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1. Introduction

By a totient we mean a value taken by Euler’s function φ(n). Dence and Pomer-
ance [DP] have established

Theorem A. If a residue class contains at least one multiple of 4, then it contains
infinitely many totients.

Since 1 is the only odd totient, it remains to examine residue classes consisting
entirely of numbers ≡ 2 (mod 4). In this paper we shall characterize which of these
residue classes contain infinitely many totients and which do not. We show that the
union of all residue classes that are totient-free has asymptotic density 3/4, that is,
almost all numbers that are ≡ 2 (mod 4) are in a residue class that is totient-free.
In the other direction, we show the existence of a positive density of odd numbers
m, such that for any s ≥ 0 and any even number a, the residue class a (mod 2sm)
contains infinitely many totients.

We remark that if a residue class r (mod s) contains infinitely many totients,
it is possible, using the methods of [DP] and Narkiewicz [N], to get an asymptotic
formula for the number of n ≤ x with φ(n) ≡ r (mod s).
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2. Preliminary results

Totients in a residue class consisting of numbers that are ≡ 2 (mod 4) necessarily
are of the form pk − pk−1 for some prime p ≡ 3 (mod 4) and k ≥ 1. We begin by
characterizing those residue classes which contain only finitely many totients.

Lemma 1. Suppose s ≥ 1, k ≥ 1, a ≡ 2 (mod 4). Then there is a number y ≡ 3
(mod 4) such that yk − yk−1 ≡ a (mod 2s).

Proof. The lemma is trivial when s = 1 or k = 1, so suppose s ≥ 2, k ≥ 2. It
suffices to show that the congruence

yk − yk−1 ≡ xk − xk−1 (mod 2s)
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has no solutions with y, x ≡ 3 (mod 4) and x 6≡ y (mod 2s). If such a solution
exists, write x = zy, so that y(1− zk) ≡ 1− zk−1 (mod 2s). Since z 6≡ 1 (mod 2s),
we have

y(1 + z + · · ·+ zk−1) ≡ 1 + · · ·+ zk−2 (mod 2s).

However, as y and z are both odd, the above congruence is impossible. �

Lemma 2. Suppose k ≥ 2, M ≥ 1 and p ≡ 3 (mod 4) is prime. Then there is a
number x with (x,M) = 1 and xk − xk−1 ≡ pk − pk−1 (mod M).

Proof. It is sufficient to prove the existence of such x for M = rl where r is a prime.
If r 6= p we set x = p. If r = p we look for x = pk−1u + 1 for some number u. Then

(1) u(pk−1u + 1)k−1 ≡ p− 1 (mod pw),

where w = max(0, l − k + 1). Let

f(U) = U(pk−1U + 1)k−1 − p + 1.

Since f(U) ≡ U + 1 (mod p), which has the root −1, and f ′(−1) ≡ 1 (mod p),
Hensel’s lemma implies there is some root u of (1). �

Lemma 3. Suppose m is odd, s ≥ 2, a ≡ 2 (mod 4). If the congruence

(2) xk − xk−1 ≡ a (mod m)

has a solution with k ≥ 1 and (x, m) = 1, then the progression a (mod 2sm)
contains infinitely many totients. Otherwise the progression contains either one or
no totients, according as a = p− 1 for some p|m or not.

Proof. Assume that (2) has such a solution. By Lemma 1, there is a number y ≡ 3
(mod 4) such that yk − yk−1 ≡ a (mod 2s). It follows from Dirichlet’s Theorem
that there are infinitely many primes p ≡ x (mod m), p ≡ y (mod 2s), and for
each we have φ(pk) ≡ a (mod 2sm).

If (2) has no solution with (x, m) = 1, the only possible solutions of φ(z) ≡ a
(mod 2sm) are z = 4, z = pk or z = 2pk where p is an odd prime dividing m. If
z = 4, then a = 2, implying (2) has the solution x = 2, k = 2, a contradiction. In
addition, by Lemma 2, if a ≡ pk − pk−1 (mod m) for some odd prime p and k ≥ 2,
then (2) has a solution with (x,m) = 1. Hence z is either a prime or twice a prime
dividing m. �

Using Lemma 3, it is possible to find residue classes consisting of even numbers
which are free of totients. For example, the progressions 302 (mod 1092) and 790
(mod 1092) contain no totients. In verifying this, since 1092 = 4× 3× 7× 13, one
only needs to check (2) for k up to 12.

