
Smart Refresh: An Enhanced Memory Controller Design for
Reducing Energy in Conventional and 3D Die-Stacked DRAMs

Mrinmoy Ghosh
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332
mrinmoy@ece.gatech.edu

Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

leehs@gatech.edu

ABSTRACT
DRAMs require periodic refresh for preserving data stored in them.
The refresh interval for DRAMs depends on the vendor and the de-
sign technology they use. For each refresh in a DRAM row, the
stored information in each cell is read out and then written back to
itself as each DRAM bit read is self-destructive. The refresh pro-
cess is inevitable for maintaining data correctness, unfortunately,
at the expense of power and bandwidth overhead. The future trend
to integrate layers of 3D die-stacked DRAMs on top of a proces-
sor further exacerbates the situation as accesses to these DRAMs
will be more frequent and hiding refresh cycles in the available
slack becomes increasingly difficult. Moreover, due to the implica-
tion of temperature increase, the refresh interval of 3D die-stacked
DRAMs will become shorter than those of conventional ones.

This paper proposes an innovative scheme to alleviate the en-
ergy consumed in DRAMs. By employing a time-out counter for
each memory row of a DRAM module, all the unnecessary periodic
refresh operations can be eliminated. The basic concept behind
our scheme is that a DRAM row that was recently read or written
to by the processor (or other devices that share the same DRAM)
does not need to be refreshed again by the periodic refresh opera-
tion, thereby eliminating excessive refreshes and the energy dissi-
pated. Based on this concept, we propose a low-cost technique in
the memory controller for DRAM power reduction. The simulation
results show that our technique can reduce up to 86% of all refresh
operations and 59.3% on the average for a 2GB DRAM. This in
turn results in a 52.6% energy savings for refresh operations. The
overall energy saving in the DRAM is up to 25.7% with an average
of 12.13% obtained for SPLASH-2, SPECint2000, and Biobench
benchmark programs simulated on a 2GB DRAM. For a 64MB 3D
DRAM, the energy saving is up to 21% and 9.37% on an average
when the refresh rate is 64 ms. For a faster 32ms refresh rate the
maximum and average savings are 12% and 6.8% respectively.

1. INTRODUCTION
Dynamic Random Access Memory (DRAM) is used as the bulk

of the main memory in computing systems for its high density,
high capacity and low cost. Due to the dynamic, leaky nature of
a DRAM cell, periodic refresh operations are required for retaining
the data. Such regular refreshes account for a large energy con-
sumption in DRAMs even in the standby mode. For instance, a
detailed power analysis of the ITSY computer [25] shows that even
in the lowest power mode, the refresh power needed accounts for
about one third of the total DRAM power dissipated. The refresh
rate for DRAMs depends on the memory vendor and the design
technology they use. A typical refresh interval is 64ms [6, 8, 10].
The refresh intervals in embedded DRAMs are an order of mag-
nitude shorter. A typical refresh interval for an NEC eDRAM is
4ms [2], and for an IBM eDRAM implementation is 64µs [21].
During each refresh operation, the data of every DRAM bit cell is
read out and then written back. This refresh can incur large power

A1 A2 A3 A4 A5 A6 A7

R0 R1 R2 R3 R4 R5 R6 R7 R0

A0A0

Ak

Rk

: A Memory Access to Row k

: A Periodic Refresh for Row k

One Refresh Interval

Time Line

Row Access

Row Refresh

Figure 1: Best Case for Smart Refresh
and bandwidth overhead, nonetheless, it is inevitable for the sake
of data correctness.

As processor designers moving toward the direction of integrat-
ing 3D die-stacked DRAM (or 3D DRAM) on a package to allevi-
ate memory latency and bandwidth issues [9, 11, 28], the overhead
of the refresh operations will increase. There are two reasons be-
hind this increase. First, a 3D DRAM could be used either as a
cache between the last level SRAM-based cache and the system
memory or to replace the last level cache entirely.1 Thus, the re-
fresh operation will become a significant overhead relatively. Sec-
ond, since the 3D DRAM is bonded directly on top of the processor
using die-to-die vias, the heat dissipated from the processor will
be conducted across the DRAM layers, leading to a much higher
temperature operation environments for the DRAM. Annavaram
et al. [14] showed that the operating temperature of a 64MB 3D
DRAM will be 90.27◦C. Furthermore, the leakage will also in-
crease exponentially with an escalating operating temperature. Ac-
cording to the datasheet of Micron DRAM [23], the refresh rate
must be doubled if the operating temperature exceeds 85◦C. There-
fore, a 3D DRAM will require double (or more) refreshes, increas-
ing the relative energy overhead substantially.

To address these issues, in this paper, we propose a novel tech-
nique called Smart Refresh to eliminate all the unnecessary DRAM
refresh overheads. This technique uses a simple time-out counter
for each row in a memory module, tracks the normal memory trans-
actions, and eliminates the excessive refresh operations. The basic
concept behind our scheme is that a memory row that has been re-
cently read out or written to does not need to be refreshed again by
the periodic refresh mechanism. By simply exploiting such prop-
erty dynamically, the number of regular row-sweeping refresh op-
erations in both conventional DRAMs and 3D DRAMs can be sub-
stantially reduced.

2. MOTIVATION
To motivate the case for our Smart Refresh technique, a con-

jured memory access pattern in Figure 1 is used to demonstrate the
requirement for refresh operations. To simplify our illustration, we
1A tag array is still needed for such 3D DRAM caches for data
lookup and storage. For brevity, we simply call this 3D DRAM
cache a 3D DRAM hereafter.

assume that there are only 8 rows in the DRAM.
In this example, we assume that the DRAM is accessed by the

processor with a regular access pattern such that each memory row
is accessed right before the row is to be refreshed. For a normal,
periodic refresh policy, all the memory rows will be, anyhow, re-
freshed by the memory controller without the knowledge of these
recent accesses. Note that each access to a memory row initiated by
the processor, in fact, performs an operation equivalent to a regular
refresh from the standpoint of data preservation. In other words,
if a row has been recently read or written to, there is no need to
refresh the row immediately as shown in this figure. For the above
example, in an ideal situation, there is no need to perform refresh at
all since these regular memory accesses have already accomplished
the same effect.

Our Smart Refresh technique exploits such energy savings op-
portunities by keeping a time-out counter for each row in the mem-
ory controller to minimize the required refresh cycles. Basically,
the time-out counters of those rows being accessed will be reset to
a default value (e.g. the refresh interval) and any following peri-
odic refresh operation before the counter counts down to zero will
be aborted. When applying such mechanism to the access pattern
shown in Figure 1, the DRAM will not be refreshed at all by the
default periodic refresh, without affecting the correctness. Thus we
will be eliminating half of the refresh operations on the DRAM us-
ing this technique. So in theory, the best possible energy savings
that can be achieved by using Smart Refresh is 50% of the entire
DRAM, in which all the periodic refreshes are avoided.

The rest of the paper is arranged as follows. Section 3 describes
different schemes of refreshing a DRAM. Section 4 explains how
we will apply our “Smart Refresh” scheme to reduce the refresh
overheads and estimates the overhead. Section 5 discusses the im-
plementation details of “Smart Refresh” and the evaluation method-
ology. Section 7 analyzes the results and Section 8 discusses related
work. Finally, Section 9 concludes the paper.

3. DRAM REFRESH TECHNIQUES
There are two common refresh modes in commodity DRAMs:

• Burst Refresh: In this scheme, the entire refresh operation
of all the rows are done sequentially in a bursty fashion. The
scheme is less desirable as it increases the peak power con-
sumption of the DRAM. Moreover, during the time of the re-
fresh operations, the DRAM module cannot handle normal ac-
cess requests, causing potential performance degradation.

