from proofs. For example, we can add
a bit to each proof node, where a true bit means that the extracted program
of the subproof rooted at the node must not contain the select operator. The
user sets the bit at the root, and the system computes the bit when the proof
is extended by refinement, setting it to false when the node being refined has a
conclusion which is computationally trivial, and simply propagating it otherwise.
Inference steps may not mention the select operator, or use lemmas whose top
bit is false, if the bit at the node being refined is true. This scheme for containing
non-constructive reasoning has not yet been implemented, so it is currently up
to the user to exercise appropriate care.

3.4 Constructivizing HOL Type Definitions

When new types are introduced in HOL, they are often given non-constructive
implementations. Fortunately, when we translate into Nuprl we are not stuck
with these implementations. This is because types in HOL are only defined up
to isomorphism.

Consider the disjoint union A 4+ B of types A and B. In HOL, members of
A + B are represented as functions of type bool -+ A — B — bool. For example,
the injection of @ € A into A+ B is represented as the function which returns true
iff its first argument is true and its second argument is a. A + B is axiomatized
to be isomorphic to the collection of such representations by the following.

IS_SUM_REP
[- 1f.
IS_SUM_REP f
(?v1 v2.
f=Nbxy. (x=v1)/\Db))\
(£ =0Nbxy. (y =v2) /\ "p)))
sum_TY_DEF |- ?rep. TYPE_DEFINITION IS_SUM_REP rep

IS_SUM_REP is thus defined to be predicate that picks out the members of bool —
A — B — bool that serve as representations, and the second axiom states the

existence of a bijection between A 4+ B and collection the objects satisfying
IS_SUM_REP.

In contrast, Nuprl has a built-in type for disjoint union, with members
inl(a), inr(b). We use this as a definition of the disjoint union imported from
HOL. We are then left with proof obligations to show that the above two axioms
hold for this implementation, i.e. to show that Nuprl’s disjoint union type and
the HOL representation are in bijective correspondence. The Nuprl proof of this
is non-constructive, but we will never need to refer to these axioms in other
proofs.

3.5 Polymorphism and Type Inference

Although Nuprl’s programming language is itself untyped, in practice the typ-
ing of programs follows a rather familiar type assignment style ¢ le Curry. A
difference is that types must be explicitly quantified in Nuprl. Since Nuprl has
type universes, we can define a type S that contains all (small) types that are
non-empty. The set S is sufficiently large to represent all HOL types. So, in HOL
the polymorphic identity has the following typing

Az.z € '‘a — ’a,
whereas in Nuprl we would write
V’%€S. de.z € 'a— a.

Despite this similarity, there is still the crucial difference that type assign-
ments can be statically determined in HOL. Given any expression, most-general
types can be determined for the expression and all of its subexpressions. This is
not possible in Nuprl. This gives rise to a slightly nasty problem with the select
operator.

Consider the HOL expression @Qz.P(z). Whenever this expression is used in
some other expression, we can determine a type T for it, and the expression will
denote some value in (the meaning of) T. In Nuprl, we cannot determine such
a type in general, and the type must be passed in as an argument. Thus the
expression is translated into Nuprl as @z €T. P(z).

Because of this, a definition whose right-hand side mentions the select oper-
ator may translate to an operator that passes type arguments. Fortunately, this
happens relatively rarely. The default behaviour of the translator is to not pass
type arguments. Exceptions must be indicated by the user through the “hint”
mechanism.

3.6 Constants vs Operators

As indicated by the example in Section 2, definitions in Nuprl are typically op-
erators with arguments. In HOL, defined objects that take arguments are rep-
resented as functions. This could also be done in Nuprl, by simply making each
abstraction 0-ary and using A-abstractions on the right-hand side. The reason

this is not done is partly because of the undecidability of type-checking and type-
inference in Nuprl. The details are somewhat technical, but it has turned out
to be easier to organize facts related to typability (and a few other properties)
around operators with arguments. This approach has also allowed us to incor-
porate second-order pattern matching in a straightforward way in type checking
and rewriting.

Whether or not this difference is valuable, Nuprl’s tactic collection relies
on it heavily, so to incorporate HOL facts the constants need to be adjusted
accordingly. For each constant in an HOL theory to be imported, an arity is
computed. The arity is simply the number of (curried) arguments indicated by
the type of the HOL constant. The user can also supply arities for cases when
this default arity is undesirable. For example, the type of the operator o for
composing two functions gives a default arity of 3, while the desired value is 2.
Also, occasionally one will want the constant to map to a binding operator. This
is the case, for example, for a constant declared to be a “binder” in HOL, e.g.
h_exists in Section 2.

The arities are used when translating HOL expressions to Nuprl ones. When
a constant of arity n is applied to at least n arguments, the n-ary application is
replaced by an instance of the corresponding n-ary operator. If there are fewer
than n arguments, 7-expansions are first done to add a sufficient number of
arguments.

