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Abstract: This paper investigates grid computing from the point of view three basic computing platforms. Each 
platform considered consists of virtual compute resources, a programming environment allowing for the 
development of grid applications, and a grid operating system to execute user programs and to make solving 
complex user problems easier.  Three platforms are discussed: compute grid, metacompute grid and 
intergrid. Service protocol-oriented architectures are contrasted with service object-oriented architectures, 
then the current SORCER metacompute grid based on a service object-oriented architecture and a new 
metacomputing paradigm is described and analyzed. Finally, we explain how SORCER, with its core 
services and federated file system, can also be used as a traditional compute grid and an intergrid—a hybrid 
of compute and metacompute grids. 

1 INTRODUCTION 

The term “grid computing” originated in the 
early 1990s as a metaphor for accessing computer 
power as easy as an electric power grid. Today there 
are many definitions of grid computing with a 
varying focus on architectures, resource 
management, access, virtualization, provisioning, 
and sharing between heterogeneous compute 
domains. Thus, diverse compute resources across 
different administrative domains form a grid for the 
shared and coordinated use of resources in dynamic, 
distributed, and virtual computing organizations 
(Foster, 2002). Therefore, the grid requires a 
platform that describes some sort of framework to 
allow software to run utilizing virtual organizations. 
These organizations are dynamic subsets of 
departmental grids, enterprise grids, and global 
grids, which allow programs to use shared 
resources—collaborative federations.  

Different platforms of grids can be distinguished 
along with corresponding types of virtual 
federations. However, in order to make any grid-
based computing possible, computational modules 
have to be defined in terms of platform data, 
operations, and relevant control strategies. For a grid 
program, the control strategy is a plan for achieving 
the desired results by applying the platform 
operations to the data in the required sequence, 

leveraging the dynamically federating resources.  
We can distinguish three generic grid platforms, 
which are described below. 

Programmers use abstractions all the time. The 
source code written in programming language is an 
abstraction of the machine language. From machine 
language to object-oriented programming, layers of 
abstractions have accumulated like geological strata. 
Every generation of programmers uses its era’s 
programming languages and tools to build programs 
of next generation. Each programming language 
reflects a relevant abstraction, and usually the type 
and quality of the abstraction implies the complexity 
of problems we are able to solve. For example, a 
procedural language provides an abstraction of an 
underlying machine language. An executable file 
represents a computing component whose content is 
meant to be interpreted as a program by the 
underlying native processor. A request can be 
submitted to a grid resource broker to execute a 
machine code in a particular way, e.g., parallelizing 
it and collocating it dynamically to the right 
processors in the grid. That can be done, for 
example, with the Nimrod-G grid resource broker 
scheduler (“Nimrod”, 2008) or the Condor-G high-
throughput scheduler (Thain, 2003). Both rely on 
Globus/GRAM (Grid Resource Allocation and 
Management) protocol (Foster, 2002). In this type of 
grid, called a compute grid, executable files are 



 

Figure 1: Three types of grids: compute grid, metacompute 
grid, and intergrid. A cybernode provides a lightweight 
dynamic virtual processor, turning heterogeneous compute 
resources into homogeneous services available to the 
metacomputing OS (“Project Rio”, n.d). 

 
 
 
 
 
 
 
 
 
 
 
 
 

moved around the grid to form virtual federations of 
required processors. This approach is reminiscent of 
batch processing in the era when operating systems 
were not yet developed. A series of programs 
("jobs") is executed on a computer without human 
interaction or the possibility to view any results 
before the execution is complete. 

A grid programming language is the abstraction 
of hierarchically organized networked processors 
running a grid computing program—metaprogram—
that makes decisions about component programs 
such as when and how to run them. Nowadays the 
same computing abstraction is usually applied to the 
program executing on a single computer as to the 
metaprogram executing in the grid of computers, 
even though the executing environments are 
structurally completely different entities. Most grid 
programs are still written using compiled languages 
such as FORTRAN, C, C++, Java, and scripting 
languages such as Perl and Python the way it usually 
works on a single host. The current trend is to have 
these programs and scripts define grid computational 
modules. Thus, most grid computing modules are 
developed using the same abstractions and, in 
principle, run the same way on the grid as on a 
single processor. There is presently no grid 
programming methodologies to deploy a 
metaprogram that will dynamically federate all 
needed resources in the grid according to a control 
strategy using a kind of grid algorithmic logic. 
Applying the same programming abstractions to the 
grid as to a single computer does not foster 
transitioning from the current phase of early grid 
adopters to public recognition and then to mass 
adoption phases. 

The reality at present is that grid resources are 
still very difficult for most users to access, and that 
detailed programming must be carried out by the 
user through command line and script execution to 
carefully tailor jobs on each end to the resources on 
which they will run or for the data structure that they 
will access.  This produces frustration on the part of 
the user, delays in adoption of grid techniques, and a 
multiplicity of specialized “grid-aware” tools that 
are not, in fact, aware of each other that defeat the 
basic purpose of the grid. 