• Distributed Refresh: In distributed refresh, the memory con-
troller spreads out the refresh cycles for different rows evenly
across the refresh interval. This method is more favorable as it
refreshes each DRAM row in a timely manner, enables accesses
to rows that are not being refreshed, and minimizes the delay of
normal memory requests.

In addition, a DRAM refresh cycle can be implemented in two
distinct ways [24]. Note that a refresh cycle can be executed in
either the distributed mode or the burst mode explained above.
• RAS-only refresh: To perform a RAS-only refresh, a row ad-

dress is put on the address lines and then the RAS (Row Ad-
dress Strobe) signal is asserted LOW. When the RAS falls, that
row will be refreshed as long as the CAS (Column Address
Strobe) signal is held HIGH. It is the DRAM controller’s func-
tion to provide the addresses to be refreshed and make sure that
all rows are being refreshed at the appropriate times. It is im-
portant to note that for refresh operations the row order of re-
freshing does not matter; however, each row must be refreshed
before the data stored by the cell is destroyed.

• CAS before RAS refresh: This is often referred to as CBR
refresh, and is a frequently used method for refresh because it
is easy to use and provides the advantage of lower power. A
CBR refresh cycle is performed by setting the CAS signal to
LOW (active) before the RAS signal is switched from HIGH to

LOW. One refresh cycle will be performed each time the RAS
signal falls. The Write Enable (WE) signal must be held HIGH
during the period when the RAS signal is falling. The memory
module contains an internal address counter which is initialized
to a preset value when the device is powered up. Each time a
CBR refresh is performed, the device refreshes a row based on
the counter value, and then the counter is incremented. When
CBR refresh is performed again, the next row indicated by the
counter is refreshed followed by an increment in the counter.
The counter is wrapped around automatically when it reaches
the maximum allowable value equivalent to the number of rows.
There is no way to reset the counter once set after initializing.
Conventionally, CBR refresh is a more favorable refresh pol-
icy as it consumes lower power because the address does not
have to be put on the bus. In this paper we will show that our
Smart Refresh technique is suited to RAS-only Refresh, and
despite the overhead over CBR, RAS-only refresh method with
our Smart Refresh technique shows significant energy savings
over a CBR refresh policy.

4. SMART REFRESH
4.1 Basic Operation

Inspired by the Cache Decay work [19], our Smart Refresh tech-
nique applies the idea of using time-out counters in the context of
the refresh operation of a DRAM to reduce dynamic energy con-
sumption. Before we discuss Smart Refresh, we will discuss the
basic operation of a DRAM access in more detail. Any DRAM
read or write operation initiated by a bus agent (e.g., the processor)
starts with the memory controller selecting a bank and asserting the
RAS signal to LOW to be active. It simultaneously posts the row
address on the address bus. This causes the corresponding memory
module to activate the sense amplifiers for the entire row, and the
data from the given row is brought into the sense amplifiers. Note
that this read operation essentially destroys the data present in the
DRAM cells. Subsequently, the CAS signal is set from HIGH to
LOW (active) and the column address is placed on the address bus,
which causes the column decoder to multiplex the data out for a
read operation. In the case of a write operation, the data on the data
bus is written to the correct set of the sense amplifiers. The data for
the open row stays in the sense amplifiers until there is an access
to another bank or a different row. In either case the data in the
sense amps is written back to the original cells and the new row is
pre-charged. We know that the refresh operation of a DRAM also
involves reading from the cells and writing back to them. Thus we
can see that a read or a write to a given row in the DRAM is actu-
ally the same as a refresh to that row for data retention purposes.
To summarize, whenever a row is accessed, it does not need to be
refreshed before another refresh interval is due. If the memory con-
troller can keep track of the rows that have been accessed, then it
can potentially delay the refresh of rows that have been recently
accessed. This brings us to the concept of Smart Refresh.

The basic idea of our technique is to associate a time-out counter
for each (bank, row) pair of a memory module. The proposed
array of time-out counters is stored and updated in the memory
controller. Each time-out counter is simply a 2-bit or 3-bit binary
down counter. The time-out counters uniformly count down from
its maximum value to zero within the refresh interval of the DRAM.
If the value of a counter reaches zero, it indicates that the particular
row must be refreshed. The counter is reset to its maximum value
whenever the corresponding bank and row in memory is accessed
and the row is opened. Since we assume an open page policy in
this work, the counter corresponding to an open row is reset again
when the page is closed with a precharge operation. This is be-
cause during the closing of a page, the values in the DRAM cells
of the page are automatically refreshed. The memory controller
does not refresh rows whose corresponding counters have a non-
zero value. Hence that particular row for the accessed bank will
not be refreshed during the regular refresh period. This means that

2 2 2 2 2

1 1 1 11

0 0 0 0 0

3 3 3 3 3

2 2 2

3 3 3

1 1 1

0 0

3 3 3

0

: RefreshedTime

All Time−out Counters

0ms

16ms

32ms

48ms

64ms
Line

3 3 3 3 3

(a) Timeout counters decre-
mented together

2 1 0

1 0 3

0 3 2

3 2 1

2 1 0

: Refreshed

3

1

00

3

3 2 1 0

2 1 0 3 2

1 0 3 2

3 2 1

3 2 1 0

All Time−out Counters

TimeLine
64ms

48ms

32ms

16ms

0ms

(b) Timeout counters initially
staggered

Figure 2: Down-counting Timeout counters
whenever a row is accessed for a normal memory operation (e.g.,
one induced by a cache miss), the refresh operation for that row is
delayed. In the best case, if every row happens to be accessed right
before it needs to be refreshed, there will be no need for a separate,
default refresh operation.

4.2 Staggered Countdown
In this section we analyze the potential problems of accessing all

time-out counters simultaneously. Let us consider a Smart Refresh
memory controller that has a 2-bit time-out counter for each row
of the DRAM. The array of counters is illustrated in Figure 2(a)
horizontally. The refresh cycle in this example is assumed 64ms.
For simplicity we assume that there is no access to the DRAM in
these examples. The figure shows the counter value for each row
of the DRAM as it is being updated by the memory controller. The
timeline flows from top to bottom. The 2-bit counter is designed
to down-count from 3 to 0 within 64 ms to ensure refresh to all
rows are done timely to retain correct data values. If all counters
are decremented simultaneously as shown in Figure 2(a), then they
will be decremented at times 16ms, 32ms and 48ms respectively.
At 48ms, all the counters reach 0 and when the memory controller
accesses them again at 64ms, all the rows must be refreshed at that
time, similar to a burst refresh condition that adversely reduces
memory system performance. We should note that even though
all the rows need to be refreshed at the same time, they can only be
refreshed in a sequential order.

One solution to partially take care of this unwanted burst refresh
situation is shown in Figure 2(b). In this figure, the initialization
of the time-out counters is staggered.In this case, one quarter of
all the counters will decrement to zero at 16ms, another quarter
become zero at 32ms, and so on. We have a situation similar to
burst refresh where many memory rows need to be refreshed one
after another. This staggering at the beginning also incurs some
power overhead, because at the beginning even all rows have been
refreshed, but 1/4 of the counters are initialized to 0. Therefore
they are refreshed again within the first 64ms. This however does
not solve our problem. When the rows are accessed during normal
processor reads and writes, their corresponding counters are reset
to its maximum value. This could lead to burst refresh like condi-
tions as potentially a large number of counters may have the same
value and since they are decremented together, they will all count
down to zero at the same time. This problem can be solved only
if the decrement to the counters is also staggered along with the
initialization.

