
The Coalgebraic Class Specification
Language CCSL

—Syntax and Semantics—

Hendrik Tews

Institut für Theoretische Informatik

TUD–FI02–08–August 2002

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakultät Informatik

Technische Berichte

Technical Reports

ISSN 1430-211X

Technische Universität Dresden

Fakultät Informatik

D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

The Coalgebraic Class Specification Language
CCSL

—Syntax and Semantics—

Hendrik Tews

5th August 2002

Abstract. This report describes the coalgebraic Class Specification Language cc-
sl, its syntax, its semantics, and the ccsl compiler that translates ccsl specifica-
tions into higher-order logic. The material in this report is mostly identical with
Chapter 4 of my forthcoming PhD [Tew02b].

Acknowledgements. ccsl and the ccsl compiler have been designed and im-
plemented in the loop project on formal methods of object-orientation. All mem-
bers of the loop team contributed to ccsl, often substantially. Bart Jacobs and
Jan Rothe read and corrected various draft versions of the material in this report.

1

Contents

Contents

List of Figures and Tables 4

1. Introduction 5

2. The Type Theory of CCSL 9
2.1. Kinds . 10
2.2. Types . 10
2.3. Type Expressions in CCSL . 13

3. Variance Checking 14
3.1. Formalising Variances . 17
3.2. Variance Checking in CCSL . 21
3.3. Semantics of Types . 23
3.4. Separation of Variances . 26
3.5. Classification of Types . 26

4. Ground Signatures 28
4.1. Ground Signatures in CCSL . 32

5. Coalgebraic Class Signatures 34
5.1. Invariants and Bisimulations . 39
5.2. Class Signatures in CCSL . 43

6. Assertions and Creation Conditions 48
6.1. Higher-order Logic . 49
6.2. Infinitary Modal Operators . 58
6.3. Coalgebraic Class Specifications . 63
6.4. Class Specifications in CCSL . 66

7. Abstract Data Types 71
7.1. CCSL Syntax for Abstract Data Types . 72

8. Iterated Specifications 76
8.1. Semantics of Iterated Specifications . 78

8.1.1. Ground Signature Extensions . 78
8.1.2. Abstract Data Type Specifications . 78
8.1.3. Coalgebraic Class Specifications . 85

8.2. Iterated Specifications for Polynomial Functors 91
8.3. Using CCSL consistently . 93

2

Contents

9. CCSL and Object Orientation 94
9.1. Inheritance . 95
9.2. Subtyping . 96
9.3. Multiple Inheritance . 97
9.4. Overriding and Dynamic Binding . 98

10.Miscellaneous 102
10.1. Input and Output Files . 103
10.2. Include Directive . 104
10.3. Lifting Requests . 104
10.4. Importings . 106
10.5. Infix Operators . 106
10.6. Identifiers and Qualified Identifiers . 107
10.7. Anonymous Ground Signatures . 108
10.8. The Prelude . 108
10.9. User Interface . 108
10.10. Implementation . 112

11.Summary 114

A. CCSL Case Studies 118

B. Proving Coalgebraic Refinement 121

C. The CCSL Grammar 127

D. References 132

Notation Index 140

Subject Index 143

3

List of Figures and Tables

List of Figures and Tables

1. Working environment with ccsl . 8
2. Derivation system for well-formed types . 12
3. A top down algorithm for computing variances 22
4. A rudimentary ground signature extension for power sets 34
5. The queue signature in ccsl syntax . 43
6. pvs translation of the queue signature . 46
7. Derivation system for the terms, Part I . 52
8. Derivation system for the terms, Part II . 53
9. Derivation rules for the modal operators . 60
10. ccsl Syntax for expressions and formulae . 65
11. The queue specification in ccsl syntax . 69
12. The abstract data type of binary trees in ccsl 73
13. Trees of finite width and infinite depth in ccsl 77
14. The data type of lists from the ccsl prelude 84
15. The relation lifting for lists, generated by the ccsl compiler 84
16. Possibly infinite queues in ccsl . 89
17. The monotone approach to model dynamic binding in ccsl, Version I 100
18. The monotone approach to model dynamic binding in ccsl, Version II 101
19. The nonmonotone approach to model dynamic binding in ccsl 102
20. Generated theories for a class specification, Part I 105
21. Generated theories for a class specification, Part II 106
22. The ccsl prelude . 109
23. A refinement of queues in ccsl . 124
24. The theory ListQueue containing the refinement proof 125

4

1. Introduction

This report describes the Coalgebraic Class Specification Language ccsl, its syntax, its se-
mantics, and the ccsl compiler that translates ccsl specifications into higher-order logic. The
material in this report is mostly identical with Chapter 4 of my forthcoming PhD [Tew02b].

The most distinguishing feature of ccsl is the provided notion of coalgebraic specification.
Further, ccsl does not force its users into a religious decision to adopt either the algebraic or
the coalgebraic point of view. Instead ccsl encourages the combination of abstract data type
specifications with coalgebraic specifications in an iterative way. Real world examples often
involve both: abstract data types and behavioural aspects (or process types). Such examples
can be mapped to ccsl in a very natural way. ccsl was first presented to public in [HHJT98],
a recent reference is [RTJ01], and some more technical aspects are described in [Tew02a].

The specification language ccsl (together with some supporting tools) was developed
in close cooperation with the people who are associated within the loop project on formal
methods for object-oriented programming. loop stands for Logic of Object-Oriented Program-
ming.1 It is a project on formal methods for object-oriented languages. It started in 1997 as a
joint project between the Katholieke Universiteit Nijmegen (University of Nijmegen) and the
Technische Universität Dresden (Dresden University of Technology). Apart from myself the
following people do or have been working within the loop project: Joachim van den Berg,
Ulrich Hensel, Marieke Huisman, Bart Jacobs, Erik Poll, and Jan Rothe. There is a certain
diversity in the research done in the loop project. The common underlying base is the use
of coalgebras as a semantics for object orientation and the use of theorem proving support.
Apart from the work that is described in the present thesis, the research in the loop project
focuses on a formal semantics of the programming language Java and the verification of Java
programs (see [Hui01]), especially for Java Card programs. Another topic is the design of jml,
the Java Modelling Language (see [LLP+00]). jml is an extension of Java that allows one to
specify the detailed design of Java classes and interfaces. The work on ccsl goes back to the
beginning of the loop project. All loop project members have contributed to ccsl in one or
the other way, often substantially.

ccsl is based on the observation of [Rei95] that coalgebras can give semantics to classes
of object-oriented languages. Jacobs picked this idea up and developed it further in a series
of publications, see [Jac95, Jac96, Jac97a, Jac97b]. Some important notions (for instance that
of an invariant) and even parts of the syntax of ccsl can be traced back to this work. An
important difference between this earlier work of Jacobs on coalgebraic specification and the
work in the loop project is, that all work in the loop project is centred around mechanical
verification. There are two reasons for the shift towards mechanical verification. First, software
verification is intrinsically difficult because it involves a large amount of detail, especially many
case distinctions. So to apply software verification to real programs written in a mainstream

1The loop project is on the world wide web, see URL http://www.cs.kun.nl/∼bart/LOOP/.

5

1. Introduction

programming language (as opposed to academic examples written in a clean academic pro-
gramming language) requires tool support. With the right computer support, the person who
carries out the verification can concentrate on the important (and difficult) parts, while the
verification tool carries out simple computations and ensures accuracy and the correctness of
the whole verification.

Secondly also for academic environments and pure science right tool support is important.
It enables the scientist to test his or her results and to get inspiration from large examples.
For instance the work on coalgebraic refinement, presented in [JT01], was inspired by a large
case study on coalgebraic specification of lists.

The design goals of ccsl are:

1. to provide a notation for parametrised class specifications based on coalgebras;

2. to provide algebraic specifications of abstract data types based on initial algebras;

3. to use a familiar logic;

4. to restrict expressiveness only when absolutely necessary;

5. to provide theorem proving support.

Let me discuss design goal 5 first. The importance of theorem proving support has been
explained before. In order to provide a theorem proving environment for ccsl there is the
following alternative: On the one hand one can write a special purpose theorem prover. On the
other hand one can develop a front end to existing theorem provers. The former variant sounds
attractive but is (and was) far beyond the man power of the loop team. In the loop project
we therefore chose the latter variant. It has the additional advantage that we can choose among
the available theorem provers and thus profit from the work that has been spent into these
tools.

The front end that connects ccsl with a theorem prover can be seen as a compiler that
translates ccsl into its semantics in higher-order logic. There exists a prototype implementa-
tion that supports the two theorem provers pvs [ORR+96, ORSvH95] and isabelle/hol in
the new style Isar syntax [NPW02b, Wen02] (but see also [NPW02a, Pau02]). I refer to this
prototype as the CCSL compiler from now on.

To meet design goals 1 and 2 ccsl contains concrete syntax for algebraic and for coalge-
braic signatures. The concrete syntax for coalgebraic signatures uses terminology from object-
oriented programming, for instance coalgebraic operations are declared with the keyword
METHOD. With coalgebraic signatures one cannot describe the construction of new objects.
Therefore class signatures in ccsl contain a degenerated algebraic signature (describing the
constructors) in addition to the coalgebraic signature.

For design goal 2 ccsl currently supports only abstract data type specifications in the
sense of this report. That is, the abstract data types of ccsl do neither contain axioms nor
equations. Both pvs and isabelle/hol have extensions for the definition of abstract data

6

types (without axioms). So it is straightforward to translate the abstract data types of ccsl
into pvs and isabelle. To incorporate algebraic specifications into ccsl it would be necessary
to define their semantics in higher-order logic. The problem here is that, although it is well
known how to translate algebraic specifications into higher-order logic, this is quite a bit of
work. Besides, such a translation has been done before (for instance for casl in the common
framework initiative [Mos97], see [Mos00]) and one cannot expect many new insights. It is very
difficult to get this kind of work done in an academic environment.

A specification language comes always equipped with some kind of logic. A variety of
different logics for coalgebras have been developed so far. One idea is that coalgebraic logic
should be based on coequations, which are dualized equations. This approach is for instance
pursued in [Cor98, Ĉır99]. Other work proposes different modal logics, see for instance [Mos99,
Kur00, Röß00a, Hug01]. However, the work on modal logic for coalgebras is mostly driven
by purely mathematical interests. The resulting logics are not well-suited for a specification
language. The most modest approach for a coalgebraic logic considers coalgebraic signatures
as special polymorphic signature and uses traditional first-order equational logic over these
signatures (see for instance [Jac96, Kur98]). Such an equational logic is already sufficient for
many examples. In the loop project we decided to use a higher-order equational logic to gain
expressiveness.

Higher-order equational logic is certainly a well-known logic, as demanded by design goal
number 3. It makes the semantics of ccsl specifications easy to understand. This way the user
can devote his attention on the properties instead on how to express them.

With the choice of higher-order logic we deliberately neglected some proof theoretic is-
sues. For instance there does not exist a complete derivation system for the logic of ccsl. In
contrast, [Cor98], [Ĉır99], and also [Röß00a] restrict their coalgebraic signatures and obtain
a complete derivation system for their logics. As usual in interactive theorem proving, the
lack of a completeness theorem has never been a problem in our case studies. In contrast, the
additional expressivity of our notion of coalgebraic class signatures and of our logic turned
out to be very useful. Similarly other famous negative results for higher-order logic, like the
undecidability of unification, have never posed any problems.

The design goal number 4 is probably the most debatable one. Because of the expres-
siveness of ccsl an user can easily write inconsistent specifications. Further, it is possible to
construct coalgebraic signatures that correspond to functors whose properties have not been
investigated (yet). There are two arguments here. The first one is about correctness: Whatever
the user writes in ccsl, the final working environment is either pvs or isabelle. Because the
translation of ccsl uses almost no axioms2 any inconsistency that passes the ccsl compil-
er is finally caught in the theorem prover. The bottom line here is that one can rest on the

2The exceptions are the axioms about the existence of loose and final models that facilitate aggregation.
Subsection 8.3 gives guidelines on the use of the generated theories that ensure that these axioms cannot
introduce inconsistencies.

7

1. Introduction

user
statements

��
coalgebraic
specification

+3 ccsl
compiler

+3 Formalization
in HOL

+3 isabelle/hol
or pvs

+3 q.e.d.

models

KS

Figure 1: Working environment with ccsl

correctness of the theorem prover.
The second argument is that ccsl is a research tool that helps to explore the fascinat-

ing world of coalgebraic specification. If we exclude from ccsl everything that is not well
understood then we cannot use it for future research.

Figure 1 depicts the working environment for coalgebraic specification when using ccsl. The
ccsl compiler reads files containing coalgebraic specifications and produces output for either
pvs or isabelle/hol (depending on a command line switch). The produced output can be
directly loaded into pvs or isabelle. In the following I refer to the chosen proof environment
as the (target) theorem prover. The formulae one wants to prove and the models are usually
formulated in the logic of the target theorem prover.

Internally the ccsl-compiler uses an abstract representation of higher-order logic, so that
a third theorem prover could easily be supported by adding a new pretty-printing module that
translates the abstract representation into the concrete syntax of the new theorem prover. For
the work on Java and JML in the loop project a similar compiler has been developed [vdBJ01]
that translates Java (respectively JML) into pvs or isabelle. Initially the compiler for Java
and JML was derived from an early version of the ccsl compiler. At the moment both tools
are separate programs that share parts of the internal data structures and a few modules (for
instance the pretty printers for pvs and isabelle/hol).

Some of the material of this report appeared partially already somewhere else. A simplified
version of ground signatures and coalgebraic class specifications (without a proper treatment
of variances) appeared originally in [RTJ01]. An even simpler version that might be called
first order coalgebraic class specification without binary methods can be found in [Tew00]. The
ccsl grammar is taken from the ccsl reference manual [Tew02a]. In comparison with these
cited papers this report presents the syntax and the semantics of ccsl and its coalgebraic
and type theoretic foundations together. Moreover, the material is presented here without the
simplifications that were necessary because of the available space and the expected audience

8

in [RTJ01] and [Tew00].
In describing the semantics of ccsl I am facing the following problem: The semantics

of coalgebraic class specifications and that of abstract data type specifications are mutually
dependent. Therefore I first describe ground signatures and their models. In the beginning it
will be a bit unclear, where the items in the ground signature come from and how they get their
semantics. After that I describe the semantics of class specifications and abstract data type
specifications with respect to a given ground signature (and a model of it). In the end I close the
circle with the discussion of iterated specifications: There I show how class specifications and
abstract data type specifications extend the ground signature with new types and constants.

This report is structured as follows: Each section introduces one syntactic category or a
specific problem of ccsl. The first section is on types. Section 3 is on variance checking. Then
I define ground signatures and coalgebraic class signatures. Section 6 explains the higher-order
logic of ccsl and Section 7 defines abstract data type specifications. Section 8 discusses iterated
specifications. The following sections are less formal, Section 9 discusses the object-oriented
features of ccsl and Section 10 combines a few minor topics that do not fit somewhere else.
In the last section of this report I summarise and discuss related work. Most of the sections
contain a subsection that describes the concrete ccsl syntax. For convenience the complete
ccsl syntax is indexed in the subject index and collected in Appendix C. There are two
additional appendices that present related material: Appendix A describes applications of
ccsl, and Appendix B explains coalgebraic refinement.

2. The Type Theory of CCSL

In ccsl class specifications (and abstract data types) may depend on type parameters. For
instance, a ccsl specification for (possibly infinite) sequences depends on one type parameter,
the type of the elements of the sequences. When using the sequences in subsequent specifica-
tions this type parameter must be instantiated with a concrete type. For ccsl it is therefore
necessary to develop a polymorphic type theory. A polymorphic type theory allows one to
model parametric polymorphism in the sense of [CW85]. In such a type theory terms may
depend on a finite set of type variables and a finite set of term variables. (Term) judgements
are used to formally derive valid typings for terms. A term judgement consists of four parts, a
type variable context, a term variable context, a term, and a type. A typical example is

α : Type | q : Seq[α] ` next(q) : 1 + α× Seq[α]

It states that, if the variable q has type Seq[α] for an arbitrary type α, then the application
next(q) has the depicted type. In the derivation system of a type theory one also has other
kinds of judgements, for instance for deriving that a type expression is a valid type in the
system. I introduce these different judgements when they are needed.

9

2. The Type Theory of CCSL

In the following I present the type theory for ccsl. It is a specialised version of the poly-
morphic type theory λ→ (see Section 3 in [Bar92] or Section 8.1 in [Jac99]) enriched with
product, coproduct, and exponent types and with the special types Self and Prop. The type
Self represents the state space of classes and abstract data types. In Section 6 I describe a
higher-order logic over the type theory of ccsl. The type Prop will then be the type of propo-
sitions. Instead of working with higher-order signatures as [Jac99] does, I prefer to formalise
Prop as a special type.

In the type theory of ccsl type constructors will play an important role. A type constructor
can be thought of as a function that acts on types. A typical example is the type constructor
list that builds the type list[τ] of (finite) lists over τ for any type τ . The number of arguments
that a type constructor takes is called the arity of the type constructor. Type constructors
of arity 0 (i.e., those that take no arguments) are type constants such as N for the natural
numbers. Type constructors are the technical means to extend the specification environment.
The technical details about this are in Section 8, but it is good to have a rough idea about
what is going on.

Each ccsl specification consists of a finite list S1, . . . ,Sn of ground signature extensions
(Section 4), coalgebraic class specifications (Sections 5 and 6), and abstract data type specifi-
cations (Section 7). Each of the Si is relative to a ground signature Ωi and every Si can define
type constructors, constants, and functions. The newly defined items are added to Ωi to yield
Ωi+1. This way a specification Si can refer to all specifications Sj with j < i.

In what follows type constructors are treated as syntactic entities that come along with a
semantics. It might help to think of type constructors as resulting from a data type specification
(such as finite lists or binary trees) or a process type specification (such as possibly infinite
sequences) that already has been processed by the ccsl compiler.

2.1. Kinds

Kinds are used to distinguish types from type constructors and to count the type arguments
of the type constructors. So kinds are natural numbers. (Other pure type systems, for in-
stance λω allow more complex kinds and also type variables of complex kinds, compare [Bar92]
or [Jac99].) In judgements I use outlined lower-case letters like k for kinds. Ordinary types
have kind 0. To improve readability I write σ : Type instead of σ : 0. Type constructors that
take n arguments will have kind n. Kind judgements have the form

` k : Kind

They state that k is a valid kind (i.e., a natural number).

2.2. Types

Types are build from type variables and type constructors including product types, coproduct
(or sum) types, and exponent types. I use lowercase Greek variables like α, β, . . . to denote

10

2.2. Types

type variables. A type variable context is a finite list of type variables. I assume that all type
variables in a context are distinct. This can formally be ensured by using only type variables
α1, α2, . . . , but I would like to ignore these technicalities. In the type theory λ→ type variables
are place holders for types only (and not for arbitrary type constructors). To emphasise this
I write type contexts as α1 : Type, α2 : Type, . . . with the explicit kind Type. Arbitrary types
are denoted with lower case Greek variables like τ, σ. I use type judgements to formally derive
all types. A type judgement has the form

Ξ ` τ : k or Ξ ` τ : Type

where Ξ is a type variable context, τ is a type expression containing only type variables from
Ξ, and k is a valid kind. Such a type judgement states that τ is a type constructor of kind k
(or an ordinary type, if k = Type).

Type constructors, which can be used to build composite types, are given as part of a
ground signature (see Definition 4.1 on page 28 below). A type constructor C of kind (or arity)
k for a valid kind k is given as a judgement

` C : k

Type constructors of arity 0 will be called type constants. I assume a set C of type constructors
in the following.

Definition 2.1 (Types) The types over a set of type constructors C are finitely generated
as the least set including

• α for a type variable α : Type

• K for a type constant ` K : Type in C

• C[τ1, . . . , τk] for a type constructor ` C : k in C and types τ1, . . . , τk

• Self, the special type that stands for the carrier set of class specifications and abstract
data type specifications

• Prop, the type of propositions

• 1, the unit type and 0 the empty type

• the product τ × σ, the coproduct τ + σ, and the exponent τ ⇒ σ for types τ and σ

Figure 2 contains a derivation system that allows one to derive a judgement Ξ ` τ : Type
precisely if τ is a type according to the preceding Definition with type variables Ξ.