Instead of moving executable files around the 
grid, we can autonomically provision the 
corresponding computational components as 
uniform services on the grid. All grid services can be 
interpreted as instructions (metainstructions) of the 
metacompute grid. Now we can submit a 
metaprogram in terms of metainstructions to the grid 
platform that manages a dynamic federation of 

service providers and related resources, and enables 
the metaprogram to interact with the service 
providers according to the metaprogram control 
strategy. 

We can distinguish three types of grids 
depending on the nature of computational 
components: compute grids (cGrids), metacompute 
grids (mcGrids), and the hybrid of the previous 
two—intergrids (iGrids). Note that a cGrid is a 
virtual federation of processors (roughly CPUs) that 
execute submitted executable files with the help of a 
grid resource broker. However, an mcGrid is a 
federation of service providers managed by the 
mcGrid operating system. Thus, the latter approach 
requires a metaprogramming methodology while in 
the former case the conventional procedural 
programming languages are used. The hybrid of 
both cGrid and mcGrid abstractions allows for an 
iGrid to execute both programs and metaprograms 
(intergrid applications) as depicted in Figure 1, 
where platform layers P1, P2, and P3 correspond to 
resources, resource management, and programming 
environment correspondingly. 

One of the first mcGrids was developed under 
the sponsorship of the National Institute for 
Standards and Technology (NIST)—the Federated 
Intelligent Product Environment (FIPER) (“FIPER”, 
2008; Röhl, 2000; Sobolewski 2002). The goal of 
FIPER is to form a federation of distributed services 
that provide engineering data, applications and tools 
on a network. A highly flexible software architecture 
had been developed (1999-2003), in which 



 

Figure 2: Service object-oriented architecture 

engineering tools like computer-aided design 
(CAD), computer-aided engineering (CAE), product 
data management (PDM), optimization, cost 
modeling, etc., act as federating service providers 
and service requestors. 

The Service-ORiented Computing EnviRonment 
(SORCER) (Sobolewski, 2007; Sobolewski, 2008) 
builds on the top of FIPER to introduce a 
metacomputing operating system with all basic 
services necessary, including a federated file system, 
to support service-oriented metaprogramming. It 
provides an integrated solution for complex 
metacomputing applications. The SORCER 
metacomputing environment adds an entirely new 
layer of abstraction to the practice of grid 
computing—exertion-oriented (EO) programming. 
The EO programming makes a positive difference in 
service-oriented programming primarily through a 
new metaprogramming abstraction as experienced in 
many grid-computing projects including systems 
deployed at GE Global Research Center, GE 
Aviation, Air Force Research Lab, and SORCER 
Lab (Burton, 2002; Kolonay, 2002; Sampath, 2002; 
Kao, 2003; Lapinski, 2003; Khurana, 2005; 
Sobolewski, 2006; Berger, 2007; Turner, 2007; 
Goel, 2005; Goel, 2007; Kolonay, 2007; “SORCER 
Research”, 2008). 

The paper is organized as follows. Section 2 
provides a brief description of two service-oriented 
architectures used in grid computing with a related 
discussion of distribution transparency; Section 3 
describes the SORCER metacomputing philosophy 
and mcGrid; Section 4 describes the SORCER 
cGrid, Section 5 the metacomputing file system, and 
Section 6 the SORCER iGrid; Section 7 provides 
concluding remarks. 

2. SOA = SPOA + SOOA 

Various definitions of a Service-Oriented 
Architecture (SOA) leave a lot of room for 
interpretation. Nowadays SOA becomes the leading 
architectural approach to most grid developments. In 
general terms, SOA is a software architecture using 
loosely coupled software services that integrates 
them into a distributed computing system by means 
of service-oriented programming. Service providers 
in the SOA environment are made available as 
independent service components that can be 
accessed without a priori knowledge of their 
underlying platform or implementation. While the 
client-server architecture separates a client from a 

server, SOA introduces a third component, a service 
registry. In SOA, the client is referred to as a service 
requestor and the server as a service provider. The 
provider is responsible for deploying a service on 
the network, publishing its service to one or more 
registries, and allowing requestors to bind and 
execute the service. Providers advertise their 
availability on the network; registries intercept these 
announcements and add published services. The 
requestor looks up a service by sending queries to 
registries and making selections from the available 
services. Queries generally contain search criteria 
related to the service name/type and quality of 
service. Registries facilitate searching by storing the 
service representation and making it available to 
requestors. Requestors and providers can use 
discovery and join protocols to locate registries and 
then publish or acquire services on the network. 