The solution used in our design is shown in Figure 3. In this
scheme, the counters are evenly hashed into N logical segments
where N = 4 in this illustration. The selection of N segments is

based on the size of the pending refresh request queue to be ex-
plained in Section 5.2 The major difference of this technique with
previous techniques is that in this solution all the counters will not
be accessed by the memory controller simultaneously.

In this new staggered scheme, refresh or counter decrement by
the memory controller are only allowed for those four indexed coun-
ters (with arrows shown on top of the counter in the figure) at a
given time. As a result of the hashing function, only N counters (4
in this case) are active at the same time. The goal of this scheme is
to index each counter exactly once within a so-called counter ac-
cess period which is defined as the refresh interval (i.e. 64ms in our
example) divided by the size of the counter (= 22bit = 4). In Fig-
ure 3, the counter access period is 16ms. The index is advanced
to the next counter by a clock period equal to the counter access
period divided by the number of time-out counters (i.e. memory
rows) within each segment. For example, if there are 16 memory
rows for each segment and the refresh period is 16ms, then the
counter index will advance by one every 1ms. The update of the
counter is the same as previously described. When the value of
the indexed counter is zero, at the next time it is indexed again,
the counter will be reset back to the maximum value followed by a
refresh request for the corresponding memory row; otherwise, the
indexed counter value simply decrements by one. The refresh re-
quest is immediately sent to the pending refresh request queue for
dispatching a refresh operation. Without any memory accesses is-
sued by the memory controller, the refresh policy is similar to a
distributed refresh policy, with each refresh operation performing a
burst refresh for N memory rows, the same size of pending refresh
request queue.

The above solution ensures that the number of counters accessed
simultaneously is equal to the number of segments (N) chosen.
This makes sure that we do not have more than N refreshes pending
in the pending refresh queue simultaneously. In Section 5 we show
that the for DRAMs with refresh time of 32ms, the time interval be-
tween accessing counters is enough for completing the refreshes in
the pending refresh request queue.3 This staggering algorithm also
ensures accesses to counters at regular intervals and thus the stag-
gering will not reduce over time, avoiding any possible situation
where burst refresh may occur.

Now let us assume there are normal accesses intersperse with
refresh operations. Whenever a memory row is accessed by normal
reads or writes, the counter corresponding to the row will be reset
to the maximum value. Thus refresh operation to the counter will
be delayed until it counts down to zero. Our staggered countdown
mechanism guarantees that another refresh only takes place 64ms
after the row has been accessed instead of a regular refresh period.
This delaying of refresh of memory rows that are being accessed
enables Smart Refresh to save significant amount of refresh energy
if enough rows are accessed.

The size of the counter is chosen to be 2 bits for our explanation
for the technique. We actually used a 3-bit counter for our simula-
tions. The size of the counter determines the granularity with which
the refresh operations can be controlled. A larger sized counter will
need more steps to count down and allow more finer grained con-
trol over how much time the refresh operation can be delayed once
the corresponding row is accessed. This will lead to potentially
greater power savings at the cost of maintaining and accessing a
bigger counter array.

4.3 Smart Refresh Correctness
We prove that for an arbitrary access pattern the Smart Refresh

scheme always refreshes the data within the refresh interval dead-
line. The proof for this is pictorially described in Figure 4. For
the example shown in the figure the refresh interval chosen is 64
ms and the counter is 2 bits wide. The figure just shows the Smart
2All simulations were done using 8 entry pending refresh queue
and 8 segments.
3Proof for the 32ms case automatically proves the 64ms case.

3 2 1 0 1 0 3 2 1 0 1 0 3 2 1 0 1 0 3 2 1 0 1 0

: Refreshed : Decremented # rows per segment = 16

3 1 0 1 01 3 1 0 1 01 3 1 0 1 01 3 1 0 1 01

3 0 1 01 0 3 0 1 01 0 3 0 1 01 0 3 0 1 01 0

3 1 01 0 3 3 1 01 0 3 3 1 01 0 33 1 01 0 3

3 1 30 0 3 3 1 30 0 3 3 1 30 0 3 3 1 30 0 3

12 0 3 0 3 12 0 3 0 3 12 0 3 0 3 12 0 3 0 3

SEGMENT 0 SEGMENT 1 SEGMENT 2 SEGMENT 3

Time
Line

15 ms

16 ms

2 ms

1 ms

0 ms Hash to the same group
C

ou
nt

er
 A

cc
es

s P
er

io
d

=
16

 m
s (

=
R

ef
re

sh
 in

te
rv

al
 /

bi

ts
 in

 c
ou

nt
er

)

Figure 3: Countdown counters divided into logical segments and countdown is staggered

Refresh technique is applied to one particular memory row and its
associated counter. The inverted triangles show the times when the
counter is decremented. The number above the triangle represent
the counter value after it was decremented. As explained earlier,
the counter is decremented exactly once within 16ms. We can have
only two possible cases for an access to this row. The figure shows
that in both cases the row will guarantee be refreshed within 64ms.

In the first case on the left-hand side, the row is accessed D ms
before it is decremented. The access is denoted by an upward ar-
row. Note that D < 16ms. An access to the row resets the counter
to its maximum value 3. After D ms the counter is indexed and
decremented to 2. From the timeline progression the counter be-
comes 0 in D + 32 ms. Thus when the counter is accessed again at
D + 48 ms, the memory controller sees a 0 and refreshes the row.
Therefore, in this case the row is refreshed after D + 48 ms after it
is accessed and meets the deadline of 64ms.

The second possible case is that the row is accessed D ms after
the counter is decremented as shown in the right-hand side. The
counter value becomes 3 on the access. It gets decremented to 2 at
16ms -D, and 0 at 48ms - D after its access. Finally, it is refreshed
at 64ms -D after it was accessed. Since this is less than 64ms, the
refresh is effective.

For a D greater than 16ms, the scenario can be reduced to either
Case 1 or Case 2 by subtracting 16ms from D repeatedly until D is
smaller than 16ms. Therefore, we show that in all possible access
patterns, the row will always be refreshed before its data retention
deadline.

4.4 Optimality of Smart Refresh
We define optimality for refresh as a metric of how close a DRAM

row is refreshed to the data retention deadline. Thus an ideal scheme
where each row is refreshed exactly after 64ms is said to be 100%
optimal. In the Smart Refresh case, the optimality of the scheme
depends on the number of bits we use for each counter. We can
easily see from Section 4.3, if we use a two-bit counter for every

row, the least optimal case will be when all the rows are refreshed
at 48ms + D where D is close to zero. Thus the optimality of Smart
Refresh for a 2 bit counter is 48/64 = 75 %. Similarly for a 3 bit
counter the worst case comes when each row is refreshed at 56ms.
Thus the optimality of Smart Refresh for a 3 bit counter is 87.5%.
The general optimality formula is a function of the counting gran-
ularity and can be given by:

Optimality = [1 −

1

2Nbits per counter
] ∗ 100%

4.5 Smart Refresh Technique for 3D DRAM
3D die stacking is an emerging technology that vertically inte-

grates two or more die with inter-die vias [9, 11, 14, 15, 29]. These
vias serve both as a fast communication interface and a stability
providing mechanism to the stacked die structure. 3D die stacking
reduces wire length and provides tight, high-speed coupling of die
designed and manufactured with incompatible technologies. One
immediate application is to integrate 3D die-stacked DRAMs with
processor cores to alleviate the memory latencies and global wire
power consumption by replacing long on-board wires with short,
fast inter-die vias [14].

