
International Journal of Network Security, Vol.5, No.2, PP.154–157, Sept. 2007 154

Code-based Ring Signature Scheme

Dong Zheng1, Xiangxue Li2, and Kefei Chen1

(Corresponding author: Dong Zheng)

Department of Computer Science and Engineering, Shanghai Jiaotong University1

School of Information Security Engineering, Shanghai Jiaotong University2

Shanghai 200030, P. R. China (Email: dzheng@sjtu.edu.cn)

(Received Nov. 20, 2005; revised and accepted Dec. 31, 2005 & Jan. 27, 2006)

Abstract

McEliece is one of the oldest known public key cryptosys-
tems, however it was not quite as successful as RSA. One
main reason is that it is widely believed that code-based
cryptosystems like McEliece do not allow practical digital
signatures. Although X.M. Wang presented a code-based
signature scheme in 1990, some authors find that it is not
secure. Recently, T.Courtois et al. show a new way to
build a practical signature scheme based on coding theory
(simply, Courtois et al.s scheme). The security is reduced
to the well-known syndrome decoding problem and the
distinguishability of permuted binary Goppa codes from
a random code. This shows that error correct codes can
be used to construct some other cryptosystems. In this
paper, we present, for the first time, a code-based ring
signature scheme with signature length of 144 + 126l bits
(l is the number of ring members), which is one of the
most short ring signature among all the presented ring
signature schemes up to now.
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1 Introduction

RSA and McEliece are the oldest public key cryptosys-
tems. They are based on intractability of factorization
and syndrome decoding problem respectively. However,
McEliece was not quite as successful as RSA, partially due
to its large public key and another main handicap of the
belief that McEliece could not be used in signature. Re-
cently, Nicolas T. Courtois, Matthieu Finiasz, and Nicolas
Sendrier (CFS) show a new way to build practical sig-
nature schemes with the McEliece public key cryptosys-
tem. They are based on the well-known hard syndrome-
decoding problem that after 30 years of research is still
exponential. Thus it would be very interesting to dispose
of some other cryptosystems (such as ring signature and
blind signature schemes) based on such hard decoding
problems. In this letter, we propose an approach of con-
structing ring signature that is based on the coding the-

ory. The main motivation for the suggested cryptosystem
comes from previous studies of McEliece-Based digital sig-
nature scheme [4] and ring signature [8].

Ring signature allows a member of an Ad Hoc collec-
tion of users U to prove that a message is signed by one
of U without revealing the identity of the actual signer.
Unlike group signatures, ring signature has no group man-
agers, no setup procedures, no revocation procedures, and
no coordination: any user can choose any set of possible
signers that includes himself, and sign any message by
using his secret key and the others’ public keys without
their consent. Since the notion of ring signature was first
formalized by Rivest et al. in [8], numerous ring signa-
ture schemes have been proposed [1, 3, 6, 10, 11], all of
those schemes are based on the intractability of factoriza-
tion, discrete logarithms problems (DLP) or elliptic curve
discrete logarithms problems (ECDLP).

The rest of this paper is organized as follows. In
Section 2, we introduce the properties of ring signature
scheme and the security properties that such a scheme
must satisfy. In Section 3, we review the McEliece-based
signature scheme proposed by N.T. Courtois, M.Finiasz,
and N.Sendrier. In Section 4, we present our new ring
signature. In Section 5, we discuss the signature cost and
length, and in Section 6, we discuss the security of the
proposed scheme, and finally we give a conclusion.

2 Ring Signature

Following the formalization about ring signatures pro-
posed in [8], we explain in this section the basic definitions
and the properties eligible to ring signature schemes.

A regular ring signature scheme consists of the follow-
ing three-tuple (Key-Gen, Sign and Verify):

• Key-Gen is a probabilistic polynomial algorithm
that takes a security parameter(s) and returns the
parameters (system parameters, private parameters
and public parameters).

• Sign is a probabilistic polynomial algorithm that
takes system parameters, a private parameter, a list
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of public keys pk1, · · · , pkl of the ring, and a message
M , the output of this algorithm is a ring signature σ
for the massage M .

• Verify is a deterministic algorithm that takes as in-
put a message M ,a ring signature σ, and the public
keys of all the members of the corresponding ring,
then outputs “True” if the ring signature is valid, or
“False” otherwise.

The resulting ring signature scheme must satisfy the
following properties:

• Correctness: any verifier with overwhelming prob-
ability must accept a ring signature generated in a
correct way.

• Anonymity: any verifier should not have probabil-
ity greater than 1/l to guess the identity of the real
signer who has computed a ring signature on behalf
of a ring of l members. If the verifier is a member
of the ring distinct from the actual signer, then his
probability to guess the identity of the real signer
should not have greater than 1/(l − 1).

• Unforgeability: any attacker must not have non-
negligible probability of success in forging a valid ring
signature for some message M on behalf of a ring
that does not contain him, even if he knows valid
ring signatures for messages, different from M, that
he can adaptively choose.

