
Software Performance of

Universal Hash Functions

Wim Nevelsteen and Bart Preneel?

Katholieke Universiteit Leuven, Dept. Electrical Engineering-ESAT
Kardinaal Mercierlaan 94, B–3001 Heverlee, Belgium

wnevelst@eps.agfa.be, bart.preneel@esat.kuleuven.ac.be

Abstract. This paper compares the parameters sizes and software per-
formance of several recent constructions for universal hash functions:
bucket hashing, polynomial hashing, Toeplitz hashing, division hashing,
evaluation hashing, and MMH hashing. An objective comparison be-
tween these widely varying approaches is achieved by defining construc-
tions that offer a comparable security level. It is also demonstrated how
the security of these constructions compares favorably to existing MAC
algorithms, the security of which is less understood.

1 Introduction

In many commercial applications, protecting the integrity of information is even
more important than protecting its secrecy. Digital signatures, introduced in
1976 by Diffie and Hellman [13], are the main tool for protecting the integrity
of information. They are essential to build a worldwide trust infrastructure.
However, there are still a significant number of applications for which digital
signature are not cost-effective:

– For applications with short messages, the limitation is that signing and ver-
ifying is too demanding for processors in low-cost smart cards. On a more
modern processor1, the combined time of signing and verifying a digital sig-
nature using RSA, DSA or ECDSA typically exceeds 30 milliseconds.

– For applications with long messages (several Megabytes), the speed of sign-
ing is limited by the speed of present-day hash functions, which is about
100 Mbit/s.

– Finally, the overhead of a digital signature varies between 25 to 128 bytes,
and the keys and system parameters require between 80 and a few hundred
bytes of storage.

For the reasons indicated above, many applications use conventional MAC
(Message Authentication Code) algorithms to provide data integrity and data
origin authentication. MACs do not provide non-repudiation of origin, unlike
? F.W.O. postdoctoral researcher, sponsored by the Fund for Scientific Research –

Flanders (Belgium).
1 Throughout this paper performance numbers will be given for a 200 MHz Pentium.

J. Stern (Ed.): EUROCRYPT’99, LNCS 1592, pp. 24–41, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Software Performance of Universal Hash Functions 25

digital signatures, that can be used in a setting where the parties do not trust
each other. Moreover, MACs rely on shared symmetric keys, which requires ad-
ditional key management functions. Banks have been using MACs since the
late seventies [36,37] for message authentication. Recent applications in which
MACs have been introduced include electronic purses (such as Proton and Mon-
dex) and credit/debit applications (e.g., the EMV specifications). MACs are also
being deployed for securing the Internet (e.g., IP security). For all these applica-
tions MACs are preferred over digital signatures because they are two to three
orders of magnitude faster, and MAC results are shorter (typically between 4
. . . 16 bytes). On present day machines, software implementations of MACs can
achieve speeds from 50 . . . 250 Mbit/s, and MACs require very little resources on
inexpensive 8-bit smart cards and on the currently deployed Point of Sale (POS)
terminals. During the last five years, our understanding of MACs has improved
considerably, through development of security proofs (Bellare et al. [3,5,6]) and
new attacks (Knudsen [23] and Preneel and van Oorschot [30,31]).

An important disadvantage of both digital signatures and MAC algorithms
is that their security is only computational. That implies that an opponent with
sufficient computing power can in principle forge a message. A second problem
is that shortcut attacks might exist, which means that forging a message can be
much easier than expected. This problem can partially be solved by developing
security proofs; such a proof can reduce the security of a MAC or a digital sig-
nature scheme to another primitive, such as a pseudo-random function or to a
problem that is believed to be difficult, such as factoring the product of two large
primes. However it seems wise to anticipate further progress in cryptanalysis of
specific primitives. In the nineties we have witnessed the development of differ-
ential attacks [8], linear attacks [26], and of the use of optimization techniques
as in [14]. The ultimate solution to this problem is unconditional security.

The idea of unconditionally secure authentication (and the so-called authen-
tication codes) dates back to the early seventies, when Simmons was developing
for Sandia National Laboratories a system for the verification of treaty com-
pliance, such as the comprehensive nuclear test-ban treaty between the USA
and the USSR [37]. The motivation for his research was that apparently the
NSA refused to export strong conventional cryptographic mechanisms to the
USSR. The first construction of authentication codes appeared in a 1974 paper
by Gilbert et al. [18]. Subsequently their theory has been developed further by
Simmons, analogous to Shannon’s theory of secrecy systems [34]. An overview
of the theory of authentication codes can be found in the work of Simmons [36]
and Stinson [38]. In the seventies and the eighties, the research on authentica-
tion codes in the cryptographic community focussed mainly on the properties
of authentication codes that meet certain bounds (such as perfect authentica-
tion codes, cf. §2.1). While this work illustrates that combinatorial mathematics
and information theory provides powerful tools to develop an understanding of
cryptographic primitives, it was widely believed that this work was of purely
academic interest only.

26 Wim Nevelsteen and Bart Preneel

This is the more surprising because Carter and Wegman developed already in
the late seventies efficient authentication codes under the name of strongly uni-
versal hash functions [12,40]. They show that this is an interesting combinatorial
tool that can be applied to other problems as well (such as interactive proof sys-
tems, pseudo-random number generation, and probabilistic algorithms). Carter
and Wegman make the following key observations: i) long messages can be au-
thenticated efficiently using short keys if the number of bits in the authentication
tag is increased slightly compared to ‘perfect’ schemes; ii) if a message is hashed
to a short authentication tag, weaker properties are sufficient for the first stage
of the compression; iii) under certain conditions, the hash function can remain
the same for many plaintexts, provided that the hash result is encrypted using
a one-time pad. Mehlhorn and Vishkin propose more efficient constructions in
[28]. At Crypto’82, Brassard pointed out that combining this primitive with a
pseudo-random string generator will result in efficient computationally secure
message authentication with short keys [11].