The refresh operation will be a major overhead for 3D DRAMs.
The operating temperature of the 3D DRAM will likely be much
higher than their conventional DRAM counterpart. As shown in [14],
a 64MB 3D DRAM will raise its operating temperature to 90.27◦C.
According to [23], the refresh rate must be doubled after the tem-
perature exceeds 85◦C in order to retain data. Therefore, 3D DRAMs
will have a higher refresh rate than conventional DRAMs, increas-
ing the power consumption and potentially the access latency. On
the other hand, another design trend could increase the number of
accesses to the 3D DRAM compared to a conventional DRAM. As
multi-layer DRAM is made possible to be integrated on the same
package, it reduces the requirement of having a large L2 on the pro-
cessor core for area/cost efficiency. The constraints on the size of

16ms 32ms 48ms 64ms
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

0123
D

16ms 32ms 48ms 64ms

: Access a Row

:Decrement Counter for a Row

: Refresh a Row

�
�
�

�
�
�

�
�
�

Smart Refresh Access (Case 1)

Timeline

3 2 1 0

64ms −D

D

Smart Refresh Access (Case 2)
48ms + D

Figure 4: Smart Refresh Correctness

the 3D DRAM is mainly the number of DRAM cells that can be
fitted into the available die layers and the number SRAM tags that
can be fitted into the processor die for accessing the 3D DRAM.

Another interesting aspect of 3D DRAMs is that it will be more
frequently accessed. Thus the refresh operation will also have a
noticeable performance overhead. Our Smart Refresh technique,
in fact, uses the more frequent accesses to its advantage to signif-
icantly reduce the amount of refreshes required for a 3D DRAM
implementation. In Section 7.2 we will discuss in more detail the
performance and energy benefits of using a 3D DRAM.

4.6 Disabling Smart Refresh
By no means will Smart Refresh always reduce refresh opera-

tions in the memory. This happens when the entire data working
set fit into L1 (and L2) caches with very infrequent accesses to the
DRAM. In this case the refreshing action of Smart Refresh will be
degenerated to that of the CBR policy. However, Smart Refresh
will consume some extra energy in maintaining those counters and
also using the address bus for the RAS-only refresh operation. To
avoid this situation we add a simple circuitry that can disable Smart
Refresh policy and configure the memory controller to perform a
regular CBR policy if accesses to memory is found to be below
1% of the number of rows over the total refresh interval (64ms
or 32ms). The same circuitry will also be responsible for turning
Smart Refresh on autonomously, if the accesses to DRAM exceed
2% of the number of rows in it. This turn-off is especially useful
for the conventional DRAM below a large 3D DRAM cache, whose
size is of the order of 32MB or 64MB as studied in [14]. Also,
for the conventional DRAM we checked this policy by simulating
an idle OS for 1 billion instructions. We observed that even for
the idle OS we got savings of around 10% in refresh energy con-
sumption. With such self-configurability, this feature will exploit
dynamic data working set behavior for achieving the best energy
management.

4.7 Area Overhead
We now explain the storage overhead for maintaining the time-

out counters. In our design, we refresh one row for a specific bank
and rank in a single refresh operation. Hence, we need to maintain
a counter for each row and each bank in each rank. First we use
the configuration shown in Table 1 for a 2GB DRAM module. The
number of banks, ranks, and rows for the module is 4, 2, and 16384
respectively. Since we need a counter for every bank, rank and row
the number of counters needed are 4 * 2 * 16384 = 131,072. Each
of these counters has 3 bits. Thus the area overhead is (131,072 *
3)/(8 X 1024) = 48 KB. If we assume that the memory controller
can support up to 32 GB, the counter space needed will be 768 KB.
A simple formula is derived below for calculating the area over-
head in the counters. In our experiments in Section 7, the energy
overheads caused by these extra counters were all accounted for.

Area =
Nbanks ∗ Nranks ∗ Nrows ∗ Nbits per counter

8 ∗ 1024
(KB)

5. SMART REFRESH IMPLEMENTATION

�	�	�	�	�
�	�	�	�	�
�	�	�	�	�

	
	
	

	
	
	

	
	
	

�	�	�	�	�
�	�	�	�	�
�	�	�	�
�	�	�	�

	
	
	
	

	
	
	
	

	
	
	
	

�	�	�	�
�	�	�	�
�	�	�	�

�	�	�	�	�
�	�	�	�	�
�	�	�	�	�

�	�	�	�
�	�	�	�
�	�	�	�

Update
Counter Circuitry

Memory Controller DRAM Module

R
ef

re
sh

R
eq

Counter Being Updated

RAS−Only
Refresh

Counter with Zero

Pending Refresh
Request Queue

Figure 5: Smart Refresh Control Schematic

The schematic of the circuitry controlling refresh operations in
the memory controller is illustrated in Figure 5. We can see that
the counter update circuitry updates a specific number of time-out
counters in a memory controller cycle. If one of the counters that
needs to be updated has counted down to zero, then the row address
and bank address corresponding to the counter are inserted into the
pending refresh requests queue. The memory controller reads the
addresses in the pending queue and puts the least recent row ad-
dress on the data bus and issues an RAS only refresh command.
This requires neither changes in the existing DRAM module itself
nor the interface between the DRAM module and the memory con-
troller. The only changes are inside the memory controller, making
Smart Refresh a highly viable and cost effective technique.

One potential issue of having a queue to store pending refresh
operations is to find out any possible case of DRAM access patterns
where the queue may overflow. We show that this is not possible.
A typical time taken to refresh a row is 70ns [10]. As explained
earlier, if the refresh interval is 32ms and there are 8192 rows in
the device, the counters are accessed every 4µs. Now if we choose
the size of the refresh pending queue to be 8 entries then we will
divide the row into 8 segments. This will guarantee that at most 8
refresh operations are triggered at a time. To avoid overflow for a
queue having eight entries, it is essential that all the eight refresh
transactions are handled till the next time the counters are accessed.
Since refreshing a row takes 70ns and the counters are accessed ev-
ery 4µs, if there is no normal DRAM access, the number of rows
that may be refreshed between successive counter accesses will be
57. Nevertheless, in the worst case, we only need to refresh 8 rows
in that deadline. Thus a queue of length 8 is sufficient for the pur-
pose and it will never overflow. In the worst case, normal DRAM
accesses may get delayed due to at most 8 refresh requests coming
one after another. However, our experiments show that for all the
benchmark programs considered, since we reduce the refresh oper-
ations considerably, any interference refreshes may have with nor-
mal accesses is reduced and we always have a slight performance
improvement.

Parameter Value
Type DDR2
Size 2 GB and 4GB
Rows 16384
Frequency 667 MHz
Number of Banks 4 and 8
Number of Ranks 2
Number of Columns 2048
Data Width 72 bits (64 data + 8 ECC)
Row Buffer Policy Open Page
Refresh Interval 64ms
L2 Cache Size 1 MB
Number of L2 Port 1
L2 Cache Assoc 8 ways

Table 1: DRAM Module and L2 Cache Configuration

Parameter Value
Type DDR2
Size 64 MB
Rows 16384
Frequency 667 MHz
Number of Banks 4
Number of Ranks 1
Number of Columns 128
Data Width 72 bits
Row Buffer Policy Open Page
Refresh Interval 32ms
Ports 1
Associativity Direct Mapped

Table 2: 3D DRAM Cache Configuration

We would like to emphasize that Smart Refresh for RAS only re-
fresh does not change the interface between the Memory Controller
and the DRAM module. Although CBR refresh is often chosen as
the refresh policy for modern DRAMs, we use it as a baseline in
our results to show that Smart Refresh provides significant savings
even after considering the additional overhead of RAS only refresh.