We can distinguish the service object-oriented 
architecture (SOOA), where providers, requestors, 
and proxies are network objects, from the service 
protocol oriented architecture (SPOA), where a 
communication protocol is fixed and known 
beforehand by the both provider and requestor. 
Using SPOA, a requestor can use this fixed protocol 
and a service description obtained from a service 
registry to create a proxy for binding to the service 
provider and for remote communication over the 
fixed protocol.  In SPOA a service is usually 
identified by a name. If a service provider registers 
its service description by name, the requestors have 
to know the name of the service beforehand. 

In SOOA (see Figure 2), a proxy—an object 
implementing the same service interfaces as its 
service provider—is registered with the registries 
and it is always ready for use by requestors. Thus, 
the service provider publishes the proxy as the active 



 

surrogate object with a codebase annotation, e.g., 
URLs to the code defining proxy behavior in Jini 
ERI (“Package net.jini.jeri”, n.d.). In SPOA, by 
contrast, a passive service description is registered 
(e.g., an XML document in WSDL for Web/OGSA 
services (McGovern, 2003; Sotomayor, 2005) or an 
interface description in IDL for CORBA (Ruth, 
1999)); the requestor then has to generate the proxy 
(a stub forwarding calls to a provider) based on the 
service description and the fixed communication 
protocol (e.g., SOAP in Web/OGSA services, IIOP 
in CORBA). This is referred to as a bind operation. 
The binding operation is not needed in SOOA since 
the requestor holds the active surrogate object 
obtained from the registry. 

Web services and OGSA services cannot change 
the communication protocol between requestors and 
providers while the SOOA approach is protocol 
neutral (Waldo, n.d.). In SOOA, the way an object 
proxy communicates with a provider is established 
by the contract between the provider and its 
published proxy and defined by the provider 
implementation. The proxy’s requestor does not 
need to know who implements the interface, how it 
is implemented, or where the provider is located—
three neutralities of SOOA. So-called smart proxies 
(e.g., provided by Jini ERI) grant access to local and 
remote resources. They can also communicate with 
multiple providers on the network regardless of who 
originally registered the proxy, thus separate 
providers on the network can implement different 
parts of the smart proxy interface(s). 
Communication protocols may also vary, and a 
single smart proxy can also talk over multiple 
protocols including application specific protocols.  

SPOA and SOOA differ in their method of 
discovering the service registry. SORCER uses 
dynamic discovery protocols to locate available 
registries (lookup services) as defined in the Jini 
architecture (“Jini Architecture”, 2001). Neither the 
requestor who is looking up a proxy by its interfaces 
nor the provider registering a proxy needs to know 
specific registry locations. In SPOA, however, the 
requestor and provider usually do need to know the 
explicit location of the service registry—e.g., a URL 
for RMI registry (Pitt, 2001), a URL for UDDI 
registry (McGovern, 2003), an IP address and port 
of a COS Name Server (Ruh, 1999)—to open a 
static connection and find or register a service. In 
deployment of Web and OGSA services, a UDDI 
registry is sometimes even omitted; in SOOA, 
lookup services are mandatory due to the dynamic 

nature of objects identified by service types. 
Interactions in SPOA are more like static client-
server connections (e.g., HTTP, SOAP, IIOP) in 
many cases with no need to use service registries at 
all. 

Crucial to the success of SOOA is interface 
standardization. Services are identified by interfaces 
(service types, e.g., Java interfaces) and additional 
provider’s specific properties if needed; the exact 
identity of the service provider is not crucial to the 
architecture. As long as services adhere to a given 
set of rules (common interfaces), they can 
collaborate to execute published operations, 
provided the requestor is authorized to do so.  

Let us emphasize the major distinction between 
SOOA and SPOA: in SOOA, a proxy is created and 
always owned by the service provider, but in SPOA, 
the requestor creates and owns a proxy which has to 
meet the requirements of the protocol that the 
provider and requestor agreed upon a priori. Thus, in 
SPOA the protocol is always a generic one, reduced 
to a common denominator—one size fits all—that 
leads to inefficient network communication in many 
cases. In SOOA, each provider can decide on the 
most efficient protocol(s) needed for a particular 
distributed application. 

Service providers in SOOA can be considered as 
independent network objects finding each other via a 
service registry using object types and 
communicating through message passing. A 
collection of these object sending and receiving 
messages—the only way these objects communicate 
with one another—looks very much like a service 
object-oriented distributed system.  

Do you remember the eight fallacies (“Fallacies”, 
n.d.) of network computing? We cannot just take an 
object-oriented program developed without 
distribution in mind and make it a distributed 
system, ignoring the unpredictable network 
behavior. Most RPC systems, with notable exception 
of Jini (Edwards, 2000) and SORCER, hide the 
network behavior and try to transform local 
communication into remote communication by 
creating distribution transparency based on a local 
assumption of what the network might be. However, 
every single distributed object cannot do that in a 
uniform way as the network is a dynamic distributed 
system and cannot be represented completely within 
a single entity.  