In the beginning of the nineties, the two ‘independent’ research threads are
brought together. Stinson improves the work by Wegman and Carter, and es-
tablishes an explicit link between authentication codes and strongly universal
hash functions [39]. A second important development is that Johansson, Kaba-
tianskii, and Smeets establish a relation between authentication codes and codes
correcting independent errors [22]. This provides a better understanding of the
existing constructions and their limitations.

During the last five years, progress has been made both in theory and practice
of universal hash functions. Krawczyk has proposed universal hash functions
that are linear with respect to bitwise xor [24,25]. This property makes it easier
to reuse the authentication code (with the same key): one encrypts the m-bit
hash result for each new message using a one-time pad. This approach leads to
simple and efficient constructions based on polynomials and Linear Feedback
Shift Registers (LFSRs). Other constructions based on polynomials over finite
fields are proposed and analyzed by Shoup [35]. Shoup [35] and Afanassiev et
al. [1] study efficient software implementations of this primitive. Another line of
research has been to improve the speed at the cost of an increased key size and
size of the authentication tag. Rogaway has introduced bucket hashing in [33];
a slower variant with shorter keys was proposed by Johansson in [21]. Halevi
and Krawczyk have developed an extremely fast scheme (MMH) which makes
optimal used of the multiply and accumulate instruction of the Pentium MMX
processor [19]. Recently Black et al. have further improved the performance on
high end processors with the UMAC construction [9].

While it is clear that authentication codes (or universal hash functions) have a
large potential for certain applications, they are not widely known to application
developers. Some of the reasons might be that the research is too new, and
that it is difficult to choose among the many schemes. For example, Halevi and
Krawzcyk write “An exact comparison is not possible since the data available
on the most efficient implementations of other functions are based on different
platforms” [19, p. 174]. The latter problem makes it more difficult to introduce

Software Performance of Universal Hash Functions 27

them into standards. For the time being, there is also a lack of public domain
implementations, that can demonstrate the benefits of this approach.

This paper intends to solve part of these problems by providing an objective
comparison of performance and parameter sizes for the most promising construc-
tions. For three related universal hash functions, similar work has been done by
Shoup [35]. Atici and Stinson [2] provide an overview of the general parameters
of several schemes, but do not discuss the performance.

The remainder of this paper is organized as follows. §2 introduces the most
important definitions, and §3 presents the constructions that will be compared in
this paper. The comparison of implementation speeds and memory requirements
of the different schemes is presented in §4, and §5 contains some concluding
remarks.

2 Definitions and Background

This section presents the model for authentication without secrecy. Next univer-
sal hash functions and strongly universal hash functions are introduced, and it
is explained how they can be combined.

2.1 Authentication Codes

As usually in cryptography, the main players are the sender Alice, who wants
to send some information to the receiver Bob; the opponent of Alice and Bob is
the active eavesdropper Eve. Here, Alice and Bob are not concerned about the
secrecy of the information. In order to detect the actions of Eve, Alice attaches to
the plaintext an authentication tag that is a function of a shared secret key and
of the plaintext. Bob recomputes the tag and accepts the plaintext as authentic
if the tag is the same. As in the Vernam scheme, the secret key can be used only
once.

Eve can perform three types of attacks: (i) Eve can create a new plaintext
and send it to Bob, pretending that it came from Alice (impersonation attack);
(ii) Eve can wait until she observes a plaintext and replace it by a different
plaintext (substitution attack); (iii) Eve can choose freely between both strate-
gies (deception attack). The probability of success (when the strategy of Eve
is optimal) will be denoted with Pi, Ps, and Pd respectively. A first result that
follows from Kerckhoffs’ assumption (namely that the strategy to choose the key
is known by Eve) is that Pd = max(Pi, Ps) [27].

In the following the length (in bits) of the plaintext, authentication tag, and
key is denoted with m, n, and k respectively. The combinatorial bounds state
that Pi and Ps are at least 1/2n. In the following we will consider only schemes for
which Pi = 1/2n. Another important bound is the square root bound; it states
that Pd ≥ 1/2k/2. This is a corollary of the ‘authentication channel capacity
theorem’ which states that an authentication code can only be secure if the
authentication tag reveals a significant amount of information on the secret key
(see Massey [27] for details).

28 Wim Nevelsteen and Bart Preneel

Stinson proves that if Pi = Ps = 1/2m, the number of plaintexts is at most
a linear function of the number of keys [39]. This shows that schemes of this
type require large keys for large messages, which makes them impractical. On
the other hand, Kabatianskii et al. [22] showed that if Ps exceeds Pi by an
arbitrarily small amount, the number of plaintexts grows exponentially with the
number of keys. This research developed from exploring connections to the rich
theory of error-correcting codes, and connects to the work of Wegman and Carter
[12,40]. The disadvantage of Ps > 1/2n is that for a given security level (say,
Pd = 1/264), slightly more than 64 bits are required for the authentication tag.
While [22] shows efficient constructions that require only a single extra bit, in
practice one can afford to send one or more extra bytes.

2.2 Universal Hash Functions

A universal hash function is a mapping from a finite set A with size a to a finite
set B with size b. For a given hash function h and for a pair (x, x′) with x 6= x′

the following function is defined: δh(x, x′) = 1 if h(x) = h(x′), and 0 otherwise.
For a finite set of hash functions H (in the following this will be denoted with
a family of hash functions), δH(x, x′) is defined as

∑
h∈H δh(x, x′), or δH(x, x′)

counts the number of functions in H for which x and x′ collide. When a random
choice of h is made, then for any two distinct inputs x and x′, the probability
that these two inputs yield a collision equals δH(x, x′)/ |H|. For a universal hash
function, the goal is to minimize this probability together with the size of H .

Definition 1. Let ε be any positive real number. An ε-almost universal family
(or ε-AU family) H of hash functions from a set A to a set B is a family of
functions from A to B such that for any distinct elements x, x′ ∈ A

| {h ∈ H : h(x) = h(x′)} |= δH(x, x′) ≤ ε · |H| .

This definition states that for any two distinct inputs the probability for a colli-
sion is at most ε. In [12] the case ε = 1/b is called universal; the smallest possible
value for ε is (a − b)/(b(a − 1)).