Another potential issue with “Smart Refresh” is the design of the
memory controller with requisite number of counters, as the size of
DRAM is not known when the memory controller is designed. This
problem can be handled by the memory controller having multiple
banks of count-down counters. The total number of counters would
be the number of rows for the maximum permissible size supported
by the memory controller. The BIOS will turn on requisite number
of banks on startup of the system, based on the memory size and
configuration.

6. EVALUATION METHODOLOGY
Our simulation infrastructure consists of three portions: Sim-

ics [12], Ruby [22] and DRAMsim [33]. Firstly, we used Virtutech
Simics to execute the benchmark applications. Simics is a full sys-
tem emulator that can run unmodified production software like full
blown operating systems. This infrastructure was used to emulate
a “Sun” virtual machine called “sarek” running a version of Solaris
8. We used three different benchmark suites — SPLASH2 [34],
SPECint2000 and Biobench [13] for their different memory be-
haviors. All programs were compiled for the Solaris machine and
installed in the virtual disk.4 Except for SPLASH2 that was exe-
cuted on a 2-processor emulated CMP system sharing a 1MB con-
ventional L2 cache, all other benchmark programs were run on a
uni-processor system. We also run a set of experiments where we
selectively pair off any two SPECint benchmark programs and run
them together to emulate a multi-workload execution environment.
4Although we could successfully compile all programs, not every
benchmark ran for sufficient number of instructions due to limita-
tions and incompatibilities of the simulation infrastructure. We re-
port results for those applications that successfully ran on the sim-
ulated system.

These experiments were performed to observe the effect of more
frequent memory look-up’s for our technique. Although Simics is
a full system emulator, we only use it for functional simulation. To
simulate memory and cache behavior in details, the Ruby mod-
ule developed at University of Wisconsin was loaded into Sim-
ics. Ruby leverages the full system infrastructure of Simics and
provides timing simulation for the memory hierarchy. However,
Ruby does not faithfully simulate the DRAM behavior. The char-
acteristics of DRAM were, on the other hand, simulated using a
third simulator called DRAMsim [33] from University of Mary-
land. DRAMsim can be used either as a standalone trace-driven
simulator or as a module that can be integrated into Ruby. The
complete implementation of our Smart Refresh technique was done
in DRAMsim. Table 1 shows the DRAM module and the L2 cache
size used in our simulation. We used the conventional DDR2 mem-
ory rather than the latest FB-DIMM for our simulation because the
conventional DDR2 performs better for benchmarks that are not
limited by bandwidth [18], which is the case for our benchmarks.
The module configurations were based on actual DRAM specifi-
cation from [7]. The 3D DRAM Cache configuration is shown
in Table 2. The DRAM refresh command policy is one-channel,
one-rank, one-bank for all configurations. Each benchmark was
simulated for 1 billion instructions after fast-forwarding the first
billion instructions.

The calculation of power involves two distinct components: the
power consumption of the DRAM module, and the power over-
head of the newly proposed time-out counters. To calculate power
consumption for the DRAM module we used the power model pro-
vided by DRAMsim [33]. For the time-out counters we assume a
design consisting of an array of SRAM bits storing the counter val-
ues and a logic circuit for the decrement operation. The SRAM bit
array has entries equal to the number of rows in the DRAM which
is of the order of thousands. Accessing such an array will need a
large decoder and very long bit-lines to transfer the data out. In
contrast, the counter logic will have tens of gates. Therefore the
energy consumption of storing and accessing the array of SRAM
bits will be an order of magnitude larger than the energy consumed
by the logic circuitry to decrement the respective values. Thus the
energy consumption of the logic circuitry was neglected in our en-
ergy calculations. The SRAM array was designed using the Artisan
90nm SRAM library [1] to get an estimate on the dynamic energy
required to access it. The Artisan SRAM generator is capable of
generating synthesizable Verilog code for SRAMs using 90nm pro-
cess technology. The generated datasheet gives an estimate of the
read and write power of the generated SRAM. The counter arrays
may be accessed in two different situations. First, when a spe-
cific row is accessed and its corresponding time-out counter needs
to be reset. This is considered as a write operation to the SRAM
array. The second case is that when a counter is checked against
zero value for triggering a refresh. When the value is positive, it is
decremented. As explained in Section 4.2, whenever the counters
are accessed for decrementing, eight counters are decremented at
the same time. Therefore, in our design we count eight reads and
eight writes for each such counter access operation. The results of
the simulation will be presented in the next section.

Since Smart Refresh uses RAS-only refresh that consumes rel-
atively more energy than CBR refresh due to the requirement of
posting the row address, we assume that the baseline DRAM uses
CBR refresh (a lower power baseline) in our experiments, while
the Smart Refresh DRAM is based on RAS-only refresh. The extra
power for RAS-only refresh is mainly consumed in putting the row
address to be refreshed on the bus. To model the power consump-
tion of the bus we use the elementary model explained in [16]. The
energy consumption of the bus is given by:

Energy = C ∗ V
2

DD ∗ Width of Bus ∗ Num Accesses

Here “C” is the average capacitance of one wire of the bus and
is given by:

C = Cload + Cdriver

Parameter Value
On Chip Length 36 mm
Off Chip Length 102 mm
On Chip Wire Capacitance .21 pF/mm
Off Chip Wire Capacitance 0.1 pF/mm
Input Capacitance of Memory Modules 3 pF

Table 3: Parameter Values Used in Bus Energy Calculation

Now for proper impedance matching according to [16], Cdriver is
chosen to be 30 % of Cload. Thus C = 1.3 ∗ Cload.

Cload = Lonchip ∗ Cpermmonchip

+ Loffchip ∗ Cpermmoffchip +
X

m∈M

Cin(m)

where “M” is the number of memory modules (ranks) in the
DRAM system, and Cin(m) is the input capacitance of each mod-
ule.

The estimation of wire length on the chip is done using the widely
used “semi perimeter” method [30]. The on-chip length (Lonchip)
is taken as double the length of one side of the Intel 855PM Chipset
MCH die [3]. Typical values of off-chip length was determined
from Intel 855PM Chipset design guide [4]. Values of the on-chip
capacitance per unit length was obtained from the ITRS Roadmap [5].
The input capacitance of a memory module was obtained from Mi-
cron datasheet [6]. The actual values used for these equations have
been summarized in Table 3.

Apart from evaluating our technique for conventional DRAMs
we also performed experiments to evaluate the effectiveness of Smart
Refresh for the emerging 3D DRAMs. We extend DRAMsim func-
tionality to simulate the processor using 3D DRAM as another level
of cache between L2 and the on-board DRAM. Note that, to access
and allocate data on the 3D DRAM cache, an SRAM tag array is
still needed on the processor. We implemented Smart Refresh for
such a configuration and ran the same benchmark programs for two
different sized 3D DRAM (32MB and 64MB). Practically, the 3D
DRAMs are level 3 caches integrated directly on top of a proces-
sor core with a 256KB Level 2 SRAM cache. The capacity of the
3D DRAM is limited by the core area and the number of DRAM
die layers available. We chose the sizes in accordance with the re-
sults of the feasibility study given in [14]. According to [14], 3D
DRAMs will operate at much higher temperatures (90.27◦C) than
conventional DRAMs, we performed our experiments using two
different refresh intervals (32ms, and 64ms). The following section
discusses our results.