The network is dynamic, cannot be constant, and 
introduces latency for remote invocations. Network 
latency also depends on potential failure handling 



 

Figure: 3 SORCER layered platform, where P1 
resources, P2 resource management, P3 programming 
environment 

and recovery mechanisms, so we cannot assume that 
a local invocation is similar to remote invocation. 
Thus, complete distribution transparency—by 
making calls on distributed objects as though they 
were local—is impossible to achieve in practice. The 
distribution is simply not just an object-oriented 
implementation of a single distributed object; it is a 
metasystemic issue in object-oriented distributed 
programming. In that context, Web/OGSA services 
define distributed objects, but do not have anything 
common with object-oriented distributed systems 
that for example the Jini architecture emphasizes. 

Object-oriented programming can be seen as an 
attempt to abstract both data and related operations 
in an entity called object. Thus, object-oriented 
program may be seen as a collection of cooperating 
objects communicating via message passing, as 
opposed to a traditional view in which a program 
may be seen as a list of instructions to the computer. 
Instead of objects and messages, in EO 
programming service providers and exertions 
constitute a program. An exertion is a kind of meta-
request sent onto the network. The exertion can be 
considered as the specification of collaboration that 
encapsulates data, related operations, and control 
strategy. The operations specify implicitly the 
required service providers on the network. The 
activated exertion creates at runtime a federation of 
providers to execute a service collaboration 
according to the exertion’s control strategy. Thus, 
the exertion is the metaprogram and its metashell 
that submits the request onto the network to run the 
collaboration in which all providers pass to one 
other the component exertions only. This type of 
metashell was created for the SORCER 
metacompute operating system (see Figure 3)—the 
exemplification of SOOA with autonomic 
management of system and domain-specific service 
providers to run EO programs. 

SORCER defines the object-oriented distribution 
for EO programming (Sobolewski, 2008). It uses 
indirect federated remote method invocation 
(Sobolewski, 2007) with no location of service 
provider explicitly specified in exertions. A 
specialized infrastructure of distributed services 
supports discovery/join protocols for providers and 
the exertion shell, federated file system, and the 
system brokers responsible for coordination of 
executing federations. That infrastructure defines 
SORCER’s object-oriented distributed modularity, 
extensibility, and reuse of providers and exertions—
key features of object-oriented distributed 

programming that are usually missing in SPOA 
programming environments.  

3. METACOMPUTE GRID 

SORCER is a federated service-to-service (S2S) 
metacomputing environment that treats service 
providers as network peers with well-defined 
semantics of a federated service object-oriented 
architecture (FSOOA). It is based on Jini semantics 
of services (“Jini Architecture”, n.d.) in the network 
and the Jini programming model (Edwards, 2000) 
with explicit leases, distributed events, transactions, 
and discovery/join protocols. While Jini focuses on 
service management in a networked environment, 
SORCER is focused on EO programming and the 
execution environment for exertions.  

As described in Section 2, SOOA consists of four 
major types of network objects: providers, 
requestors, registries, and proxies. The provider is 
responsible for deploying the service on the 
network, publishing its proxy to one or more 
registries, and allowing requestors to access its 
proxy. Providers advertise their availability on the 
network; registries intercept these announcements 
and cache proxy objects to the provider services. 
The requestor looks up proxies by sending queries to 
registries and making selections from the available 
service types. Queries generally contain search 
criteria related to the type and quality of service. 
Registries facilitate searching by storing proxy 
objects of services and making them available to 
requestors. Providers use discovery/join protocols to 
publish services on the network; requestors use 
discovery/join protocols to obtain service proxies on 



 

the network. The SORCER metacompute OS uses 
Jini discovery/join protocols to implement its 
FSOOA.  

In FSOOA, a service provider is an object that 
accepts exertions from service requestors to execute 
a collaboration. An exertion encapsulates service 
data, operations, and control strategy. A task 
exertion is an elementary service request, a kind of 
elementary remote instruction (elementary 
statement) executed by a single service provider or a 
small-scale federation. A composite exertion called a 
job exertion is defined hierarchically in terms of 
tasks and other jobs, including control flow 
exertions. A job exertion is a kind of network 
procedure executed by a large-scale federation. 
Thus, the executing exertion is a service-oriented 
program that is dynamically bound to all required 
and currently available service providers on the 
network. This collection of providers identified at 
runtime is called an exertion federation. While this 
sounds similar to the object-oriented paradigm, it 
really is not. In the object-oriented paradigm, the 
object space is a program itself; here the exertion 
federation is the execution environment for the 
exertion, and the exertion is the object-oriented 
program—specification of service collaboration. 
This changes the programming paradigm 
completely. In the former case the object space is 
hosted by a single computer, but in the latter case the 
parent and its component exertions along with 
related service providers are hosted by the network 
of computers. 