3 Review of Courtois et al.’s

McEliece-based Signature
Scheme [4]

Let F2 be the field with two elements {0, 1}, and C be a t-
error correcting Goppa codes of dimension k(k = n− tm)
and length n = 2m, (there are about 2tm/t such codes [7]).
G0 is a generating matrix of code C, H0 is the parity check
matrix of C, and it is a dual form of the generating matrix
G0. An element of Fn

2 is called a word, and elements
of C are called codewords. The product of a word and
the parity check matrix H0 is called a syndrome, it has
a length of n − k bits and is characteristic of the error
added to the codeword.

Let U and V are non-singular matrices (k × k and
(n − k) × (n − k) respectively) and P is an n × n
permutation matrix. Let G = UG0P and H = V H0P ,
h is a hash function returning a binary word of length
n − k. The private keys are G, U , P and the public key
is H .

Syndrome-Decoding (SD) Problem:
Instance: A binary r × n matrix H , a word s of Fn

2 , and
an integer w > 0
Problem: Is there a word x in Fn

2 of weight ≤ w such
that HxT = s?

Signature Algorithm:

• Hash the document M into s = h(M);

• Compute si = h([· · · s · · · |i]) for i = 1, 2, 3 · · · ;

• Find i0 the smallest value of i such that si is decod-
able;

• Use the trapdoor function to compute z such that
HzT = si0 ;

• Compute the index Iz of z in the space of words of
weight 9;

• Use [· · · Iz · · · |i0] as a signature for M , where Iz is
the index of z by IZ = 1 + (i1

1
) + (i2

2
) + · · · + (i9

9
),

and i1 < i2 < · · · < i9 denote the positions of the
non-zero bits of z.

Verification Algorithm:

• Recover z from its index Iz ;

• Compute s1 = HzT with the public key H ;

• Compute s2 = h([· · ·h(M) · · · |i0]) with the public
hash function h;

• Compare s1 and s2: if they are equal the signature
is valid.

4 Our Proposed Ring Signature
Scheme

As we know, the SD problem is NP-hard, all among
several known attacks for SD are fully exponential and
nobody has ever proposed an algorithm that behaves
differently for complete decoding and the bounded
decoding problems within a distance accessible to the
owner of the trapdoor. In this section, we will extend
T.Courtois et al.’s signature scheme to a practical ring
signature scheme, which is also based on syndrome
decoding problem. The three-tuple of our ring signature
is as follows.

Key-Gen (Key generating Algorithm):
Each potential signer Ai selects a t-error correcting Goppa
code Ci of dimension n− tm and length n = 2m, chooses
a generating matrix G0

i and chooses a generating matrix
H0

i , selects randomly two non-singular matrixes Ui, Vi

and a permutation matrix Pi, computes Gi = UiG
0
i Pi

and Hi = ViH
0
i Pi, then makes Hi as Ai’s public key and

Gi, Ui, Vi, Pi as Ai’s private keys.
As discussed in [4], the average number of tries needed

to find a decodable syndrome is approximately t!. Con-
sider the signature time, we have to take a t not greater
than 10. If we want our scheme to be secure we will need
a large n (the code length) of at least 216 for t = 9 or 215

for t = 10.



International Journal of Network Security, Vol.5, No.2, PP.154–157, Sept. 2007 156

In the following ring signature scheme, the signer is
user Ar.

Sign:

1) Hash the massage M into h(M);

2) (Initialization): Choose randomly words s̄q ∈ Fn−k
2

,
and compute sr+1,q = h(L|h(M)|s̄q) for q =
0, 1, 2, · · · ;

3) (Generate forwarding ring sequence): For i =
r + 1, · · · , l − 1, 0, 1, · · · , r − 1, choose randomly
zi,q ∈ Fn

2 (of weight t) and compute si+1,q =
h(L|h(M)|Hiz

T
i,q ⊕ si,q);

4) Find q̄ the smallest value of q such that sr,q̄ ⊕ s̄q̄ is
decodable;

5) Use the trapdoor function to compute zr,q̄ such that
Hrz

T
r,q̄ = sr,q̄ ⊕ s̄q̄;

6) Compute the index IZi,q̄
’s of zi,q̄’s in the space of

words of weight 9‘as follows: Izi,q̄
= 1 + (i1

1 ) + (i2
2 ) +

· · · + (i9
9 ), Where i1 < i2 < · · · < i9 denote the posi-

tions of the non-zero bits of zi,q̄;

7) Output the ring signature: select 0 as the glue
value, the resulting signature for M and L is the
l + 1 -tuple: (s0,q̄, Iz0,q̄

, Iz1,q̄
, · · · , Izl−1,q̄

). For sim-
plicity, let si = si,q̄, zi = zi,q̄, Izi

= Izi,q̄
, i =

0, · · · , l − 1, then the resulting signature is denoted
as (s0, Iz0

, Iz1
, · · · , Izl−1

).