In the following I assume that the product and the coproduct of types is associative (i.e.,
(τ1 × τ2) × τ3 ∼= τ1 × (τ2 × τ3) and (τ1 + τ2) + τ3 ∼= τ1 + (τ2 + τ3)). I assume further the

11

2. The Type Theory of CCSL

kinds

` Type : Kind
` k : Kind

` k+ 1 : Kind

type variable

Ξ ` α : Type
α ∈ Ξ

Self

Ξ ` Self : Type

Prop

Ξ ` Prop : Type

type constructor

` k : Kind Ξ ` σ1 : Type · · · Ξ ` σk : Type

Ξ ` C[σ1, . . . , σk] : Type
for C : k in C

product type

Ξ ` 1 : Type

Ξ ` τ : Type Ξ ` σ : Type

Ξ ` τ × σ : Type

coproduct type

Ξ ` 0 : Type

Ξ ` τ : Type Ξ ` σ : Type

Ξ ` τ + σ : Type

exponent type
Ξ ` τ : Type Ξ ` σ : Type

Ξ ` τ ⇒ σ : Type

The following two rules are not necessary to build all possible types, but sometimes it is
convenient to use them. They can be derived by induction on the structure of derivations.

type context weakening

Ξ ` τ : Type

Ξ, α : Type ` τ : Type
α /∈ Ξ

type substitution

Ξ, α : Type ` τ : Type Ξ ` σ : Type

Ξ ` τ [σ/α] : Type

Figure 2: Derivation system for well-formed types over a set of type constructors C.

12

2.3. Type Expressions in CCSL

isomorphisms 1 ⇒ τ ∼= τ and τ × 1 ∼= τ . The semantics of types (Definition 3.5 on page
23) will ensure that the corresponding interpretations are isomorphic collections of sets. The
exponent ⇒ is assumed to associate to the right, that is τ1 ⇒ τ2 ⇒ τ3 = τ1 ⇒ (τ2 ⇒ τ3). I
omit parenthesis in the following when they do not contribute to readability.

2.3. Type Expressions in CCSL

ccsl allows all types according to Definition 2.1. However there are the following points to
note.

• Kinds do not appear in the concrete syntax of ccsl, the ccsl type checker ensures that
all type constructors get the right number of arguments.

• Type variables appear as normal identifiers, which have been declared as type parameters.

• There are the two keywords CARRIER and SELF that represent the special type Self. The
keyword CARRIER represents Self in abstract data type specifications (see Section 7),
inside class specifications (Section 5) one has to use SELF.

• ccsl allows n-ary product types σ1×· · ·×σn. Further, the product of types σ1×· · ·×σn

is written with brackets [σ1, . . . , σn] like in pvs.

• The binary coproduct and the unit type are formalised as abstract data types, which are
defined in the ccsl prelude (see Section 10.8). So there is no concrete syntax for unit
and coproduct.

• The empty type is not available for the isabelle back end of ccsl. For the pvs back
end the empty type is declared in the prelude.

• The type Prop is called bool, it is built-in into the ccsl compiler.

The grammar of ccsl is given in a BNF–like notation. Brackets [. . .] denote optional
components, braces {|. . . |} denote arbitrary repetition (including zero times), and parenthesis (
. . .) denote grouping. Terminals are set in UPPERCASE TYPEWRITER, non–terminals in lowercase
slanted. The terminal symbols for parenthesis and brackets are written as (,), [, and]. For
convenience all keywords and nonterminals of the ccsl grammar can be found in the subject
index.

The concrete syntax for type expressions in ccsl is given by the following BNF rules.

13

3. Variance Checking

type ::= SELF
| CARRIER
| BOOL
| [type {| , type |} -> type]
| [type {| , type |}]
| qualifiedid
| identifier argumentlist

argumentlist ::= [type {| , type |}]

The form [σ1, . . . ,σn -> τ] is shorthand for [[σ1, . . . ,σn] -> τ]. Qualified identifiers are
explained in Subsection 10.6 below (on page 107). In type expressions a qualified identifier can
be either a simple identifier (referring to a type variable or a type constant), or an instantiated
ground signature name with a type identifier declared in that ground signature.

3. Variance Checking

This section describes the algorithm that computes variances for type variables and for Self.
I follow the ideas from [Sch97] but generalise Schroeder’s variances such that I get informa-
tion about the deepest nesting level at which a type variable (or Self) occurs positively and
negatively.

Variances are mainly important for the ccsl typechecker. To get a semantics, the type
expressions from a signature are translated to functors. Depending on the variance of Self
one gets a polynomial functor, an extended polynomial functor, or a higher-order polynomial
functor (see Proposition 3.8 on page 27). The class of models of the signature has very different
properties depending on the functor (compare Chapter 3 of [Tew02b]). Another important
point is that in abstract data-type definitions only type expressions with a certain variance
are allowed (see Definition 7.1 on page 72). The reason for this restriction is that there is no
initial semantics for arbitrary signatures [Gun92]. Finally, as a minor point, the ccsl compiler
generates simpler output in the common case that a type variable does not occur with mixed
variance (compare Proposition 3.6 and Subsection 3.4 on page 25ff).

In the following I first try to explain variances and the algorithm to compute them on an
intuitive level. A precise definition follows in the first subsection, the development there is a bit
technical, but there is nothing deep behind. To put it a bit sloppy, the algorithm to compute
variances only counts parenthesis.

Informally speaking the variance of a type variable (or of Self) tells us if the type variable
occurs on the left hand side of ⇒, on its right hand side, or on both sides. Let me anticipate
some bits of Definition 3.5 (interpretation of types) to explain this problem in greater detail.
Consider type expressions over a set of type constructors that contains only one constant type,

14

so C = {N : Type}. If we ignore Self and type variables for a moment we can assign to every
type τ a set JτK as its interpretation. We use N, the set of natural numbers as interpretation
of the type constant N and set Jτ � σK = JτK � JσK for � ∈ {×,+,⇒}. (Here ×,+, and ⇒
denotes the bicartesian closed structure on Set, that is, the cartesian product, the disjoint
union, and the function space, respectively.)

Assume now that τ contains a type variable: α : Type ` τ : Type. Then its interpretation
is a mapping that assigns to each set U , which we choose as an interpretation for α, the set
JτKU . If for instance τ1 = α×N then Jτ1KU = U ×N. So the semantics of a type that contains
type variables is an (set–) indexed collection of sets, where the indices are the interpretation
of the type variables. Consider now two sets U and V as possible interpretations of α. A
function h : U //V gives in a canonical way rise to a function Jτ1KU

//Jτ1KV . For τ1 this
function is given by λx : U × N . (h(π1 x), π2 x). If, for a second example, τ2 = N ⇒ α
then Jτ2KU = N ⇒ U = {f | f : N //U } and the function Jτ2KU

//Jτ2KV is given by
λf : N //U . h ◦ f .

Complications start if the type variable α occurs on the left hand side of ⇒: Consider
the type τ3 = α ⇒ N. This time a function h : U //V induces a function Jτ3KV

//Jτ3KU

in the opposite direction! It is given by λf : V //N . f ◦ h. In this case, where the induced
function goes into the opposite direction, one says that the type variable α occurs in τ with
negative variance or alternatively one says that α occurs in τ at a negative position. A type
variable occurs with positive variance (at a positive position) if the induced function keeps the
direction, as in the preceding paragraph. If the type variable occurs with negative variance
within a type expression that occurs itself at a negative position, then the type variable has
positive variance again. Consider τ4 = (α⇒ N) ⇒ N. As interpretation we have

Jτ4KU = {f | f is a function that maps functions U //N to elements of N}

With a function h : U //V we can build the function

λf : (U ⇒ N) //N .
(
λg : V //N . f(g ◦ h)

)
: Jτ4KU

//Jτ4KV

To distinguish the types τ1 and τ2 from τ4 one says that α occurs in τ1 and τ2 strictly positively.
A type variable can also occur several times (with different variances) in one type expres-

sion. Consider τ5 = α⇒ (α×N). To get a function Jτ5KU
//Jτ5KV we need now two functions

h+ : U //V and h− : V //U . The induced function on the interpretation of τ is

λf : U //U ×N .
[
λv : V .

(
h+(π1(f(h− v))), π2(f(h− v))

)]
A type variable that occurs with both positive and negative variance is said to have mixed
variance.

In general the semantics of types is given by functors. The special type Self serves as
a place holder for the arguments of the functor. So for the type σ1 = Self × N we get as

15

3. Variance Checking

semantics the functor T1(X) = X × N. And for σ2 = (Self ⇒ N) ⇒ N we get the functor
T2(X) = (X ⇒ N) ⇒ N. In both types σ1 and σ2 the type Self occurs with positive variance.
However T1 is a polynomial functor whereas T2 is a higher-order polynomial functor. Because
polynomial functors and higher-order polynomial functors have different properties, the ccsl
compiler must generate different output, depending on whether a signature corresponds to
a polynomial functor or a higher-order polynomial functor. So it is not only important if a
type variable (or Self) occurs positively or negatively, it is also important at which maximum
nesting level a type variable occurs. Therefore I use pairs (u−, u+) of natural numbers to
denote variances. The first component u− denotes the maximum nesting level at which the
type variable occurs at a negative position. The second component u+ denotes the maximum
nesting level for positive occurrences. In the next subsection I formalise these variances as a
special algebra and give an algorithm that computes the variances of the type variables and of
Self in a type expression. In the following I describe informally how variances can be computed.

To compute the variances of a type expression τ one has to annotate every subexpression
of τ with a natural number in the following way: The whole type is annotated with 0, walk
now recursively down the structure of τ and increase the current number every time you pass
over to the left hand side of a ⇒. Keep the number constant if you pass over × or + or if you
stay on the right hand side of ⇒. Let me write the annotations as subscripts to parenthesis,
which enclose the subexpressions. Then I get for τ4

(((α)2 ⇒ (N)1)1 ⇒ (N)0)0

Observe that subexpressions at positive positions get even numbers and subexpression at
negative positions get odd numbers. This is because the variance is toggled from positive to
negative and vice versa on the left hand side of ⇒. To get the variance for the type variable
α, pick out the maximum annotation of α for all negative occurrences (i.e., the maximal odd
number for α) and the maximum annotation for all positive occurrences of α (i.e., the maximal
even number). Use ? if the type variable does not occur with the corresponding variance. So we
get that α has variance (?, 2) in τ4. For a more complex example consider the type expression[[(

(α)3 ⇒ (N)2
)
2
⇒ (α)1

]
1
⇒
[(

(α)2 ⇒ (N)1
)
1
⇒ (α)0

]
0

]
0

Here α has the variance (3, 2).
For the computation of variances also nonconstant type constructors are important. For the

discussion of variances one can think of a type constructor as a macro that can be expanded
into a type expression. For example let

C[α, β] def= ((α⇒ β) ⇒ N) ⇒ N

16

3.1. Formalising Variances

Now we can form the type τ5 = C[Self, α] ⇒ N. After expanding C we can compute the
variances and get that Self occurs in τ5 with variance (?, 4) and α with (3, ?). So for the first
argument of C the variance is toggled and the nesting level is increased by three. To denote
this I say that the first argument of C has variance (3, ?). Similarly, the second argument of
C has variance (?, 2). A type constructor can also copy its arguments into a positive and a
negative position, for instance:

C′[α] def= α⇒ α

Therefore the variance of the only argument of C′ is (1, 0)
For the formal treatment of type constructors I assume that, from now on, type constructors

are given with variance annotation by a sequent

` C :: [(3, ?); (?, 2)]

Formally the variance annotation is a finite list of variances. The length of the list equals
the arity of the type constructor and the elements of the list stand for the variances of its
arguments.

The preceding algorithm to compute variances works only well if all variances of the type
constructor are either of form (?, u+) or of form (u−, ?). For such a type constructor one adds
either u+ or u− to the current number. So in the type expression

(C[(α)4, (α)3])1 ⇒ (N)0)0

α has variance (3, 4). The treatment of arbitrary variances for type constructors does not really
fit in this simplified annotation algorithm. For arbitrary type expressions it is best to use the
algorithm from the next subsection.

I prefer to formalise the product, the coproduct, and the exponent of types and the type
Prop by giving extra rules for them. Alternatively one can consider them as type constructors
with the following variance:

` Prop :: []
` 1 :: []
` 0 :: []
` × :: [(?, 0); (?, 0)]
` + :: [(?, 0); (?, 0)]
` ⇒ :: [(1, ?); (?, 0)]

3.1. Formalising Variances

To formalise variance checking I need the natural numbers enriched with an additional element
?, which is a zero for addition.3 So set N? def= N ∪ {?} and extend addition to N? with

3Recall that the number zero is a one (i.e., a neutral element) for addition.

17

3. Variance Checking

? + n = n + ? = ? for all n ∈ N
?. I further extend the order < and make ? the least

element: ∀i ∈ N . ? < i. Now I can use max with the extended natural numbers, for instance
max(?, n) = max(n, ?) = n for all n ∈ N?. Although we saw in the last section that variances
are pairs of an odd and an even number it is technically easier to define them as pairs of N?.

Definition 3.1 The variance algebra is the triple (V, ·,∨) such that

• V = N
? ×N? is the set of variances, where ? abbreviates (?, ?) ∈ V ,

• · : V × V //V is the substitution operation defined by

(u−, u+) · (v−, v+) def=
(
max(u− + v+, u+ + v−), max(u− + v−, u+ + v+)

)
• and ∨ : V × V //V is the join operation given by

(u−, u+) ∨ (v−, v+) def=
(
max(u−, v−), max(u+, v+)

)
The set of well-formed variances V ⊆ V is given by

V
def= {(u−, u+) | (u− = ? or u− is odd) ∧ (u+ = ? or u+ is even)}

In the following I assume that · binds tighter than ∨, so u1 · u2 ∨ u3 = (u1 · u2) ∨ u3.

Lemma 3.2

1. (V , ·,∨) is a subalgebra of the variance algebra, that is, both the substitution and the join
operation restrict to V × V //V .

2. (V, ·) forms a commutative monoid with zero element ?.

3. (V,∨) forms a commutative monoid with identity ?.

4. The substitution operation · distributes over ∨, that is u · (v ∨ w) = (u · v) ∨ (u · w)

Proof The proofs are straightforward computations, they have all been formalised in pvs.
�

The preceding definition of variances generalises the variances in [Sch97]. There, Schroeder
uses the finite set {+,−, ∗, ?} as variances, denoting positive, negative, mixed, and unknown
variance, respectively. The substitution and join operations are given by

· ? + − ∗
? ? ? ? ?
+ ? + − ∗
− ? − + ∗
∗ ? ∗ ∗ ∗

∨ ? + − ∗
? ? + − ∗
+ + + ∗ ∗
− − ∗ − ∗
∗ ∗ ∗ ∗ ∗

18

3.1. Formalising Variances

There is an algebra morphism from my variances to Schroeder’s variances. It sends (?, ?) to ?,
(?, u+) to +, (u−, ?) to −, and all other elements of V to ∗.

Next I present the variance checking algorithm. For a type judgement Ξ ` τ : Type the
variance checking algorithm assigns to every type variable α ∈ Ξ and to Self a well-formed
variance from V . I give the algorithm by annotating type judgements and the derivation system
for types from Figure 2. Type judgements have now the form

α1 :: v1, . . . , αn :: vn, Self :: v ` τ : Type

for v, v1, . . . , vn ∈ V . It is the formal statement that τ is a type where the type variables αi

have variance vi and Self has variance v in τ . Note that in the above judgement Self does not
belong to the type variable context. It is just that I did not find a better way to incorporate the
variance of Self into judgements. However, the notation is not completely misleading: Instead
of making Self a special type (as I preferred in Definition 2.1) one could formalise Self as a
distinct type variable. Indeed, the variance algorithm that follows treats Self exactly like a
type variable.

In the following I assume that the type constructors in C are given with variance annotations
as judgements

` C :: [v1, . . . , vk]

where [v1, . . . , vk] is a finite list of length k over V and k is the arity of C. Type constants are
given as ` K :: [].

Consider the most basic well-formed type Ξ ` α : Type. The type variable α occurs with
variance (?, 0) and all other type variables from Ξ and Self do not occur (so they have variance
(?, ?)). So the new rule for type variables is obviously

type variable

α1 :: ?, . . . , αi−1 :: ?, αi :: (?, 0), αi+1 :: ?, . . . , αn :: ?, Self :: ? ` αi : Type

The rule for type constructors is the most difficult one, so let me postpone it for a moment.
The other obvious rules are those for Self, 1, and 0. In the following rules I abbreviate an
arbitrary type variable context α1 :: u1, . . . , αn :: un by writing αi :: ui.

Self

αi :: ?, Self :: (?, 0) ` Self : Type

unit type

αi :: ?, Self :: ? ` 1 : Type

empty type

αi :: ?, Self :: ? ` 0 : Type

Prop

αi :: ?, Self :: ? ` Prop : Type

19

3. Variance Checking

The product and the coproduct do not change the variances. We only have to keep in mind,
that in σ × τ every type variable might occur in both types σ and τ , so we have to join the
variances.

product

αi :: ui, Self :: u ` τ : Type αi :: vi, Self :: v ` σ : Type

αi :: (ui ∨ vi), Self :: (u ∨ v) ` τ × σ : Type

coproduct

αi :: ui, Self :: u ` τ : Type αi :: vi, Self :: v ` σ : Type

αi :: (ui ∨ vi), Self :: (u ∨ v) ` τ + σ : Type

For the exponent σ ⇒ τ we also have to join the variances for each type variable. Thereby
we have to keep in mind that for all type variables in σ the variances flip around and the
nesting level is increased by one. Formally this is done by applying the substitution operation
with (1, ?). Note that (1, ?) · (u−, u+) = (u+ + 1, u− + 1).

exponent type

αi :: ui, Self :: u ` σ : Type αi :: vi, Self :: v ` τ : Type

αi :: ((1, ?) · ui ∨ vi), Self :: ((1, ?) · u ∨ v) ` σ ⇒ τ : Type

The rule for the type constructor is a generalised version of the rule for the exponent.
Assume a type constructor C :: [u1, . . . , uk] in C. Before joining the variances from all the
types σj we have to apply the substitution operation with the variances uj .

type constructor

αi :: v1
i , Self :: v1 ` σ1 : Type · · · αi :: vki , Self :: vk ` σk : Type

αi :: vi, Self :: v ` C[σ1, . . . , σk] : Type

where vi = u1 · v1
i ∨ · · · ∨ uk · vki

v = u1 · v1 ∨ · · · ∨ uk · vk

For completeness I also show the rules for weakening and substitution. Both rules are
derivable.

type context weakening

α1 :: u1, . . . , αn :: un, Self :: u ` τ : Type

α1 :: u1, . . . , αn :: un, αn+1 :: ?, Self :: u ` τ : Type

20

3.2. Variance Checking in CCSL

type substitution

α1 :: u1, . . . , αn :: un, αn+1 :: un+1, Self :: u ` τ : Type

α1 :: v1, . . . , αn :: vn, Self :: v ` σ : Type

α1 :: u1, . . . , αn :: un, Self :: u ` τ [σ/αn+1] : Type

where ui = (un+1 · vi) ∨ ui

u = (un+1 · v) ∨ u

Now it is possible to give a simple and precise definition for the terms positive, negative
and mixed variance.

Definition 3.3 Let τ be a type such that Γ, α :: (v−, v+), Self :: (u−, u+) ` τ : Type is
derivable. The type variable α occurs in τ with

• strictly positive variance if v− = ? and v+ ≤ 0

• positive variance if v− = ?

• negative variance if v+ = ?

• mixed variance if v− 6= ? and v+ 6= ?

Similarly for Self and (u−, u+).

3.2. Variance Checking in CCSL

For ccsl it is more useful to have an algorithm that works top–down (instead of bottom–up
like a derivation system). Let x be Self or a type variable. Then Vx(τ) denotes the variance of
x in τ . It is defined by induction on the structure of τ , see Figure 3.

Proposition 3.4 The function Vx computes the variances as defined by the derivation system.
More precisely, let τ be a type that contains the type variables α1, . . . , αn. Then one can derive
the following judgement:

αi :: Vαi(τ), Self :: VSelf(τ) ` τ : Type

Further Vβ(τ) = (?, ?) if β /∈ {α1, . . . , αn}.

Proof By induction on the structure of types. The induction steps are immediate. �

21

3. Variance Checking

Vx(x) = (?, 0)
Vx(α) = (?, ?) for x 6= α

Vx(0) = (?, ?)
Vx(1) = (?, ?)

