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Abstract

Developing a theory of bisimulation in higher-order lan-
guages can be hard. Particularly challenging can be: (1)
the proof of congruence, as well as enhancements of the
bisimulation proof method with “up-to context” techniques,
and (2) obtaining definitions and results that scale to lan-
guages with different features.

To meet these challenges, we presentenvironmental
bisimulations, a form of bisimulation for higher-order lan-
guages, and its basic theory. We consider four represen-
tative calculi: pureλ-calculi (call-by-name and call-by-
value), call-by-valueλ-calculus with higher-order store,
and then Higher-Orderπ-calculus. In each case: we
present the basic properties of environmental bisimilarity,
including congruence; we show that it coincides with con-
textual equivalence; we develop some up-to techniques, in-
cluding up-to context, as examples of possible enhance-
ments of the associated bisimulation method.

Unlike previous approaches (such as applicative bisim-
ulations, logical relations, Sumii-Pierce-Koutavas-Wand),
our method does not require induction/indices on evalua-
tion derivation/steps (which may complicate the proofs of
congruence, transitivity, and the combination with up-to
techniques), or sophisticated methods such as Howe’s for
proving congruence. It also scales from the pureλ-calculi
to the richer calculi with simple congruence proofs.

1 Introduction

Behavioral equivalence and bisimulation in higher-
order languages. Proving equivalence of computer pro-
grams is an important but challenging problem. Equiv-
alence between two programs means that the programs
should behave “in the same manner” under any context [24];
this notion of equality is calledcontextual equivalence.
Finding effective methods for equivalence proofs is particu-
larly challenging inhigher-orderlanguages (i.e., languages
where program code can be passed around, as opposed to
first-order languages).

Bisimulation has emerged as a powerful operational
method for proving equivalence of programs in various
kinds of languages, due to the associated co-inductive proof
method. Further, a number of enhancements of the bisimu-
lation method have been studied, usually calledup-to tech-
niques. To be useful, the behavioral relation resulting from
bisimulation—bisimilarity—should be acongruence; and
preferably it should coincide with contextual equivalence.
For first-order languages, there is a common consensus
about what bisimulation is and how it should be defined, and
the associated proof techniques are well-developed (e.g.,
techniques for proving congruence, and up-to techniques).

The picture is less clear for higher-order languages, as
available definitions and proof techniques are often diffi-
cult to adapt to different languages. We informally discuss
some key design issues for bisimulation, and why previ-
ous proposals of bisimulations are not robust enough, using
an abstract form of transitions for higher-order calculi, and
occasionally referring to concrete calculi such asλ-calculi
and Higher-Orderπ-calculus (HOπ). (The actual syntax for
transitions in the calculi of the paper will be slightly dif-
ferent; for instance in HOπ we will use the “early” style,
rather than the “late” one as below.) Transitions can take
three forms:

• First-order transitionsP
`−→ P ′ (the label̀ is first-order,

that is, it does not contain terms). Reductions in pureλ-
calculi andτ -transitions in HOπ are of this kind (in the
former case,̀ is omitted).

• Higher-order outputtransitionsP
`−→ 〈P1〉P2, in which

a higher-order valueP1 is produced andP2 is the contin-
uation. In pureλ-calculi this occurs whenP is a value
(thusP itself is the value emitted and there is no con-
tinuation). In HOπ it occurs when an output prefix is
consumed, as inaP1.P2

a−→ 〈P1〉P2, where processP1

is emitted along channela.

• Higher-order inputtransitionsP
`−→ (x)P ′, in which the

abstraction(x)P ′ so revealed then calls for a higher-order
value to instantiate the variablex. In λ-calculus, abstrac-
tions are produced by terms such asλx. Q; in HOπ, by
input prefixes such asa(x). Q.



The bisimulation clause for first-order transitions is uncon-
troversial, and is the standard one for first-order languages.
The main difficulty is finding the appropriate clauses for the
higher-order transitions. SupposeR is a bisimulation, with
(P, Q) in R. Consider matching output transitions

P
`−→ 〈P1〉P2 and Q

`−→ 〈Q1〉Q2. (∗)

How shouldP1, P2, Q1, Q2 be related? ImposingP1 bisim-
ilar to Q1, andP2 bisimilar toQ2, can be too strong a re-
quirement. For instance, in HOπ and in calculi with in-
formation hiding (or generative names), it breaks the corre-
spondence with contextual equivalence.

On the other hand, matching input transitions

P
`−→ (x)P ′ and Q

`−→ (x)Q′ (∗∗)

raise the question of what should be substituted forx; i.e.,
for which termsP1 andQ1 should we requireP ′{P1/x} R
Q′{Q1/x}? We discuss some possible choices:

• P1 andQ1 are all pairs of identical terms, as in applica-
tive bisimulations (the most studied form of bisimulation
for higher-order calculi, e.g., [2, 10, 19, 25, 27, 30]). This
is unsound under the presence of generative names, data
abstraction, or encryption [13, 41, 42]. Moreover, prov-
ing that bisimilarity is a congruence can be hard. To
see why, consider an application context, and a pair of
bisimilar functionsM,N plus a pair of bisimilar argu-
mentsM ′, N ′. We have to prove thatMM ′ andNN ′

are bisimilar, but we are unable to apply the bisimulation
hypothesis on the functionsM andN since their argu-
mentsM ′ andN ′ are bisimilar but not necessarily iden-
tical. Difficulties also arise with up-to context techniques
(see [17, 19, 30] for the usefulness of these techniques in
higher-order languages and the problems with applicative
bisimulations).