Definition 2. Let ε be any positive real number. An ε-almost strongly uni-
versal family (or ε-ASU family) H of hash functions from a set A to a set B is
a family of functions from A to B such that

– for every x ∈ A and for every y ∈ B, | {h ∈ H : h(x) = y} |=|H| /b,
– for every x1, x2 ∈ A (x1 6= x2) and for every y1, y2 ∈ B (y1 6= y2),

| {h ∈ H : h(x1) = y1, h(x2) = y2} |≤ ε· |H| /b .

The first condition states that the probability that a given input x is mapped to
a given output y equals 1/b. The second condition implies that if x1 is mapped
to y1, then the conditional probability that x2 (different from x1) is mapped to
y2 is upper bounded by ε. The lowest possible value for ε equals 1/b and this
family has been called strongly universal functions in [40]. For this family the
first condition in the definition follows from the second one [39].

Software Performance of Universal Hash Functions 29

If an Abelian group can be defined in the set B using the operation ⊕ (bitwise
exclusive-or), Krawczyk defines the following variant [24] (the terminology is
from [33]):

Definition 3. Let ε be any positive real number. An ε-almost XOR universal
family (or ε-AXU family) H of hash functions from a set A to a set B is a family
of functions from A to B such that for any distinct elements x, x′ ∈ A and for
any b ∈ B

| {h ∈ H : h(x) ⊕ h(x′) = b} |≤ ε · |H| .

It follows directly from the definition that ε-ASU families of hash functions
are equivalent to authentication codes with Pi = 1/b and Ps = ε [39,40].

Theorem 4. There exists an ε-ASU family H of hash functions from A to B
iff there exists an authentication code with a plaintexts, b authenticators and
k = |H| keys, such that Pi = 1/b and Ps ≤ ε.

A similar result has been proved by Krawczyk for ε-AXU families [24,40].

Theorem 5. There exists an ε-AXU family H of hash functions from A to B
iff there exists an authentication code with a plaintexts, b authenticators and
k = |H| ·b keys, such that Pi = 1/b and Ps ≤ ε.

The construction consists of hashing an input using a hash function from H
followed by encrypting the result by xoring a random element of B (which cor-
responds to a one-time pad).

Rogaway [33] and Shoup [35] show how the one-time pad can be replaced by
a finite pseudo-random function (respectively permutation). In addition, they
develop models for the use of counters and random tags. If the keys are generated
using a finite pseudo-random function, the unconditional security is lost, but one
has achieved a clear separation between compression (in a combinatorial way)
and the final cryptographic step. This makes it easier to analyze and understand
the resulting scheme.

2.3 Composition Constructions

The following propositions show how universal hash functions can be combined
in different ways in order to increase their domains, reduce ε, or decrease the
range. Several of these results were applied by Wegman and Carter [40].

Proposition 6 (Cartesian Product [39]). If there exists an ε-AU family H
of hash functions from A to B, then, for any integer i ≥ 1, there exists an ε-AU
family H i of hash functions from Ai to Bi with |Hi|= |H| .

Proposition 7 (Concatenation [33]). If there exists an ε1-AU family H1 of
hash functions from A to B and an ε2-AU family H2 of hash functions from A
to C, then there exists an ε-AU family H of hash functions from A to B × C,
where H = H1 × H2, |H|= |H1| · |H2| , and ε = ε1ε2.

30 Wim Nevelsteen and Bart Preneel

Proposition 8 (Composition 1 [39]). If there exists an ε1-AU family H1 of
hash functions from A to B and an ε2-AU family H2 of hash functions from B
to C, then there exists an ε-AU family H of hash functions from A to C, where
H = H1 × H2, |H|= |H1| · |H2| , and ε = ε1 + ε2 − ε1ε2 ≤ ε1 + ε2.

Proposition 9 (Composition 2 [39]). If there exists an ε1-AU family H1 of
hash functions from A to B and an ε2-ASU family H2 of hash functions from
B to C, then there exists an ε-ASU family H of hash functions from A to C,
where H = H1 × H2, |H|= |H1| · |H2| , and ε = ε1 + ε2 − ε1ε2 ≤ ε1 + ε2.

Proposition 10 (Composition 3 [39]). If there exists an ε1-AU family H1 of
hash functions from A to B and an ε2-AXU family H2 of hash functions from
B to C, then there exists an ε-AXU family H of hash functions from A to C,
where H = H1 × H2, |H|= |H1| · |H2| , and ε = ε1 + ε2 − ε1ε2 ≤ ε1 + ε2.

The most important results are Proposition 9 and Proposition 10, as they
allow to use more efficient (in terms of key size and computation) ε-AU universal
hash functions in the first stage of the compression.

3 Constructions

The schemes that are discussed here are: bucket hashing, bucket hashing with a
short key, fast polynomial evaluation, Toeplitz hashing, evaluation hash function,
the division hash function, and MMH.

3.1 Bucket Hashing

The first hashing technique we consider is bucket hashing, which is an ε-AU
introduced by Rogaway [33]. Fix a word size w ≥ 1. For M ≥ N the hash
functions of the family B[w, M, N] are defined as mappings from A = {0, 1}wM

to B = {0, 1}wN . Each h ∈ B[w, M, N] is specified by a list of length M , each
entry of which contains three integers in the interval [0, N − 1]. Denote this list
by h = h1 . . . hM , where hi = {h1

i , h
2
i , h

3
i , }. The hash family B[w, M, N] is the

set of all possible lists h subjected to the constraints that no two of the 3-element
sets in the list are the same, i.e., hi 6= hj , ∀i 6= j.

For a given hash function h = h1 . . . hM and a given input X = x1 . . . xM the
hash result h(X) is computed as follows. First, for each j ∈ {1, . . . , N}, initialize
yj to 0w. Then for each i ∈ {1, . . . , M} and k ∈ hi, replace yk by yk ⊕ xi. When
this operation is completed, set h(X) := y1‖y2‖ . . . ‖yN .