Vx(Prop) = (?, ?)
Vx(Self) = (?, ?) for x 6= Self

Vx(σ1 × σ2) = Vx(σ1) ∨ Vx(σ2)
Vx(σ1 + σ2) = Vx(σ1) ∨ Vx(σ2)
Vx(σ1 ⇒ σ2) = (1, ?) · Vx(σ1) ∨ Vx(σ2)

Vx(C[σ1, . . . , σk]) = u1 · Vx(σ1) ∨ · · · ∨ uk · Vx(σk) for ` C :: [u1, . . . , uk]

Figure 3: A top down algorithm for computing the variance Vx(τ) of type τ with respect to x

The function Vx can be further optimised into a tail-recursive function by storing the
variance of the type variable or of Self in a reference cell. This reference cell will be initialised
with ?, the neutral element for ∨. Then the equations from Figure 3 can be transformed into
tail recursive form because · distributes over ∨ (Lemma 3.2 (4)). This tail-recursive variant of
the equations in Figure 3 is used in the ccsl-compiler.

The variances presented here are not sufficient to distinguish extended cartesian functors
from extended polynomial functors. The ccsl compiler uses an additional check to determine
if a type corresponds to an extended cartesian functor.

Variances appear in ccsl specifications as annotations to type parameters. They restrict
the variance of the annotated type parameter. Their concrete syntax is as follows.

variance ::= POS
| NEG
| MIXED
| (numberorquestion , numberorquestion)

numberorquestion ::= ?
| number

In addition to the variances of Definition 3.1 the ccsl compiler recognises the keywords
POS, NEG and MIXED as variances. These latter three variances denote an infinite nesting level
and must be used for type constructors of ground signatures. The compiler extends the join and
substitution of variances in the obvious way, for instance POS∨(?, 2) = POS, POS∨(3, ?) = MIXED,

22

3.3. Semantics of Types

and POS ·(3, ?) = NEG. Variances given as a pair of numbers (or question marks) must be proper
variances.

3.3. Semantics of Types

The discussion on negative variances at the beginning of this section showed that for the
semantics of types some notions (for instance the map–combinator) differ with respect to the
variance of type variables. Here I take the general approach and develop a semantics for types
under the assumption that all type variables and Self occur with mixed variance. For type
variables that occur only with positive or negative variance considerable simplifications are
possible, see the lemmas below and the next subsection. For the semantics of types I thereby
deliberately deviate from the ccsl compiler at the advantage of a clearer presentation.

In the standard case every type Ξ ` τ : Type gives rise to an indexed collection of functors(
JτKU−

1 ,U+
1 ,U−

2 ,U+
2 ,...,U−

n ,U+
n

: Setop × Set //Set
)
U−

i ,U+
i ∈ |Set|

where n is the number of type variables in Ξ. The indices U−
1 , . . . , U

+
n are sets for the interpre-

tation of the type variables. The set U−
i is used for the negative occurrences of αi and U+

i for
the positive ones. The arguments of the functor itself are used for the negative and positive
occurrences of Self, respectively. In the following I abbreviate the list of indices as U−/+

i if
there is no danger of confusion.

The standard case, to which I refer in the previous paragraph, is the case where for every
type constructor of arity k there is an interpretation functor taking 2k arguments. The ar-
guments are doubled to separate them into positive and negative occurrences. The following
definition deals with the standard case only, I discuss some abnormalities below.

Definition 3.5 (Interpretation of Types) Let C be a set of type constructors.

1. Let ` C :: [v1, . . . , vk] be a type constructor of arity k and let (−)k denote the k–fold
product. An interpretation of C is a functor

JCK : (Setop × Set)k //Set

if, for arbitrary sets V, V ′, U1, . . . , U2n, it has the following property

• if the i-th argument of C has positive variance then JCK is constant in its (2i− 1)-th
argument (which interprets the negative occurrences of the i-th argument):

JCK(U1, . . . , U2i−2, V, U2i, . . . ,U2n) =
JCK(U1, . . . , U2i−2, V

′, U2i, . . . , U2n)

• if the i-th argument of C has negative variance then JCK is constant in its 2i-th
argument (interpreting the positive occurrences of the i-th argument).

23

3. Variance Checking

• if the i-th argument of C has unknown variance then JCK is constant in both its
(2i− 1)-th and its 2i-th argument.

2. Let α1, . . . , αn ` τ : Type be a type with type constructors from C. Assume that for every
C ∈ C we have an interpretation JCK. The interpretation of τ is defined by induction on
the structure of types.

JαiKU−
1 ,...,U+

n
(Y,X) = U+

i

JSelfKU−
1 ,...,U+

n
(Y,X) = X

J1KU−
1 ,...,U+

n
(Y,X) = 1 = {∗}

J0KU−
1 ,...,U+

n
(Y,X) = 0 = ∅

JPropKU−
1 ,...,U+

n
(Y,X) = bool = {⊥,>}

Jσ1 + σ2KU−
1 ,...,U+

n
(Y,X) = Jσ1KU−

1 ,...,U+
n

(Y,X) + Jσ2KU−
1 ,...,U+

n
(Y,X)

Jσ1 × σ2KU−
1 ,...,U+

n
(Y,X) = Jσ1KU−

1 ,...,U+
n

(Y,X) × Jσ2KU−
1 ,...,U+

n
(Y,X)

Jσ1 ⇒ σ2KU−
1 ,...,U+

n
(Y,X) = Jσ1KU+

1 ,U−
1 ,U+

2 ,U−
2 ,...,U+

n ,U−
n

(X,Y) ⇒

Jσ2KU−
1 ,U+

1 ,U−
2 ,U+

2 ,...,U−
n ,U+

n
(Y,X)

JC[σ1, . . . , σk]KU−
1 ,...,U+

n
(Y,X) = JCK

(
Jσ1KU+

1 ,U−
1 ,U+

2 ,U−
2 ,...,U+

n ,U−
n

(X,Y),

Jσ1KU−
1 ,U+

1 ,U−
2 ,U+

2 ,...,U−
n ,U+

n
(Y,X),

...
JσnKU+

1 ,U−
1 ,U+

2 ,U−
2 ,...,U+

n ,U−
n

(X,Y),

JσnKU−
1 ,U+

1 ,U−
2 ,U+

2 ,...,U−
n ,U+

n
(Y,X)

)
The morphism part is defined in the obvious way (by replacing Y and X with suitable
functions f− and f+).

Observe how the indices and the arguments for positive and negative occurrences are flipped
around on the left hand side of the exponent and in the arguments for the functor JCK.

The interpretation of a type τ containing n type variables can be extended (in the obvious
way) to a functor taking 2n + 2 arguments. Its morphism part is denoted with JτKg(f−, f+)
for a suitable list of functions g = g−1 , g

+
1 , . . . , g

−
n , g

+
n .

Under certain circumstances (occurring in conjunction with iterated specifications, see
Section 8) for some type constructor C only the object mapping of an interpretation functor
might be available (i.e., there is no morphism part for JCK). In this case the interpretation JτK
degrades to an indexed collection of mappings |Set| × |Set| // |Set| .

24

3.3. Semantics of Types

In even more obscure cases the interpretation JCK(· · ·U−
i , U

+
i · · ·) of a type constructor is

only defined if the respective arguments for positive and negative occurrences are equal, that
is if U−

i = U+
i for all i. In this case the interpretation JτK···U−

i ,U+
i ···

(Y,X) is only defined for

Y = X and U−
i = U+

i .
If Self occurs in τ with positive variance then the first argument is ignored for every

functor in the collection (JτK). In this case the interpretation functors factor through π2 :
Setop × Set //Set . Similarly the second argument is ignored if Self occurs in τ with negative
variance. Some of the indices U−/+

i are ignored if not all type variables occur with mixed
variance in τ .

Proposition 3.6 Let α1, . . . , αn ` τ : Type be a type as before. Let V and V ′ be arbitrary
sets.

• If Self occurs in τ with positive variance, then

JτKU−
1 ,...,U+

n
(V,X) = JτKU−

1 ,...,U+
n

(V ′, X)

• If Self occurs in τ with negative variance, we have

JτKU−
1 ,...,U+

n
(Y, V) = JτKU−

1 ,...,U+
n

(Y, V ′)

• Assume the type variable αi has positive variance in τ . Then

JτKU−
1 ,...,V,U+

i ,...,U+
n

(Y,X) = JτKU−
1 ,...,V ′,U+

i ,...,U+
n

(Y,X)

• And if αi has negative variance then

JτKU−
1 ,...,U−

i ,V,...,U+
n

(Y,X) = JτKU−
1 ,...,U−

i ,V ′,...,U+
n

(Y,X)

Proof By induction on the structure of types. �

For a type σ that does not contain Self every functor in the interpretation JσK is a con-
stant functor (i.e., the result does not depend on the arguments). Therefore I write for the
interpretation of such types JτKU−

1 ,...,U+
n

instead of JτKU−
1 ,...,U+

n
(Y,X). The indexing with the

interpretations for the type variables looks complicated but is in fact a rather simple idea.
After one got used to this concept the complicated notation distracts from the interesting
points. In following sections I will therefore sometimes drop these indexes and simply write
JτK for a fixed interpretation of the type variables and of Self.

25

3. Variance Checking

3.4. Separation of Variances

In this subsection I explain how the ccsl compiler deals with type variables with mixed
variance. It is possible to skip this subsection and return later, if questions about this issue
remain open.

Ideally the ccsl compiler should implement the semantics of types of Definition 3.5 literally.
It should do a variance analysis on the input and separate all type variables into their positive
and negative occurrences. However, there are the following problems with such a rigorous
approach: First, very often there is no type variable with mixed variance in a specification. For
this common case Proposition 3.6 shows that many of the indices (that interpret a particular
variance of a type variable) are superfluous. These superfluous items would probably confuse
the users of ccsl. Almost certainly pvs would get confused. The second problem is that it is
not possible to separate variances in the semantics of ccsl’s logic (described in Section 6).

For these reasons the ccsl compiler generally uses only one interpretation for any type
variable. If the type variable occurs only positively or only negatively it is otherwise correctly
handled according to Definition 3.5. For a type expression that contains a type variable αi with
mixed variance the morphism part of the semantics stays undefined. Further, for the object
part of the semantics the compiler assumes that the arguments for positive and negative
occurrences of αi are equal, that is that U+

i = U−
i . If a type variable with mixed variance

poses problems then the compiler issues a warning. For data type specifications and for class
specifications without assertions the user can easily separate himself the type variable with
mixed variance into a positive and a negative one.

The special type Self is always handled in a correct way (even if it occurs with mixed vari-
ance). This ensures that the ccsl compiler generates the correct notion of coalgebra morphism
for class signatures as long as for all type constructors the morphism part of their semantics
is defined.

Predicate and relation lifting (defined in Subsection 5.1 below) are treated differently. For
type variables that occur only positively or only negatively the compiler uses one parameter
predicate for predicate lifting. So for those type variables there is no separation. However, a
type variable that has mixed variance is separated into its positive and its negative positions.
For such a type variable the compiler introduces two predicates in the generated code. This
guarantees that the definitions for predicate lifting and invariant are correctly generated for
all class specifications. Relation lifting is treated analogously. Therefore the generated notions
of relation lifting and bisimulation are correctly generated as long as the greatest bisimulation
does exists.

3.5. Classification of Types

Types are classified according to the variance of Self. Via the interpretation of types there is a
correspondence with the classification of functors into polynomial, extended polynomial, and

26

3.5. Classification of Types

higher-order polynomial functors.

Definition 3.7 Let C be a set of type constructors with variance annotations and let τ be a
type over C.

1. τ is a constant type if VSelf(τ) = ?.

2. τ is a polynomial type if Self occurs only at strictly covariant positions in τ , that is if
VSelf(τ) = (?, u+) for u+ ≤ 0.

3. τ is an extended polynomial type if VSelf(τ) = (u−, u+) for u− ≤ 1 and u+ ≤ 0.

4. τ is a higher-order polynomial type, if it is not extended polynomial.

5. τ is a constructor type in case τ = σ ⇒ Self and σ is a polynomial type.

6. τ is a constant constructor type if τ = σ ⇒ Self is a constructor type and if additionally
σ is a constant type.

7. τ is a method type if τ = (Self × σ) ⇒ ρ.

8. A method type τ = (Self × σ) ⇒ ρ is a polynomial/extended-polynomial/higher-order
polynomial method type if σ ⇒ ρ is a polynomial/extended-polynomial/higher-order
polynomial type.

Note that via the isomorphism τ × 1 ∼= τ and the associativity of × also Self ⇒ ρ and
Self × σ1 × · · · × σn ⇒ ρ are method types for arbitrary σ, σ1, . . . , σn, ρ. Via the isomorphism
1 ⇒ τ ∼= τ the type Self is a constant constructor type.

With the formalisation of variances it is now possible to define the term binary method
precisely. A method of type Self×σ ⇒ ρ is called a binary method, if Self occurs with negative
variance in σ ⇒ ρ. Note that in this case Self × σ ⇒ ρ cannot be a polynomial method type.
However not every method of extended-polynomial or higher-order polynomial type is also a
binary method. For ccsl the classification of methods into binary and unary methods is not
really important. Here only the classification of Definition 3.7 is significant.

The use of the attributes polynomial, extended polynomial and higher-order to classify
types is justified by the following proposition.

Proposition 3.8 Assume that C contains only type constants and let α1, . . . , αn ` τ : Type
be an arbitrary type over C. Let F = JτKU−

1 ,...,U+
n

be the interpretation functor for fixed sets
U−

1 , . . . , U
+
n . The type τ is a

constant
polynomial
extended-polynomial
higher-order

 type precisely if F is a

constant
polynomial
extended-polynomial
higher-order

 functor.

27

4. Ground Signatures

Proof By induction on the structure of τ . �

The restriction in the preceding proposition that τ does not contain any nonconstant type
constructor is rather severe. The weak requirements for the interpretation of nonconstant type
constructors do not allow one to derive anything in general. For the ccsl compiler the situation
is slightly better: The compiler can keep track of type constructors that stem from a processed
class or data type specification. Types that contain such type constructors give rise to data
functors in the sense of [Hen99], but see also [HJ97, Röß99]. I discuss this issue in Section 8
on iterated specifications.

4. Ground Signatures

In this section I define (polymorphic) ground signatures. Ground signatures are used to declare
types, functions, and constants that are available in the specification environment. For instance
one usually expects that the natural numbers N with addition and multiplication are available.
In ccsl ground signatures also serve a second purpose: They make iterated specifications
(Section 8) possible.

The logic that I define in Section 6 places a few restriction on ground signatures and
their models. For the semantics of behavioural equality and of modal operators every type
constructor (of arity greater than zero) in the ground signature must be equipped with two
special constants: predicate and relation lifting. This requirement is captured with the notion
of proper ground signatures.

Definition 4.1 (Ground Signature)

• A ground signature Ω consists of

– a set |Ω| of type constructors with variance annotations,

– an indexed set (Ωσ) of constant symbols for each constant type σ over |Ω|. A
constant symbol f ∈ Ωσ is given as a (term) judgement Ξ | ∅ ` f : σ where σ is a
constant type such that Ξ ` σ : Type is derivable.

• A ground signature is called plain if the set |Ω| contains only type constants (i.e., type
constructors of arity zero).

• A ground signature is called proper if the set of constant symbols contains at least the
following two symbols for every type constructor C ∈ |Ω| of arity k

α1, . . . , αk | ∅ ` PredC : (α1 ⇒ Prop) ⇒ (α1 ⇒ Prop) ⇒
(α2 ⇒ Prop) ⇒ (α2 ⇒ Prop) ⇒ · · · ⇒

(αk ⇒ Prop) ⇒ (αk ⇒ Prop) ⇒ C[α1, . . . , αk] ⇒ Prop

28

α1, . . . , αk, β1, . . . βk | ∅ ` RelC : (α1 × β1 ⇒ Prop) ⇒ (α1 × β1 ⇒ Prop) ⇒
(α2 × β2 ⇒ Prop) ⇒ (α2 × β2 ⇒ Prop) ⇒ · · · ⇒ (αk × βk ⇒ Prop) ⇒

(αk × βk ⇒ Prop) ⇒ C[α1, . . . , αk]× C[β1, . . . , βk] ⇒ Prop

The constant PredC is the predicate lifting of C and RelC is its relation lifting. Note that
both take 2k arguments. This is necessary to separate co– and contravariant occurrences.

Example 4.2 The ccsl compiler starts with an empty ground signature. Before the user file
is read the ccsl prelude is processed (see also Subsection 10.8). This prelude is a valid ccsl
string, which is hard wired into the compiler. So the user file is opened with a (proper) ground
signature ΩP that contains the declarations from the prelude.

The signature ΩP contains the following type constructors4

` list : [(?, 0)]
` Lift : [(?, 0)]

` Coproduct : [(?, 0); (?, 0)]
` Unit : []

` EmptyType : []

The intended semantics (which is ensured by the ccsl compiler in cooperation with the target
theorem prover) is that list constructs the finite lists over a given type, Lift[α] is an abbreviation
for α + 1 and Coproduct[α, β] = α + β. The type constructors Unit and EmptyType give the
two special types 1 and 0, respectively. The type constructor Lift is used in ccsl to model
partial functions. The coproduct is in the prelude because there is no special syntax for the
coproduct of types in ccsl.

Besides the predicate and relation lifting of the three type constructors the ground signature
ΩP contains the following constants:5

α : Type | ∅ ` null : list[α]
α : Type | ∅ ` cons : α× list[α] ⇒ list[α]
α : Type | ∅ ` null? : list[α] ⇒ Prop

α : Type | ∅ ` cons? : list[α] ⇒ Prop

α : Type | ∅ ` bot : Lift[α]
α : Type | ∅ ` up : α⇒ Lift[α]

4The type constructor EmptyType is not defined for the isabelle back end.
5In pvs identifiers can contain question marks. The same applies to ccsl. When generating output for isabelle

the names for the recognisers are is null, is cons, and so on. Further for isabelle the native isabelle
constructor names Nil and Cons are used for lists.

29

4. Ground Signatures

α : Type | ∅ ` bot? : Lift[α] ⇒ Prop

α : Type | ∅ ` up? : Lift[α] ⇒ Prop

α : Type, β : Type | ∅ ` in1 : α⇒ Coproduct[α, β]
α : Type, β : Type | ∅ ` in2 : β ⇒ Coproduct[α, β]
α : Type, β : Type | ∅ ` in1? : Coproduct[α, β] ⇒ Prop

α : Type, β : Type | ∅ ` in2? : Coproduct[α, β] ⇒ Prop

∅ | ∅ ` unit : Unit

α : Type | ∅ ` empty fun : EmptyType ⇒ α

The constants null, cons, unit, up, in1, in2, and unit are the expected constructors and injections.
The other constants are recogniser predicates. The predicate cons?, for instance, is true for a
list l if l = cons(a, l′) for some a and l′. Similarly for the other recognisers.

In applications it is nice to have also accessor functions, like car : List[α] /α , which
delivers the head for nonempty lists. Accessors are usually partial functions (depicted as partial
arrow /). The type theory that I developed here deals (for simplicity) only with total
functions. So formally car cannot be incorporated as a constant of type List[α] ⇒ α without
leading to inconsistencies. However, the ccsl compiler is a bit more relaxed and declares also
the following accessors:

α : Type | ∅ ` car : list[α] ⇒ α

α : Type | ∅ ` cdr : list[α] ⇒ list[α]

α : Type | ∅ ` down : Lift[α] ⇒ α

α : Type, β : Type | ∅ ` out1 : Coproduct[α, β] ⇒ α

α : Type, β : Type | ∅ ` out2 : Coproduct[α, β] ⇒ β

The ccsl type checker treats accessors (erroneously) as total functions. There are no con-
sistency problems for the following reasons: pvs has a type theory with predicate subtypes.
There the accessor car is a total function, which has the subtype of nonempty lists as do-
main. The ccsl compiler uses this correctly typed function as semantics of car. The theorem
prover isabelle/hol has no predicate subtypes but its semantics is based in the hol tradi-
tion [GM93] on an universe of nonempty sets. Consequently isabelle/hol does not allow for
empty types and there is the special constant arbitrary that inhabits every type.6 If the ccsl
compiler generates output for isabelle/hol then as semantics for car it takes a function that
returns arbitrary for the empty list. �

6The constant arbitrary is neither in [NPW02a] nor in [NPW02b] described. See the file src/HOL/HOL.thy in
the isabelle distribution.

30

A model of the ground signature contains functors, (polymorphic) functions and constants
that can be used to interpret the syntactic symbols in the ground signature. For proper models
of proper ground signatures I require two basic properties for the interpretation of predicate
and relation lifting. Namely that predicate lifting commutes with truth and that relation lifting
commutes with equality.

Definition 4.3 (Model of Ground Signature)

• Let Ω be a ground signature. A model of it consists of

– the object part of an interpretation functor JCK for every type constructor C ∈ |Ω|,
– an indexed family of functions or constants

JfKU1,U2,...Un : JσKU1,U1,U2,U2,...,Un,Un

for every constant symbol α1, . . . , αn | ∅ ` f : σ in Ω.