• P1 and Q1 are related byR. This makes the above
congruence argument forMM ′ andNN ′ work. How-
ever, this definition of bisimulation, which we call aBA-
bisimulation,1 breaks the monotonicity of the generat-
ing functional (the function from relations to relations
that represents the clauses of bisimulation). Indeed, BA-
bisimulations in general are unsound. For instance, take
the identity functionI = λx. x and Σ = EE where
E = λx. λy. xx. TermΣ is a “purely convergent term”
because it always reduces to itself when applied to any
argument, regardless of the input received. Of courseI
andΣ should not be regarded as bisimilar, yet{(I, Σ)}
would be a BA-bisimulation (the only related input is the
pair(I,Σ) itself, and the result of the application is again
the same pair).

1BA indicates that the bisimilarity uses “Bisimilar Arguments.”

• P1, Q1 are fresh variables. This bisimulation method [32,
39] is complete (with respect to contextual equivalence)
only in certain extensions of theλ-calculus (e.g., call-by-
value withbothstateandcallcc).

Environmental bisimulations and paper contributions.
In this paper we proposeenvironmental bisimulationsas a
bisimulation method for higher-order languages.

A key idea of environmental bisimulations is to make a
clear distinction between the tested terms and the environ-
ment. An element of an environmental bisimulation has, in
addition to the tested termsP andQ, a further component
E , the environment, which expresses the observer’s current
knowledge. (In languages richer than pureλ-calculi, there
may be other components, for instance to keep track of gen-
erated names.) The bisimulation requirements for higher-
order inputs and outputs naturally follow. In the higher-
order outputs (∗), (P1, Q1) are published to the environ-
ment, so they should be put intoE . Thus roughly the clause
becomes:

• if (E , P, Q) ∈ R andP
`−→ 〈P1〉P2

thenQ
`−→ 〈Q1〉Q2 and(E ∪ {(P1, Q1)}, P2, Q2) ∈ R.

In the higher-order inputs (∗∗), the argumentsP1 andQ1

should be terms that the observer can build using the current
knowledge; that is, terms obtained by composing the values
in E using the operators of the calculus. We writeE? for
pairs of terms of this form. The clause roughly becomes:

• if (E , P, Q) ∈ R andP
`−→ (x)P ′ thenQ

`−→ (x)Q′ and
(E , P ′{P1/x}, Q′{Q1/x}) ∈ R for any(P1, Q1) ∈ E?.

Finally, we need clauses to express the observer’s test ca-
pabilities on the environment. For instance, inλ-calculi the
observer can check the consistency of values related inE
(e.g., the outermost construct should be the same); in HOπ,
the observer is allowed to run, at any time, processes that
are related in the environment, which yields the clause:

• (E , P,Q) ∈ R implies (E , P | P1, Q | Q1) ∈ R, for
(P1, Q1) ∈ E .

As for BA-bisimulations, so in environmental bisimula-
tions testing higher-order inputs onrelatedarguments facil-
itates proofs of congruence (and up-to contexts). But unlike
BA-bisimulations, the separation between environment and
tested terms maintains the monotonicity of the generating
functional.

A possible drawback of environmental bisimulations
over, say, applicative bisimulations is that the set of argu-
ments to related functions that have to be considered in
the bisimulation clause is larger (since it also includes non-
identical arguments). As a remedy to this, we propose the
use of up-to techniques (in particular techniques involving



up-to contexts), which are easier to establish for environ-
mental bisimulations than for applicative bisimulations, and
which allow us to considerably enhance the bisimulation
proof method.

We use a small-step, rather than big-step, semantics in
environmental bisimulations. This is important in non-
confluent languages but may seem cumbersome in, e.g.,λ-
calculi, because it seems to require more elements in bisim-
ulations than big-step semantics. Again, we remedy this
with up-to techniques (such as “up-to reduction”). Further,
small-step semantics together with up-to techniques some-
timessimplifiesequivalence proofs, as we can exploit the
possibility of comparing terms in the middle of evaluations
without having to reduce them to values (e.g., Example 4.6).
Big-step versions of environmental bisimulations are any-
way derived as a corollary of soundness of certain up-to
techniques.

To test the robustness of environmental bisimulations,
we transport definitions and proof techniques from pure
λ-calculi to λ-calculi with full-fledged store (a language
with information hiding by generative names), and to
Higher-Orderπ-calculi (as examples of concurrent, non-
deterministic languages). In each case: we present the ba-
sic properties of environmental bisimilarity, including its
congruence properties; we show that it coincides with con-
textual equivalence (in concurrency, this is barbed con-
gruence); we develop a few up-to techniques as examples
of possible enhancements of the associated bisimulation
method. These techniques includeup-to contexts, up-to ex-
pansion, andup-to full contextsin which the erased contexts
can bind free variables of their arguments.

In the languages without references,logical bisimula-
tion—a form of environmental bisimulations without ex-
plicit environment (the environment is taken to be the bisim-
ulation itself)—is also a viable technique. In logical bisimu-
lation the generating functional is non-monotone. We show
in [34] (this is further developped in [35]) that the func-
tional has nevertheless a greatest fixed-point that coincides
with contextual equivalence.

Environmental bisimulations have been inspired by
bisimulations for higher-order calculi with information hid-
ing mechanisms (encryption [41], data abstraction [42], and
store [17]), where an environment was necessary because of
the information hiding. In this respect, our contribution is
to isolate this idea, simplify and strengthen the method, de-
velop its basic theory, so to propose it as a general method
for higher-order languages. See Section 6 for more details.

We sometimes refer to [34], which contains further de-
tails on definitions and results that, due to a lack of space,
are not included in the present paper.

2 Preliminaries

We introduce general notations and terminologies for
the paper. Familiarity with standard terminologies (such as
free/bound variables, andα-conversion) is assumed.