The name bucket hashing is derived from the following interpretation of the
computation. We start with N empty buckets y1 through yN . Each word of the
input is thrown into three buckets; the ith word xi is thrown in the buckets h1

i ,
h2

i , and h3
i . Then, the xor of the content in each of the buckets is computed, and

the hash function output is the concatenation of the final content of the buckets.

Software Performance of Universal Hash Functions 31

The bucket hash family is ε-AU with the collision probability given by a
complicated expression in the number N of buckets (see Rogaway, [33, p. 35]).
It is important to note that the number N of buckets increases very fast if ε
decreases. For example, for ε = 2−28 , N = 100 buckets are needed, but for
ε = 2−34 already 197 buckets are needed.

Table 1 indicates the performance and parameter sizes for an input block of
4 Kbyte and a word length w equal to 32. The Assembly code is hand optimized,
and makes optimal use of the two parallel pipes of the Pentium. Several alter-
natives have been compared, but it was decided not to use self-modifying code,
as this poses problems in most applications. For some of these results, we have
combined several bucket hash functions using the rules from §2.3 (details are
omitted due to space constraints). The memory in the table below corresponds
to the processed key and the hash result; the memory to store the input is not
included.

Note that for this hash function only the speed was measured under DOS,
while for the other schemes (that use a finite field arithmetic library), the speed
was measured under Windows ’95. Timing measurements under DOS tend to be
a little better.

Table 1. Characteristics of bucket-hashing for a block of 4 Kbyte

ε 2−16 2−32 2−48 2−64

Parameters M = 256 M = 1024 M = 1024 M = 1024
N = 24 N = 160 N = 62 N = 160

Speed (Mbit/s) 543 341 147 138
Key (bits) 3521 22493 36582 44986
Hash result (bytes) 384 640 496 1280
Memory (bytes) 1152 3712 6640 7424

We conclude that bucket-hashing is a very fast technique, but it requires a
long key and a large memory. The hash result becomes very large for small values
of ε.

3.2 Bucket Hashing with Small Key Size

The bucket-hashing approach from §3.1 gives rise to ε-AU hash functions that
are very fast to compute, at the cost of a very large key and a long hash result.
To overcome these disadvantages Johansson proposed bucket hashing with small
key size [21].

Let N = 2s/L. Each hash function h ∈ B′[w, M, N] is specified by a list of
length M , where each entry contains L integers in the interval [0, N − 1]. Next
L arrays are introduced, each containing N buckets. Each word from the input
is thrown in one bucket of each array, based on the list that describes the hash
function h. Next, each array is compressed to s/L words, using a fixed primitive
element γ ∈ GF(2s/L). The hash result is equal to the concatenation of the L
compressed arrays, each containing s/L words.

32 Wim Nevelsteen and Bart Preneel

Table 2 indicates the performance and parameter sizes for an input block of
4 Kbyte and a word length w equal to 32. Again the Assembly code is hand
optimized for the Pentium. It is not possible to use exactly the same values for ε
as for bucket hashing, because the constraints on the parameters (for example,
L has to divide s). For each value of ε, one has to determine the optimal value
for L. Too large values of L imply that the input has to be thrown in too many
buckets; too small values of L imply that N becomes too large.

Table 2. Characteristics of bucket-hashing with small key for a block of 4 Kbyte

ε 2−18 2−32 2−46 2−62

Parameters s = 28 s = 42 s = 224 s = 72
L = 4 L = 6 L = 7 L = 12

N = 128 N = 128 N = 256 N = 256
Speed (Mbit/s) 128 93 75 58
Key (bits) 28 42 56 72
Hash result (bytes) 112 168 224 288
Memory (bytes) 11264 16896 25088 43008

We conclude that bucket-hashing with small key size results indeed in very
small keys, at the cost of a factor 2 to 4 in performance (depending on the value
of ε). However, the memory requirements are still large, and the hash results are
a little shorter.

3.3 Hash Family Based on Fast Polynomial Evaluation

The next family of hash functions has been proposed by Bierbrauer et al. [7]; it
is based on polynomial evaluation over a finite field. Let q = 2r, Q = 2m = 2r+s,
n = 1 + 2s, and π be a linear mapping from GF(Q) onto GF(q), where Q = qm

0 ,
q = qr

0 , and q0 a prime power. Let fa(x) = a0 + a1x + . . . + an−1x
n−1, where

x, y, a0, a1, . . . an−1 ∈ GF(Q), z ∈ GF(q) and

H = {hx,y,z : hx,y,z(a) = hx,y,z(a0, a1, . . . , an−1) = π (y · fa(x)) + z} .

It is shown in [7] that the hash family in the construction above is ε-ASU
with ε ≤ 2/2r. For q0 = 2, the function is also ε-AXU (for other values, a
different group operation has to be used for the difference). The main step in
the hash function construction is the evaluation of a polynomial in some point
determined by the key. Afanassiev, Gehrmann and Smeets [1] have developed
a very fast construction to evaluate a polynomial fa(x) in an element α (the
MinWal procedure). This procedure makes use of Minimal W -nomials. Before
evaluating the polynomial fa(x) in α, fa(x) is first reduced modulo the minimal
W -nomial τα,w(x). The minimal W -nomial τα,w(x) is a multiple of the minimal
polynomial of α with the lowest degree and with less than W non-zero terms.

Table 3 indicates the performance and parameter sizes for an input blocks of
4, 64, and 256 Kbyte. Most of the code has been written in C++ (compiled with

Software Performance of Universal Hash Functions 33

Borland C++ 5.0). The most critical step, the reduction modulo the minimal
W -nomial has been written in Assembly language. Calculations are performed
in GF(232). The maximal input length for one instance is equal to 256 Kbyte; of
course Proposition 6 (cf. §2.3) can be used for large inputs, and ε can be reduced
using Proposition 7. We can show that for our software, the optimal value for
W = 5. Finding a minimal 5-nomial requires about 40 seconds using sub-optimal
code. Note that this operation has be done only for the set-up phase. If one adds
the (pre-computed) 5-nomials to the key, one needs about 42 bits per additional
5-nomial.