• A model of a proper ground signature is called proper if all the interpretations JCK are
functors and if additionally the following condition is satisfied: For all type constructors
C ∈ |Ω| of arity k it holds that

JPredCKU1,...,Uk(>U1 ,>U1 , . . . ,>Uk ,>Uk) = >JCK(U1,U1,...,Uk,Uk)

JRelCKU1,...,Uk,U1,...,Uk(Eq(U1),Eq(U1), . . . ,Eq(Uk),Eq(Uk)) =
Eq(JCK(U1, U1, . . . , Uk, Uk))

The two conditions on proper models of ground signatures ensure that also in the presence
of type constructors predicate lifting commutes with truth and relation lifting with equality
(see Lemma 5.9 on page 41 below). In turn this implies that truth is an invariant and equality
is a bisimulation (see Proposition 5.11 on page 42). On type constants K these two conditions
have the following effect: PredK = >JKK and RelK = Eq(JKK). This matches the treatment of
constants in predicate and relation lifting for higher-order polynomial functors.

Example 4.4 The model for ΩP maps list to the functor that yields the initial algebra for
the functor FU

list(X) = X × U + 1 for every argument U . For Lift, Coproduct, Unit, EmptyType
and the constant symbols it takes the obvious constructions. The predicate and relation lifting
for Coproduct is given by +P and +R, respectively. Also the liftings for Lift are obvious: It
is PredLift(P) = P +P>1 and RelLift(R) = R+R Eq(1). The liftings for list are defined by
induction and follow the general description in Section 8 below (I ignore the contravariant
arguments):

JPredlistK(P)(null) = >
JPredlistK(P)(cons(a, l)) = P (a) ∧ JPredlistK(P)(l)

31

4. Ground Signatures

JRellistK(R)(null, null) = >
JRellistK(R)(cons(a, l), null) = ⊥
JRellistK(R)(null, cons(a, l)) = ⊥

JRellistK(R)(cons(a, l), cons(a′, l′)) = R(a, a′) ∧ JRellistK(R)(l, l′) �

The ground signature describes types and operations that are available in the environment.
So usually a model for it is provided (automatically) by the environment. The ccsl compiler
for instance assumes that all symbols in the ground signature are defined in the target theorem
prover. Therefore it treats symbols from the ground signature literally: their semantics is the
same symbol again. In the following sections I assume a proper ground signature Ω and a
proper model MΩ of it. Types that appear will be types over |Ω| and their interpretation will
be the interpretation with respect to MΩ.

4.1. Ground Signatures in CCSL

Ground signatures in ccsl are actually ground signature extensions. As explained before the
ccsl compiler keeps a current ground signature while parsing the source file. A ground signa-
ture declaration extends this current ground signature with type constructors and constants.
These items must be defined either in the ground signature itself or in the target theorem
prover. The concrete grammar is as follows.

groundsignature ::= BEGIN identifier [parameterlist] : GROUNDSIGNATURE
{| importing |} {| signaturesection |}
END identifier

parameterlist ::= [parameters {| , parameters |}]

parameters ::= identifier {| , identifier |} : [variance] TYPE

A Ground signature (extension) starts with the keyword BEGIN, followed by the name of the
ground signature, an optional (global) type parameter list and the keyword GROUNDSIGNATURE.
The type parameters build a type variable context for all declarations in the ground signature.
In ccsl it is necessary to declare type variables as type parameters because there is no special
syntax to distinguish type variables from other identifiers.

Any type parameter can get a variance annotation. The variance annotation is compulsory
for all type parameters if the ground signature declares a type constructor without giving its
definition.

Importing clauses are explained in Subsection 10.4. For ground signatures they are neces-
sary, if the items that are declared in the ground signature require extra theories to be loaded
in the target theorem prover.

The body of a ground signature contains an arbitrary number of sections, declaring or

32

4.1. Ground Signatures in CCSL

defining type constructors and (possibly) polymorphic constants or functions.

signaturesection ::= typedef
| signaturesymbolsection [;]

typedef ::= TYPE identifier [parameterlist] [= type]

signaturesymbolsection ::= CONSTANT termdef {| ; termdef |}

termdef ::= idorinfix [parameterlist] : type [formula]

idorinfix ::= (infix operator)
| identifier

Each item in a ground signature can declare additional (local) type parameters in a separate
parameter list. The type variable context of an item is given by the concatenation of the
global parameter list with the local parameter list of that item. The local type parameters
are syntactic sugar. They are convenient if only a few items in one ground signature require
additional type parameters.

Type constructors are introduced with the keyword TYPE. The arity of the new type con-
structor is defined as the number of the declared (global and local) type parameters. If the
optional type expression is present, then the type constructor is defined in ccsl. In this case
the ccsl compiler derives the variances annotations, the predicate and relation lifting, and
the morphism component of (the semantics of) the type constructor.

If the type constructor is not defined (the optional type expression is left out) then all type
parameter must have variance annotations to allow the compiler to derive the variance of the
type constructor. For such declarations the compiler assumes that the type constructor and
its liftings are defined in the target theorem prover as functions of an appropriate type. These
functions are assumed to fulfil the conditions for proper models of ground signatures. Their
names are derived from the name of the type constructor by appending the suffixes “Pred”,
“Rel”, and “Map”.

Constants and functions are introduced with the keyword CONSTANT. One can also declare
infix operators, see Subsection 10.5 (on page 106) for the details. The constants can be defined
in ccsl by providing a definition in higher-order logic in the syntax formulae (see Subsec-
tion 6.4). If a formula is present, then it must be an equation and the left hand side of the
equation must be the constant to be defined, possibly applied to some variables.

Figure 4 contains as example a rudimentary ground signature extension for the (contravari-
ant) powerset type constructor. In addition to the type constructor it declares a constant for
the empty set, a function for intersection, the infix operator + for union, and the operator ∗
for the cartesian product. For demonstration purposes I defined some of the constants.

There is also a more lightweight syntax for declaring single types and constants, see Sub-
section 10.7 on anonymous ground signatures (on page 108 below).

33

5. Coalgebraic Class Signatures

Begin SetSig [U : Neg Type] : GroundSignature
Type set = [U −> bool]
Constant

empty : set[U]
empty = Lambda(t : U) : false;

intersect : [set[U], set[U] −> set[U]];
(+) : [set[U], set[U] −> set[U]];

(*) [V : Type] : [set[U], set[V] −> set[[U,V]]]
(S * R)(u,v) = (S u And R v);

End SetSig

Figure 4: A rudimentary ground signature extension for power sets

5. Coalgebraic Class Signatures

This section introduces the structural aspects of coalgebraic specification: signatures and sig-
nature models. The following definitions follow very closely what is implemented in the ccsl
compiler. The definitions are optimised for practicability — and not for succinctness. Recall
from Definition 3.7 that method types are types of the form Self × τ ⇒ τ ′ and constant
constructor types have the form σ ⇒ Self, where Self must not occur in σ.

Definition 5.1 (Coalgebraic Class Signature) Assume a set of type constructors C (pos-
sibly stemming from a ground signature). A coalgebraic class signature is a pair 〈ΣM ,ΣC〉
where ΣM is a finite set of method declarations mi : τi, for method types τi, and ΣC is a
finite set of constructor declarations ci : σi for constant constructor types σi. The set of type
variables occurring in the τi and the σi are the type parameters of the signature.

Example 5.2 (Queue Signature) Consider a first–in–first–out (FIFO) queue. It supports
two operations, one for enqueueing elements (put) and one for removing elements from the
head (top). Removing the first element from a queue is a partial operation, which fails if the
queue is empty. Therefore the signature ΣQueue contains the following method two declarations

put : Self × α // Self

top : Self // Lift[α× Self]

Additionally, there is the constructor declaration

new : Self

34

For any element x of Self we have either top(x) = bot (signalling an empty queue) or top(x) =
up(a, x′), where a is the first element of the queue and x′ is the successor state of x with a
removed. Instead of the simple constructor new, one could also use a constructor new from list :
list[α] → Self that takes the elements of a list to initialise the queue.

This example of queues is the running example of this and the following section. The
example has been fully worked out in ccsl and pvs.7 �

In the following I need the term of a subsignature. Subsignatures will be used for inher-
itance, for the visibility modifiers PUBLIC and PRIVATE, and for the modal operators. The
following definition might be a bit surprising on first sight, because it completely neglects
constructor declarations. I motivate this decision in the general discussion about inheritance
in Subsection 9.1 (on page 95) below.

Definition 5.3 (Subsignature) Assume a ground signature Ω and let Σ = 〈ΣM ,ΣC〉 be a
coalgebraic class signature. A class signature Σ′ = 〈Σ′

M ,Σ
′
C〉 is a subsignature of Σ, denoted

by Σ′ ≤ Σ, if Σ′
M ⊆ ΣM .

Coalgebraic class signatures are classified according to the method types they contain. If
a signature contains a higher-order (respectively extended polynomial) method type, then I
refer to it as a signature with a higher-order method (with an extended polynomial method,
respectively).

To define the semantics of class signatures it is necessary to extract type information from
the signature. Assume a coalgebraic class signature Σ in the following. Let m : τ ∈ ΣM be a
method declaration, so that τ is a method type. Define the operation TM as follows

TM (m) =
{
ρ if τ = Self ⇒ ρ
(σ1 × · · · × σn) ⇒ ρ if τ = (Self × σ1 × · · · × σn) ⇒ ρ

And if c : τ ∈ ΣC is a constructor declaration (for a constructor type τ) set

TC(c) =
{
σ if τ = σ ⇒ Self
1 if τ = Self

Let m1, . . . ,mk be the method declarations of Σ. The combined method type of Σ, denoted
by τΣ, is defined as

τΣ = TM (m1)× · · · × TM (mk)

If ΣM is empty then τΣ = 1. The combined constructor type for Σ, denoted by σΣ, is defined
by

σΣ = TC(c1) + · · ·+ TC(cl)
7The complete sources are available in the material distributed with my PhD, seehttp://wwwtcs.inf.tu-

dresden.de/ tews/PhD/.

35

5. Coalgebraic Class Signatures

under the assumption, that ΣC = {c1, . . . , cl}. If ΣC is empty then σΣ = 0.
Note that σΣ is always a constant type. For τΣ we have that

τΣ is a

polynomial
extended-polynomial
higher-order

 type if Σ contains

only polynomial methods
no higher-order methods
a higher-order method.

Only practical considerations are responsible for allowing several method and constructor
declarations in one class signature. Any class signature Σ is equivalent to a signature Σ′ that
contains exactly one method declaration of type Self ⇒ τΣ and one constructor declaration of
type σΣ ⇒ Self. So one could equivalently define the term coalgebraic class signature as a pair
〈τ, σ〉 of an arbitrary type τ and a constant type σ. However, in applications it is nice to have
different names for different operations.

From Proposition 3.8 we can deduce that JτΣK is a polynomial functor if Σ contains only
polynomial method declarations and the set of type constructors C contains only type con-
stants. Similarly for extended polynomial functors and higher-order polynomial functors.

However, it is much more interesting to build class signatures which use type constructors
of arity greater than zero in their method declarations, like in the example of queues. Let C be
such a type constructor and let Σ be a coalgebraic class signature that makes use of C. In this
case the functor JτΣK depends in a nontrivial way on the semantics JCK of the type constructor
C (which comes along with a model of the ground signature). Because there is no restriction
on JCK one cannot say much about the properties of JτΣK. In a typical application of ccsl all
(nonconstant) type constructors stem from abstract data type specifications (to be dealt with
in Section 7) and from coalgebraic class specifications. In this case JτΣK is a data functor in the
sense of [Hen99, Röß00b], provided a technical condition on the variances of type parameters
is fulfilled; see Section 8.

For a fixed interpretation of the type parameters a model of a coalgebraic class signature
Σ is a triple consisting of the state space of the model, a coalgebra for the functor JτΣK that
interprets the method declarations, and an algebra for the functor JσΣK that is used for the
constructor declarations. A complete model is then a collection of such triples indexed by the
interpretations for the type parameters.

Definition 5.4 (Model of Class Signature) Let Σ be a coalgebraic class signature with
n type parameters α1, . . . , αn. A model for Σ consists of an indexed collection of triples(
〈X, c, a〉U1,...,Un

)
Ui∈|Set| where, for each interpretation U1, . . . , Un of the type parameters, X

is a set (the state space), c is a coalgebra, and a is an algebra as in

JσΣKU1,U1,U2,U2,...,Un,Un

a // X
c // JτΣKU1,U1,U2,U2,...,Un,Un(X,X)

Remark 5.5 The preceding definition does not distinguish between co– and contravariant
occurrences of the type variables and of Self. Therefore, a proper model MΩ of the ground

36

signature is not strictly necessary here. It is sufficient if MΩ defines JCK for those argument
vectors whose respective co– and contravariant positions are equal.

In case MΩ is proper one can form the following category of signature models for every
interpretation U1, . . . , Un of the type parameters: Objects are triples 〈X, c, a〉 and 〈Y, d, b〉.
Morphisms are JτΣK coalgebra morphism that commute with the constructors:

X
c //

f

��

JτΣK(X,X)
JτΣK(X,f)

))TTTTTTTTTTTTTTT

JσΣK

a

77ppppppppppppp

b

''NNNNNNNNNNNNNN JτΣK(X,Y)

Y
d // JτΣK(Y, Y)

JτΣK(f,Y)

55jjjjjjjjjjjjjjj

Instead of the left triangle one could require that the constructor algebras are behaviourally
equivalent, that is, that8 ∀u ∈ JσΣK . (a u) c

↔
d (b u).

Example 5.6 (Model for Queue) The signature ΣQueue from Example 5.2 has one type
parameter α. A model for this signature consists of a set XU for every set U , a coalgebra
cU : XU

//(U ⇒ XU)× Lift[U ×XU] and an algebra aU : 1 //XU . To describe such a model
let N+ be the natural numbers including infinity ∞ and take

XU = {(n, f) | n ∈ N+ ∧ f : <n //U }

where <n = {i | i < n} is the initial segment of N+ below n.9 So a state in XU is a pair
〈n, f〉, consisting of the number n of elements in the queue and a function f that gives the
elements in the queue for arguments less than n. I set

c(n, f) =

(
λu : U . (1, λi . u), bot

)
if n = 0(

λu : U . (n, f), up(f(0), (∞, λi . f(i+ 1)))
)

if n = ∞(
λu : U . (n+ 1, λi . if i = n then u else f(i)),
up(f(0), (n− 1, λn . f(n+ 1)))

) otherwise

new = (0, f∅)

where f∅ is the empty function ∅ //U . It is easy to see, that the coalgebra c obeys the
dependent typing of XU .10 Note that at this stage there is nothing that restricts the behaviour
of these methods: There exist models of the Queue signature that contain only infinite queues
and there are also models that do not resemble FIFO queues at all. �

8By anticipating Definition 5.7 this condition is equivalent with Rel(JσΣ ⇒ SelfK)(c
↔

d)(a, b).
9Note that one cannot use N+ × (N⇒ U) for XU , because then it is impossible to define new for U = ∅.

10The corresponding proofs have all been done in pvs. This was a quite difficult task for pvs, it revealed six
bugs, see problem reports number 483–486 on http://pvs.csl.sri.com/cgi-bin/pvs/pvs-bug-list/.

37

5. Coalgebraic Class Signatures

There exist class signatures which do not have a model. This is because I explicitly allow
the empty set as interpretation for type parameters. An example is a class signature Σ∅ with
one method declaration m : Self ⇒ α and one constructor declaration c : 1 ⇒ Self. There is
no set X with two functions 1 //X //∅ , so there is no model of Σ∅ if the type parameter α
is interpreted by the empty set. With slight changes the signature Σ∅ can be made consistent:
either the method declaration is changed to m : Self ⇒ (α+ 1) or the constructor declaration
is changed to c : α⇒ Self.

There are mainly two possibilities to ensure that every signature has a model. First one
could restrict the interpretation of the type parameters to nonempty sets. This restriction
takes effect if one uses ccsl together with isabelle/hol, because there are no empty types in
isabelle. A second possibility is to require that all constructors are parametrised by a tuple
of all type parameters. This requirement could be combined with an emptiness analysis of the
method types.

In the last part of this subsection I explain how a model of a class signature Σ gives rise
to an interpretation of the method declarations of Σ and all its subsignatures.

Let M = 〈X, c, a〉 be a model of an arbitrary class signature Σ for a fixed interpretation
of its type parameters. For every method declaration m : τ there is a projection

πm : JτΣK(X,X) = J· · · × TM (m)× · · ·K(X,X) // JTM (m)K (X,X)

which extends to a natural transformation τm : JτΣK +3JTM (m)K . Similarly for every construc-
tor declaration e : τ there is an injection

κe : JTC(e)K // J· · ·+ TC(e) + · · ·K = JσΣK

extending to a natural transformation κe : JTC(e)K +3JσΣK .
Via these projections and injections the model M gives rise to an interpretation of the

method and constructor declarations. Let m : Self×σ1×· · ·×σn ⇒ ρ be a method declaration
in ΣM and e : σ ⇒ Self be a constructor declaration in ΣC . Then

JmKM = λx : X, p1 : Jσ1K, . . . , pn : JσnK . (πm(c x))(p1, . . . , pn)

JeKM = a ◦ κe

Assume now a subsignature Σ′ of Σ and let Σ′
M = {m1, . . . ,mn}. The natural transformation

〈πm1 , . . . , πmn〉 : JτΣK +3 JτΣ′K

defined by component wise pairing is called the subsignature projection and denoted by πΣ′

(where Σ is left implicit). It is easy to show that πΣ′ gives rise to a functor that maps JτΣK
coalgebras to JτΣ′K coalgebras. Its object part is given by post composition; for any coalgebra
c : X //JτΣK there is the following coalgebra for Σ′

πΣ′ ◦ c = 〈πm1 , . . . , πmn〉 ◦ c : X // JτΣ′K

38

5.1. Invariants and Bisimulations

This way a model M for Σ provides an interpretation for the method declarations of all
subsignatures of Σ.

5.1. Invariants and Bisimulations

This subsection defines the notions of invariant and bisimulation for ccsl class signatures. The
definitions rely on predicate and relation lifting, see [HJ98] and Chapter 3 of [Tew02b]. For
ccsl it is necessary to extend predicate and relation lifting for type variables and nonconstant
type constructors. Let me explain how this works for predicate lifting. Let τ be a type with type
variables α1, . . . , αn. Fix an interpretation U1, . . . , Un such that Ui is used for the positive and
the negative occurrences of αi in τ . For each type variable the predicate lifting Pred(JτK) gets
two additional parameter predicates P−

i , P
+
i ⊆ Ui. These predicates are used for the negative

and positive occurrences of αi in τ , respectively.11 For the type constructors that occur in τ
one simply uses the predicate lifting that is supplied by the model of the ground signature.

Definition 5.7 (Predicate and Relation Lifting) Let α1, . . . , αn ` τ : Type be a type
over an arbitrary proper ground signature Ω. Fix a model M of Ω, an interpretation U1, . . . , Un

for the type variables, and an interpretation X for Self.

1. The predicate lifting of the interpretation of τ (with respect toM), denoted by Pred(JτK),
is an operation that takes 2n+ 2 predicates as arguments (two predicates for each type
variable and two for Self) and yields a predicate on JτKU1,U1,...,Un,Un(X,X). Let P =
P−

1 , P
+
1 , . . . , P

−
n+1, P

+
n+1 be a tuple of predicates such that P−

i , P
+
i ⊆ Ui for i ≤ n and

P−
n+1, P

+
n+1 ⊆ X. Let P− = P+

1 , P
−
1 , . . . , P

+
i , P

−
i , . . . , P

+
n+1, P

−
n+1 denote the tuple in

which the predicates are pairwise swapped (to exchange the predicates for positive and
negative occurrences). The predicate lifting Pred(JτK) is an extension of the predicate
lifting for higher-order polynomial functors and is defined by induction on the structure
of the interpretation functor JτK.

Pred(JαiK)(P) = P+
i

Pred(JSelfK)(P) = P+
n+1

Pred(JPropK)(P) = >bool = {>,⊥}
Pred(J1K)(P) = >1 = {∗}
Pred(J0K)(P) = >0 = ∅

11One could generalise predicate lifting (and also relation lifting) to take argument predicates P−
i ⊆ U−

i ,
P+

i ⊆ U+
i , where U−

i interprets the negative occurrences of αi and U+
i the positive ones. However, predicate

lifting is only used within one model where U−
i = U+

i .