The overlay network of all service providers is 
called the service grid and an exertion federation is 
called a virtual metacomputer. The metainstruction 
set of the metacomputer consists of all operations 
offered by all providers in the grid. Thus, a service-
oriented program is composed of metainstructions 
with its own service-oriented control strategy and 
service context representing the metaprogram data. 
Service signatures specify metainstructions in 
SORCER. Each signature primarily is defined by a 
service type (interface name), operation in that 
interface, and a set of optional attributes. Four types 
of signatures are distinguished: PROCESS, 
PREPROCESS, POSTPROCESS, and APPEND. A 
PROCESS signature—of which there is only one 
allowed per exertion—defines the dynamic late 
binding to a provider that implements the signature’s 
interface. The service context (Zhao, 2001; 
Sobolewski, 2008) describes the data that tasks and 
jobs work on. An APPEND signature defines the 

context received from the provider specified by this 
signature. The received context is then appended in 
runtime to the service context later processed by 
PREPROCESS, PROCESS, and POSTPROCESS 
operations of the exertion. Appending a service 
context allows a requestor to use actual network data 
in runtime not available to the requestor when the 
exertion is submitted. An EO program allows for a 
dynamic federation to transparently coordinate the 
execution of all component exertions within the grid. 
Please note that these metacomputing concepts are 
defined differently in traditional grid computing 
where a job is just an executing process for a 
submitted executable code with no federation being 
formed for the executable. 

An exertion can be activated by calling exertion’s 
exert operation:  
Exertion.exert(Transaction):Exertion, 
where a parameter of the Transaction type is 
required when a transactional semantics is needed 
for all participating nested exertions within the 
parent one. Thus, EO programming allows us to 
submit an exertion onto the network and to perform 
executions of exertion’s signatures on various 
service providers indirectly, but where does the 
service-to-service communication come into play? 
How do these services communicate with one 
another if they are all different? Top-level 
communication between services, or the sending of 
service requests, is done through the use of the 
generic Servicer interface and the operation 
service that all SORCER services are required to 
provide: Servicer.service(Exertion, 
Transaction):Exertion. This top-level service 
operation takes an exertion as an argument and gives 
back an exertion as the return value. 

So why are exertions used rather than directly 
calling on a provider's method and passing service 
contexts? There are two basic answers to this. First, 
passing exertions helps to aid with the network-
centric messaging. A service requestor can send an 
exertion implicitly out onto the network—
Exertion.exert()—and any service provider can 
pick it up. The provider can then look at the 
interface and operation requested within the 
exertion, and if it doesn't implement the desired 
interface or provide the desired method, it can 
continue forwarding it to another service provider 
who can service it. Second, passing exertions helps 
with fault detection and recovery. Each exertion has 
its own completion state associated with it to specify 
if it has yet to run, has already completed, or has 



 

failed. Since full exertions are both passed and 
returned, the user can view the failed exertion to see 
what method was being called as well as what was 
used in the service context input nodes that may 
have caused the problem. Since exertions provide all 
the information needed to execute a task including 
its control strategy, a user would be able to pause a 
job between tasks, analyze it and make needed 
updates. To figure out where to resume an exertion, 
the executing provider would simply have to look at 
the exertion’s completion states and resume the first 
one that wasn't completed yet. In other words, EO 
programming allows the user, not programmer to 
update the metaprogram on-the-fly, what practically 
translates into creation new collaborative 
applications during the exertion runtime.  

Despite the fact that every Servicer can accept 
any exertion, Servicers have well defined roles in 
the S2S platform (see Figure 3): 
a) Taskers – process service tasks  
b) Jobbers – process service jobs 
c) Spacers – process tasks and jobs via exertion 

space for space-based computing (Freeman, 
1999) 

d) Contexters – provide service contexts for 
APPEND Signatures 

e) FileStorers – provide access to federated file 
system providers (Sobolewski, 2003, Berger, 
2005, Berger 2007) 

f) Catalogers – Servicer registries 
g) Persisters – persist service contexts, tasks, 

and jobs to be reused for interactive EO 
programming 

h) Relayers – gateway providers; transform 
exertions to native representation, for example 
integration with Web services and JXTA 
(“JXTA”, n.d.) 

i) Autenticators, Authorizers, Policers, 
KeyStorers – provide support for service 
security 

j) Auditors, Reporters, Loggers – support for 
accountability, reporting, and logging 

k) Griders, Callers, Methoders – support 
compute grid (see Section 4) 

l) Generic ServiceTasker, ServiceJobber, and 
ServiceSpacer implementations are used to 
configure domain-specific providers via 
dependency injection—configuration files for 
smart proxying and embedding business objects, 
called service beans, into service providers. 
An exertion can be created interactively 