Table 3. Characteristics of hashing based on fast polynomial evaluation

ε 2−15 2−30 2−45 2−60

Speed 4 Kbyte (Mbit/s) 9 5 3 2
Speed 64 Kbyte (Mbit/s) 104 56 34 25
Speed 256 Kbyte (Mbit/s) 207 87 50 38
Key (bits) 80 160 240 320
Hash result (bytes) 2 4 6 8
Memory (bytes) 30 60 90 120

For large inputs (256 Kbyte or more), the polynomial evaluation hash func-
tion is rather fast and the keys sizes are reasonable. The two main advantages
are the very small memory requirements, both for the computation and for the
storage of the hash result.

3.4 Hash Family Using Toeplitz Matrices

The next hash family is the Toeplitz construction proposed by Krawczyk [25].
Toeplitz matrices are matrices with constant values on the left-to-right diagonals.
A Toeplitz matrix of dimension n × m can be used to hash messages of length
m to hash results of length n by vector-matrix multiplication. The Toeplitz
construction uses matrices generated by sequences of length n + m − 1 drawn
from δ-biased distributions. δ-biased distributions, introduced by Naor and Naor
[29], are a tool for replacing truly random sequences by more compact and easier
to generate sequences. The lower δ, the more random the sequence is.

Krawczyk proves that the family of hash functions associated with a family
of Toeplitz-matrices corresponding to sequences selected from a δ-biased distri-
bution is ε-AXU with ε = 2−n+δ [25]. He proposes to use the LFSR construction
due to Alon et al. to construct a δ-biased distribution. This construction asso-
ciates with r random bits a δ-biased sequence of length l with δ = l/2r/2.

Table 4 indicates the performance and parameter sizes for an input block of
4 Kbyte and a word length w equal to 32. As pointed out by Krawczyk [25], this
construction is more suited for hardware, and is not very fast in software. In this
case, the compiled C++ code could not be improved manually. For this version
of the code, the complete matrix has been stored to improve the performance.

34 Wim Nevelsteen and Bart Preneel

Table 4. Characteristics of Toeplitz hashing for a block of 4 Kbyte

ε 2−16 2−32 2−48 2−64

Parameters n = 17 n = 33 n = 44 n = 65
r = 68 r = 88 r = 120 r = 142

Speed (Mbit/s) 65 33 21 16
Key (bits) 68 88 120 142
Hash result (bytes) 68 132 176 260
Memory (bytes) 2176 4224 5632 8320

3.5 Evaluation Hash Function

The evaluation hash function was proposed by Mehlhorn and Vishkin in 1984
[28]. It is one of the variants analyzed by Shoup in [35]. The input (of length
≤ tn) is viewed as a polynomial M(x) of degree < t over GF(2n). The key is a
random element α ∈ GF(2n), and the hash result is equal to M(α) ·α ∈ GF (2n).
This family of hash functions is ε-AXU with ε = t/2n.

We have written an implementation for n = 64, where GF(264) was repre-
sented as GF(2)[x]/f(x), with f(x) = x64 + x4 + x3 + x + 1. The evaluation
of the polynomial is performed using Horner’s rule, and with a precomputation
of the mapping β 7→ α · β with β ∈ GF(2n). As in [35], two options have been
considered, that provide a time-memory trade-off.

For this construction ε grows with the number of n-bit blocks in the input.
The fastest method achieves a speed of approximately 240 Mbit/s in optimized
Assembly language (122 Mbit/s in C++), and requires about 16 Kbyte of mem-
ory. The second method is about a factor of 7 slower (18 Mbit/s in C++), but
requires only 2 Kbyte of memory. Shoup’s implementation in C is a little slower
than our Assembly version, but faster than our C++ code; the latter can prob-
ably be explained by better optimization in C versus C++, and maybe by the
overhead of the operating system (Linux versus Windows ’95).

3.6 Division Hash Function

The division hash function was proposed by Krawczyk [24], inspired by an earlier
scheme by M.O. Rabin. It represents the input as a polynomial M(x) of degree
less than tn over GF(2). The hash key is a random irreducible polynomial p(x)
of degree n over GF(2). The hash result is m(x) · xn mod p(x). Since the total
number of irreducible polynomials of degree n is roughly equal to 2n/n, it follows
that this family of hash functions is ε-AXU with ε = tn/2n.

Again, we have written an implementation for n = 64. The main step is the
reduction, which can be optimized by using a precomputation of the mapping
g(x) 7→ g(x)·x64 mod p(x), with deg g(x) < 64. Again, following [35], two options
were considered, that provide a time-memory trade-off. For the key generation,
see [35].

For this construction ε = t/258, with t the number of 8-byte blocks in the
input (for the same value of n, the security level is 6 bits smaller compared to the

Software Performance of Universal Hash Functions 35

evaluation hash function). The slower implementation uses 2 Kbyte of memory
and runs at 14 Mbit/s in C++. Our fastest implementation uses 8 Kbyte of
memory and achieves a speed of approximately 115 Mbit/s in C++, which is
still slower than the evaluation hash function (in contrast to the conclusions of
Shoup [35]). Therefore it was decided not to write optimized Assembly language.

Shoup generalizes this construction to polynomials over GF(2k), where k
divides n [35]. The main conclusion is that for this variant the key generation is
faster, but the precomputation is a little slower. For n = 64, ε = t/258 (for the
same value of n, the security is 3 bits better than the simple division hash, but
3 bits worse than the evaluation hash), and the performance is identical to that
of the division hash.

3.7 MMH Hashing

Halevi and Krawczyk propose MMH (Multilinear Modular Hashing) in [19]. This
hash function consists of a (modified) inner product between message and key
modulo a prime p (close to 2w, with w the word length; below w = 32.) MMH
is an ε-AXU, but with xor replaced by subtraction modulo p. The core hash
function maps 32 32-bit message words and 32 32-bit key words to a 32-bit
result. The key size is 1024 bits and ε = 1.5/230. For larger messages, a tree
construction can be used based on Proposition 6 and Proposition 10; the value
of ε and the key length have to be multiplied by the height of the tree.