39

5. Coalgebraic Class Signatures

Pred(Jσ + τK)(P) = Pred(JσK)(P) +P Pred(JτK)(P)

=
{
(κ1 x) | Pred(JσK)(P)(x)} ∪

{(κ2 y) | Pred(JτK)(P)(y)
}

Pred(Jσ × τK)(P) = Pred(JσK)(P) ×P Pred(JτK)(P)

=
{
(x, y) | Pred(JσK)(P)(x) ∧ Pred(JτK)(P)(y)

}
Pred(Jσ ⇒ τK)(P) = Pred(JσK)(P−) ⇒P Pred(JτK)(P)

=
{
f | ∀x ∈ JσK . Pred(JσK)(P−)(x)

implies Pred(JτK)(P)(f x)
}

Pred(JC[σ1, . . . , σk]K)(P) = JPredCKA1,...,An

(
Pred(Jσ1K)(P−), Pred(Jσ1K)(P),

...

Pred(JσkK)(P−), Pred(JσkK)(P)
)

where, in the case for the constructor, Ai = JσiKU (X,X).

2. Fix now a second interpretation V1, . . . , Vn, Y for the type variables αi and for Self and let
JτKV and JτKU denote the interpretation of τ with respect to the Vi and Ui, respectively.
Let R = R−

1 , R
+
1 , . . . , R

−
n+1, R

+
n+1 be a tuple of relations such that R−

i , R
+
i ⊆ Ui×Vi and

R−
n+1, R

+
n+1 ⊆ X × Y . The relation lifting of τ (with respect to the ground signature

model M), denoted by Rel(JτK), is an operation that maps the tuple R to a relation on
JτKU (X,X)× JτKV (Y, Y). It is defined as an extension of the relation lifting for higher-
order polynomial functors by induction on the structure of the interpretation of τ :

Rel(JαiK)(R) = R+
i

Rel(JSelfK)(R) = R+
n+1

Rel(JPropK)(R) = Eq(bool) = {(a, b) | a = b}
Rel(J1K)(R) = Eq(1) = {(∗, ∗)}
Rel(J0K)(R) = Eq(0) = ∅

Rel(Jσ + τK)(R) = Rel(JσK)(R) +R Rel(JτK)(R)

=
{
(κ1 x1, κ1 y1) | Rel(JσK)(R)(x1, y1)

}
∪{

(κ2 x2, κ2 y2) | Rel(JτK)(R)(x2, y2)
}

Rel(Jσ × τK)(R) = Rel(JσK)(R) ×R Rel(JτK)(R)
=

{
((x1, x2), (y1, y2)) |
Rel(JσK)(R)(x1, y1) ∧ Rel(JτK)(R)(x2, y2)

}

40

5.1. Invariants and Bisimulations

Rel(Jσ ⇒ τK)(R) = Rel(JσK)(R−) ⇒R Rel(JτK)(R)
=

{
(g, h) | ∀x ∈ JσKU (X,X), y ∈ JσKV (Y, Y) .

Rel(JσK)(R−)(x, y) implies Rel(JτK)(R)(g x, h y)
}

Rel(JC[σ1, . . . , σk]K)(R) = JRelCKA,B

(
Rel(Jσ1K)(R−), Rel(Jσ1K)(R),

...

Rel(JσkK)(R−), Rel(JσkK)(R)
)

where, in the case for the constructor, A stands for the list JσiKU (X,X) and B for
JσiKV (Y, Y).

Remark 5.8 The liftings of the preceding definition are sometimes referred to as full liftings
in contrast to the lifting described in [HJ98] and Chapter 3 of [Tew02b] that neglect type
variables. The structure for type variables is not needed for the definition of bisimulation and
invariant in this subsection, but it will be needed to give semantics to iterated specifications
in Section 8.

In this presentation I prefer to consider predicate and relation lifting (and also bisimulations
and invariants) completely as semantic notions. One could equivalently define predicate and
relation lifting for types as expressions in the logic of ccsl.

The requirement of a proper ground signature in the preceding definition cannot be dropped.
If for one type constructor C from Ω its predicate lifting PredC (respectively its relation lift-
ing RelC) is not available, then predicate lifting (relation lifting) for types over Ω cannot be
defined.

It is possible to adopt the results about predicate and relation lifting of [Tew02b] to the
full liftings of the preceding definition. For most of the results one has to assume that the
liftings of the involved type constructors have appropriate properties. For the commutation of
the liftings with truth and equality the required properties are built-in into the notion of a
proper model of a ground signature.

Lemma 5.9 Let M be a proper model of a proper ground signature Ω. Then predicate lifting
and relation lifting (with respect to M) commute with truth and equality, respectively:

Pred(JτK)(>U1 ,>U1 , . . . ,>n,>n,>X ,>X) = >JτK

Rel(JτK)(Eq(U1),Eq(U1), . . . ,Eq(Un),Eq(Un),Eq(X),Eq(X)) = Eq(JτK)

where τ is an arbitrary type over Ω with n type variables and U1, . . . , Un, X is a (fixed) inter-
pretation of the type variables and of Self.

Proof By induction on the structure of τ . �

41

5. Coalgebraic Class Signatures

The notions of bisimulation and invariant are defined using predicate and relation lift-
ing. Bisimulations in ccsl are a generalisation of Hermida/Jacobs bisimulations from Defini-
tion 3.3.3 in [Tew02b]. However, the invariants in ccsl are the strong invariants from Subsec-
tion 3.4.6 of [Tew02b].

Technically a bisimulation should relate two models, so a bisimulation should be a family
of relations indexed by the interpretation of the type parameters. This generality is rarely
needed: When working with bisimulations one is usually in a context where the interpretation
of the type parameters is fixed. Therefore I prefer to define the notions of bisimulation and
invariant only for a fixed interpretation of the type parameters.

Definition 5.10 (Bisimulation & Invariant) Let Σ be a coalgebraic signature with n type
parameters over a proper ground signature Ω. Assume that M = 〈X, c, a〉 and M′ = 〈Y, d, b〉
are models of Σ for a fixed interpretation Ui of the type parameters.

1. A predicate P ⊆ X is an invariant for M if for all x ∈ X

P (x) implies Pred(JτΣK)(>U1 ,>U1 ,>U2 ,>U2 , . . . ,>X , P)(c(x))

2. A predicate P ⊆ X holds initially in M if

Pred(JσΣ ⇒ XK)(>U1 ,>U1 ,>U2 ,>U2 , . . . ,>X , P)(a)

3. A relation R ⊆ X × Y is a bisimulation for M and M′ if for all x ∈ X, y ∈ Y

R(x, y) implies
Rel(JτΣK)(Eq(U1),Eq(U1),Eq(U2),Eq(U2), . . . , R,R)(c(x), d(y))

Note that the notions of bisimulation and invariant are only defined for proper ground
signatures. The union of all bisimulations on one model M for a fixed interpretation of the
type parameters is denoted by ↔M. The fact whether the relation ↔M is again a bisimulation
depends both on the class signature Σ and on the model of the ground signature Ω. If, for
instance, the class signature contains only polynomial methods and the ground signature is
plain, then bisimilarity ↔M is a bisimulation for all proper models of Ω. I discuss the case of
a non-plain ground signature in Section 8.

For proper models of proper ground signatures it is possible to infer some trivial properties
for bisimulations and invariants.

Proposition 5.11 Let MΩ be a proper model of a proper ground signature Ω. Then for any
model MΣ = 〈X, c, a〉 of an arbitrary coalgebraic signature Σ the truth predicate >X is an
invariant for MΣ and the equality relation Eq(X) is a bisimulation for MΣ.

Proof Apply Lemma 5.9. �

42

5.2. Class Signatures in CCSL

Begin Queue[A : Type] : ClassSpec
Method

put : [Self, A] −> Self;
top : Self −> Lift[[A, Self]];

Constructor
new : Self;

End Queue

Figure 5: The queue signature in ccsl syntax

5.2. Class Signatures in CCSL

In ccsl class signatures are part of class specifications. The main difference to Definition 5.1
is, that in ccsl type parameters must be declared in advance. An identifier which is neither
in the ground signature nor declared as a type parameter yields an error. Figure 5 shows the
signature of the queues from Example 5.2 in ccsl. The grammar for class specifications is as
follows:

classspec ::= BEGIN identifier [parameterlist] : [FINAL] CLASSSPEC
{| importing |} {| classsection |}
END identifier

classsection ::= inheritsection
| [visibility] attributesection [;]
| [visibility] methodsection [;]
| definitionsection
| classconstructorsection [;]
| assertionsection
| creationsection
| theoremsection
| requestsection [;]

visibility ::= PUBLIC
| PRIVATE

Every specification in ccsl starts with the keyword BEGIN followed by the name of the
specification and the type parameters in brackets. Variance annotations for type parameters
are treated like type constraints. If they are present the compiler compares them with the
internally computed variances. The compiler reports an error if the variance annotations are

43

5. Coalgebraic Class Signatures

too restrictive (i.e., giving a POS annotation for a type parameter that has mixed variance).
To facilitate aggregation the ccsl compiler generates an axiomatic model for every class
specification. The model is either the final one, or an arbitrarily chosen loose one, depending
on whether the keyword FINAL is present.

A class specification can start with importing clauses (see Subsection 10.4 on page 106
below). Importing clauses in class specifications are only needed under special circumstances.

The body of a specification consists of a number of sections. The attribute section, the
method section, and the section of class constructors constitute the class signature. The def-
inition section defines definitional extensions. For the inherit section see Subsection 9.1. The
assertion section, the creation section, and the theorem section are explained in Section 6. The
assertion section and the creation section contain the axioms of the specification. The theorem
section has no influence on the semantics of the specification. It allows the user to exploit the
ccsl compiler for translating formulae (which are hopefully provable theorems) into the logic
of the target theorem prover. Finally, the request section is there to request the generation of
relation liftings for particular types, see Subsection 10.3.

The attribute section provides a form of syntactic sugar to ease the modelling of the state
of the objects as a record. Formally an attribute declaration is a method declaration with the
additional requirement that the type is of the form Self × σ ⇒ τ where σ and τ are constant
types. For every attribute declaration a : Self×σ ⇒ τ the compiler adds a method declaration
set a : Self × σ× τ ⇒ Self to the signature. The intention is that set a is the update operation
that can be used to change the value of the attribute a. Further, the ccsl compiler generates
a number of assertions that describe the behaviour of the update method, see Section 6.4.

The modifiers PUBLIC and PRIVATE classify the methods and attributes into two disjoint
sets. If no modifier is present then the methods or attributes are PUBLIC by default. The in-
tention is that private methods should not be visible from outside of the class. However, to
enforce this one would need existential types (compare [MP88, AC96]), which are not present
in the theorem provers pvs and isabelle. The ccsl compiler uses the public/private classi-
fication to derive two signatures from every specification. The first one contains all methods
and attributes, the second one is the subsignature containing only the public attributes and
methods. All relevant definitions and lemmas are generated twice, first for the full signature,
then for public subsignature. This way the user can prove that two models are bisimilar with
respect to the public interface, thus ignoring the private methods and attributes. This can be
used, for instance, to prove special refinements [JT01].

The grammar for the sections of attributes, methods, constructors, and definitions is as
follows.

attributesection ::= ATTRIBUTE member {| ; member |}

methodsection ::= METHOD member {| ; member |}

member ::= identifier : type -> type

44

5.2. Class Signatures in CCSL

definitionsection ::= DEFINING member formula ; {| member formula ; |}

classconstructorsection ::= CONSTRUCTOR classconstructor {| ; classconstructor |}

classconstructor ::= identifier : type
| identifier : type -> type

Each of these sections contains a list of attributes, methods, constructors, or definitions. The
ccsl compiler checks that the declared attributes and methods have method types according to
Definition 3.7. The constructors must have constant constructor types. The identifiers declared
as attributes and methods (together with inherited attributes and methods) form the set of
method declarations ΣM and the class constructor declarations form the set ΣC .

In the definition section one can define additional methods in terms of other methods (and
attributes). The defining formula must be an equation according to the syntax described in
Subsection 6.4. One can use the full power of ccsl’s logic with the following exceptions: Modal
operators of the current class and behavioural equality on a type that contains Self are not
allowed in definitional extensions. The reason for this restriction is that the ccsl compiler
outputs definitions at a position at which these notions are not yet defined for the current
class.

For the semantics of the class signatures the ccsl compiler deviates slightly from Defini-
tion 5.4 in two points. First, the functors that give the semantics of types are not present in
the output. The ccsl compiler uses type expressions in the logic of pvs or isabelle instead.
The arguments of the functors become additional theory parameters or type variables.

The second point is that a model of a signature consists of two labelled records of functions
(instead of a coalgebra/algebra pair)12. The first record contains for every method declaration
mi : Self × σ ⇒ ρ a function JSelf × σ ⇒ ρK(X,X) where X is an additional type parameter
that works as a place holder for the state space. Similarly the second labelled record contains
a function (or constant) for every constructor declaration. With this different notion of model,
the ccsl compiler cannot use the definitions of this section for morphisms, bisimulation, and
invariants literally. Instead it uses suitable modifications.

As an illustration I show some parts of the pvs material that the ccsl compiler generates
for the queue signature. The material is taken from the file Queue basic.pvs, which was
obtained by running the ccsl compiler on the queue signature in Figure 5.

The first theory formalises the queue signature, it is shown in Figure 6. The name of
the theory is QueueInterface, it imports the data type Lift from the (translated) prelude, and
declares the method signature and the constructor signature of queue as a labelled records.
(The theories that are generated by the ccsl compiler and their contents are described in
Subsection 10.1 on page 103 below.)

12An earlier version of the compiler implemented Definition 5.4 exactly. This often lead to complications with
automatic proof strategies.

45

5. Coalgebraic Class Signatures

QueueInterface[Self : Type , A : Type] : Theory
Begin

Importing Lift[[A , Self]]

QueueSignature : Type =
[# put : [[Self , A] −> Self],

top : [Self −> Lift[[A , Self]]]
#]

QueueConstructors : Type = [# new : Self #]
End QueueInterface

Figure 6: pvs translation of the queue signature

The interface theory is used in the following way. Inhabitants of the type QueueSignature
correspond to queue coalgebras. Assume that c has this type (i.e., c is a queue signature
model), then one can write put(c)(· · ·) in pvs to get the interpretation of the put method with
respect to c.13

After the signature the compiler outputs theories for predicate lifting and invariants. These
theories are a bit more difficult to understand, because the predicate lifting is generated method
wise. This way it can be reused for the (method wise) modal operators of ccsl’s logic (they
are handled in Subsection 6.2 on page 58 below). Therefore I prefer to show the output that
is generated for relation lifting and bisimulations.

Predicate and relation lifting is built into the ccsl compiler. It can generate expressions
corresponding directly to Rel(JτK). After some experience with the first versions of the ccsl
compiler we learned that one usually needs (c × d)∗Rel(JτK) (for two coalgebras c and d).
Therefore the current version of the compiler mingles method invocation with relation lifting.
The result is not so pleasant from a theoretical point of view, but much easier to use in practice.

13In pvs record selection can be written like function application, so put(c) denotes the put field of the record
c.

46

5.2. Class Signatures in CCSL

For the queue signature the pvs theory QueueBisimilarity contains the following.

c1 : Var QueueSignature[Self1 , A]
c2 : Var QueueSignature[Self2 , A]

Queue Rel(c1 , c2) :
[[[Self1 , Self2] −> bool] −> [[Self1 , Self2] −> bool]] =
Lambda (R: [[Self1 , Self2] −> bool]) : Lambda (x1: Self1 , x2: Self2) :

(Forall (a1: A) : R(put(c1)(x1 , a1) , put(c2)(x2 , a1))) And
(Cases top(c1)(x1) OF

bot : bot?(top(c2)(x2)),
up(p0): up?(top(c2)(x2)) And

Proj 1(p0) = Proj 1(down(top(c2)(x2))) And
R(Proj 2(p0) , Proj 2(down(top(c2)(x2))))

Endcases)

The first two lines declare two queue coalgebras.14 The coalgebra c1 runs on state space Self1
and c2 on Self2. Then Queue Rel is defined as a function on Self1 × Self2 ⇒ bool. There are
several optimisations built-in into the ccsl compiler that simplify the generated output. For
the definition of bisimulation the parameter relations are instantiated with equality. This leads
to formulae of the form ∀a, b : τ . a = b ⊃ · · · , which can be simplified into ∀a : τ . (· · ·)[a/b].
With optimisations turned off the fourth line of the definition of Queue Rel would look as
follows

Forall(a1 : A, a2 : A) : a1 = a2 Implies R(put(c1)(x1, a1), put(c2)(x2, a2))

Another optimisation that is performed by the compiler is the inlining of liftings for nonrecur-
sive data types and class types. In the queue example the type constructor Lift is defined as a
nonrecursive abstract data type. Therefore the compiler outputs a case expression instead of
applying the relation lifting for Lift.

After the relation lifting the compiler outputs a recogniser on queue bisimulations:

bisimulation?(c1 , c2) : [[[Self1 , Self2] −> bool] −> bool] =
Lambda (R: [[Self1 , Self2] −> bool]) : Forall (x1: Self1 , x2: Self2) :

R(x1 , x2) Implies Queue Rel(c1 , c2)(R)(x1 , x2)

The predicate bisimulation? holds for a relation R if and only if R is a queue bisimulation.
With it, bisimilarity is defined as follows.

bisim?(c1 , c2) : [[Self1 , Self2] −> bool] =
Lambda (x1: Self1 , x2: Self2) : Exists (R: [[Self1 , Self2] −> bool]) :

bisimulation?(c1 , c2)(R) And R(x1 , x2)
14Variable declarations are syntactic sugar in pvs. The two declarations save the lambda abstractions in the

definition of Queue Rel for the arguments c1 and c2.

47

6. Assertions and Creation Conditions

The generation of definitions for bisimulation and invariant for coalgebraic signatures is only
one part of a translation into higher order logic. An equally well important task is the gen-
eration of lemmas that capture standard results. For instance, for signatures corresponding
to polynomial functors the compiler generates lemmas stating that bisimilarity is an equiva-
lence relation. To achieve this, bisimulation and bisimilarity is first defined for one coalgebra
(the following material is from the theories QueueBisimilarityEquivalence and QueueBisimilari-
tyEqRewrite):

c : Var QueueSignature[Self , A]
bisimulation?(c) : [[[Self , Self] −> bool] −> bool] = bisimulation?(c , c);
bisim?(c) : [[Self , Self] −> bool] = bisim?(c , c) ;

Then, the statement that equality is a queue bisimulation reads as follows:

eq bisim : Lemma bisimulation?(c)(Lambda(x1: Self , x2: Self) : x1 = x2)

For reflexivity and symmetry of bisimilarity the compiler generates

bisim refl : Lemma Forall (x: Self) : bisim?(c)(x , x)
bisim sym : Lemma Forall (x1: Self , x2: Self) :

bisim?(c)(x1 , x2) Implies bisim?(c)(x2 , x1)

In reasoning with bisimulations one often needs lemmas that express that a method delivers
the same (or bisimilar) results when invoked for bisimilar states. The ccsl compiler generates
one such lemma for each method, here I show only the one for the method put.

bisim put : Lemma Forall (x1: Self , x2: Self , a1: A) :
bisim?(c)(x1 , x2) Implies bisim?(c)(put(c)(x1 , a1) , put(c)(x2 , a1))

Lemmas like bisim put seem to be trivial, because they follow immediately from the definition of
bisimulation. However, these little lemmas are extremely useful in applications, their generation
is one of the great benefits of the ccsl compiler.

Ideally one would like that for all generated lemmas the ccsl compiler outputs proofs in
the format of the target theorem prover. However, it is very difficult to generate proofs that
work properly for all possible signatures. The current compiler version generates only a few
proofs.

6. Assertions and Creation Conditions

The previous section discussed the structural aspect of coalgebraic specification. In this section
I turn to the logical aspects. The signature of FIFO queues in Example 5.2 contains nothing

48

6.1. Higher-order Logic

to actually restrict the class of models to those that can be considered as FIFO queues. And,
indeed, also (last–in–first–out) stacks give rise to models of ΣQueue. In this section I define
a logic that allows one to express properties of methods and constructors from a coalgebraic
class signature. A signature together with a set of logical formulae is called a specification.
The models of the specification are those models of the signature that fulfil the formulae in a
suitable sense.

In the following I present the logic of ccsl. This is an entirely standard higher-order logic
over a polymorphic signature with two extensions. The extensions are behavioural equality and
(infinitary) method-wise modal operators. The first subsection presents the higher-order logic
with behavioural equality over a coalgebraic class signature. The second subsection defines
infinitary modal operators for coalgebras. Subsection 6.3 is on coalgebraic class specifications
and Subsection 6.4 explains the syntax of ccsl.