7. EXPERIMENTAL RESULTS
7.1 Conventional DRAM

Figure 6 shows the number of refresh operations per second tak-
ing place for each benchmark program. To show the effectiveness
of our technique, we mark the baseline number of refreshes per sec-
ond required for a memory module with the same configuration.

From Figure 6 we can observe that, though the relative reduction
in refreshes heavily depends on the memory behavior of an appli-
cation, the Smart Refresh technique is very effective in reducing
the number of regular refresh operations. The reductions in refresh
operations per second range from around 26% for fasta to as high
as 85.7% in water-spatial. On average, our technique can reduce
more than 59.3% of regular refresh operations over all the bench-
mark programs.

Figure 7 shows the relative energy consumption for Smart Re-
fresh for refresh operations. We can see that Smart Refresh is
successful in saving a significant percentage of energy consumed
in refreshing the DRAM. The savings range from 25% in gcc to
as much as 79% for radix. On an average Smart Refresh saves
52.57% of energy consumed in DRAM refresh. We should note

that there does not exist a linear relationship between the percent-
age reduction in the number of refresh operations and the relative
reduction in refresh energy. This is because the energy consumed
in refreshing a row depends on the state of the bank where the row
is being refreshed. For example, if the row of sense amplifiers is in
the precharge state for the bank where a row is being refreshed, the
refresh operation involves bringing the row of data being refreshed
to the sense amps, restoring their charge, writing them back to the
row and precharging the sense-amps for the next operation. How-
ever, if the row of sense amps already has an open page, the refresh
operation will involve writing the present open page back to the
DRAM cells, precharging the sense amps and then refreshing the
row as above. This clearly consumes more energy than the case
when the sense-amps were already precharged.

Figure 8 shows the relative energy consumption for the DRAM.
We took into account the energy overhead of maintaining the time-
out counters in the memory controller. We can see that benchmarks
that have high refresh energy savings also have large savings in the
total energy. Thus benchmark programs such as perl twolf whose
relative refresh energy savings is high, show high total energy sav-
ings of 25%. On average, the total savings of DRAM energy is
around 12.13%. However, we must also note that there is no exact
linear relationship between the relative refresh energy savings and
the total DRAM energy savings. This is because the total energy
savings depend heavily on what percentage of the total DRAM en-
ergy is contributed by refresh energy. This depends on the number
of memory references of a benchmark.

Figure 9, Figure 10, and Figure 11 show the number of refresh
operations per second, relative refresh energy and relative DRAM
energy for a 4GB conventional DRAM. For the baseline CBR re-
fresh technique, we find that the number of refresh operations per
second for every benchmark with the 4GB DRAM module is dou-
bled compared to the 2GB module. This is expected because the
4GB DRAM module has double the number of banks. Since the
refresh command policy used in all experiments is one channel/one
bank/one rank, the number of rows that need to be refreshed for
a 4GB module is twice the number of rows of the 2GB module.
As all benchmarks require similar number of cycles to complete in
both the 2GB and 4GB configurations, the number of refreshes for
the 4GB module is doubled. We observe that the relative reduction
in refresh operations is around 40% for a 4GB DRAM. The aver-
age reduction in refresh energy is 23.76% and total energy reduc-
tion is 9.10%. The energy savings for a 4GB DRAM is generally
lower because all the benchmarks simulated have a memory foot-
print less than 2GB. So on using a 4GB DRAM we increase both
the base DRAM energy consumption and also the energy required
to maintain double the number of time-out counters. This reduces
the savings that can be obtained using the Smart Refresh technique.
For example, phylip from Biobench had about 13.3% total energy
savings as shown in Figure 8 while the savings dropped down to
almost 7.3% as shown in Figure 11. Also, as in the case of the 2GB
DRAM module, there is no linear relationship between relative re-
duction in refresh operations, the refresh energy savings, and the
total energy savings.

7.2 3D Die-stacked DRAM
To study the benefit of Smart Refresh for emerging 3D integra-

tion technology, we performed experiments by assuming a limited
size DRAM bounded with a processor through die-to-die vias. The
results for the 3D die-stacked DRAM with a capacity of 64MB to-
tal and a 64ms refresh period are shown in Figure 12, Figure 13 and
Figure 14. As in the case of the conventional DRAM, the reduction
in the number of refresh operations per second shown in Figure 12
highly depend on the benchmark considered. The reduction in re-
fresh operations is significant. It ranges from 42% in mummer
to 4% in fasta. Figure 13 shows the relative energy savings us-
ing Smart Refresh for 3D DRAMs with 64ms refresh rate. Though
there is no linear relationship, we observe that the refresh energy
savings follow the number of refresh operations reduced per sec-

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 691,435

Baseline = 2,048,000

0

0.5

1

1.5

2

2.5

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yli

p

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er

pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

M
ill

io
ns

 re
fre

sh
es

 /
se

c

Figure 6: Comparison of Number of Refreshes per second for a 2GB DRAM
Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 52.57%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yl

ip

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

wa
te

r-n
sq

ua
re

d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

Figure 7: Relative Refresh Energy Savings for a 2GB DRAM

ond. The savings range from 42% in the Biobench benchmarks
like clustalw, mummer, to as low as 7% in fasta. The geometric
mean of refresh energy savings is 21.91%.

Figure 14 shows the total energy savings for the same 3D DRAM
configuration. These savings numbers consider that the baseline 3D
DRAM cache uses CBR refresh. Thus the power consumption in
the wires and vias connecting the memory controller in the proces-
sor die and DRAM in the stacked die have been modeled and added
as an overhead for the Smart Refresh technique. It can be seen from
the savings that refreshes are a significant overhead in 3D DRAMs.
We obtain savings of up to 21.5% when running gcc and twolf to-
gether. The geometric mean of the savings are 9.37%. A general
trend that can be observed from these simulations is that the sav-
ings continue to increase for those systems running two processes.
One reason for this is that dual process benchmark runs contain less
spatial locality of accesses than a single benchmark. So it is more
likely for a 2-process benchmark to access different rows rather
than having a row buffer hit all the time. Since different rows are
accessed, fewer number of rows need to be refreshed and this helps
in saving energy. For the 3D DRAM cases, we also had a 2GB con-
ventional DRAM that back up the 3D DRAM which is essentially
used as a Level 3 DRAM cache. Since these benchmark programs
fit into the 64MB cache and accesses to main memory was neg-
ligible, in the order of a few thousands over more than 2 billion
cycles for all the benchmarks, thus we did not observe Smart Re-
fresh shows any energy savings for the conventional DRAM with
a 64MB 3D DRAM integrated on top of a processor face-to-face.
But since Smart Refresh can effectively switch off all the counters
and go to CBR refresh mode when less than 1% of the rows are
accessed over a whole refresh interval as described in Section 4.6,
we did not detect any energy loss in the conventional DRAM.

Since the 3D Cache will operate at a temperatures of 90.27◦C,
the refresh rate required will likely be doubled from the 64ms re-

fresh rate. Therefore, we conducted experiments on the same 64MB
3D DRAM with a faster 32ms refresh rate.