(Sobolewski, 2006) or programmatically (using 

SORCER APIs), and its execution can be monitored 
and debugged (Soorianarayanan, 2006) in the 
overlay service network via service user interfaces 
(“The Service UI Project”, n.d.) attached to 
providers and installed on-the-fly by generic service 
browsers (“Inca X”, n.d). Service providers do not 
have mutual associations prior to the execution of an 
exertion; they come together dynamically (federate) 
for all nested tasks and jobs in the exertion. Domain 
specific providers within the federation, or task 
peers, execute service tasks. Jobs are coordinated by 
rendezvous peers: a Jobber or Spacer, two of the 
SORCER platform core services. However, a job 
can be sent to any peer. A peer that is not a 
rendezvous peer is responsible for forwarding the 
job to an available rendezvous peer and returning 
results to the requestor. Thus implicitly, any peer 
can handle any exertion type. Once the exertion 
execution is complete, the federation dissolves and 
the providers disperse to seek other exertions to join. 

An Exertion is activated by calling its exert 
method. The SORCER API defines the following 
three related operations:  
1. Exertion.exert(Transaction):Exertion 

– join the federation; the activated exertion binds 
to an available provider specified by the 
exertion’s PROCESS signature; 

2. Servicer.service(Exertion, 
Transaction):Exertion – request a service 
in the federation initiated by any bounding 
provider; and 

3. Exerter.exert(Exertion, 
Transaction):Exertion – execute the 
argument exertion by the provider accepting the 
service request in 2) above. 

This above Triple Command pattern (Sobolewski, 
2007) defines various implementations of these 
interfaces: Exertion (metaprogram), Servicer 
(generic peer provider), and Exerter (service 
provider exerting a particular type of Exertion). 
This approach allows for the P2P environment 
(Oram, 2001) via the Servicer interface, extensive 
modularization of Exertions and Exerters, and 
extensibility from the triple design pattern so 
requestors can submit onto the network any EO 
programs they want with or without transactional 
semantics. The Triple Command pattern is used as 
follows: 
1. An exertion can be activated by calling 

Exertion.exert(). The exert operation 



 

Figure 4: Push vs. pull exertion processing 

implemented in ServiceExertion uses 
ServiceAccessor to locate in runtime the 
provider matching the exertion’s PROCESS 
signature.  

2. If the matching provider is found, then on its 
access proxy the Servicer.service() method 
is invoked.  

3. When the requestor is authenticated and 
authorized by the provider to invoke the method 
defined by the exertion’s PROCESS signature, 
then the provider calls its own exert operation: 
Exerter.exert().  

4. Exerter.exert() operation is implemented 
by ServiceTasker, ServiceJobber, or 
ServiceSpacer. The ServiceTasker peer 
calls by reflection the application method 
specified in the PROCESS signature of the task 
exertion. All application domain methods of any 
interface have the same signature: a single 
Context type parameter and a Context type 
return vale. Thus an application interface looks 
like an RMI (Pitt, 2001) interface with the above 
simplification on the common signature for all 
interface methods. 

The exertion activated by a service requestor can be 
submitted directly or indirectly to the matching 
service provider. In the direct approach, when 
signature’s access type is PUSH, the exertion’s 
ServicerAccessor finds the matching service 
provider against the service type and attributes of the 
PROCESS signature and submits the exertion to the 
matching provider. Alternatively, when signature’s 
access type is PULL, a ServiceAccessor can use a 
Spacer provider and simply drops the exertion into 
the shared exertion space to be pulled by a matching 
provider. The execution order of signatures is 
defined by signature priorities, if the exertion’s flow 
type is SEQUENTIAL, otherwise they are dispatch in 
parallel. In Figure 4 four use cases are presented to 
illustrate push vs. pull exertion processing with 
either PUSH or PULL access types. We assume here 
that an exertion is a job with two component 
exertions executed in parallel (sequence numbers 
with a and b), i.e., the job’s signature flow type is 
PARALLEL. The job can be submitted directly to 
either Jobber (use cases: 1—access is PUSH, and 
2—access is PULL) or Spacer (use cases: 3 —
access is PUSH, and 4—access is PULL) depending 
on the interface defined in its PROCES signature. 
Thus, in cases 1 and 2 the signature’s interface is 

Jobber and in cases 3 and 4 the signature’s 
interface is Spacer as shown in Figure 2. The 
exertion’s ServicerAccessor delivers the right 
service proxy dynamically, either for a Jobber or 
Spacer. If the access type of the parent exertion is 
PUSH, then all the component exertions are directly 
passed to servicers matching their PROCESS 
signatures (case 1 and 3), otherwise they are written 
into the exertion space by a Spacer (case 2 and 4). 
In the both cases 2 and 4, the component exertions 
are pulled from the exertion space by servicers 
matching their signatures as soon as they are 
available. Thus, Spacers provide efficient load 
balancing for processing the exertion space. The 
fastest available sevicer gets an exertion from the 
space before other overloaded or slower servicers 
can do so. When an exertion consists of component 
jobs with different access and flow types, then we 
have a hybrid case when the collaboration 
potentially executes concurrently with multiple pull 
and push subcollaborations at the same time. 