We use meta-variablesM, N, P,Q, . . . for terms, and
V,W, . . . for values (where the notion of terms and values
varies depending on the calculus being considered). We
identify α-convertible terms. We writeM{N/x} for the
capture-avoiding substitution ofN for x in M . A term
is closedif it contains no free variables. The set of free
variables of a termM is fv(M). A contextC is an expres-
sion obtained from a term by replacing some sub-terms with
holesof the form[·]i. We writeC[M1, . . . , Mn] for the term
obtained by replacing each occurrence of[·]i in C with Mi.

We use meta-variablesR,S, E ,F , . . . for binary rela-
tions;RS is the composition ofR andS, whereasR? is
theclosure of relationR under contexts, i.e.

{(C[M1, . . . ,Mn], C[N1, . . . , Nn]) s. t. MiRNi, ∀i}
and contains bothR and the identity relation. By default,
we restrictR? to closed terms unless noted otherwise.

SequencesM1, . . . , Mn are often abbreviated tõM , and
notations are extended to tuples componentwise. Hence,
we write C[M̃ ] for C[M1, . . . , Mn], and M̃RÑ for
(M1RN1) ∧ · · · ∧ (MnRNn). We have some remarks on
the results of this paper:

• Although the results are often stated for closed values
only, they can be generalized to open terms in a com-
mon way. In λ-calculi, this can be done by defin-
ing an ad hoc relation—the least congruence contain-
ing (M, (λx. M)x) for everyM—and proving its preser-
vation under evaluation, as in Sumii-Pierce [41] and
Koutavas-Wand [17]. (Alternatively, we may also con-
sider a bisimulation betweenM and (λx. M)x. The
proof is straightforward in either case.) Thus proper-
ties between open termsM andN can be derived from
the corresponding properties between the closed terms
λx̃. M andλx̃. N , for {x̃} ⊇ fv(M)∪ fv(N). In HOπ, it
is similar; for instance, iffv(M) ⊆ {x} then one relates
processesM andνa(a(x). M | ax.0), wherea is a fresh
name.

• The results are stated for untyped languages. Adapt-
ing them to languages with a simply-typed discipline is
straightforward. (We use a simply-typed calculus in an
example.)

3 Call-by-nameλ-calculus

The setΛ of pureλ-terms is defined by:

M, N ::= x | λx. M | MN



We write Λ• for the subset of closed terms. Thecall-by-
name reduction relation−→ is the least relation overΛ•

closed under the following rules.

β : (λx. M)N −→ M{N/x} µ :
M −→ M ′

MN −→ M ′N

We write=⇒ for the reflexive and transitive closure of−→.
The values are the terms of the formλx.M .

Environmental bisimulation. An environmental relation
is a set of elements each of which is of the form(E ,M, N)
or E , and whereM,N are closed terms andE is a relation
on closed values. We useX ,Y to range over environmental
relations. In a triple(E ,M, N) the relation componentE is
theenvironment, andM,N are thetested terms. We write
M XE N for (E ,M, N) ∈ X .

Definition 3.1 An environmental relationX is anenviron-
mental bisimulationif

1. M XE N implies:

(a) if M −→ M ′ thenN =⇒ N ′ andM ′ XE N ′

(b) if M = V thenN =⇒ W andE ∪ {(V, W )} ∈ X
(c) the converse of the above two conditions, onN

2. if E ∈ X then for all (λx. P, λx. Q) ∈ E and for all
(M1, N1) ∈ E? it holds thatP{M1/x} XE Q{N1/x}.

We write≈ for the union of all environmental bisimulations,
and call it environmental bisimilarity.

Relations≈E , as well as the other bisimulation equiva-
lences in the paper, are extended to open terms using clos-
ing abstractions. Thus if̃x = fv(M,N) thenM ≈E N if
λx̃. M ≈E λx̃. N .

For examples and applications of≈E , the most important
case is whenE = ∅: this states the equivalence between two
terms without any predefined knowledge from the observer.
We therefore introduce a special symbol for it, and write
M ' N as an abbreviation forM ≈∅ N .

Example 3.2 We haveI1 ' I2 for I1
def
= λx. x and I2

def
=

(λx. x)(λx. x), by takingX = {(E , I1, I2) | E ⊆ Id} ∪
{(E ,M,M) | E ⊆ Id ∧ M ∈ Λ•} ∪ {E | E ⊆ Id} for
Id = {(V, V ) | V ∈ Λ•}. Note that the singleton set
{(∅, I1, I2)} by itself is not an environmental bisimulation
because of theE? in clause (2). Burdens like this (or more)
will be removed by the up-to techniques described later in
this section. Specifically, the finite set{(∅, I1, I2), ∅} will
be an environmental bisimulation “up to contexts.”

Example 3.3 We have I1 ' I3 for I1
def
= λx. x

and I3
def
= λx. (λy. y)x, by taking X =

{(E ,M, N), (E , M, (λy. y)N) | E ⊆ S? ∧ M S? N}
∪{E | E ⊆ S?} for S = {(I1, I3)}. Proving this to be
an environmental bisimulation only using the definition
above is even harder: we need an induction on contexts in
clause (1.a). Again, with up-to techniques, the finite set
{(S, I1, I3),S} suffices (it is an environmental bisimulation
up to contexts and reduction).

Basic properties. It is immediate to check that the union
of bisimulations is a bisimulation itself; hence we derive:

Lemma 3.4 ≈ is the largest environmental bisimulation.

Lemma 3.5 M ≈E N andE ′ ⊆ E implyM ≈E′ N .

Lemma 3.6 M ≈E1 N andN ≈E2 L implyM ≈E1 E2 L.

The last lemma can be proved by showing{E ′ | E ′ ⊆
E1 E2 for E1, E2 ∈ ≈} ∪ {(E ′, P, R) | E ′ ⊆ E1 ◦ E2, P ≈E1
Q ≈E2 R} to be an environmental bisimulation. A corollary
of it is the transitivity of'.