In the other direction, we prove

Theorem 1. Suppose M = 2sm, where s ≥ 2 and m is odd. If a = φ(b) > 1,
where b is neither prime nor twice an odd prime, then any arithmetic progression
a (mod M) contains infinitely many totients.

Proof. If a is divisible by 4, the result follows from Theorem A. Otherwise a = 2
or a = pk − pk−1 where p is an odd prime, k > 1.

If a = 2, M = 2sm, m is odd, then for any prime q such that q ≡ −1 (mod 2s),
q ≡ 2 (mod m) we have φ(q2) ≡ 2 (mod M).

In the case a = pk − pk−1, by Lemma 2 there is an x such that (x,M) = 1
and xk − xk−1 ≡ a (mod M). For any prime q ≡ x (mod M) we have φ(qk) ≡ a
(mod M). �
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Question. Suppose a ≡ 2 (mod 4) is either a non-totient or a totient with ex-
actly two pre-images {p, 2p} for some prime p. Is a contained in a residue class
containing no totients other than a itself?

The numbers 10 and 14 are the two smallest such a. A short search using a
computer reveals that the progression 14 (mod 22 × 3× 5× 13× 37) contains no
totients and the progression

10 (mod 4M), M = 3×7×11×13×29×31×41×43×101×151×211×281×701

contains no totients other than 10. Theorem 2 (next section) implies that for almost
all such a, the question may be answered in the affirmative.

3. A negative result

Theorem 2. For any ε > 0 there exist such m that at least (1−ε)m residue classes
a (mod 4m), 0 < a < 4m, a ≡ 2 (mod 4) are totient-free.

Corollary. The union of all totient-free residue classes has density 3/4.

Lemma 4. For any prime r ≥ 5 and for any k = 2, . . . , r − 2, the number of
distinct residues xk − xk−1 (mod r) with (x, r) = 1 is less than r −

√
r/2.

Remark 1. The restriction (x, r) = 1 is not essential as 0k − 0k−1 = 1k − 1k−1.
Remark 2. Surely, the estimate of Lemma 4 is very weak, and it should be ≤ cr,
c < 1. However, Lemma 4 is sufficient to prove Theorem 2.

Proof of Lemma 4. Let us consider the congruence

(3) xk − xk−1 ≡ yk − yk−1 (mod r), 1 ≤ x < r, 1 ≤ y < r, x 6= y.

Let y ≡ xz (mod r), 2 ≤ z < r. Any z entails the unique solution of (3) (namely,
x ≡ (zk−1−1)/(zk−1)) if zk−1 6≡ 1 (mod r) and zk 6≡ 1 (mod r), otherwise z does
not entail any solutions. So, the number of solutions of (3) is

N = r − (r − 1, k)− (r − 1, k − 1),

since (r − 1, j) is the number of solutions to zj ≡ 1 (mod r). Now (r − 1, k) and
(r − 1, k − 1) are coprime proper divisors of r − 1. Thus, their sum is at most
2 + (r − 1)/2, so N ≥ (r − 3)/2. If the number of distinct residues xk − xk−1

(mod r) with (x, r) = 1 is r−L, then L(L− 1) ≥ N , hence L2 ≥ N + L > r/2. �

Theorem 2 is equivalent to the following statement.

Theorem 2’. For any ε > 0 there exist such odd m that for at least (1 − ε)m
residues a (mod m) the congruence (2) does not have solutions with integers k > 0
and x with (x,m) = 1.

The equivalence of Theorems 2 and 2’ follows directly from Lemma 3 and from
the fact that the number of values of a in (2) of the form p−1 with p a prime factor
of m is O(log m).
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Lemma 5. For any D ≥ 1 there are �D x/ log x primes p ≤ x for which D|(p−1)
and no prime factor of p− 1 exceeds x9/20. The result holds for x sufficiently large
depending on D.

Proof. When D = 1, this follows from the Theorem 1 of [P]. Since D is fixed and
x →∞, the general result follows by the same method. �

Remark 3. The exponent 9/20 in Lemma 5 is not the best possible exponent. For
example, using the main theorem of [F], one can replace 9/20 with any number
larger than 1/(2

√
e). However, all we shall need below is an exponent smaller than

1/2.