4. COMPUTE GRID 

Also, to use legacy applications, SORCER 
supports a traditional approach to grid computing 
similar to those found in Condor (Thain, 2003) and 
Globus (Sotomayor, 2005). Here, instead of 
exertions being executed by services providing 
business logic for collaborating exertions, the 
business logic comes from the service requestor's 
executable codes that seek compute resources on the 
network.  

The cGrid services in the SORCER environment 
include Griders accepting exertions and 
collaborating with Jobbers and Spacers in the role 
of grid scheduler. Caller and Methoder services 



 

are used for task execution received from Jobbers 
or picked up from exertion space via Spacers. 
Callers execute provided codes via a system call as 
described by the standardized Caller’s service 
context of the submitted task. Methoders download 
required Java code (task method) from requestors to 
process any submitted service context with the 
downloaded code accordingly. In either case, the 
business logic comes from requestors; it is 
executable code specified in the service context 
invoked by Callers, or mobile Java code executed 
by Methoders that is annotated by the exertion 
signature. 

The SORCER cGrid with Methoders was used 
to deploy an algorithm called Basic Local Alignment 
Search Tool  (BLAST) (Alschul, 1990) to compare 
newly discovered, unknown DNA and protein 
sequences against a large database with more than 
three gigabytes of known sequences. BLAST (C++ 
code) searches the database for sequences that are 
identical or similar to the unknown sequence. This 
process enables scientists to make inferences about 
the function of the unknown sequence based on what 
is understood about the similar sequences found in 
the database. Many projects at the USDA–ARS 
Research Unit, for example, involve as many as 
10,000 unknown sequences, each of which must be 
analyzed via the BLAST algorithm. A project 
involving 10,000 unknown sequences requires about 
three weeks to complete on a single desktop 
computer. The S-BLAST implemented in SORCER 
(Khurana, 2005), a federated form of the BLAST 
algorithm, reduces the amount of time required to 
perform searches for large sets of unknown 
sequences. S-BLAST is comprised of 
BlastProvider (with the attached BLAST Service 
UI), Jobbers, Spacers, and Methoders. 
Methoders in S-BLAST download Java code (a 
service task method) that initializes a required 
database before making system call for the BLAST 
code. Armed with the S-BLAST’s cGrid and 
seventeen commodity computers, projects that 
previously took three weeks to complete can now be 
finished in less than one day. 

The SORCER cGrid with Griders, Jobbers, 
Spacers, and Callers has been successfully 
deployed with the Proth program (C code) and easy-
to-use zero-install service UI attached to a Grider 
and the federated file system. 

5. FEDERATED FILE SYSTEM  

The SILENUS federated file system (Berger, 
2005; Berger, 2007) was designed and developed to 

provide data access for metaprograms. It 
complements the file store developed for FIPER 
(Sobolewski, 2003) with the true P2P services. The 
SILENUS system itself is a collection of service 
providers that use the SORCER framework for 
communication. 

In classical client-server file systems, a heavy 
load may occur on a single file server. If multiple 
service requestors try to access large files at the 
same time, the server will be overloaded. In a P2P 
architecture, every provider is a client and a server at 
the same time. The load can be balanced between all 
peers if files are spread across all of them. The 
SORCER architecture splits up the functionality of 
the metacomputer into smaller service peers 
(Servicers), and this approach was applied to the 
distributed file system as well. 

The SILENUS federated file system is comprised 
of several network services that run within the 
SORCER environment. These services include a 
byte store service for holding file data, a metadata 
service for holding metadata information about the 
files, several optional optimizer services, and façade 
(Grand, 1999) services to assist in accessing 
federating services. SILENUS is designed so that 
many instances of these services can run on a 
network, and the required services will federate 
together to perform the necessary functions of a file 
system. In fact the SILENUS system is completely 
decentralized, eliminating all potential single point 
failures. SILENUS services can be broadly 
categorized into gateway components, data services, 
and management services.  

The SILENUS façade service provides a gateway 
service to the SILENUS grid for requestors that 
want to use the file system. Since the metadata and 
actual file contents are stored by different services, 
there is a need to coordinate communication 
between these two services. The façade service itself 
is a combination of a control component, called the 
coordinator, and a smart proxy component that 
contains needed inner proxies provided dynamically 
by the coordinator. These inner proxies facilitate 
direct P2P communications for file upload and 
download between the requestor and SILENUS 
federating services like metadata and byte stores.  