We now consider the congruence properties of the bisim-
ilarity. In bisimilarities for higher-order languages, these
are usually the most delicate basic properties to establish.
With the exception of Lemma 3.10, the properties below
will hold in all theλ-calculi we consider in the paper (with
occasional minor adjustments). We write≈̂E for the restric-
tion of≈E to values, and similarly for̂'.

Lemma 3.7 (congruence for values)For all E , relation
≈̂E is a congruence. In particular,̂' is a congruence.

In call-by-nameevaluation contextsare described by the
following grammar:C := CM | [·]
Lemma 3.8 (arbitrary terms under evaluation contexts)
For all E , relation≈E is preserved by evaluation contexts
(i.e., if M ≈E N andC is an evaluation context, then also
C[M ] ≈E C[N ]).

Lemmas 3.7 and 3.8 are proved simultaneously, defin-
ing appropriate bisimulations and reasoning by induction
on contexts.

We write λ. M for the thunk obtained fromM (i.e., a
termλx. M with x 6∈ fv(M)).

Lemma 3.9 (congruence for arbitrary terms, thunked)
For all E , if λ. M ≈E λ.N , then alsoC[M ] ≈E C[N ], for
all contextsC.

The proof uses Lemma 3.7 and validity ofβ-conversion
(the fact that(λx.M)N ' M{N/x}, for anyλx. M andN
closed, is preserved by any context).

In the case of call-by-name and other pureλ-calculi, the
above result can be simplified and strengthened: for allE ∈
≈, relation≈E is a congruence. In particular we have:



Lemma 3.10 Relation' is a congruence relation.

Again, the proof is by induction on contexts. (In richerλ-
calculi the statement of this lemma may need to be refined,
see e.g., [34, Remark D.2].)

Up-to techniques. We prove Lemma 3.10 using a few
“up-to” techniques, as enhancements of the bisimulation
proof method. We introduce these techniques, and a few
others, below. Such techniques allow us to prove bisimula-
tion results using relations that in general are not themselves
bisimulations, but are contained in a bisimulation. The full
definitions are given in [34, Appendix A]; here, we simply
indicate the modifications to the bisimulation clauses (i.e.,
the clauses of Definition 3.1). We omit the statements of
soundness of the techniques.

Up-to environment.This technique introduces some flexi-
bility in the choice of the environment for two tested terms,
by allowing environments that are larger than those re-
quested by Definition 3.1 (by Lemma 3.5, a larger environ-
ment gives a stronger requirement). For instance, the tech-
nique can allow us to avoid environments that incrementally
grow during the bisimulation game, retaining instead only
their limit (i.e., the largest environment). In clause (1.a),
we replace “M ′ XE N ′” with “ M ′ XE′ N ′ for someE ′
with E ⊆ E ′,” and similarly in (2); in (1.b), we replace
“E ∪ {(V, W )} ∈ X ” with “ E ′ ∈ X for someE ′ with
E ∪ {(V,W )} ⊆ E ′.”
Up-to bisimilarity.This technique introduces a (limited) use
of ' on tested terms. This can allows us to avoid bisim-
ulations with elements that, behaviorally, are the same.
In clause (1.a), we replace “M ′ XE N ′” with “ M ′ XE
' N ′”; in (1.b), we replace “E ∪ {(V, W )} ∈ X ” with
“E ∪ {(V, W ′)} ∈ X for someW ′ with W ' W ′”; in (2),
we replace “P{M1/x} XE Q{N1/x}” with “ P{M1/x} '
XE ' Q{N1/x}.” We cannot strengthen up-to bisimilar-
ity by using' also on the left-hand side ofX in clauses
(1.a) and (1.b), for the technique would be unsound; this
is similar to the problems of up-to bisimilarity in standard
small-step bisimilarity [22].

Up-to reduction and up-to expansion.This technique ex-
ploits the confluent property of reduction so to replace
tested terms with derivatives of them. When reduction is
confluent this technique avoids the main disadvantage of
small-step bisimulations over the big-step ones, namely the
need of considering each single derivative of a tested term.

In clause (1.a), we replace “M ′ XE N ′” with “there
are M ′′, N ′′ with M ′ =⇒ M ′′ and N ′ =⇒ N ′′ such
thatM ′′ XE N ′′”; similarly, in (2) replace “P{M1/x} XE
Q{N1/x}” with “there areM ′, N ′ with P{M1/x} =⇒ M ′

andQ{N1/x} =⇒ N ′ such thatM ′ XE N ′.”

The technique allows us to derive the soundness of the
“big-step” version of environmental bisimulation, in which
clauses (1.a) and (1.b) are unified by requiring that

• if M =⇒ V thenN =⇒ W andE ∪ {(V, W )} ∈ X .

Up-to contexts.This technique allows us to cancel a com-
mon context in tested terms, requiring instead that only the
arguments of such context be pairwise related. Thus in
clauses (1.a) and (2) the final occurrence ofXE is replaced
byXE?, and in clause (1.b), “E∪{(V, W )} ∈ X ” is replaced
by “E ∪ {(V,W )} ⊆ E ′?, for someE ′ ∈ X .”

Up-to expansion and up-to full contexts.More powerful
than up-to reduction and up-to contexts are theup-to expan-
sion andup-to full contextstechniques. We discuss them
in [34, Appendix B], in connection with logical bisimula-
tions. The versions for environmental bisimulation are sim-
ilar. Up-to reduction and up-to contexts remain however
interesting because they are simpler, and easier to combine
with other techniques and to adapt to richer languages.

Combinations of up-to.The previous techniques can be
combined together, in the expected manner. We shall see
an example in Section 4 (up-to environment, reduction and
contexts).