6.1. Higher-order Logic

The striking property of higher-order logic is that formulae are terms of the special type Prop.
Thereby it is possible to quantify over subsets of individuals and also over predicates. Terms
may contain (term) variables, which are declared to have a certain type in the term variable
context. All types can contain type variables drawn from a type variable context. Formally
a term variable context (over a type variable context Ξ) is a finite list of distinct variable
declarations x : τ such that Ξ ` τ : Type is derivable.15 Terms are formed from variables,
constructions like tuples or case analysis, and logical connectives. A term is given by a term
judgement

Ξ | Γ ` t : τ

Here Ξ is a type variable context, Γ is a term variable context and t is a well-typed term of
type τ according to the rules below. All free (term) variables of t must be declared in Γ and
all type variables that occur in t, τ , and Γ must be declared in Ξ.

The following definition describes the terms and formulae over a coalgebraic class signature.
Modal operators are added in Definition 6.7 (on page 59) below.

Definition 6.1 (Terms and Formulae) Let Σ be a coalgebraic class signature over a proper
ground signature Ω. The set of terms over Σ, denoted with Terms(Σ), is the least set containing:

• x : τ for a variable x of type τ

• ∗ : 1 the only inhabitant of 1

• ⊥ : Prop, > : Prop the boolean constants false and true
15The condition that a context contains no variable twice can be enforced at the expense of a more complicated

derivation system, see for instance Section 2.1 in [Jac99].

49

6. Assertions and Creation Conditions

• f : σ for constants f ∈ Ωσ

• m : Self × σ ⇒ ρ for all method declarations m ∈ ΣM

• c : σ ⇒ Self for all constructor declarations c ∈ ΣC

• (t1, t2) : σ × τ , the tuple for terms t1 : σ and t2 : τ

• π1 t : σ and π2 t : τ , the projections for a term t : σ × τ

• κ1 s : σ + τ and κ2 t : σ + τ , the injections for terms s : σ and t : τ

• cases t of κ1 x : r, κ2 y : s : τ , the case analyses for terms t : σ1 + σ2, r : τ , and s : τ .
The term r contains the variable x free and the term s contains y free. The term t gets
bound to either x or y, depending on the result of the evaluation. In the complete case
expression the variables x and y are bound.

• if r then s else t : τ , the conditional for a term r : Prop and two terms s and t of the
same type τ

• λx : σ . t : σ ⇒ τ , lambda abstraction for a variable x : σ and a term t : τ .

• t1 t2 : τ , application for two terms t1 : σ ⇒ τ and t2 : σ

• t1 = t2 : Prop equality for two terms of the same type τ

• t1 ∼ t2 : Prop, behavioural equality for two terms of the same type τ

• ¬t : Prop, the negation for a term t : Prop,

• t1 ∧ t2 : Prop and t1 ∨ t2 : Prop, the conjunction and the disjunction for terms t1 : Prop
and t2 : Prop

• ∀x : τ . t : Prop, universal quantification for a variable x : τ and a term t : Prop

A derivation system for term judgements for well-typed terms is in the Figures 7 and 8. As
abbreviations I define

• t1 ⊃ t2
def= ¬t1 ∨ t2, implication

• t1 ⊃⊂ t2
def= (t1 ⊃ t2) ∧ (t2 ⊃ t1), logical equivalence

• let x : τ = t1 in t2
def= (λx : τ . t2) t1, let bindings

• ∃x : τ . t def= ¬∀x : τ .¬t, existential quantification

50

6.1. Higher-order Logic

Terms of type Prop are called formulae and denoted with Greek letters like ϕ,ψ. The formulae
over Σ are denoted with Form(Σ).

The only non-standard term in the preceding definition is behavioural equality. Its seman-
tics is given by the relation lifting of bisimilarity. For instance for two terms t1 and t2 of type
α × Self the equation t1 ∼ t2 holds if and only if π1 t1 = π1 t2 and (π2 t1) ↔ (π2 t2). For class
signatures over non-proper ground signatures one has to restrict the terms to those which do
not contain behavioural equality ∼.

Example 6.2 In Example 5.2 I described the Queue signature. Here I show two formulae
that separate FIFO queues from other models of the Queue–signature. The first property is
about empty queues. A queue q is considered empty if the top methods fails on it (i.e., if
top(q) = bot).

Fempty(q)
def=

[
top(q) = bot ⊃ ∀a : α . top(put(q, a)) ∼ up(a, q)

]
So if the queue is empty then top(put(q, a)) should always be successful (i.e., it never equals
bot) and return a pair (b, q′) where a = b and q′ is an empty queue again. To be precise Fempty

is a term
α : Type | q : Self ` Fempty(q) : Prop

The second property (over the same contexts) is about nonempty queues.

Ffilled(q)
def=

[
∀a1 : α, q′ : Self . top(q) ∼ up(a1, q

′) ⊃
∀a2 : α . top(put(q, a2)) ∼ up(a1, put(q′, a2))

]

This says that, if q is nonempty, then the two operations of adding an element (at the end)
and of removing the first element are interchangeable. �

The semantics of the logic is completely standard. Let Ξ | Γ ` t : τ be a term. Fix an
interpretation U1, . . . , Un for the type variables in Ξ and a set X as interpretation of Self. You
can think of the term t as a function that maps any values that you assign to the variables
in Γ to a value in τ . Consequently the semantics of t for a fixed interpretation of the type
variables and of Self is a function

Jσ1K× · · · × JσkK // JτK

where I assume that Γ = x1 : σ1, . . . , xk : σk. The complete semantics for t is an indexed
collection of such functions:(

Jσ1KU1,U1,...,Un,Un(X,X)× · · · × JσkKU1,U1,...,Un,Un(X,X)

// JτKU1,U1,...,Un,Un(X,X)

)
X,U1, . . . , Un ∈ |Set|

51

6. Assertions and Creation Conditions

ground terms
Ξ ` σ : Type

Ξ | Γ ` x : σ
x : σ ∈ Γ

Ξ ` σ : Type

Ξ | Γ ` f : σ
f ∈ Ωσ

Ξ ` τ : Type

Ξ | Γ ` m : τ
m : τ ∈ ΣM

Ξ ` τ : Type

Ξ | Γ ` c : τ
c : τ ∈ ΣC

Ξ | Γ ` ∗ : 1 Ξ | Γ ` ⊥ : Prop Ξ | Γ ` > : Prop

tuples

Ξ | Γ ` s : σ Ξ | Γ ` t : τ
Ξ | Γ ` (s, t) : σ × τ

Ξ | Γ ` t : σ × τ

Ξ | Γ ` π1 t : σ
Ξ | Γ ` t : σ × τ

Ξ | Γ ` π2 t : τ

variants

Ξ | Γ ` s : σ Ξ ` τ : Type

Ξ | Γ ` κ1 s : σ + τ

Ξ ` σ : Type Ξ | Γ ` t : τ
Ξ | Γ ` κ2 t : σ + τ

Ξ | Γ ` t : σ1 + σ2 Ξ | Γ, x : σ1 ` r : τ Ξ | Γ, y : σ2 ` s : τ
Ξ | Γ ` cases t of κ1 x : r, κ2 y : s : τ

x /∈ Γ, y /∈ Γ

conditional
Ξ | Γ ` r : Prop Ξ | Γ ` s : τ Ξ | Γ ` t : τ

Ξ | Γ ` if r then s else t : τ

abstraction & application

Ξ ` σ : Type Ξ | Γ, x : σ ` t : τ
Ξ | Γ ` λx : σ . t : σ ⇒ τ

x /∈ Γ
Ξ | Γ ` t : σ ⇒ τ Ξ | Γ ` s : σ

Ξ | Γ ` t s : τ

Figure 7: Derivation system for the terms over a coalgebraic class signature Σ and a ground
signature Ω, Part I

52

6.1. Higher-order Logic

equality
Ξ | Γ ` s : τ Ξ | Γ ` t : τ

Ξ | Γ ` s = t : Prop

Ξ | Γ ` s : τ Ξ | Γ ` t : τ
Ξ | Γ ` s ∼ t : Prop

conjunction & disjunction

Ξ | Γ ` s : Prop Ξ | Γ ` t : Prop

Ξ | Γ ` s ∧ t : Prop

Ξ | Γ ` s : Prop Ξ | Γ ` t : Prop

Ξ | Γ ` s ∨ t : Prop

negation

Ξ | Γ ` t : Prop

Ξ | Γ ` ¬t : Prop

universal quantification

Ξ ` τ : Type Ξ | Γ, x : τ ` t : Prop

Ξ | Γ ` ∀x : τ . t : Prop
x /∈ Γ

The following rules can be derived.

weakening

Ξ | Γ ` t : τ
Ξ, α : Type | Γ ` t : τ α /∈ Ξ

Ξ ` σ : Type Ξ | Γ ` t : τ
Ξ | Γ, x : σ ` t : τ x /∈ Γ

type substitution
Ξ ` σ : Type Ξ, α : Type | Γ ` t : τ

Ξ | Γ[σ/α] ` t[σ/α] : τ [σ/α] α /∈ Ξ

term substitution
Ξ | Γ ` s : σ Ξ | Γ, x : σ ` t : τ

Ξ | Γ ` t[s/x] : τ x /∈ Γ

Figure 8: Derivation system for the terms over a coalgebraic class signature Σ and a ground
signature Ω, Part II

53

6. Assertions and Creation Conditions

If t : τ is a formula then JτK is the set of booleans and the interpretation function returns true
for exactly those elements of JσiK that fulfil t. So one can equivalently consider the semantics
of a formula x : σ ` ϕ : Prop as a (collection of) predicate(s) JϕK ⊆ JσK.

Definition 6.3 (Semantics) Let Σ be a coalgebraic class signature over a proper ground
signature Ω and assume a modelMΩ of Ω and a modelMΣ = 〈X, c, a〉 of Σ. The interpretation
of a term α1, . . . , αn | x1 : σ1, . . . , xk : σk ` t : τ with respect to MΩ and MΣ is denoted by
JtKMΩ,MΣ , where I omit the superscripts if they are clear from the context. The interpretation
JtK is defined by induction on the structure of terms. Fix an interpretation U1, . . . , Un of the
type variables αi and and an interpretation X of Self. Let x : σ denote the tuple of arguments
x1 : Jσ1K, . . . , xk : JσkK.

JxiK = πi

JfK = JfK for f ∈ Ωσ

Jm : Self × σ′ ⇒ τ ′K = λx : σ .
(
λx : X, p : Jσ′K . πm(c x)(p)

)
JcK = λx : σ . a ◦ κc

J∗K = λx : σ . ∗
J⊥K = λx : σ .⊥
J>K = λx : σ .>

J(t1, t2)K = 〈Jt1K, Jt2K〉
Jπ1 tK = π1 ◦ JtK
Jπ2 tK = π2 ◦ JtK
Jκ1 sK = κ1 ◦ JtK
Jκ2 tK = κ2 ◦ JtK

Jcases t of κ1 x : r, κ2 y : sK = λx : σ .
{

JrK(x, z1) if JtKx = κ1z1
JsK(x, z2) if JtKx = κ2z2

Jif r then s else tK = λx : σ .
{

JsKx if JrKx = >
JtKx if JrKx = ⊥

Jλx : ρ . tK = λx : σ .
(
λy : JρK . JtK(x, y)

)
Jt1 t2K = λx : σ . Jt1K(x) (Jt2Kx)

Jt1 = t2K = λx : σ . Jt1Kx = Jt2Kx
Jt1 ∼ t2K = λx : σ .Rel(JρK)(↔MΣ

)(Jt1Kx, Jt2Kx)
(for t1 and t2 of type ρ)

J¬tK = λx : σ .¬JtKx

54

6.1. Higher-order Logic

Jt1 ∧ t2K = λx : σ . Jt1Kx ∧ Jt2Kx
Jt1 ∨ t2K = λx : σ . Jt1Kx ∨ Jt2Kx

J∀x : τ . tK = λx : σ .
{
> if JtK(x, y) = > for all y ∈ JτK
⊥ otherwise

In the following I elaborate on the expressiveness of the logic of ccsl.

Proposition 6.4 The logic of ccsl is complete with respect to bisimilarity. More precisely,
for every closed term t ∈ Term(Σ) of type Self over a signature Σ, there exists a formula
x : Self ` F (x) : Prop with the following property. For an arbitrary model M = 〈X, c, a〉 of Σ
and a state x ∈ X one has JF K(x) = > if and only if there is a bisimulation on M relating x
and JtKM.

Proof (Sketch) The definition of relation lifting and bisimulation can be directly expressed
in the logic of ccsl. Thus there is a formula R : Self × Self ⇒ Prop ` bisim(R) : Prop which is
true, precisely if R is interpreted with a bisimulation. One can take as F

λx : Self . ∃R : Self × Self ⇒ Prop . bisim(R) ∧ R(t, x) �

The logic of ccsl has equality on all types, including Self. Therefore it is easy to construct
a formula that evaluates to different values for bisimilar states. For coalgebraic specification
it is often desirable to restrict the expressiveness of the logic, such that it cannot distinguish
bisimilar states, or, in other words, is sound with respect to bisimilarity. This restricted ex-
pressiveness is for instance necessary for some results in Section 8 and for the result about
behavioural refinement in [JT01]. In the following I characterise a fragment of the logic of
ccsl that is sound with respect to bisimilarity. The higher-order aspects make it necessary to
consider terms in general.

Definition 6.5 (Behavioural invariance) Let M be a model of a proper ground signature
Ω and let Σ be a coalgebraic class signature over Ω. Let Ξ | Γ ` t : τ be a term over Σ with
Γ = a1 : σ1, . . . , ak : σk. The term t is invariant with respect to behavioural equality for M
(or more succinctly behaviourally invariant for M) if for all models A =

(
〈X, c, a〉U

)
and B =(

〈Y, d, b〉U
)

and all interpretations U = U1, . . . , Un of the type parameters of Σ the following
condition is fulfilled. Let xi ∈ JσiKU (X,X) and yi ∈ JσiKU (Y, Y) be two interpretations of the
variables ai and let R ⊆ X × Y be a bisimulation for c and d. If

Rel
(
JσiK

) (
Eq(U1), . . . ,Eq(Un), R,R

)
(xi, yi)

holds for all i, then it also holds that

Rel
(
JτK
) (

Eq(U1), . . . ,Eq(Un), R,R
) (

JtKM,A(x1, . . . , xk), JtKM,B(y1, . . . , yk)
)

55

6. Assertions and Creation Conditions

This definition is carefully formulated to apply to arbitrary signatures, for which a greatest
bisimulation might not exist. Of course, if bisimilarity as greatest bisimulation does exists, then
behavioural invariance with respect to bisimilarity implies behavioural invariance with respect
to any other bisimulation. It is easy to give some sufficient syntactical criteria for behavioural
invariance of terms.

Proposition 6.6 Let Σ be a coalgebraic class signature. The following basic terms are be-
haviourally invariant:

• variables x : τ

• the constants ⊥,> : Prop, and ∗ : 1

• methods from Σ

The following constructions preserve behavioural invariance:

• pairing (t1, t2): that is if t1 and t2 are behavioural invariant then so is (t1, t2),

• projections π1/2 t : σ, injections κ1/2 t, and case analyses
cases t of κ1 x : t1, κ2 y : t2 : τ

• the conditional if t1 then t2 else t3,

• lambda abstraction λx : σ . t and application t1 t2

• negation ¬t, conjunction t1 ∧ t2, and disjunction t1 ∨ t2

For proper models of the ground signature:

• universal quantification over constants ∀x : τ . t, where τ is a constant type (i.e., VSelf(τ) =
?)

If additionally bisimulations are closed under composition and if the greatest bisimulation ↔
does exist:

• behavioural equality t1 ∼ t2

Proof I abbreviate the longish Rel(JτK)(Eq(U1), . . . ,Eq(Un), R,R) as Rel(τ)(· · ·) and use
x = x1, . . . , xk and y = y1, . . . , yk.

• Rel(τ)(· · ·)(JxKA, JxKB) follows from the definition.

• The basic terms ∗, ⊥, and > are behavioural invariant because Definition 5.7 (2), uses
equality for Prop and 1.

56

6.1. Higher-order Logic

• Let t = m be a method, then Rel(τ)(· · ·)(JmKA, JmKB) follows from the definition of
bisimulation.

• If t is a pair, a projection, an injection, or a case analyses, then the conclusion follows
directly from the definition of relation lifting.

• For the conditional t = if t1 then t2 else t3 assume that t1, t2, and t3 are behavioural
invariant. Then Jt1KA x = Jt1KB y and the conclusion follows by the induction hypothesis
on t2 and t3.

• For t = λx : σ . t1 we have to show that for all x ∈ JσKA and y ∈ JσKB with Rel(σ)(· · ·)(x, y)
also Rel(τ)(· · ·)(Jt1KA(x, x), Jt1KB(y, y)). This fact follows directly from the behavioural
invariance of t1.

The case t = t1 t2 follows directly from the behavioural invariance of t1 and t2.

• If t is one of the propositional connectives, then the conclusion follows again from the
fact that the relation lifting for type Prop is given by equality.

• If t = ∀a : σ . t′ then we have JσKA = JσKB because σ is a constant type. Additionally
Lemma 5.9 yields Rel(σ)(· · ·) = Eq(JσK) for a proper model of the ground signature.
So the assumption about the behavioural invariance of t1 implies for every a ∈ JσK that
JtKA(x, a) = JtKB(y, a).

• For t = t1 ∼ t2 assume that t1 and t2 are behavioural invariant. With composition of
bisimulations Rel(τ)(· · ·)(Jt1KA, Jt2KA) holds precisely if Rel(τ)(· · ·)(Jt1KB, Jt2KB) holds.
Hence JtKA = JtKB. �

The notion of behavioural invariance and the preceding proposition are interesting for class
signatures for which coalgebra morphisms are functional bisimulations. In this case behavioural
invariance implies stability under coalgebra morphisms. I exploit this fact in Proposition 6.18
and in Subsection 8.2.

Note that the preceding proposition does neither include constants from the ground sig-
nature nor constructors from class specifications. Monomorphic constants (i.e., those over the
empty type variable context) are behaviourally invariant if the relation lifting for their type
coincides with equality (which holds for proper models of proper ground signatures). Polymor-
phic constants might or might not be behaviourally invariant, depending on the model of the
ground signature. With the -pedantic switch (see Subsection 10.9 on page 108 below) the
ccsl compiler recognises polymorphic constants as behavioural invariant if they are instan-
tiated with a constant type. This relaxed policy rests on an argument similar to that in the
preceding proof for the item of universal quantification and on the fact that the -pedantic
switch implies a proper ground signature with a proper model.

57

6. Assertions and Creation Conditions

6.2. Infinitary Modal Operators

This subsection describes joint work with Bart Jacobs and Jan Rothe. Following the observa-
tions that, firstly, modal logic [Gol92] is the logic for describing dynamic systems and that,
secondly, coalgebras are the mathematical structures that capture dynamic systems one has
to expect a close relationship between modal logic and coalgebras. Currently modal logic is
used in the field of coalgebras mainly in two different ways. On the one hand modal logic is
used as a tool to investigate the theory of coalgebras. On the other hand modal logic enriches
coalgebraic specification.

In the former line of work [Mos99] describes characterising (modal) formulae for the state
space of a coalgebra. Rößiger uses modal logic to construct final coalgebras for data func-
tors [Röß00a] (but see also [Röß00b]). Modal logic also plays an important role in the search
for the coalgebraic analogy of Birkhoffs theorem [Kur00, Hug01, Gol01]. The modal logics of
Rößiger, Moss, and Goldblatt are all sound and complete with respect to bisimilarity (i.e.,
bisimilar states fulfil the same set of formulae and for any two non-bisimilar states there is
a formula that distinguishes both). The logics of Kurz and Hughes have this property when
restricted to one colour. However, all these logics have often been designed towards a certain
theorem. Without deprecating all this work, one notices that these logics are not very prac-
tical for expressing interesting properties of coalgebras. For instance in the queue example, I
consider the following property Ffinite as interesting: A queue fulfils Ffinite if the successive ap-
plication of the method top eventually yields an empty queue (i.e., top returns eventually bot).
To express Ffinite in the framework of [Mos99] or [Röß00a] one needs infinitary conjunctions or
an infinite set of formulae.

The second line of research that connects modal logic and coalgebra tries to enrich coalge-
braic specification with modalities to express certain properties more succinctly. [Jac97b] shows
that the infinitary16 modality always can get its semantics via greatest invariants (contained
in some predicate). [Rot00] picks this idea up and describes method wise infinitary modal
operators for ccsl (see also Section 4 in [RTJ01]). This section describes Rothes method wise
modal operators in the formal context of coalgebraic class signatures over a polymorphic type
theory.