3.7 Partial Functions

In Nuprl, as in HOL, function types are total: a function of type A — B produces
a value of type B for every input of type A. However, most partial functions
can be given convenient types in Nuprl because of Nuprl’s subset type. For
example, consider hd, the function that takes the head of a list. In Nuprl, hd([])
is undefined, but we can give hd the type

{leN list|l # nil} - N,

for example.

In HOL, hd is defined on all lists: hd([]) is @z € ’a. true. This is a problem
because when the theory containing hd is translated into Nuprl, we have to
prove the well-formedness theorem for hd, and this requires showing that the
Nuprl-defined hd is defined on the empty list. This forces us into giving the
uncomputable HOL definition for hd in Nuprl. This kind of use of @ appears to
be frowned on in the HOL community and does not seem to arise much.

Nevertheless, such cases do arise. Fortunately, in all the cases we have exam-
ined so far, we can work around the problem. Consider again the example of hd.
We make the uncomputable definition for hd, but we also define a computable
version, call it hd’, and use this version in all subsequent definitions and in all
theorems except for the definitional axiom for hd. This works because, although
hd is defined on the empty list, this property is not taken advantage of. Consider
a theorem asserting that the head of the list formed by consing # onto [is z.

The theorem that is directly justified by imported HOL theories is something
like
VeecA VicA list. hd(z::1) = .

But in Nuprl this formula can be proved equal to
Vee A VieAlist. hd’(z:: 1) ==z
by using the following lemma as a conditional rewrite rule:
Vie A list. | # nil= hd(l) = hd’(1).

Note that this equivalence is within Nuprl, so it is irrelevant whether the HOL
proof of the theorem relied on hd being defined on the empty list.

3.8 Theorems and Tactics

A number of tactics require additional information to make effective use of the
theorems in Nuprl’s library. For instance, some tactics require theorems of a
certain kind to be annotated with special abstractions that have no logical sig-
nificance but provide guidance to the tactic. More commonly, tactics require
explicit indications, either by naming conventions or by explicit updates to refer-
ence variables via ML objects in the library, of relevant theorems and associated
information. Currently, this must be dealt with by hand for imported theorems,
just as with ordinary Nuprl theorems.

3.9 Unsolved Problems

One immediate problem we have not dealt with yet is HOL definitional pack-
ages. For example, there are packages that simulate various convenient forms of
inductive definition and provide useful tactics for reasoning about the definition.
While the theory objects generated by these packages can be readily imported
using our scheme, the result is too low-level in some ways. The connection of the
translated objects with the original higher-level definition is lost. It remains to
be seen how effective Nuprl’s tactics will be with such theories.

Other problems to be addressed in the future include abstract theories and
making importation more incremental. Also, it might be interesting to try to
import HOL tactics as well. The main obstacle to doing so is that HOL’s tactic
mechanism is incompatible with Nuprl’s. In Nuprl, each time a tactic is applied
by the user to refine a node in a proof tree, one is guaranteed by the system
that the inference is sound. There is no such guarantee in HOL; soundness is
guaranteed only for complete proofs. One way to fix this would be to redefine
HOL'’s tactic type to be like Nuprl’s, replacing the type thm with the type proof
of (possibly incomplete) proofs. Making such a change would probably only
affect the lowest levels of the system. Another way, incurring only a slight risk
of unsoundness, is to take the approach of HOL’s subgoal package.

References

10.

11.

12.

13.

. Part IITA: SCI Coherence Overview, 1995. Unapproved draft IEEE-P1596-

05Nov90-doc197-iii.

. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-

ment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

. M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanized

Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving

Environment for Higher Order Logic. Cambridge University Press, Cambridge,
UK, 1993.

. D.J. Howe. Semantics foundations for embedding hol in nuprl. Proceedings of

AMAST’96, 1996. (to appear).

. P. Jackson. Nuprl 4.2 Reference Manual. Cornell University, 1995. Available from

ftp://cs.cornell.edu/pub/nuprl/doc.

. P. B. Jackson. Exploring abstract algebra in constructive type theory. In

A. Bundy, editor, 12th Conference on Automated Deduction, Lecture Notes in Ar-
tifical Intelligence. Springer, June 1994.

. B. Jacobs and T. Melham. Translating dependent type theory into higher order

logic. In Proceedings of the Second International Conference on Typed Lambda
Calculi and Applications, volume 664 of Lecture Notes in Computer Science, pages
209-229. Springer, 1993.

. P. Martin-L6f. Constructive mathematics and computer programming. In Sizth

International Congress for Logic, Methodology, and Philosophy of Science, pages
153-175, Amsterdam, 1982. North Holland.

T. Melham. The HOL logic extended with quantification over type variables. For-
mal Methods in System Design, 3(1-2):7-24, August 1993.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining spec-
ification, proof checking, and model checking. In Proceedings of CAV’96, Lecture
Note in Computer Science. Springer Verlag, 1996.

M. van der Voort. Introducing well-founded function definitions in HOL. In Higher
Order Logic Theorem Proving and Its Applications, volume A-20 of IFIP Transac-
tions, pages 117-131. North-Holland, 1993.

This article was processed using the IATEX macro package with LLNCS style