Contextual equivalence.

Definition 3.11 (contextual equivalence)Terms M and
N are contextually equivalent, writtenM ≡ N , if, for any
contextC such thatC[M ] andC[N ] are closed,C[M ] ⇓ iff
C[N ] ⇓.

Theorem 3.12 (soundness and completeness of bisimu-
lation) Relations≡ and' coincide.

Logical bisimulations. A special case of environmental
bisimulation is when all environments in the triples are the
same. In this case we can drop all environments in the
bisimulation, if we require that each pair in the environment
is also a pair of tested terms. For lack of space we refer to
[34] for the details.

Call-by-value λ-calculus. Environmental bisimulations
can be adapted to the call-by-valueλ-calculus with mi-
nor modifications that take into account the different notion
of value. We discuss call-by-valueλ-calculus in [34, Ap-
pendix C], together with an example.

4 Imperative call-by-valueλ-calculus

In this section, we study the addition of imperative fea-
tures (higher-order references, that we call locations). For



this, we use Koutavas and Wand’s language [17] (a call-by-
valueλ-calculus, with locations and a few other auxiliary
operators).

The syntax and semantics of the language are given in
[34, Appendix D]. It is a standard call-by-valueλ-calculus
with constants, tuples, creation of new locations, deferenc-
ing, and assignment. We uses, t to range over stores, i.e.,
finite mappings from locations to closed values andl, k over
locations. Thens[l = V ] is the update ofs (possibly an ex-
tension ofs if l is not in the domain ofs). We write∅ for the
empty store, anddom(s) for the domain ofs. We writes]s′

for the union of the two stores whendom(s) anddom(s′)
are disjoint.? is the unit value (i.e., nullary tuple). We of-
ten writeM1; M2 for (λx. M2)M1 whenx 6∈ fv(M2). We
write 〈s ; M〉 −→ 〈s′ ; M ′〉 for a small-step reduction re-
lation (where in〈s ; M〉, M is a term ands its store), and
=⇒ for the reflexive and transitive closure of−→. We write
〈s ; M〉 ⇓ if 〈s ; M〉 =⇒ 〈s′ ; V 〉 for somes′ andV . A
configuration〈s ; M〉 is calledwell-formedif M is closed
and all the locations inM ands are indom(s).

In this section,E? is the closure of a relation under
location-freecontexts (i.e., contexts without free locations).
So, for example,(l, l) is in E? only if (l, l) ∈ E .

The bisimulation. Let E ,F range over relations on val-
ues. The notion of environmental relation is modified
to accommodate stores, which are needed to run terms.
Thus the elements of an environmental relation are now
of the form (E , 〈s ; M〉, 〈t ; N〉) or (E , s, t). Further, the
relation must bewell-formed, in the sense that in a tuple
(E , 〈s ; M〉, 〈t ; N〉) the free locations inM ands and all
left components of pairs inE (resp.N and t and all right
components of pairs inE) must appear in the domain of
s (resp.t). Similarly for an element(E , s, t). We write
〈s ; M〉 XE 〈t ; N〉 when(E , 〈s ; M〉, 〈t ; N〉) ∈ X .

Definition 4.1 An environmental relationX is anenviron-
mental bisimulationif

1. 〈s ; M〉 XE 〈t ; N〉 implies:

(a) if 〈s ; M〉 −→ 〈s′ ; M ′〉 then 〈t ; N〉 =⇒ 〈t′ ; N ′〉
and〈s′ ; M ′〉 XE 〈t′ ; N ′〉

(b) if M = V then 〈t ; N〉 =⇒ 〈t′ ; W 〉 and (E ∪
{(V, W )}, s, t′) ∈ X

(c) the converse of the above two conditions, onN

2. if (E , s, t) ∈ X then for all(V, W ) ∈ E we have:

(a) V = c impliesW = c

(b) V = (V1, . . . , Vn) impliesW = (W1, . . . , Wn) and
(E ∪ {(V1,W1), . . . , (Vn,Wn)}, s, t) ∈ X

(c) for all freshl, l′, we have
(E ∪ {(l, l′)}, s[l = 0], t[l′ = 0]) ∈ X

(d) if V = l thenW = l′, for somel′, and moreover,

i. (E ∪ {(s(l), t(l′))}, s, t) ∈ X
ii. for all (V1,W1) ∈ E?, we have

(E , s[l = V1], t[l′ = W1]) ∈ X
(e) if V = λx. P thenW = λx.Q and for all (V1,W1) ∈
E? it holds that〈s ; P{V1/x}〉 XE 〈t ; Q{W1/x}〉

(f) the converse of the above five conditions, onW

We write ≈ for environmental bisimilarity, the union
of all bisimulations. We write〈s ; M〉 ≈E 〈t ; N〉 if
(E , 〈s ; M〉, 〈t ; N〉) ∈ ≈.

The definition of the environmental bisimulation above
may seem much more complex than the definition for pure
λ-calculi discussed so far. That is due to the presence of
stores and additional language constructs. The essential
structure of the definition is the same as the case for pure
λ-calculi: The conditions (1.a)–(1.c) are the same except
the existence of stores. The conditions (2.a)–(2.f) state that
the top-level language constructors of related values are the
same (in (2.a) they are constants, in (2.b) tuples, in (2.d)
locations, in (2.e) functions; (2.c) accounts for the possibil-
ity of extending the stores) and that for every operation on
related values, the results are also related.

All the basic properties for environmental bisimulations
in Section 3 remain valid with due adjustments. We present
congruence results, however, as the presence of locations
introduce some subtleties.

Lemma 4.2 (congruence for values)
If 〈s ; V 〉 ≈E 〈t ; W 〉, then〈s ; C[V ]〉 ≈E 〈t ; C[W ]〉 for
any location-free contextC.