In the following I consider infinitary versions of the two modal operators � and ♦. For a
(syntactic) predicate P the modality �P (always P or henceforth P) holds for a state x of
a coalgebra c, if P holds for x and all successor states of x, which can be reached via c. So
�P is the safety property that assures that the bad event ¬P never happens. The modality
♦ (eventually) is the dual of �, that is ♦P = ¬�¬P . The formula ♦P holds for those states
x that have at least one successor state that makes P true. Therefore one can view ♦P as the
liveness property that holds if the good thing P does eventually happen.17

16Infinitary means here, that the modal operator applies to all following successor states and not only to the next
state. Thus is satisfies the schema 4 [Gol92] and, equivalently, the underlying Kripke structure is transitive.

17Note that in general ♦P is not a liveness property according to the rigorous definition of [AS85]: ♦P is not

58

6.2. Infinitary Modal Operators

The semantics of the modalities is given by the greatest invariant (contained in some
predicate), compare Section 2.6.6 and Section 3.4.6 in [Tew02b]. Because ccsl uses strong
invariants the greatest invariant exists for all class signatures over a proper plain ground
signature (see Proposition 3.4.25 in [Tew02b]). For non-plain ground signatures I assume that
the predicate lifting of all type constructors C is monotone in its positive positions:

Pi ⊆ Qi, implies PredC(>, P1, . . . ,>, Pn) ⊆ PredC(>, Q1, . . . ,>, Qn) (1)

The interaction of the modalities with the higher-order logic of Definition 6.1 is a bit tricky,
so let me discuss the type of � before I present the definition (the following explanation applies
to ♦ in the same way). From the preceding paragraph it is clear that the expression, to which
� is applied to, must be a predicate on the state space of the coalgebra. Therefore it must
be of type Self ⇒ bool. Assume that P is of type Prop and has a free variable x : Self, then
we can form the expression �(λx : Self . P). This expression is again a predicate on the state
space, so we have �(λx : Self . P) : Self ⇒ Prop.

Note that, different to traditional modal logic, the predicate P can contain additional free
variables. In this case both �(λx : Self .∀a : τ . P) and ∀a : τ .�(λx : Self . P) are possible.

When working with class signatures, one often wants to express that only the subset
{m1, . . . ,mn} of all available methods retains a safety property P . Thereby one explicitly
allows that a method m0 /∈ {m1, . . . ,mn} yields a successor state that violates P . This cannot
be expressed with the � operator described so far. Similarly, for liveness properties one might
want to ensure that a state fulfilling P can be reached by only using a subset of all available
methods. One example for this is the property Ffinite from before, where the empty queue is
reached by only applying the method top.

The solution of this problem is to annotate the modal operators with sets of method
identifiers, like in �{m1,m2}(λx : Self . P). The annotation restricts the number of successor
states that are considered: The formula �M (λx : Self . P) holds for y if P holds for all successor
states that can be reached with methods in M . The value of P on a successor state that was
obtained via a method m /∈M does not play any role. Similarly for ♦.

Definition 6.7 (Modal Operators) Let Σ = 〈ΣM ,ΣC〉 be a coalgebraic class signature over
a proper ground signature. The set of terms over Σ contains in addition to Definition 6.1

• �MP : Self ⇒ Prop for a set of method (identifiers) M ⊆ ΣM and a predicate P : Self ⇒
Prop.

The derivation rule is in Figure 9. There are the following abbreviations

• ♦MP
def= λy : Self . ¬ �M (λx : Self .¬P x)(y)

dense in the obvious topology. However �P is closed and therefore a safety property in the sense of Alpern
and Schneider.

59

6. Assertions and Creation Conditions

always

Ξ | Γ ` P : Self ⇒ Prop

Ξ | Γ ` �MP : Self ⇒ Prop
M ⊆ ΣM

eventually

Ξ | Γ ` P : Self ⇒ Prop

Ξ | Γ ` ♦MP : Self ⇒ Prop
M ⊆ ΣM

Figure 9: Derivation rules for the modal operators over a class signature Σ = 〈ΣM ,ΣC〉.

• �P
def= �ΣMP

• ♦P
def= ♦ΣMP

Remark 6.8 There are several alternatives to introduce modal operators into the higher-
order logic of ccsl. The preceding definition seems to be the most appropriate compromise
for getting the succinctness of modal logics without cluttering ccsl too much. The following
alternatives have been discarded.

• Rößiger and Jacobs define in [Röß00a] and [Jac00] the notion of paths by induction on
the structure of the signature functor. One path denotes precisely one possible way to
extract a successor state. Path-wise modal operators allow one to distinguish between
several successor states that are obtained from one method application. As an example
consider a method (or a coalgebra) m : Self ⇒ (Self × Self) + Self. For this method
there are three paths κ1 · π1, κ1 · π2, and κ2. If mx = κ1(y1, y2) then the path κ1 · π2

denotes y2 and in this case the path κ2 does not denote a successor state.

Path wise modal operators are finer than method wise ones. However, for ccsl the
granularity of methods seems appropriate.

• A modal µ–calculus [Sti92] for coalgebras would be even more flexible than path wise
modal operators. This remains future work, a first discussion is in [Jac02].

• The preceding definition introduces �(λx : Self . P) as a special term. Alternatively one
can assume a (higher-order) function �M : (Self ⇒ Prop) ⇒ (Self ⇒ Prop).

• The operator � acts as a variable binder. In Definition 6.7 this is captured by requiring
that P is of type Self ⇒ bool (the binding is done by lambda abstraction). In a first-
order version the bound variable must be explicit, as in the following (where I neglect
the annotation with methods):

Γ, x : Self ` P : Prop

Γ, y : Self ` (�xP) y : Prop

60

6.2. Infinitary Modal Operators

Here y is a fresh variable and the x in P is bound by �x. The substitution rule is as
follows:

((�x P) t) [s/z] =
{

(�x P) (t[s/z]) for x = z
(�x P [s/z]) (t[s/z]) for x 6= z

Definition 6.9 (Semantics of �) Let Σ = 〈ΣM ,ΣC〉 be a coalgebraic class signature over a
proper ground signature Ω and let A = 〈X, c, a〉 and MΩ be models for Σ and Ω, respectively.
Assume that MΩ satisfies the monotonicity requirement of Equation 1. Consider the term
Ξ | Γ ` �MP with contexts Ξ = α1, . . . , αn and Γ = x1 : σ1, . . . , xk : σk. By definition the set
of method annotations M forms a subsignature Σ′ = 〈M, ∅〉 ≤ Σ. Now, fix an interpretation
U1, . . . , Un of the type variables and an interpretation X of Self. Let x : σ denote the tuple
x1 : Jσ1KU1,...,Un(X,X), . . . , xk : JσkKU1,...,Un(X,X) for the interpretation of the term variables
x1, . . . , xk. Then

J�MP KA = λx : σ .
(
JP KA (x)

)
πM ◦ c

where (−)
πM◦c denotes the greatest invariant with respect to the induced coalgebra

πΣ′ ◦ c : X // JτΣ′K(X,X)

Example 6.10 A queue contains a finite number of elements if the top method eventually
returns bot. This property can now be formalised as

Ffinite(q)
def= (♦top λx : Self . top(x) = bot) (q)

as negation we obtain

Finfinite(q)
def= (�top λx : Self . ¬ top(x) = bot) (q)

For another example recall the formulae Fempty and Ffilled from Example 6.2 that capture the
behaviour of FIFO queues. Define a formula that describes finite FIFO queues as

FFFIFO(x) def= Fempty(x) ∧ Ffilled(x) ∧ Ffinite(x)

Let q be an arbitrary finite FIFO queue. Starting from any other finite FIFO queue p one can
construct a queue p′ such that p′ and q are bisimilar. This is expressed with

FFFIFO(p) ∧ FFFIFO(q) ⊃ (♦ λp′ : Self . p′ ∼ q)(p) (2)

with method wise modal operators it can be slightly strengthened to

FFFIFO(p) ∧ FFFIFO(q) ⊃ (♦top ♦put λp′ : Self . p′ ∼ q)(p) (3)

61

6. Assertions and Creation Conditions

which expresses that the successor state p′ that is equivalent to q can be reached by first
emptying p and then filling it. The preceding two statements can be put as theorems into
the queue specification, see Figure 11 (on page 69 below). Although the proof of 2 and 3 is
intuitively very simple it requires a fair amount of work to prove the two statements in pvs.
The proof distributed with the sources of the queue example requires 54 utility lemmas that
have been proved with about 700 pvs proof commands. �

In the remainder I show a few general results about the modal operators. I first investigate
behavioural invariance, extending Proposition 6.6.

Proposition 6.11 Let Σ be a coalgebraic class signature over a plain ground signature that
contains only polynomial methods. If the term Ξ | Γ ` P is invariant with respect to behavioural
equality, then so is Ξ | Γ ` �MP .

The preceding proposition does not hold if Σ contains a binary method. It is easy to
construct an example that shows this. The problem here is that ccsl uses strong invariants
and that Proposition 3.4.11 in [Tew02b] fails for strong invariants.

Proof Under the assumptions of the proposition Σ corresponds to a polynomial functor.
Consider two models A = 〈X, c, a〉 and B = 〈Y, d, b〉 of Σ and let R be a bisimulation for c
and d that relates x ∈ X and y ∈ Y . Assume x ∈ J�MP KA, it remains to show that also
y ∈ J�MP KB. Note that R is also a bisimulation for πM ◦ c and πM ◦ d. Consider now the
predicate Q =

∐
π2

(R ∧ π∗1 J�MP KA) = {y | ∃x . xR y ∧ x ∈ J�MP KA}. By Proposition 2.6.17
and 2.6.15 in [Tew02b] Q is an invariant for πM ◦ d. And because P is behaviourally invariant,
we have Q ⊆ JP KB. �

Proposition 6.12 ([Rot00]) The method wise-modal operators �M fulfil the S4 rules. For
arbitrary predicates Ξ | Γ ` P : Self ⇒ bool and Ξ | Γ ` Q : Self ⇒ bool with x /∈ Γ we have

K : ∀x : Self .
(
�M λx : Self . (P x ⊃ Qx)

)
(x) ⊃ (�M P)(x) ⊃ (�M Q)(x)

T : ∀x : Self . (�MP)(x) ⊃ P (x)

4 : ∀x : Self . (�MP)(x) ⊃ (�M �MP)(x)

As usual in modal logic one can get theorems for ♦M by dualization, for instance, the
dualized version of T is

∀x : Self . P (x) ⊃ (♦M P)(x)

Proof The proof follows from basic properties of greatest invariants, for instance J�M P K is
an invariant, therefore J�M �M P K = J�M P K, which implies 4. �

Proposition 6.13 Let Ξ | Γ, y : τ ` P : Self ⇒ bool be a predicate, which possibly contains y
freely. Then for all x : Self it holds that

62

6.3. Coalgebraic Class Specifications

1. ∀y : τ . (�M P)(x) ⊃⊂
(
�M λx′ : Self .∀y : τ . P (x′)

)
(x)

2. ∃y : τ . (�M P)(x) ⊃
(
�M λx′ : Self .∃y : τ . P (x′)

)
(x)

Proof For 1 it suffices to prove that Q(x) def= ∀y : τ . (�M P)(x) is the greatest invariant
implying ∀y : τ . P (x). Clearly, the predicate Q is an invariant that implies ∀y : τ . P (x). Now
assume an invariant Q′ such that Q′(x) implies ∀y : τ . P (x). Then Q′(x) implies also P (x) for
an arbitrary but fixed y. By definition �M P (x) is the greatest invariant implying P (x) for
any fixed y, therefore Q′(x) implies also �M P (x) for any fixed y. Because the y was chosen
arbitrarily, Q′(x) implies ∀y : τ .�M P (x), so Q is indeed the greatest invariant.

For 2 it suffices to show that ∃y : τ . (�M P) is an invariant that implies ∃y : τ . P . Both is
obvious. �

6.3. Coalgebraic Class Specifications

A specification is a signature whose class of models is restricted with a set of axioms.

Definition 6.14 (Coalgebraic Class Specification) Let Σ be a coalgebraic class signature
with type parameters Ξ = α1, . . . , αn.

1. A formula ϕ is a Σ method assertion, if Ξ | x : Self ` ϕ and if ϕ contains no constructor
from ΣC .

2. A formula ψ is a Σ constructor assertion if Ξ | ∅ ` ψ.

3. A coalgebraic class specification is a triple 〈Σ,AM ,AC〉 where Σ is a coalgebraic class
signature,AM is a finite set of Σ method assertions, andAC is a finite set of Σ constructor
assertions.

Example 6.15 In a class specification for queues it makes sense to demand that the queue
constructor new returns an empty queue. Therefore I set

Queue = 〈ΣQueue, {Fempty, Ffilled}, {Fnew}〉

where
Fnew =

[
top(new) = bot

]
specifies that new delivers the empty queue. �

The notion of a subspecification is needed below. The restriction to method assertions is
implied by the restriction to method declarations in subsignatures and will be explained in
Subsection 9.1 (on page 95) below.

63

6. Assertions and Creation Conditions

Definition 6.16 (Subspecification) A class specification S ′ = 〈Σ′,A′
M ,A′

C〉 is a subspeci-
fication of S = 〈Σ,AM ,AC〉, denoted as S ′ ≤ S if Σ′ ≤ Σ and A′

M ⊆ AM .

Definition 6.17 (Semantics of Class Specifications) Let 〈Σ,AM ,AC〉 be a coalgebraic
class specification. A model of this class specification is a model M of Σ such that for all
interpretations Ui of the type variables the following holds.

• For all x ∈ X all method assertions hold: JϕKM x = > for all ϕ ∈ AM .

• All constructor assertions are fulfilled: JψKM = > for ψ ∈ AC .

Example 5.6 has been carefully constructed, it actually is a model of the Queue–specifica-
tion from Example 6.15. A class specification is consistent if it has at least one model with a
nonempty state space. Note that for a consistent class specification the models form always a
proper class.

Assume a subspecification S ′ of S (involving Σ′ ≤ Σ) and a model M = 〈X, c, a〉 of S. The
coalgebra c fulfils all assertions of S, so it obviously fulfils the assertions of S ′. Therefore also
πΣ′ ◦ c fulfils all assertions of S ′.

The following standard result describes under which condition one can obtain a final coalge-
bra satisfying the method assertions of a specification. A first version of it appeared in [Jac96].

Proposition 6.18 Let S = 〈Σ,AM ,AC〉 be a consistent coalgebraic class specification over a
plain ground signature which contains only polynomial methods. Let τΣ be its combined method
type. If all method assertions and constructor assertions of S are invariant with respect to
behavioural equality, then there exists a model M = 〈X, c, a〉 of S such that c is the final τΣ
coalgebra satisfying the method assertions AM .

Proof Under the assumptions the semantics of τΣ is a polynomial functor. For polynomial
functors coalgebra morphisms are bisimulations, therefore every τΣ coalgebra morphism pre-
serves the validity of the method and constructor assertions. Let z : Z //JτΣK(Z) be the final
τΣ coalgebra (which always exists, see [Rut00, KM00]). Let X be the greatest invariant con-
tained in the interpretation of the method assertions on Z. By Proposition 2.6.8 in [Tew02b]
there is an induced coalgebra structure on X, this gives c. It remains to construct the con-
structor algebra for X. Note that X is nonempty because it must contain the image of the
state space of the assumed model. Therefore one can set a = ! ◦ a′, where a′ is a constructor
algebra of an arbitrary model. �

64

6.4. Class Specifications in CCSL

formula ::= FORALL (vardecl {| , vardecl |}) (: | .) formula
| EXISTS (vardecl {| , vardecl |}) (: | .) formula
| LAMBDA (vardecl {| , vardecl |}) (: | .) formula
| LET binding {| (; | ,) binding |} [; | ,] IN formula
| formula IFF formula
| formula IMPLIES formula
| formula OR formula
| formula AND formula
| IF formula THEN formula ELSE formula
| NOT formula
| formula infix operator formula
| ALWAYS formula FOR

[identifier [argumentlist] ::] methodlist
| EVENTUALLY formula FOR

[identifier [argumentlist] ::] methodlist
| CASES formula OF caselist [; | ,] ENDCASES
| formula WITH [update {| , update |}]
| formula . qualifiedid
| formula formula
| TRUE
| FALSE
| PROJ N
| number
| qualifiedid
| (formula : type)
| (formula {| , formula |})

vardecl ::= identifier {| , identifier |} : type

methodlist ::= { identifier {| , identifier |} }

binding ::= identifier [: type] = formula

caselist ::= pattern : formula {| (; | ,) pattern : formula |}

pattern ::= identifier [(identifier {| , identifier |})]

update ::= formula := formula

Figure 10: ccsl Syntax for expressions and formulae

65

6. Assertions and Creation Conditions

6.4. Class Specifications in CCSL

The concrete syntax of the higher-order logic for ccsl is in Figure 10. ccsl follows quite closely
the concrete syntax of pvs. Especially the ASCII representations of the logical notation and
the projections is the same as in pvs. There are the following points to note with respect to
Figure 10:

• ccsl has concrete syntax for expressions that are syntactic sugar with respect to Defini-
tion 6.1, for instance quantification and abstraction over several variables simultaneously,
the LET construct, function update with WITH, or the keyword IFF.

• The keywords ALWAYS and EVENTUALLY give the modal operators from the preceding sub-
section. The correspondence between the symbolic notation and the concrete grammar
of ccsl is as follows:

�M (λx : Self . P) ≡ ALWAYS LAMBDA(x : SELF) . P FOR { M }
♦M (λx : Self . P) ≡ EVENTUALLY LAMBDA(x : SELF) . P FOR { M }

The optional identifier with an argument list before the method list can be used to
access a modal operator of a different class specification. If it is omitted it defaults to
the enclosing class specification.

• The syntax for CASES provides terms for the abstract data types. Abstract data types
are in Section 7. I define the semantics of the case construct in Subsection 8.1. The case
construct in Terms(Σ) corresponds to case construct in ccsl for the abstract data type
Coproduct, which is defined in the prelude (see Example 4.2 and Subsection 10.8).

• ccsl allows object-oriented syntax for method calls: One can write x.m(−) instead of
m(x,−) to give the specifications a bit more object-oriented look and feel.

• The projections are PROJ N, where N stands for a natural number.

• Infix operators are sequences of special characters like *, the details are in Subsec-
tion 10.5.

• ccsl tries to be relaxed about the use of delimiters. For instance, variable binders like
FORALL can be separated from the following formula by either a colon or a dot (thus
comforting users of pvs and isabelle). The last delimiter in a list of cases or let bindings
is optional.

• The precedence for the constructions in Figure 10 increases from the top to the bottom.
So conjunction (AND) binds stronger then disjunction (OR). For instance the expression
f1 OR f2 f3 .m is parsed as f1 OR ((f2 f3) .m).

66

6.4. Class Specifications in CCSL

• The ccsl compiler defines four special class members that make the notions of invariants,
bisimulations, coalgebra morphisms (in the form of recognisers), and coinduction (in the
form of the coreduce combinator) available in the logic of ccsl. Their names are as
follows:

concept identifier for class 〈class〉 relevant definition
invariant 〈class〉 class invariant? Definition 5.10 (1)
bisimulation 〈class〉 class bisimulation? Definition 5.10 (3)
morphism 〈class〉 class morphism? Definition 3.2.2 of [Tew02b]
coinduction coreduce Item Coreduce on page 87

The types of these identifiers depend on the method declarations that are present in
the signature, see Subsection 8.1 for the details. The identifier for coreduce does not
depend on the class name, so one usually has to use a qualified identifier for it (see
Subsection 10.6 on page 107). Figure 11 shows as an example how to express in ccsl
that the predicate Ffinite from Example 6.10 is an invariant for queues.

Apart from coreduce (whose semantics also depends on the method assertions) these
identifiers are visible in method and constructor assertions. (Technically the compiler
makes a ground signature extension just before processing method and constructor as-
sertions.)

• The current compiler version supports only one kind of immediate constants: natural
numbers. Their type can be changed via the -nattype command line switch, see Sub-
section 10.9.