Verify:
Given (s0, Iz0

, Iz1
, · · · , Izl−1

), M , and L:

1) Recover zi from the index Izi
, i = 0, 1, · · · , l − 1;

2) Compute si+1 = h(L|h(M)|Hiz
T
i ⊕ si) for i =

0, 1, · · · , l − 1, Accept if sl = s0, and reject other-
wise.

Analysis of the Proposed Scheme:
From the procedure of ring signature generation, we have:

sr+1 = h(L|h(M)|s̄q̄)

sr+2 = h(L|h(M)|Hi+1z
T
i+1 ⊕ sl+1)

...
...

sl = h(L|h(M)|Hl−1z
T
l−1 ⊕ sl−1) = s0

s1 = h(L|h(M)|H0z
T
0 ⊕ s0)

s2 = h(L|h(M)|H1z
T
1 ⊕ s1)

sr = h(L|h(M)|Hr−1z
T
r−1 ⊕ sr−1).

Since Hrz
T
r = sr ⊕ s̄q̄, we have

sr+1 = h(L|h(M)|Hrz
T
r ⊕ sr)

= h(L|h(M)|s̄q̄).

5 Cost and Length

Signature Cost:
The essential operation in our ring signature is to make
t! decoding attempts, as in the CFS signature scheme [4],
for each of these attempts we need the following:

1) Compute the syndrome: we need to compute l hash
functions and l − 1 multiplication Hizi,q, and then
we have a syndrome.

2) Solve the key equation: the signer needs to apply
Berlekamp-Massey algorithm to obtain the locator
polynomial, with the costs O(t2) operations in F2m .

3) Find the roots of the locator polynomial. If the syn-
drome is decodable, the locator polynomial splits in
F2m [z] and its roots give the error positions. It costs
t2m operations in F2m .

In Step 1 of our scheme, the signer has to compute
l hash functions and l − 1 multiplication Hizi,q, in
Step1 of CFS signature scheme, the signer only needs
to compute one hash functions and no multiplication
Hizi,q. In Steps 2 and 3 of our scheme, the signer does
the same thing as one does in the Steps 2 and 3 on
CFS scheme. Due to the fact that the head cost in the
signature generation of our signature scheme or CFS
scheme are Steps 2 and 3, we may say the total cost
of our signature generation is approximate to that of CFS.

Verification Cost:
The verifier needs to recover zi’s from Izi

, computes l
multiplication Hiz

T
i , and l + 1 hash functions. Each

multiplication Hiz
T
i can be computed by adding the t

corresponding columns. The total cost of this verification
is lt column operations and l + 1 hash computations.

Ring Signature Length:
The signature for massage M and ring L is
(s0, Iz0

, Iz1
, · · · , Izl−1

), if we take m = 16 and t = 9,
then the length of s0 is 144 bits (n − k bits = tm
bits= 16 × 9 = 144 bits), the length required to store
Izi

is about 126 bits, the total length of our signature is
about 144 + 126l. For the discrete logarithm based ring
signature schemes [5, 8], the signature length is more
than 160 + 1024l bits, for the ECC or pairing based ring
signature schemes [11], the signature length is at least
160 + 160l bits.

6 Security

Anonymity: For the anonymity, We have that any
attacker outside a ring of l possible users has probability
1/l to guess which member of the ring has actually
computed a given signature on behalf of this ring,
because all zi but zr are taken randomly from Fn

2 , in
fact, zr = z̄ ⊕ z̄r, because z̄ is distributed uniformly over
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Fn
2 , this results in that zr is uniformly over Fn

2 .

Unforgeability:
When n = 1, our ring signature scheme degenerates into
the McEliece-Based signature proposed by N.T. Cour-
tois et.al (let H0z

T
0 ⊕ s0 = i0 in N.T.Courtoiss scheme).

N.T.Courtois’s scheme is non-forgeability under the two
assumptions:

• Solving an instance of decoding problem is difficult.

• Recovering the underlying structure of the code is
difficult.

For n > 1, we denote L a fix set of ring members, and
suppose that an attacker A’s public key does not belong
to L, he may do the following:

• A1 Choose randomly a word s0 ∈ Fn−k
2 ;

• A2 Do the same as “generate forward ring sequence”
of Sign for i = 0, 1, · · · , l − 2;

• A3 Assign s0 to h(L|h(M)|Hl−1z
T
l−1

⊕ sl−1);

• A4 Output the ring signature (s0, z0, z1, · · · , zl−1).

Since h acts as a random oracle and zi’s are
taken randomly from Fn

2 , the probability of s0 =
h(L|h(M)|Hl−1z

T
l−1

⊕ sl−1) is 1/2n. So we say that our
proposed ring signature is unforgeable.

7 Conclusion

We presented a code-based ring signature scheme. The se-
curity is based on the well-known hard syndrome-decoding
problem that is still exponential. The signature length
and the verification cost will always remain extremely
small. The unique features make our coding-based ring
signature scheme an exclusive choice for some applications
while excluding other.
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