The restriction thatC is location-free is important (espe-
cially concerning those locations in the domain ofs). For
example,〈[l = 0] ; λx. l := 0〉 ≈E 〈[l = 0] ; λx. l := 1〉
holds forE = {(λx. l := 0, λx. l := 1)} (intuitively be-
cause the effect on updates onl is invisible if the observer
can access locations only viaλx. l := 0 andλx. l := 1).
Let C = ([·]1?; if !l = 0 then 0 else Ω) (whereΩ is a
divergent term). Obviously,〈[l = 0] ; C[λx. l := 0]〉 ≈E
〈[l = 0] ; C[λx. l := 1]〉 does not hold.

To extend Lemma 4.2 to arbitrary contexts (that may
contain free locations), we have to make sure that the loca-
tions that appear free in the context are related in the bisim-
ulation. One way of expressing this is as follows:

Corollary 4.3 If 〈s ; (V, l̃)〉 ≈E 〈t ; (W, l̃′)〉 where
dom(s) = {l̃} anddom(t) = {l̃′}, then〈s ] s′ ; C[V ]〉 ≈E
〈t ] s′ ; C[W ]〉 for any contextC and stores′ such that
〈s ] s′ ; C[V ]〉 and〈t ] s′ ; C[W ]〉 are well-formed.

We establish the correspondent of Lemma 3.8:



Lemma 4.4 [congruence for all terms in evaluation
contexts] 〈s ; M〉 ≈E 〈t ; N〉 implies 〈s ; C[M ]〉 ≈E
〈t ; C[N ]〉 for any location-free evaluation contextC.

Again, the result can be extended to contexts with free lo-
cations as we discussed for Lemma 4.2.

Contextual equivalence and up-to techniques. The
bisimulation is sound and complete with respect to contex-
tual equivalence (see [34, Appendix D] for the definition of
contextual equivalence in theλ-calculus with store):

Theorem 4.5 (soundness and completeness)Let V and
W be closed andLoc(V ) ∪ Loc(W ) = {l̃}. Then,V ≡ W

if and only if〈[l̃ = 0̃] ; (V, l̃)〉 ≈∅ 〈[l̃ = 0̃] ; (W, l̃)〉.

The up-to techniques developed for environmental bisim-
ulation in pureλ-calculi are also valid for the imperative
calculus, again with the expected modifications due to the
enriched language. As an example, in [34, Appendix D] we
report the full definition of “up to environment, reduction
and contexts” which we use in Example 4.6.

Example 4.6 (This example is a minor modification of
Koutavas and Wand’s example [17], Section 6.2). Take:

M
def
= λg.νx (g λz. (x := !x + 2));

λz. if !x mod 2 = 0 then ? else Ω

N
def
= λg. (g λz. ?); λz. ?

Intuitively, the two terms are equivalent because the loca-
tion bound byx will be initialized to0 and then incremented
by2, and therefore maintains an even number as its content.

We define, as abbreviations

P
def
= λz. (l := !l + 2)) Q

def
= λz. ?

R
def
= λz. if !l mod 2 = 0 then ? else Ω

Eel1;el2;el′
def
= {(M,N), (l̃1, l̃2)} ∪ (∪l∈el′{(P, Q), (R,Q)})

where l̃1 ∩ l̃′ = ∅. Recall thats ] r indicates the store
composed bys and r, with the implicit assumption thats
and r have disjoint domains. We now takeX to be the
set consisting of(∅, 〈∅ ; M〉, 〈∅ ; N〉), and all triples of the
form (Eel1;el2;el′ , s ] r, t) wheredom(s) = l̃1, dom(t) = l̃2,

s(l̃1) E?
el1;el2;el′ t(l̃2), dom(r) = l̃′ and for all l ∈ l̃′ we have

r(l) = 2n, for somen. Note thatl̃′ can also be empty.
We show thatX is a bisimulation up to environment, re-
duction, and contexts. The clauses (2.c) and (2.d) for store
extension and locations in the definition are easy. We check
the conditions for the pairs(M, N) and (P,Q) (the pair
(R, Q) is handled similarly). First,(M, N). Take(V, W ) ∈
E?

el1;el2;el′ . Using the abbreviationsM1
def
= (V P ); R and

N1
def
= (W Q); Q, the terms obtained fromMV andNW

areνx (M1{x/l}) andN1. Assumingl fresh, we have

〈s ] r ; νx M1{x/l}〉 −→ 〈s ] r[l = 0] ; M1〉

〈t ; N1〉 =⇒ 〈t ; N1〉

Define the contextC
def
= ([·]1 [·]2)[·]3. We haveM1 =

C[V, P, R] andN1 = C[W,Q, Q]. This is sufficient, up to
contexts, because the arguments of the context are pairwise
related inEel1;el2;el′,l and(Eel1;el2;el′,l, s ] r[l = 0], t) ∈ X .

For the pair(P,Q), the results of applications to related
values arel := !l + 2 and?, respectively. Further,

〈s ] r ; l := !l + 2〉 =⇒ 〈s ] r[l = r(l) + 2] ; ?〉

and this is sufficient, up to reduction, since

(Eel1;el2;el′ , s ] r[l = r(l) + 2], t) ∈ X .

5 Higher-order π-calculus

In this section we discuss environmental bisimulations in
concurrency. We consider the Higher-Orderπ-calculus [31,
33] in its simplest form, where only processes can be com-
municated (thus the calculus is similar to Plain CHOCS
[43]). The syntax and the LTS are standard [34, Ap-
pendix E]. Restriction and input are binders for names and
variables, in the usual way;fv(P ) and fn(P ) indicate the
free variables and the free names ofP , respectively.