Figure 15 compares the number of refresh operations per second
using Smart Refresh with a conventional CBR refresh for the 64MB
DRAM with the doubled 32ms refresh rate. As expected, the trend
in number of refreshes is similar to the 64ms case, but the baseline
number of refreshes is scaled up to twice the number of refreshes
in the 64ms case. But since the number of accesses is constant, the
number of refreshes eliminated is reduced. This is better illustrated
in Figure 16, which shows the relative refresh energy savings using
Smart Refresh for 3D DRAMs with 32ms refresh rate. Although
the trends are similar to the 64ms case, the relative refresh energy
savings is in general less than the 64ms case. The geometric mean
of refresh energy savings is 15.79%. The total 3D DRAM cache
energy savings is shown in Figure 17. We can see that even though
the refresh energy savings are modest, we get a decent saving in
total energy. The geometric mean of the total energy saved across
benchmark suites is 6.87%. One reason for this is even though
relatively refresh savings have reduced, refresh energy for the 32ms
case accounts for a large part of the total energy. Thus the net
energy savings for the 32ms is not much different than the 64ms
case.

7.3 Performance Implication
While the objective of Smart Refresh is aimed at reducing the

number of periodic refresh operations, it also shortens the poten-
tial memory access delays caused by these redundant refresh op-
erations. Figure 18 shows the performance benefit of using Smart
Refresh applied to a 3D DRAM (32ms refresh rate) over a conven-
tional CBR refresh policy. It can be seen that for all the benchmarks
we have very slight (less than 1%) improvement in performance.
For all the other DRAM and 3D DRAM configurations with Smart
Refresh, we found very similar performance results. This shows

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 12.13%

0%

5%

10%

15%

20%

25%

30%

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yl

ip

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

Figure 8: Relative Total Energy Savings for a 2GB DRAM

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 2,343,691

Baseline = 4,096,000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yli

p

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er

pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

M
ill

io
ns

 re
fre

sh
es

 /
se

c

Figure 9: Comparison of Number of Refreshes for a 4GB DRAM

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 23.76%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

clu
st

al
w

fa
st

a

hm
m

er

m
um

m
er

ph
yli

p

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

wa
te

r-n
sq

ua
re

d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

wo
lf

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

Figure 10: Relative Refresh Energy Savings for a 4GB DRAM

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 9.10%

0%

5%

10%

15%

20%

25%

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yl

ip

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

Figure 11: Relative Total Energy Savings for a 4GB DRAM

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 795,411

Baseline = 1,024,000

0

0.2

0.4

0.6

0.8

1

1.2

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yli

p

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er

pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

M
ill

io
ns

 re
fre

sh
es

 /
se

c

Figure 12: Comparison of Number of Refreshes for a 64MB 3D DRAM Cache with 64ms refresh rate
Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 21.91%

0%
5%

10%
15%
20%

25%
30%
35%

40%
45%

clu
st

al
w

fa
st

a

hm
m

er

m
um

m
er

ph
yli

p

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

wa
te

r-n
sq

ua
re

d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er

pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

wo
lf

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

Figure 13: Relative Refresh Energy Savings for a 64MB 3D DRAM Cache with 64ms refresh rate
that our Smart Refresh technique does not incur any performance
degradation, but sometimes has performance improvement.

8. RELATED WORK
Using countdown timers for tracking DRAM refresh was pro-

posed in a patent disclosure [17]. This patent describes a timer
based circuitry to reduce the number of refresh operations in a
DRAM based cache. This paper is significantly different from the
patent as they have different objectives. The major contribution of
our work is to save DRAM power by achieving near-optimal pe-
riods of refresh for all DRAM rows with our Smart-Refresh algo-
rithm. The patent’s objective was to invalidate lines (via decay) that
have not been accessed for a given time interval in the context of
DRAM Caches. Our technique does not invalidate any DRAM row
and thus can be used for any DRAM system adn not just caches. In
addition, our paper details a novel staggering mechanism that pre-
vents a burst-refresh situation. The broadly described patent does
not include sufficient discussion of how to handle a large number
of simultaneous refreshes. Furthermore, our paper illustrates the
usefulness of our intelligent refresh scheme in both conventional
and the emerging 3D DRAM technology.

Another similar idea of using counters to reduce refreshes is de-
scribed in [27]. However, as in the case of [17], the method de-
scribed in the patent is far from optimal and does not have any
technique to solve the burst refresh situation. The patent disclosed
by Song et al. [31] also described a technique to selectively refresh
DRAM rows based on their access pattern. However, the technique
based on the limited explanation in the patent can lead to situations
where the data of a row may be destroyed because it is not refreshed
in time. Our technique guarantees integrity of the data as explained
in Section 4.3.

Venkatesan et al. in [32] introduced RAPID, a retention-aware
placement algorithm. This work tries to reduce refresh operations
to the DRAM by experimentally identifying that different rows re-
quire different refresh times. Our technique is orthogonal to this
technique and can be applied on top of the retention-aware DRAM

technique. Kim et al. in [20] exploits multiple DRAM refresh times
and ECC codes to reduce the number of refresh operations. As in
the case of [32], our technique is orthogonal to this technique and
thus may be used on top of it. Ohsawa et al. used several tech-
niques in [26] to reduce refresh operations required. One of the
techniques used by [26] is to statically declare a line to be dead.
This may also be done with the help of the OS. The lines marked
as dead in the DRAM are not refreshed. Another scheme is called
VRA where counters are used to handle variable data refresh times.
We should point out that VRA is different from our scheme as it is
done only in the context of handling different refresh times and not
to optimize refreshes based on access patterns.

9. CONCLUSION
This paper presented a simple, low cost technique using time-out

counters to save power in DRAMs. This technique does not involve
any change in the interface between the memory controller and the
DRAM, making it highly feasible. All additional hardware goes in
the memory controller that controls and issues the needed refresh
operations. The paper demonstrates that many refresh transactions
are indeed not needed for their corresponding rows were recently
accessed due to cache misses. This technique saved up to 25% and
on an average 12.13% of the energy consumed in DRAMs. Mod-
ern computing systems like CMP, CMT, SMP and SMT would try
to exploit MLP and would have increasing number of threads trying
to access memory. In this case, the Smart Refresh technique will be
instrumental in saving energy as it is very light weight and would
increase the bandwidth availability and reduce energy consump-
tion for refresh operations in DRAMs. The emerging 3D stacked
ICs will enable the accesses to the DRAM at a much lower latency.
Also, AMD’s licensing of ZRAM technology indicates that future
AMD processors may use DRAM type memory using SOI technol-
ogy for their caches. This paper clearly demonstrated that the Smart
Refresh technique is very useful for such DRAM type caches. En-
ergy savings of up to 21.5% and 9.4% on an average was obtained
when Smart Refresh was used in a 3D Die-Stacked DRAM Cache.