This algorithm is very fast on the Pentium Pro, which has a multiply and
accumulate instruction (and on other machines with this feature). On a 32-bit
machine, MMH requires only 2 instructions per byte for a 32-bit result. We
have not (yet) implemented MMH, but include the impressive speed given in
[19] for a 200 MHz Pentium Pro (optimized Assembly language): 1.2 Gbit/s for
ε = 1.5/230, and 500 Mbit/s for ε = 1.125/259 (for large messages, if the data
resides in cache). Note that this does not take into account the final addition of
the key. The memory size of the implementation is not mentioned, but 1 Kbyte
is probably sufficient.

The Pentium does not have this ‘multimedia’ instruction, and therefore the
speed is reduced to about 350 Mbit/s for ε = 1.5/230. However, one can use the
floating point co-processor; this requires that one reduces the key words from 32
bits to 27 bits to avoid overflow. This results in about 500 Mbit/s for ε = 1.5/225,
and 260 Mbit/s for the double length variant with ε ≈ 1.1/249.

4 Comparing the Hash Functions

In §3, the properties of the different constructions have been listed. However,
this information does not allow to compare the different schemes. As pointed
out in §2.2, for message authentication, an ε-ASU or an ε-AXU combined with
an encryption are required. For this purpose, Table 5 defines six algorithms that
provide a comparable functionality. Note that all these functions are ε-AXU

36 Wim Nevelsteen and Bart Preneel

Table 5. Six schemes for message authentication and a comparison of their
performance (‘+’ denotes composition)

Scheme Definition

A bucket hash(AU) + evaluation hash (AXU)
B bucket hash/short key (AU) + evaluation hash (AXU)
C Toeplitz hash (AXU) + evaluation hash (AXU)
D fast polynomial evaluation (AXU)
E evaluation hash (AXU)
F MMH (AXU) + evaluation hash (AXU)

Scheme A B C D E F

ε 2−32 2−32 2−32 2−30 2−49 1.1 · 2−49

Speed (Mbit/s) 323 89 33 87 240 250†

Key (bits) 45,114 170 216 160 128 1243
Hash result (bytes) 8 8 8 4 8 8

Memory (Kbyte) 64 26 12 0.03 8 8.5†

† estimated

(some functions need a group operation other than exor such as scheme D with
q0 6= 2).

The six algorithms from Table 5 are applied to an input of 256 Kbyte with as
goal ε ≈ 2−32. Note that it is not possible to compare these schemes with exactly
the same parameters, because the value of ε for the best performance is typically
related to the word size of the processor. Messages of 256 Kbyte offer a fair basis
of comparison, because for shorter messages the performance varies more with
the message size. By introducing an unambiguous padding rule, one can also
process shorter inputs with the same code. The constructions can be extended
easily to larger message lengths, either by extending the basic construction or by
using trees. The full version of this paper will provide an extended comparison
for different values of ε and input sizes.

All parameters are chosen to optimize for speed (rather than for memory),
and the critical part of the code has been written in Assembly language. For
schemes A, B, C, and F the input is divided into blocks and Proposition 6 of
§2.3 is applied. This has the advantage that the description of the hash function
fits in the cache memory. The second hashing step for these schemes uses the
evaluation hash with n = 64. The results are summarized in Table 5.

Scheme A: the input is divided into 32 blocks of 8 Kbyte; each block is hashed
using the same bucket hash function with N = 160, which results in an
intermediate string of 20 480 bytes.

Scheme B: the input is divided into 64 blocks of 4 Kbyte; each block is hashed
using the same bucket hash function with short key (s = 42, L = 6, N =
128), which results in an intermediate string of 10 752 bytes.

Scheme C: the input is divided into 64 blocks of 4 Kbyte; each block is hashed
using a 33 × 1024 Toeplitz matrix, based on a δ-biased sequence of length
1056 generated using an 88-bit LFSR. The length of the intermediate string
is 8 448 bytes.

Software Performance of Universal Hash Functions 37

Scheme D: the input is hashed twice using the polynomial evaluation hash
function with ε = 2−15, resulting in a combined value of 2−30; the value of
W = 5. The performance is slightly key dependent; therefore an average over
a number of keys has been computed.

Scheme E: this is simply the evaluation hash function with t = 32 768. Note
that the resulting value of ε is too small. However, choosing a smaller value
of n that is not a multiple of 32 induces a performance penalty.

Scheme F: the input is divided into 2048 blocks of 128 bytes; each block is
hashed twice using MMH. The length of the intermediate string is 16 384
bytes. It is not possible to obtain a value of ε closer to 2−32 in an efficient
way.

Note that for bucket hashing and its variant the speed was measured under DOS,
while for the other schemes (that use a finite field arithmetic library), the speed
was measured under Windows ’95. Timing measurements under DOS tend to be
a little better.

The main conclusion is that scheme A, E and F are the fastest schemes.
Scheme A offers the best performance for ε = 2−32. However, if the application
needs a smaller value of ε (≈ 2−49), scheme E and F are faster. Moreover, the
key size and memory size for scheme A are large. If the key is generated using
a pseudo-random function, or if the expanded key has to be decrypted before it
can be used, this will introduce a performance penalty (for example, 13.7 msec if
3-DES is used, which runs at 13.8 Mbit/s and 0.43 msec for SEAL-3, which runs
at 440 Mbit/s [10]). If memory requirements (both for the hash function and for
the result) are an issue, scheme D is the best solution. It is about 4 times slower
than scheme A, and requires less memory than scheme B. Note however that
the other schemes can reduce the memory requirement (for the hash function)
at the cost of a reduced speed. Scheme E and F offer a reasonable compromise
between performance and memory requirements; scheme F needs a larger key
and a powerful multiplier.

Recently Black et al. [9] have proposed UMAC, that uses a different type of
inner product. UMAC is faster than MMH on processors with a fast multiplica-
tion (Pentium II, PowerPC 604). They report a performance of 3.4 Gbit/s on a
233 MHz Pentium II. The value of ε = 2−30, and the key size is about 32 768
bits (but slower versions with a shorter key are possible). It is also suggested
to replace the encryption at the end by a pseudo-random function that takes a
nonce as second input.