In HOπ, anenvironmental relationis a set of elements of
the form(r ; E ; M ; N), whereM, N are closed processes,
E is a relation on closed processes, andr is a finite set of
names. Intuitively:M andN are the tested processes;E
is the set of values that the tested processes have produced
earlier (by means of outputs towards the observer);r are the
names that are known, and freely available, to the observer;
these names may occur free in processes ofE and inM, N .
To simplify notations, we do not keep track of the other
free names inE , M , andN : these represent private names
that the tested processes have extruded earlier, and that the
observer cannot directly access.

We first present the definition of environmental bisimu-
lation and then we comment it. The definition is given in
the “early” style, which makes the comparison with contex-
tual equivalence easier. We write(r ; E)? as an abbreviation
for the subset ofE? (the context closure ofE) in which the
free names of the contexts are inr and the bound names are
fresh. We writeM XE ; r N if (r ; E ; M ; N) ∈ X .

Definition 5.1 An environmental relationX is anenviron-
mental bisimulationif M XE ; r N implies:

1. if M
τ−→ M ′ thenN

τ=⇒ N ′ andM ′ XE ; r N ′



2. if M
aP−−→ M ′ with a ∈ r, and(P,Q) ∈ (r ; E)?, then

N
aQ

==⇒ N ′ andM ′ XE ; r N ′

3. if M
(νeb )aP−−−−−→ M ′ with a ∈ r and b̃ fresh (i.e., not inr

and not free in the lhs ofE), thenN
(νec )aQ

=====⇒ N ′ with c̃
fresh andM ′ XE∪{(P,Q)} ; r N ′

4. if (P, Q) ∈ E thenP | M XE ; r Q | N
5. for all r′ fresh (i.e., not infn(E ,M,N)) we have

M XE ; r,r′ N

6. the converse of (1-3), on the actions fromN

We write≈ for the union of all environmental bisimula-
tions, thusM ≈E ; r N holds if (r ; E ; M ; N) ∈ X ,
for some bisimulationX . We sometimes writeM ' N if
M ≈∅ ; fn(M,N) N .

Definition 5.1 has five clauses. The first is the usual one
for τ -actions. The second is analogous to the clause for ab-
stractions inλ-calculi of earlier sections. The inputsP and
Q are constructed using the environmentE and the namesr
available to the observer. The third clause is for outputs: the
environment is updated with the processes emitted. Both
in the input and in the output clause, the action from the
processes is at a name that is known to the observer (con-
dition a ∈ r). The fourth clause is new—it does not ap-
pear in the sequential calculi of the previous sections. It
intuitively shows that the observer can run the values in
the environment at any time. The fifth clause allows cre-
ation of fresh names by the observer. Relations≈E ; r are
extended toopen termsusing closing input abstractions.
For instance if{x} = fv(M, N) then M ≈E ; r N if
a(x). M ≈E ; r,a a(x). N , for a fresh.

With reasoning similar to that for previous languages we
prove that environmental bisimulation is an equivalence,
and the soundness of a few basic up-to techniques: up-to
environment, and up-to bisimilarity, which are similar to
previous techniques, and up-to restriction, where in the con-
clusion a larger set of free names is allowed (i.e.,XE ; r is
replaced byXE ; r,r′ ).

To establish congruence, we first prove that environmen-
tal bisimilarity is preserved by parallel composition (this
is similar, but technically much more complex, to the re-
sults of congruence with respect to evaluation contexts in
the λ-calculi of previous sections). We then use this re-
sult, together with a combination of the up-to techniques
mentioned above, to derive congruence results for arbitrary
contexts. We report the main result:

Theorem 5.2 Relation' is a congruence relation.

The congruence result can be used to establish the corre-
spondence between environmental bisimilarity and contex-
tual equivalence. In concurrency, confluence usually fails,

and the branching structure in the reduction tree of a term
becomes important. The definition of contextual equiva-
lence has to be refined, adding a bisimulation clause on
reductions. The resulting relation is called barbed con-
gruence. We consider here the reduction-closed version
of barbed congruence [11, 37].Reduction-closed barbed
congruence, ≡, is the largest relation that is symmetric,
reduction-closed (i.e., ifM ≡ N , for M, N closed, and
M

τ−→ M ′, thenN =⇒ N ′ andM ′ ≡ N ′), context-closed
(i.e., M ≡ N implies C[M ] ≡ C[N ], for all contexts),
and barb preserving (i.e., ifM ≡ N , for M, N closed, and
M ⇓a, then alsoN ⇓a).

Theorem 5.3 Relations≡ and' coincide.

We have established the soundness of a few more sophis-
ticated up-to techniques, notably techniques involving up-to
contexts of the kind discussed in earlier sections. We report
an example of such a technique in [34, Appendix E] (en-
vironmental bisimulation up-to contexts, bisimilarity, and
environment).

6 Related Work

λ-calculi. Forms of bisimulation with an environment have
been used (under no explicit name) by Sumii and Pierce
for λ-calculi with perfect encryption [41] and data abstrac-
tion [42], inspired by bisimulations for typedπ-calculus [7],
polymorphicπ-calculus [26] and spi-calculus [1]. However,
their bisimulations were not able to handle higher-order
functions. To address this issue, Sumii and Pierce [42, Se-
cion 7] proposed a rather complex variant of their bisimula-
tions with induction on the tree height of evaluation deriva-
tion, and an up-to-context technique built into the defini-
tion of bisimulations. Koutavas and Wand (KW in short)
later gave a clearer account of this approach [16, 17]. KW
has an induction on the evaluation of terms to values and
an up-to context technique which are nicely hardwired into
the definition of the bisimulation. However, KW relies on
big-step semantics, which does not scale to languages with
non-determinism or concurrency. Further KW breaks the
monotonicity of the generating functional of the bisimula-
tion (they have not onlyE but alsoX in a negative posi-
tion because of the induction), and therefore requires extra
proofs to guarantee that bisimilarity exists (and is transi-
tive). Sumii and Pierce, as well as Koutavas and Wand, only
gave indirect proofs of these properties, via the correspon-
dence with contextual equivalence. For similar reasons, it
could be difficult to enhance KW bisimulation method via
up-to techniques (for instance, in [34, Example B.7] we
make a non-trivial use of up-to expansion, which is not
available in KW. Hence a proof of this equivalence with KW



requires an infinite relation, rather than a singleton relation
as in our proof).