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 9.37%

0%

5%

10%

15%

20%

25%

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yli

p

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

wa
te

r-n
sq

ua
re

d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er

pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

Figure 14: Relative Total Energy Savings for a 64MB 3D DRAM Cache with 64ms refresh rate

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 1,724,640

Baseline = 2,048,000

0

0.5

1

1.5

2

2.5

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yli

p

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er

pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

M
ill

io
ns

 re
fre

sh
es

 /
se

c

Figure 15: Comparison of Number of Refreshes for a 64MB 3D DRAM Cache with 32ms refresh rate

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 15.79%

0%

5%

10%

15%

20%

25%

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yl

ip

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

wa
te

r-n
sq

ua
re

d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

Figure 16: Relative Refresh Energy Savings for a 64MB 3D DRAM Cache with 32ms refresh rate

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 6.87%

0%

2%

4%

6%

8%

10%

12%

14%

cl
us

ta
lw

fa
st

a

hm
m

er

m
um

m
er

ph
yli

p

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

wa
te

r-n
sq

ua
re

d

w
at

er
-s

pa
tia

l

eo
n

gc
c

pa
rs

er

pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

Figure 17: Relative Total Energy Savings for a 64MB 3D DRAM Cache with 32ms refresh rate

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 0.11%

0.0%

0.1%
0.2%

0.3%
0.4%

0.5%
0.6%

0.7%
0.8%

0.9%

clu
st

al
w

fa
st

a

hm
m

er

m
um

m
er

ph
yl

ip

tig
er

ba
rn

es

ch
ol

es
ky fft

fm
m

lu
co

nt
ig

lu
no

nc
on

tig

oc
ea

n-
co

nt
ig

ra
di

x

wa
te

r-n
sq

ua
re

d

wa
te

r-s
pa

tia
l

eo
n

gc
c

pa
rs

er

pe
rl

tw
ol

f

vp
r

gc
c_

pa
rs

er

gc
c_

pe
rl

gc
c_

tw
ol

f

pa
rs

er
_p

er
l

pa
rs

er
_t

w
ol

f

pe
rl_

tw
ol

f

vp
r_

gc
c

vp
r_

pa
rs

er

vp
r_

pe
rl

vp
r_

tw
ol

f

Figure 18: Performance improvement using Smart Refresh for a 64MB 3D DRAM Cache with 32ms refresh rate
10. ACKNOWLEDGMENTS

This research was supported by NSF Grant CNS-0325536, an
NSF CAREER Award (CNS-0644096) and the C2S2 center of the
Focus Center Research Program. We would like to thank William
Reohr who first pointed out the similarity between this research
and an IBM patent [17] after we presented our work the first time
at IBM T. J. Watson Research Center. We also thank Onur Mutlu
and anonymous reviewers for their valuable feedback to this work.

11. REFERENCES
[1] Artisan sram generator. http://www.artisan.com.
[2] Easy Integration of Embedded DRAMs.

http://www.am.necel.com/process/edramsequences.html.
[3] Intel 855PM Chipset Memory Controller Hub (MCH) DDR

datasheet.
ftp://download.intel.com/design/chipsets/datashts/25261303.pdf.

[4] Intel 855PM Chipset Platform Design Guide.
http://download.intel.com/design/mobile/desguide/25261403.pdf.

[5] ITRS Roadmap 2006 Interconnect Update.
http://www.itrs.net/Links/2006Update/
FinalToPost/09 Interconnect2006Update.pdf.

[6] Micron 128Mb: x32 SDRAM data sheet.
http://download.micron.com/pdf/datasheets/ dram/sdram/
128MbSDRAMx32.pdf.

[7] Micron DDR2 SDRAM Registererd DIMM 2GB and 4GB data
sheet. http://download.micron.com/pdf/datasheets/
modules/ddr2/HTF36C256 512x72.pdf.

[8] NEC 16 M-Word by 64-Bit DDR Synchronous Dynamic RAM
Module Unbuffered Type Specification. http://www.nec.com.

[9] Samgsung Develops 3D Memory Package that Greatly Improves
Performance Using Less Space.
http://www.samsung.com/PressCenter/
PressRelease/PressRelease.asp?seq=20060413 0000246668.

[10] Samsung 512Mb D-Die DDR SDRAM Specification.
http://www.samsung.com.

[11] Tezzaron Semiconductor, FaStack Technology.
http://www.tezzaron.com/technology/FaStack.htm.

[12] Virtutech Simics. http://www.simics.net.
[13] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W.

Tseng, and D. Yeung. Biobench: A benchmark suite of
bioinformatics applications. In Proceedings of the International
Symposium on Performance Analysis of Systems and Software, 2005.

[14] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H.
Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. Shen, and C. Webb. Die stacking (3d)
microarchitecture. In Proceedings of the 39th International
Symposium on Microarchitecture, pages 469–479, 2006.

[15] B. Black, D. W. Nelson, C. Webb, and N. Samra. 3D Processing
Technology and Its Impact on iA32 Microprocessors. In Proceeding
of International Conference on Computer Design, 2004.

[16] F. Catthoor. Custom Memory Management Methodology:
Exploration of Memory Organisation for Embedded Multimedia
System Design. Kluwer Academic Publishers, 1998.

[17] P. G. Emma, W. R. Reohr, and L.-K. Wang. Restore Tracking System
for DRAM, U.S Patent No 6,839,505 B1, 2002.

[18] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. Fully-Buffered DIMM
Memory Architectures: Understanding Mechanisms, Overheads and

Scaling. Proceedings of the 13th International Symposium on High
Performance Computer Architecture, 2007.

[19] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power. In
Proceedings of the 28th International Symposium on Computer
Architecture, pages 240–251, 2001.

[20] J. Kim and M. C. Papaefthymiou. Dynamic Memory Design for Low
Data-Retention Power. In Proceedings of the International Workshop
on Integrated Circuit Design, Power and Timing Modeling,
Optimization and Simulation, 2000.

[21] T. Kirihata, P. Parries, D. Hanson, H. Kim, J. Golz, G. Fredeman,
R. Rajeevakumar, J. Griesemer, N. Robson, A. Cestero, et al. An
800-MHz Embedded DRAM With a Concurrent Refresh Mode.
IEEE Journal of Solid-State circuits, 40(6):1377, 2005.

[22] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s General Execution-Driven Multiprocessor Simulator
(GEMS) Toolset. SIGARCH Comput. Archit. News, 33(4), 2005.

[23] Micron. DDR2 SDRAM SODIMM 1GB 2GB Data Sheet.
http://download.micron.com/pdf/datasheets/
modules/ddr2/HTF16C64 128 256x64HG.pdf.

[24] Micron. Various Methods of DRAM Refresh.
http://download.micron.com/pdf/technotes/DT30.pdf.

[25] M.Viredaz and D. Wallach. Power Evaluation of a Handheld
Computer: A Case Study. Technical report, Compaq WRL, 2001.

[26] T. Ohsawa, K. Kai, and K. Murakami. Optimizing the DRAM refresh
count for merged DRAM/logic LSIs. In Proceedings of the
International Symposium on Low Power Electronics and Design,
1998.

[27] J. T. Pawlowski. Intelligent refresh controller for dynamic memory
devices, U.S Patent No 5,890,198 B1, 1999.

[28] L. A. Polka, H. Kalyanam, G. Hu, and S. Krishnamoorthy. Package
Technology to Address the Memory Bandwidth Challenge for
Tera-Scale Computing. Intel Technology Journal, 11(03), 2007.

[29] A. Rahman and R. Reif. System Level Performance Evaluation of
Three-Dimensional Integrated Circuits. IEEE Tranactions on VLSI,
8(6):671–678, 2000.

[30] S. Sait and H. Youssef. VLSI Physical Design Automation: Theory
and Practice. McGraw-Hill, 1995.

[31] S. P. Song. Method and system for selective DRAM refresh to reduce
power consumption, U.S Patent No 6,094,705 B1, 2000.

[32] R. Venkatesan, S.Herr, and E. Rotenberg. Retention-Aware
Placement in DRAM (RAPID):Software Methods for
Quasi-Non-Volatile DRAM. In Proceedings of the Twelfth Annual
Symposium on High Performance Computer Architecture, pages
155–165, Nov. 2006.

[33] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and
B. Jacob. DRAMsim: a memory system simulator. SIGARCH
Comput. Archit. News, 33(4):100–107, 2005.

[34] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH–2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd International Symposium
on Computer Architecture, pages 24–36, June 1995.