Proof of Theorem 2’. Let p1, . . . , pI and q1, . . . , qJ be distinct odd primes such that

(4)
∏

i

(1− 1/pi) < ε/4,
∏
j

(1− 1/qj) < ε/4.

Set D = lcm(p1 − 1, . . . , pI − 1, q1 − 1, . . . , qJ − 1). Let y be a sufficiently large
number and let r1, . . . , rL denote the primes ≤ y, different from all pi, qj , for which
each rl − 1 is divisible by D and by no prime > y9/20. By Lemma 5, L � y/ log y.
Take

m =
∏

i

pi

∏
j

qj

∏
l

rl.

By (4), the number of a (mod m) satisfying

(5) ∃i a ≡ 1 (mod pi), ∃j a ≡ −1 (mod qj)

is at least (1 − ε/2)m. If a satisfies (5) and x is a solution of (2) with (x, m) = 1
then k 6≡ 0 (mod pi− 1) and k 6≡ 1 (mod qj − 1), therefore k 6≡ 0 (mod rl− 1) and
k 6≡ 1 (mod rl − 1) for all l. For such k we can estimate the number of possible
residues a (mod rl) by Lemma 4. Denote

n = lcm(p1−1, . . . , pI−1, q1−1, . . . , qJ−1, r1−1, . . . , rL−1) = lcm(r1−1, . . . , rL−1).

By construction,

n ≤
∏

p≤y9/20

p[log y/ log p] ≤ exp{y9/20 log y}.

By Lemma 4, for any k = 1, . . . , n such that for each l, k 6≡ 0 (mod rl−1) and k 6≡ 1
(mod rl − 1), the number of a (mod m) for which there exists x with (x, m) = 1
satisfying (2) does not exceed

m
∏

l

(1− 1/
√

2rl) < m exp(−L/
√

2y).

Thus, the number of a satisfying (5) for which a solution of (2) with (x, m) = 1
exists is less than mn exp(−L/

√
2y) ≤ εm/2 if y is large enough. �
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4. A positive result

Theorem 3. The set of all odd numbers m such that for any s ≥ 1 and for any even
a the residue class a (mod 2sm) contains infinitely many totients, has a positive
lower density.

Call an odd number m “good” if for any a the congruence (2) has a solution
with positive integers k and (x,m) = 1. Theorem 3 has an equivalent form:

Theorem 3’. The set of all good odd numbers has a positive lower density.

Lemma 6. Suppose f(x, y) is a polynomial absolutely irreducible modulo p. Then
the number N of solutions modulo p of f(x, y) ≡ 0 (mod p) satisfies

|N − (p + 1)| ≤ (d− 1)(d− 2)
√

p + d,

where d is the total degree of f .

Proof. In the case that f is non-singular over Fp, we use Weil’s theorem. The extra
d on the right of the inequality is an upper estimate for the number of solutions “at
infinity”. If f is singular, we use the principal result of Leep and Yeomans [LY]. �

Lemma 7. Suppose p is a prime and L, a, s, t are positive integers with (as, p) = 1.
Then the polynomial

f(x, y) = yL(1− xs)− axt

is absolutely irreducible modulo p.

Proof. If f(x, y) is reducible over Fp, then

h(y) = yL − axt

1− xs

is reducible over the field k = Fp(x). By the criterion of Capelli and Rédei (see
Theorem 21 in [S]), this forces the existence of some b in k such that axt/(1−xs) =
bq for some prime q dividing L, or axt/(1− xs) = −4b4, in which case 4 divides L.
However, since s is coprime to p, 1 − x divides 1 − xs to just the first power, so
neither possibility can occur. �

Remark 4. It is also possible to give a direct proof of Lemma 7. Over k̄ we have
the factorization

h(y) = (y − r1z) · · · (y − rLz),

where each ri ∈ Fp satisfies rL
i = 1, z ∈ k̄, and zL = axt/(1 − xs). Since h is

reducible over k, there exists a product

(y − ri1z) · · · (y − rij z) ∈ k[y],

where j < L. In particular, the constant coefficient lies in k, whence zj ∈ k. If m
is the smallest positive integer with zm ∈ k, then we have m|L, m < L. Writing
u(x) = zm, we have

u(x)L/m =
axt

1− xs
.