We provide a comparison with MAC algorithms based on [10]. The perfor-
mance of HMAC [3] and MDx-MAC [30] depends on the underlying hash function
(MDx-MAC is a few percent slower than HMAC). For MD5 [32], SHA-1 [17],
RIPEMD-160, and RIPEMD-128 [15] the speeds are respectively 228 Mbit/s,
122 Mbit/s, 101 Mbit/s, and 173 Mbit/s (note however that the security of
MD5 as a hash-function is questionable; this has no immediate impact to its use
in HMAC and MDx-MAC, but it is prudent to plan for its replacement). For
CBC-MAC [6,20], the performance corresponds approximately to that of the un-

38 Wim Nevelsteen and Bart Preneel

derlying block cipher. For DES [16] this is 37.5 Mbit/s; for other block ciphers,
this varies between 20 and 100 Mbit/s. XOR-MAC [5] is about 25% slower.

5 Concluding Remarks

The main advantages of universal hash functions are that their security is uncon-
ditional, and that their speed is comparable to or better than that of currently
used MAC algorithms. In addition, they are easy to implement and easy to
parallelize. Finally, they are often incremental [4] (this means that after small
updates to the input, the output can be recomputed quickly). If they are used
with a pseudo-random string generator, the unconditional security is lost, but
what remains is a scheme that is easy to understand (the only cryptographic
requirement is concentrated in one primitive).

Applications where universal hash functions can be used are the protection
of high speed telecommunication networks, video streams, and for the integrity
protection of file systems.

Many banking systems currently use unique MAC keys per transaction: for
each transaction a new MAC key is derived from a master key. Therefore it
seems natural to replace the MAC algorithms by universal hash functions, but
with the following caveats: for short messages, the performance advantage of
universal hash functions is limited. Moreover, constructions based on universal
hash functions often give away part of their key bits (as an example, an input
consisting of zero bits is often mapped to a hash result of zero bits). This is
not a problem for the authentication, because the hash result is encrypted using
a one-time pad. The opponent cannot exploit this property to forge messages,
but he can find easily the output bits of the pseudo-random string generator.
Therefore, any cryptographic weakness in the pseudo-random string generator
may compromise the master keys, and it would be advisable to invest some of
the time gained by using a universal hash function in strengthening the pseudo-
random string generator. The security of the MAC algorithms depends on a
cryptographic assumption, and thus it might well be possible that one finds a
way to forge messages. However, for none of the state-of-the art MAC algorithms,
an attack is known that can recover one or more key bits by observing a single
text-MAC pair. Therefore an opponent will not be able to learn the MAC keys,
and mounting an attack on the pseudo-random string generator will probably be
more difficult (note that there is no proof of this). In summary, universal hash
functions solve in an elegant and very efficient way the authentication problem,
but put a higher requirement on the pseudo-random string generator, while MAC
algorithms divide the (conjectured) cryptographic strength between the MAC
algorithm and the pseudo-random string generator.

Acknowledgments. We would like to thank Antoon Bosselaers, Hugo
Krawczyk, and Shai Halevi for helpful discussions and the anonymous referees
for their constructive comments.

Software Performance of Universal Hash Functions 39

References

1. V. Afanassiev, C. Gehrmann, B. Smeets, “Fast message authentication using effi-
cient polynomial evaluation,” Fast Software Encryption, LNCS 1267, E. Biham,
Ed., Springer-Verlag, 1997, pp. 190–204.

2. M. Atici, D.R. Stinson, “Universal hashing and multiple authentication,” Proc.
Crypto’96, LNCS 1109, N. Koblitz, Ed., Springer-Verlag, 1996, pp. 16–30.

3. M. Bellare, R. Canetti, H. Krawczyk, “Keying hash functions for message authen-
tication,” Proc. Crypto’96, LNCS 1109, N. Koblitz, Ed., Springer-Verlag, 1996,
pp. 1–15. Full version: http:// www.research.ibm.com/security/.

4. M. Bellare, O. Goldreich, S. Goldwasser, “Incremental cryptography: the case of
hashing and signing,” Proc. Crypto’94, LNCS 839, Y. Desmedt, Ed., Springer-
Verlag, 1994, pp. 216–233.

5. M. Bellare, R. Guérin, P. Rogaway, “XOR MACs: new methods for message au-
thentication using block ciphers,” Proc. Crypto’95, LNCS 963, D. Coppersmith,
Ed., Springer-Verlag, 1995, pp. 15–28.

6. M. Bellare, J. Kilian, P. Rogaway, “The security of cipher block chaining,” Proc.
Crypto’94, LNCS 839, Y. Desmedt, Ed., Springer-Verlag, 1994, pp. 341–358.

7. J. Bierbrauer, T. Johansson, G. Kabatianskii, B. Smeets, “On families of hash
functions via geometric codes and concatenation,” Proc. Crypto’93, LNCS 773,
D. Stinson, Ed., Springer-Verlag, 1994, pp. 331–342.

8. E. Biham, A. Shamir, “Differential Cryptanalysis of the Data Encryption Stan-
dard,” Springer-Verlag, 1993.

9. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway, “UMAC: fast and secure
message authentication,” preprint, 1999.

10. A. Bosselaers, “Fast implementations on the Pentium,”
http://www.esat.kuleuven.ac.be/∼bosselae/fast.html.

11. G. Brassard, “On computationally secure authentication tags requiring short secret
shared keys,” Proc. Crypto’82, D. Chaum, R.L. Rivest, and A.T. Sherman, Eds.,
Plenum Press, New York, 1983, pp. 79–86.

12. J.L. Carter, M.N. Wegman, “Universal classes of hash functions,” Journal of Com-
puter and System Sciences, Vol. 18, 1979, pp. 143–154.

13. W. Diffie, M.E. Hellman, “New directions in cryptography,” IEEE Trans. on In-
formation Theory, Vol. IT–22, No. 6, 1976, pp. 644–654.

14. H. Dobbertin, “RIPEMD with two-round compress function is not collisionfree,”
Journal of Cryptology, Vol. 10, No. 1, 1997, pp. 51–69.