The bisimulation clause on functions of environmental
bisimulation is reminiscent of logical relations; see, e.g.,
[28]. (The analogy is stronger for logical bisimulations, or
for the BA-bisimulations discussed in the Introduction; we
recall that in logical relations two functions are related if
they map related arguments to related results.) However,
logical relations represent a type-directed technique and as
such remain quite different from bisimulations, which can
be untyped. Logical relations work well in pure simply-
typed or polymorphicλ-calculus, but they tend to become
incomplete and/or require more advanced meta theory in
languages with recursive types, existential types [28], en-
cryption [40], store, or concurrency; see e.g. [3] for more
references.

Concurrent languages. There are only a few concurrent
higher-order languages for which bisimulation techniques
have been given; usually the bisimilarity is either a form
of higher-order bisimulation and Howe’s technique [12] is
used to prove congruence (e.g., [5, 8, 9]), or it is a form of
context bisimulation or normal bisimulation (e.g., [14, 15,
20, 21, 31, 33]). Howe’s technique appears to have limita-
tions in concurrency. It seems be sensitive to the choice of
the bisimilarity; in particular it gives problems if the bisim-
ilarity is not both in the “delay” and in the “late” style; ei-
ther style generally breaks the correspondence with contex-
tual equivalence. (However recently Godskesen and Hilde-
brandt [9] have been able to handle a delayed input-early
version of context bisimulation.) The technique also seems
to be sensitive to the structure of terms that are allowed to
interact (see [14] for a discussion).

In context bisimulation[9, 20, 21, 33], whenever an in-
teraction is produced between the tested processes and the
observer, all possible contexts that have originated the ac-
tion from the observer are taken into account. For instance,
clause (3) for output actions would become:

• if M
(νeb )aP−−−−−→ M ′ thenN

(νec )aQ
=====⇒ N ′,

and for allG with fv(G) ⊆ X,
ν b̃ (G{P/X} | M ′) R ν c̃ (G{Q/X} | N ′)

The quantification over all recipientsG is a heavy demand,
close to explicitly requiring that the bisimulation is pre-
served by parallel composition.

To simplify context bisimulation,normal bisimulation
has been proposed ([31]; Jeffrey and Rathke [15] have then
improved it). Normal bisimulation replaces the exchange
of processes with the exchange of special processes called
triggers and essentially implements a dynamic translation
of higher-order communication into first-order, for a trigger
that is communicated acts like a name-pointer to a process.
Normal bisimulation does not explicitly use environments;

these are hardwired inside the tested processes, by means of
triggers. The main difference with environmental bisimula-
tion is in the input clause: normal bisimulation does not use
universal quantifications, and is therefore simpler. Possible
advantages of environmental bisimulation are the following.
First, it is straightforward to adapt environmental bisimula-
tion to the strong case (where all transitions, including inter-
nal steps, are treated equally). Adapting normal bisimula-
tion to the strong case is delicate because the transformation
of process communications into trigger communications is
valid for weak, but not for strong, equivalences. Second, the
proof of congruence of environmental bisimulation is more
direct. Related to this is the development of up-to tech-
niques, in particular up-to contexts. Finally, normal bisimu-
lation may rely on the possibility of encoding higher-order
communications using triggers; this might not be possible,
or might be difficult to achieve, in extensions of HOπ or in
calculi different from HOπ.

To the best of our knowledge, the only higher-order
concurrent calculus for which up-to-context techniques had
been derived is the Ambient calculus [21], for a form of
context bisimulation. Ambients however represent a spe-
cial case of higher-order calculus, for processes can move
but cannot be communicated. Moving a process is quite
different from communicating it as in HOπ: in the former
case the process will always be run, immediately and ex-
actly once; in the latter case, in contrast, the process may
be copied, and it is the recipient of the process that decides
when and where to run each copy. Thus the problems of
congruence of bisimulation, and the related problems for
up-to contexts, only show up in a limited form in Ambients.

7 Conclusions and future work

In this paper we have developed the basic theory of en-
vironmental bisimulations. In summary, with environmen-
tal bisimulations we aim at (1) maintaining the definition of
the bisimulation as simple as possible, so to facilitate proofs
of its basic properties (in particular congruence and up-to-
context techniques, which are notoriously hard in higher-
order languages); and (2) separately developing enhance-
ments of the bisimulation method, so as to have simple
bisimilarity proofs between terms.

Although the basic idea of environmental bisimulation is
the same on all calculi in the paper, the bisimilarity clauses
can differ depending on the features of the calculus. It
would be interesting to formulate environmental bisimula-
tion in an abstract manner and to derive the concrete def-
initions in this paper as special instances of it. For this,
Milner’s bigraphs [23] would be a candidate framework.

It is encouraging that environmental bisimulation work
on a variety of calculi (pureλ-calculi,λ-calculus with full-
fledged store, Higher-Orderπ-calculus), and that the proof



of its basic properties, and associated up-to techniques, are
easy to transport. To the best of our knowledge, none of
the previous bisimilarities can handle such a variety of lan-
guages. In the future we plan to consider more sophisti-
cated concurrent languages. For instance, the passivation
construct of the Kell Calculus [38] appears challenging.
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