As 1− x divides 1− xs to just the first power, this equation is clearly impossible.
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Lemma 8. There is a number p0 such that for any prime p > p0, any positive
integers L ≤ p1/10 and l ≤ L and any integer a the congruence (2) has a solution
with m = p, k ≡ l (mod L) and (x, p) = 1.

Proof. We may assume a 6≡ 0 (mod p). To prove the lemma, it is enough to show
the existence of a solution y of the congruence

(6) yL(1− g) ≡ agl (mod p)

with a primitive root g. Indeed, we can let x ≡ g−1 (mod p) and k = l−uL, where
u is such that y ≡ gu (mod p). We show a solution y, g to (6) exists by estimating
the number of solutions of

(7) yL(1− zs) ≡ azsl (mod p),

where s is a square-free divisor of p−1, and using inclusion-exclusion. By Lemma 7,
the polynomial yL(1− zs)− azsl is absolutely irreducible. For a square-free divisor
s of p− 1, let Ns be the number of solutions of (7). For s ≤ p1/5 we apply Lemma
6 and for larger s we use the trivial bound Ns ≤ pL. Write Ns = p + Es. By
inclusion-exclusion, the number of solutions of (6) with a primitive root g is

N =
∑

s|p−1

µ(s)Ns

s

≥ p
∏

q|p−1
q prime

(1− 1/q)−
∑

s|p−1

|Es|
s

≥ φ(p− 1)−
∑

s≤p1/5

s|p−1

(L + sl)2
√

p/s−
∑

s>p1/5

s|p−1

p9/10

≥ 1
2φ(p− 1)

provided p is sufficiently large. �

Corollary. Suppose p1 < p2 < · · · < pr are odd primes larger than p0, m =
p1 · · · pr and for any j ≥ 2

(pj − 1, lcm(pi − 1 : 1 ≤ i < j)) ≤ p
1/10
j .

Then m is good.

Proof. Let a be arbitrary. Set nj = lcm(pi − 1 : 1 ≤ i < j) and Pj = p1 · · · pj for
each j. We construct numbers xj , kj inductively as follows. Choose x1, k1 so that
(x1, p1) = 1 and xk1

1 − xk1−1
1 ≡ a (mod p1). For j = 2, · · · , r, Lemma 8 implies

the existence of numbers xj , kj for which (xj , Pj) = 1, xj ≡ xj−1 (mod Pj−1),
kj ≡ kj−1 (mod nj) and x

kj

j − x
kj−1
j ≡ a (mod Pj). The pair (xr, kr) satisfies (2)

with (xr,m) = 1. �

Call an odd number m “forbidden” if m = p1 . . . pj where p1 ≤ · · · ≤ pj are
primes and

(pj − 1, lcm(pi − 1 : 1 ≤ i < j)) > p
1/10
j .
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Lemma 9. The number of forbidden numbers in (x, 2x] is O(x/ log5 x).

Theorem 3’ follows easily from Lemma 9. Take some P ≥ p0. Then for x ≥ 2P
there are � x/ log P positive integers without prime factors ≤ P . If m in (x, 2x]
is not good, the Corollary to Lemma implies m is divisible by a forbidden number
> P 2. By Lemma 9, there are� x/ log4 P such numbers. Therefore, for sufficiently
large P and x ≥ 2P we get � x/ log P good numbers not exceeding x.

Proof of Lemma 9. There is a constant c > 0 so that whenever n ≥ 10, the number
of divisors of n is ≤ nc/ log log n. By standard estimates from the distribution of
“smooth” numbers (see [HT]), the number of integers in (x, 2x] with all prime
factors ≤ x20c/ log log x is O(x/ log5 x). Thus, we have to estimate the number N
of forbidden integers m ∈ (x, 2x] such that pj > x20c/ log log x. Denoting l = m/pj ,
n = lcm(pi − 1 : 1 ≤ i < j) = lcm(p− 1 : p|l), we have

(pj − 1, n) > x2c/ log log x.

For fixed l there are at most xc/ log log x divisors of n, and for any d|n there are at
most 2x/(dl) numbers pj > 1 for which lpj ≤ 2x and pj ≡ 1 (mod d). Summing
over all divisors d > x2c/ log log x, we find that l generates at most∑

d

2x/(dl) <
∑

d

2x/(lx2c/ log log x) ≤ 2x/(lxc/ log log x)

forbidden numbers. Further, taking the sum over l, we obtain the required inequal-
ity N � x/ log5 x. �
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