Core SILENUS services have been successfully 
deployed as SORCER services along with WebDAV 
and NFS adapters. The SILENUS file system scales 
well with a virtual disk space adjusted as needed by 
the corresponding number of required byte store 
providers and the appropriate number of metadata 
stores required to satisfy the needs of current users 
and service requestors. The system handles several 



 

Figure 5: Integrating and wrapping cGrids with SORCER mcGrids. Two requestors, one in JXTA iGrid, one in OGSA iGrid 
submits exertion to a corresponding relayer. Two federations are formed that include providers from all the two horizontal layers below 
the iGrid layer (as indicated by continues and dashed links). 

types of network and computer outages by utilizing 
disconnected operation and data synchronization 
mechanisms. It provides a number of user agents 
including a zero-install file browser attached to the 
SILENUS façade. Also a simpler version of 
SILENUS file browser is available for smart MIDP 
phones.  

SILENUS supports storing very large files 
(Turner, 2007) by providing two services: a splitter 
service and a tracker service. When a file is 
uploaded to the file system, the splitter service 
determines how that file should be stored. If a file is 
sufficiently large enough, the file will be split into 
multiple parts, or chunks, and stored across many 
byte store services. Once the upload is complete, a 
tracker service keeps a record of where each chunk 
was stored. When a user requests to download the 
full file later on, the tracker service can be queried to 
determine the location of each chunk and the file can 
be reassembled to the original form.  

6. SORCER iGRID 

Relayers are SORCER gateway providers that 
transform exertions to native representations and 
vice versa. The following Exertion gateways have 
been developed: JxtaRelayer for JXTA (“JXTA”, 
n.d.), and WsRpcRelayer and WsDocRelayer for 
for RPC and document style Web services, 
respectively. Relayers exhibit native and mcGrid 
behavior. Some native cGrid providers play 

SORCER role (SORCER wrappers), thus are 
available in the iGrid along with mcGrid providers. 
Also, native cGrid providers via corresponding 
relayers can access iGrid services (bottom-up in 
Figure 5). 

The iGrid-integrating model is depicted in Fig 5, 
where horizontal native technology grids (bottom) 
are seamlessly integrated with horizontal SORCER 
mcGrids via the SORCER operating system 
services. Through the use of open standards-based 
communication—Jini, Web Services, 
Globus/OGSA, and Java interoperability—iGrid 
leverages mcGrid’s FSOOA with its inherent 
provider protocol, location, and implementation 
neutrality along with the flexibility of EO 
programming for iGrid computing. 

7 CONCLUSIONS 

An object-oriented grid is not just a collection of 
distributed objects; it is the network of unreliable 
objects that come and go. From an object-oriented 
point of view, the network of objects is the problem 
domain of object-oriented distributed programming 
that requires relevant abstractions in the solution 
space—a metacompute OS. The SORCER 
architecture shares the features of grid systems, P2P 
systems, and provides a platform for procedural 
programming and service-oriented meta-
programming as well. EO programming introduces 
new network abstractions with federated method 



 

invocation in FSOOA. It allows for creation 
adaptive collaborative applications at the exertion 
runtime. 

Executing a top-level exertion means federating 
currently available providers in the network that 
collaboratively process service contexts of all nested 
exertions. Services are invoked by passing exertions 
on to one another indirectly via object proxies that 
act as access proxies allowing for service providers 
to enforce security policies on access to services. 
When permission is granted, then the operation 
defined by a signature is invoked by reflection. 
SORCER allows for P2P computing via the common 
Servicer interface, extensive modularization of 
Exertions and Exerters, and extensibility from 
the Triple Command design pattern. The SORCER 
federated file system is modularized into a collection 
of distributed providers with multiple remote 
façades. Façades supply uniform access points via 
their smart proxies available dynamically to file 
requestors. A façade’s smart proxy encapsulates 
inner proxies to federating file system providers that 
are accessed directly (P2P) by file requestors. 

The SORCER iGrid has been successfully tested 
in multiple concurrent engineering and large-scale 
distributed applications (Burton, 2002; Kolonay, 
2002; Sampath, 2002; Kao, 2003; Lapinski, 2003; 
Khurana, 2005; Sobolewski, 2006; Berger, 2007; 
Turner, 2007; Goel, 2005; Goel, 2007; Kolonay, 
2007; “SORCER Research”, 2008). Due to the 
large-scale complexity of the evolving iGrid 
environment, it is still a work in progress and 
continues to be refined and extended by the 
SORCER Research Group at Texas Tech University 
(“SORCER Lab”, n.d.) in collaboration with Air 
Force Research Lab, WPAFB. The SORCER 
approach is consistent with the object-oriented 
distributed granularity of many service provider and 
exertion types, and provider configuration-based 
dependency injection. 
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