15. H. Dobbertin, A. Bosselaers, B. Preneel, “RIPEMD-160: a strengthened version of
RIPEMD,” Fast Software Encryption, LNCS 1039, D. Gollmann, Ed., Springer-
Verlag, 1996, pp. 71–82.
See also http://www.esat.kuleuven.ac.be/∼bosselae/ripemd160.

16. FIPS 46, “Data Encryption Standard,” Federal Information Processing Standard,
National Bureau of Standards, U.S. Department of Commerce, Washington D.C.,
January 1977 (revised as FIPS 46-1:1988; FIPS 46-2:1993).

17. FIPS 180-1, “Secure Hash Standard,” Federal Information Processing Standard
(FIPS), Publication 180-1, National Institute of Standards and Technology, US
Department of Commerce, Washington D.C., April 17, 1995.

18. E. Gilbert, F. MacWilliams, N. Sloane, “Codes which detect deception,” Bell Sys-
tem Technical Journal, Vol. 53, No. 3, 1974, pp. 405–424.

19. S. Halevi, H. Krawczyk, “MMH: Software message authentication in the
Gbit/second rates,” Fast Software Encryption, LNCS 1267, E. Biham, Ed.,
Springer-Verlag, 1997, pp. 172–189.

40 Wim Nevelsteen and Bart Preneel

20. ISO/IEC 9797, “Information technology – Data cryptographic techniques – Data
integrity mechanisms using a cryptographic check function employing a block cipher
algorithm,” ISO/IEC, 1994.

21. T. Johansson, “Bucket hashing with a small key size,” Proc. Eurocrypt’97,
LNCS 1233, W. Fumy, Ed., Springer-Verlag, 1997, pp. 149–162.

22. G.A. Kabatianskii, T. Johansson, B. Smeets, “On the cardinality of systematic A-
codes via error correcting codes,” IEEE Trans. on Information Theory, Vol. IT–42,
No. 2, 1996, pp. 566–578.

23. L. Knudsen, “Chosen-text attack on CBC-MAC,” Electronics Letters, Vol. 33,
No. 1, 1997, pp. 48–49.

24. H. Krawczyk, “LFSR-based hashing and authentication,” Proc. Crypto’94,
LNCS 839, Y. Desmedt, Ed., Springer-Verlag, 1994, pp. 129–139.

25. H. Krawczyk, “New hash functions for message authentication,” Proc. Euro-
crypt’95, LNCS 921, L.C. Guillou and J.-J. Quisquater, Eds., Springer-Verlag,
1995, pp. 301–310.

26. M. Matsui, “The first experimental cryptanalysis of the Data Encryption Stan-
dard,” Proc. Crypto’94, LNCS 839, Y. Desmedt, Ed., Springer-Verlag, 1994, pp. 1–
11.

27. J.L. Massey, “An introduction to contemporary cryptology,” in “Contemporary
Cryptology: The Science of Information Integrity,” G.J. Simmons, Ed., IEEE Press,
1991, pp. 3–39.

28. K. Mehlhorn, U. Vishkin, “Randomized and deterministic simulations of PRAMs
by parallel machines with restricted granularity of parallel memories,” Acta Infor-
matica, Vol. 21, Fasc. 4, 1984, pp. 339–374.

29. J. Naor, M. Naor, “Small bias probability spaces: efficient construction and appli-
cations,” Siam Journal on Computing, Vol. 22, No. 4, 1993, pp. 838–856.

30. B. Preneel, P.C. van Oorschot, “MDx-MAC and building fast MACs from hash
functions,” Proc. Crypto’95, LNCS 963, D. Coppersmith, Ed., Springer-Verlag,
1995, pp. 1–14.

31. B. Preneel, P.C. van Oorschot, “On the security of two MAC algorithms,” Proc.
Eurocrypt’96, LNCS 1070, U. Maurer, Ed., Springer-Verlag, 1996, pp. 19–32.

32. R.L. Rivest, “The MD5 message-digest algorithm,” Request for Comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

33. P. Rogaway, “Bucket hashing and its application to fast message authentication,”
Proc. Crypto’95, LNCS 963, D. Coppersmith, Ed., Springer-Verlag, 1995, pp. 29–
42. Full version http://www.cs.ucdavis.edu/∼rogaway/papers.

34. C.E. Shannon, “Communication theory of secrecy systems,” Bell System Technical
Journal, Vol. 28, 1949, pp. 656-715.

35. V. Shoup, “On fast and provably secure message authentication based on universal
hashing, Proc. Crypto’96, LNCS 1109, N. Koblitz, Ed., Springer-Verlag, 1996,
pp. 313–328.

36. G.J. Simmons, “A survey of information authentication,” in “Contemporary Cryp-
tology: The Science of Information Integrity,” G.J. Simmons, Ed., IEEE Press,
1991, pp. 381–419.

37. G.J. Simmons, “How to insure that data acquired to verify treat compliance
are trustworthy,” in “Contemporary Cryptology: The Science of Information In-
tegrity,” G.J. Simmons, Ed., IEEE Press, 1991, pp. 615–630.

38. D.R. Stinson, “The combinatorics of authentication and secrecy codes,” Journal
of Cryptology, Vol. 2, No. 1, 1990, pp. 23–49.

Software Performance of Universal Hash Functions 41

39. D.R. Stinson, “Universal hashing and authentication codes,” Designs, Codes, and
Cryptography, Vol. 4, No. 4, 1994, pp. 369–380.

40. M.N. Wegman, J.L. Carter, “New hash functions and their use in authentication
and set equality,” Journal of Computer and System Sciences, Vol. 22, No. 3, 1981,
pp. 265–279.

	Introduction
	Definitions and Background
	Authentication Codes
	Universal Hash Functions
	Composition Constructions

	Constructions
	Bucket Hashing
	Bucket Hashing with Small Key Size
	Hash Family Based on Fast Polynomial Evaluation
	Hash Family Using Toeplitz Matrices
	Evaluation Hash Function
	Division Hash Function
	MMH Hashing

	Comparing the Hash Functions
	Concluding Remarks