The syntax for class specifications was already given in Subsection 5.2. Recall that the
sections for attributes, methods and constructors contributed to the signature. The section for
assertions contains method assertions in the sense of Definition 6.14, the section for creation
conditions contains constructor assertions. The theorem section gives one the opportunity to
state theorems in the logic of ccsl that are believed to hold for all models. From the point of
view of the ccsl compiler the theorem section contains arbitrary formulae (without influence
on the semantics of the class specification) that should get translated into the logic of the
target theorem prover. The syntax of these sections is as follows:

assertionsection ::= ASSERTION {| importing |} [assertionselfvar]
{| freevarlist |} namedformula {| namedformula |}

assertionselfvar ::= SELFVAR identifier : SELF

freevarlist ::= VAR vardecl {| ; vardecl |}

creationsection ::= CREATION {| importing |} {| freevarlist |}
namedformula {| namedformula |}

67

6. Assertions and Creation Conditions

theoremsection ::= THEOREM {| importing |} {| freevarlist |}
namedformula {| namedformula |}

namedformula ::= identifier : formula ;

All three sections can contain an arbitrary number of (named) formulae. The importings
are explained in Section 10.4. Every assertion section can contain a SELFVAR declaration for
the free variable that can occur in method assertions. Variables declared with the keyword VAR
constitute a context for all formulae of the affected section. This is syntactic sugar: The ccsl
compiler universally quantifies all the variables declared with VAR on the outermost level.

The complete queue specification in ccsl syntax is in Figure 11. Besides the three asser-
tions Fempty, Ffilled, and Fnew from Example 6.15 it contains also two theorems. The first one
corresponds to Equation 3 and the second one states that the predicate Ffinite from Exam-
ple 6.10 is an invariant.18 The ccsl compiler translates the two theorems into lemmas in a
separate pvs file. The utility lemmas that are necessary for the two theorems are in the pvs
theory QueueModal, to make them available I add an appropriate importing clause.

In the remainder of this subsection I show how the ccsl compiler translates the two queue
assertions into pvs. Further below I discuss how the compiler treats attribute declarations and
how the associated update assertions look like.

During type checking the ccsl compiler records that the queue assertions use behavioural
equality on the type Lift[A × Self]. Therefore it generates the theory QueueReqObsEq, which
contains the following lifting of bisimilarity to the type Lift[A× Self].

c : Var QueueSignature[Self, A]

ObsEq Lift A Self(c) : [[Lift[[A, Self]], Lift[[A, Self]]] −> bool] =
Lambda(l1 : Lift[[A, Self]], l2 : Lift[[A, Self]]) :

Cases l1 OF
bot : bot?(l2),
up(p0) : up?(l2) And PROJ 1(p0) = Proj 1(down(l2)) And

bisim?(c)(PROJ 2(p0), PROJ 2(down(l2)))
Endcases

The method assertions are translated into predicates on queue coalgebras. For the method
assertion q empty the compiler generates the predicate q empty?. The following material is
taken from the theory QueueSemantics.

q empty?(c) : [Self −> bool] = Lambda (x : Self) :
ObsEq Lift A Self(c)(top(c)(x), bot) Implies
Forall(a : A) : ObsEq Lift A Self(c)(top(c)(put(c)(x, a)), up(a, x))

18The distributed sources contain also a theorem that corresponds to Equation 2. Unfortunately it does not fit
into the figure.

68

6.4. Class Specifications in CCSL

Begin Queue[A : Type] : ClassSpec
Method

put : [Self, A] −> Self;
top : Self −> Lift[[A,Self]];

Constructor
new : Self;

Assertion Selfvar x : Self
q empty : x.top ∼ bot Implies

Forall(a : A) . x.put(a).top ∼ up(a,x);

q filled : Forall(a1 : A, y : Self) . x.top ∼ up(a1, y) Implies
Forall(a2 : A) . x.put(a2).top ∼ up(a1, y.put(a2));

Creation
q new : new.top ∼ bot;

Theorem
Importing QueueModal[Self, A]

strong reachable : Forall(p, q : Self) :
Let finite? : [Self −> bool] = Lambda(q : Self) :

(Eventually Lambda(x : Self) : x.top = bot For {top}) q
IN

finite? p And finite? q Implies
(Eventually

(Eventually Lambda(r : Self) : r ∼ q For {put})
For {top}

) p;

finite invariant :
Let finite? : [Self −> bool] = Lambda(q : Self) :

(Eventually Lambda(x : Self) : x.top = bot For {top}) q
IN

Queue class invariant?(put, top)(finite?) ;
End Queue

Figure 11: The queue specification in ccsl syntax

69

6. Assertions and Creation Conditions

Observe that the compiler inserts coalgebras to make the methods dependent on a model. The
assertion q filled is translated into pvs in the same way. All such translated method assertions
are combined into one 〈class〉Assert? predicate, which holds precisely on those coalgebras that
fulfil all method assertions.

QueueAssert?(c) : bool =
Forall(x : Self) : q empty?(c)(x) And q filled?(c)(x)

In a similar way the constructor assertions are translated into predicates on the constructor
algebra. Like in the queue example the constructor assertions can contain methods. Therefore
the predicates for the constructor assertions depend on an interpretation of the methods. In
the pvs translation this is captured with an additional argument c:

q new?(c) : [QueueConstructors[Self, A] −> bool] =
Lambda(z : QueueConstructors[Self, A]) :

ObsEq Lift A Self(c)(top(c)(new(z)), bot)

QueueCreate?(c) : [QueueConstructors[Self, A] −> bool] =
Lambda(z : QueueConstructors[Self, A]) : q new?(c)(z)

Finally the predicates 〈class〉Assert and 〈class〉Create are combined into an recogniser of
queue models:

QueueModel?(c : QueueSignature[Self, A], z : QueueConstructors[Self, A]) : bool=
QueueAssert?(c) And QueueCreate?(c)(z)

The construction of a model of the queue specification in the target theorem prover consists
of a prove of a theorem of the form

model : Proposition QueueModel?[QueueState, A](Queue c, Queue constr)

where QueueState is the type of the state space of the model and A is a type parameter.
The records Queue c and Queue constr contain (the user defined) interpretation of the queue
signature.

As I said before an important task of the ccsl compiler is the generation of lemmas. For
every method and constructor assertion the compiler generates one lemma. The lemma for the
assertion q empty looks as follows:

q empty : Lemma
Forall(c : QueueSignature[Self, A], x : Self) : QueueAssert?(c) Implies

ObsEq Lift A Self(c)(top(c)(x), bot) Implies
Forall(a : A) : ObsEq Lift A Self(c)(top(c)(put(c)(x, a)), up(a, x)

70

Let me now discuss attribute declarations and their associated assertions. If the signature of the
class contains attributes, then the compiler generates not only additional method declarations.
It also generates additional assertions that describe the behaviour of the attributes with respect
to the generated update methods. Assume for an example a specification with the following
attribute declarations (where U and V are type parameters):

Attribute
a1 : Self −> Bool;
a2 : [Self, U] −> V;

As update methods the compiler generates the following two method declarations.

set a1 : [Self, Bool] −> Self;
set a2 : [Self, U, V] −> Self;

For each combination of attribute and update method there is an update assertion generated
that describes if and how the attribute changes. In ccsl syntax these assertions would look
as follows.

Assertion SelfVar x : Self
a1 set a1 : Forall (y : Bool) : a1(set a1(x, y)) = y;

a1 set a2 : Forall (u : U, v : V) : a1(set a2(x, u, v)) = a1(x);

a2 set a1 : Forall (y : Bool, u : U) : a2(set a1(x, y), u) = a2(x, u);

a2 set a2 : Forall (u1 : U, u2 : U, v : V) : a2(set a2(x, u1, v), u2) =
IF u1 = u2 Then v Else a2(x, u2);

7. Abstract Data Types

Abstract data types are widely accepted as the right formalism to specify finitely gener-
ated data structures such as lists or trees. Many functional programming languages (e.g.,
SML [MTH91], ocaml [LDG+01], and Haskell [ABB+99, HPF92]) allow the definition of ab-
stract data types. The logic of the theorem provers pvs and isabelle/hol has been extended
with means to specify abstract data types [OS93, BW99].

Although it is possible, it does not make much sense to model abstract data types with
behavioural types. Therefore ccsl contains the possibility to specify abstract data types as
initial algebras. This way, the decision whether to choose an algebraic or a coalgebraic approach
to model a given type is left to the user. Further, it is possible to mix abstract data type

71

7. Abstract Data Types

specifications with coalgebraic class specifications, this leads to iterated specifications, see
Section 8.

For reasons that have been described in the introduction the ccsl compiler accepts cur-
rently only abstract data type specifications without axioms. As a consequence also this report
is restricted to abstract data types. There is no problem with general algebraic specifications.
The extension of ccsl with general algebraic specifications is one of the points that remain to
be done in the future.

Definition 7.1 (ADT) Assume a ground signature Ω. An abstract data type specification is a
finite set Σ of constructor declarations ci : σi where σ is a constructor type. The type variables
occurring in the σi are the type parameters of the abstract data type specification.

Recall from Definition 3.7 (on page 27) that a constructor type is a type expression σ ⇒ Self
such that Self occurs in σ only strictly positive. This restriction in the above definition is
necessary, because initial algebras exist only for certain functors [Gun92, OS93, BW99].

The semantics of abstract data type specifications is given by a collection of initial algebras.

Definition 7.2 Let Σ be an abstract data type specification with n type parameters and k
constructors c1, . . . , ck. Let σΣ = TC(c1) + · · · + TC(ck) denote the combined constructor type
of Σ. A model for Σ is an indexed collection of pairs

(
〈X, a〉U1,...Un

)
Ui∈|Set| such that for each

interpretation U1, . . . , Un of the type variables

JσΣKU1,U1,U2,U2,...,Un,Un(X,X) a // X

is an initial algebra.

7.1. CCSL Syntax for Abstract Data Types

The concrete syntax for abstract data type specifications is similar to that of class specifica-
tions. The keyword ADT indicates an abstract data type.

adtspec ::= BEGIN identifier [parameterlist] : ADT
{| adtsection |}
END identifier

adtsection ::= adtconstructorlist [;]

adtconstructorlist ::= CONSTRUCTOR adtconstructor {| ; adtconstructor |}

adtconstructor ::= identifier [adtaccessors] : type
| identifier [adtaccessors] : type -> type

adtaccessors ::= (identifier {| , identifier |})

72

7.1. CCSL Syntax for Abstract Data Types

Begin tree[A, B : Type] : Adt
Constructor

leaf : B −> Carrier;
node : [Carrier, A, Carrier] −> Carrier

End tree

Figure 12: The abstract data type of binary trees in ccsl

The accessors are syntactic sugar, so let me ignore them for a moment. The set of declared
adt-constructors constitute an abstract data type specification. The compiler checks that the
types are constructor types. Recall, that for this presentation I assume only one special type
Self, whereas the ccsl compiler has two keywords for it, SELF and CARRIER. In abstract data
type specification one has to use the latter one.

From every constructor the compiler derives a recogniser predicate by appending a question
mark (for pvs) or prepending the prefix is (for isabelle). A recogniser holds for an element
of the abstract data type if this element was built with the corresponding constructor.

The optional accessors declare (partial) accessor function. If accessors are given then their
number must match the number of arguments of the constructor and their names must be
unique. Accessors allow one to decompose an element of the abstract data type and extract
the arguments of the constructor with which this element was built. Because accessors are
partial functions, they cannot be formalised in the setting of this report. Nevertheless the
ccsl compiler allows them. The compiler together with the semantics of the theorem provers
pvs and isabelle/hol ensure a correct treatment of these partial functions (I discussed this
issue already in Example 4.2).

Figure 12 shows as an example the abstract data type of binary trees in ccsl syntax.
The compiler does not generate the semantics for abstract data types. It rather outputs an

abstract data type declaration in the syntax of the target theorem prover. Both isabelle/hol
and pvs use an initial semantics for their abstract data types. In isabelle this is implemented
as a conservative extension19 [BW99]; pvs uses an axiomatic approach [OS93].

The simple mapping of ccsl data type definitions to the target theorem prover has one
serious drawback: Inside an abstract data type all type constructors stemming from a class
specification may only be instantiated with constant types. This is because both pvs and
isabelle place restrictions on the types that may be used in a nested recursion (on the
type level) with an abstract data type definition. In principle, nested recursion with (some)
behavioural types could be allowed, see the following Section 8.

The theorem provers pvs and isabelle give different support for their versions of abstract
data types: Recognisers, accessors, and the map combinator are not provided by the data type
19Provided the quick and dirty flag is set to false.

73

7. Abstract Data Types

package of isabelle/hol. More importantly, some notions, which are needed when abstract
data types occur inside coalgebraic class specifications, are not supported in the needed gener-
ality or are not supported at all. For instance neither pvs nor isabelle defines relation lifting
for abstract data types. pvs generates for every abstract data type the combinators every and
map. For an abstract data type in which all type variables occur at strictly positive position the
combinator every coincides with predicate lifting and the combinator map with the morphism
component of the semantics of the data type. If a type variable occurs not strictly positive
then pvs does not generate map. The combinator every is still generated but disregards all
type variables occurring not only strictly positive. So in this case every cannot be used for
predicate lifting.

The ccsl compiler works hard to blur the differences between data type definitions in
pvs and isabelle. It also fixes some of their shortcomings. For isabelle the compiler gener-
ates definitions for recogniser predicates, and accessor functions. For both pvs and isabelle
the compiler generates predicate and relation lifting for the abstract data type as described
in [Hen99] and in the following Section.

In the remainder of this section I show what the ccsl compiler generates for the data type
of trees of Figure 12. For a diversion I show this time what is generated for isabelle/hol.

As first the data type tree is defined:

datatype (’A, ’B) tree =
leaf "’B"

| node "(’A, ’B) tree" "’A" "(’A, ’B) tree"

isabelle/hol data type declarations have an SML like syntax. Different constructors are sepa-
rated with a vertical bar and the argument types follow the name of the constructor. Identifiers
that start with a tick like ’A are free type variables. Instantiations of type constructors are
written in a postfix form. The isabelle type expression (’A, ’B) tree corresponds to tree[A, B]
in pvs. isabelle requires the user to enclose all special syntax from the object logic in double
quotes. The ccsl compiler behaves conservatively and puts double quotes around all critical
entities.

For the definition of functions over data types the isabelle/hol documentation advocates
the primrec feature. However, I found that functions defined with primrec are quite slow to
type check. More importantly, primec is quite difficult to use with nested data types.20 I
therefore decided to base all definitions on a self-defined reduce combinator. This has the
additional advantage that more modules in the ccsl compiler get independent of the target
theorem prover (in pvs the reduce combinator is provided by the system). The disadvantage
is that for isabelle the ccsl compiler has to derive the reduce combinator from the internal
20The problem is that one cannot pass the function being defined by the current primrec into an already defined

(higher-order) function. Therefore, for nested data types, one cannot use the map combinator of the nested
data type.

74

7.1. CCSL Syntax for Abstract Data Types

recursion combinator of isabelle. In the tree example this looks as follows:

constdefs reduce tree :: "(’B => ’Result) =>
(’Result => ’A => ’Result => ’Result) =>
(’A, ’B) tree => ’Result"

"reduce tree leaf fun node fun == %(t :: (’A, ’B) tree) .
tree rec (%(b1 :: ’B) . leaf fun b1)

(%(x1 :: (’A, ’B) tree) (a1 :: ’A) (x2 :: (’A, ’B) tree)
(x3 :: ’Result) (x4 :: ’Result) . node fun x3 a1 x4) t"

In isabelle a constant definition starts with the keyword constdefs, followed by a type an-
notation (on the first three lines) and a string that contains a meta equality (==). The
higher-order function reduce tree takes as argument a tree algebra on ’Result (consisting of two
functions, one for the constructor leaf and one for node). It returns the unique tree–algebra
morphism originating in the initial tree algebra (compare Item reduce in Subsection 8.1 on
page 79). The definition of reduce tree uses isabelle’s internal recursion operator tree rec.
This internal combinator could be paraphrased as strong reduce combinator for the unfolded
data type. The percent sign % is the ascii version of λ in isabelle.

The reduce combinator gives the induction proof principle (sometimes known as primitive
recursion) for trees. It allows one to define recursive functions on trees without doing recursion.
For instance to count the number of nodes in a tree t one can use the following expression:

reduce tree (% (b :: ’B) . 0) (% (l :: nat) (a :: ’A) (r :: % nat) . l + r +1) t

The data type package of isabelle/hol does neither provide accessors nor recogniser
predicates. The ccsl compiler generates code to define them. For instance:

constdefs leaf acc :: "(’A, ’B) tree => ’B"
"leaf acc t == case t of

leaf b => b
| node p0 a p1 => arbitrary"

In case one applies leaf acc to a node one gets arbitrary as result, where arbitrary is special
constant that inhabits every type.21

The recognisers can be easily defined with reduce, as example I show the recogniser for
leafs:

constdefs is leaf :: "(’A, ’B) tree => bool"
"is leaf == % (t :: (’A, ’B) tree) .

reduce tree (% (b :: ’B) . True)
(% (x1 :: bool) (a :: ’A) (x2 :: bool) . False) t"

21Recall that the semantics of isabelle/hol is based on an universe of nonempty sets. So arbitrary can be
obtained by applying the Axiom of Choice to every type.

75

8. Iterated Specifications

There are three more definitions that are generated for every abstract data type: The map
combinator, predicate lifting and relation lifting. Here I show only the map combinator and
predicate lifting. Relation lifting for abstract data types is quite difficult to understand. It is
explained in Item 3 of Remark 8.1 (on page 82f).

constdefs treeMap :: "(’A1 => ’A2) => (’B1 => ’B2) =>
(’A1, ’B1) tree => (’A2, ’B2) tree"

"treeMap f g == % (t :: (’A1, ’B1) tree) .
reduce tree (% (b :: ’B1) . leaf (g b))

(% (p0 :: (’A2, ’B2) tree) (a :: ’A1)
(p1 :: (’A2, ’B2) tree) . node p0 (f a) p1) t"

The map combinator takes two functions as arguments, one for transforming the labels in the
leafs and one for the labels of the nodes and applies both functions recursively in the whole
tree.

constdefs
Everytree :: "(’A => bool) => (’B => bool) => (’A, ’B) tree => bool"
"Everytree P Q ==

reduce tree (% (b :: ’B) . Q b)
(% (x1 :: bool) (a :: ’A) (x2 :: bool) .

(x1 = True) & (P a) & (x2 = True))"

Predicate lifting takes two argument predicates, one on the type parameter A and one on B.
It applies these predicates in the whole tree and returns true if all labels are in the supplied
predicates (the ampersand & denotes conjunction in isabelle).

8. Iterated Specifications

In analogy with the iterated data types of [Hen99] and [HJ97] I use the informal term iterated
specification to describe a situation in which a specification Si depends on a specification Sj .
Both involved specifications Si and Sj can be either coalgebraic class specifications or abstract
data type specifications. In a typical example the dependence on Sj comes from the signature
of Si, which may involve a type constructor CSj whose semantics is a distinguished model of
Sj . However, it can also be the case that only some assertion of Si uses a constructor of Sj .
Note that the use of iterated refers to iteration of different induction and coinduction principles
that come into play in the described situation. Iterated does not refer to a mutual recursion
of the specifications Si and Sj . In fact in ccsl the dependency relation between specifications
is always a strict order.

76

Begin list[T : Type] : Adt
Constructor

null : Carrier;
cons(car, cdr) : [T, Carrier] −> Carrier

End list

Begin InfTreeFin[T : Type] : ClassSpec
Method

branch : Self −> List[[T, Self]];
End InfTreeFin

Figure 13: Trees of finite width and (possibly) infinite depth in ccsl (from [Hen99])

An example of an iterated data type (that is an iterated specification without assertions)
is the behavioural data type of trees of (possibly) infinite depth and arbitrary but finite width.
The example appears originally in [Hen99]. Figure 13 shows it in ccsl syntax. The crucial
point here is, that the class specification InfTreeFin involves the type constructor List. This
type constructor and its semantics is defined by the first specification List.

The functors that capture signatures of iterated specifications are usually called data func-
tors. Data functors have been studied in [Jay96, CS92] and also in [HJ97, Hen99, Röß00a,
Röß00b]. The work of Cockett and Spencer led to the categorical programming language
Charity [CF92]. In a sense ccsl can be viewed as the specification language for Chari-
ty. The work of Hensel and Jacobs describes definition and proof principles for iterated data
types under the assumption that suitable initial algebras and final coalgebras do exist in the
base category. Rößiger proves that initial algebras and final coalgebras exist in Set for all
(covariant) data functors. These latter two results are plugged together in this section.

The iterated specifications of ccsl are more general than the iterated data types that have
been considered by Hensel, Jacobs, and Rößiger. Up to my knowledge, there are a number
of open questions related to the semantics of iterated specifications. Therefore, a complete
treatment of iterated specifications is beyond the scope of the present report. The approach
taken here is very pragmatic: Until better solutions are available, ccsl uses predicate lifting
and relation lifting for abstract data types and behavioural types as described in [HJ97, Hen99].
Because of the greater generality of iterated specifications in ccsl, the various liftings are not
always well defined (for instance in case a class contains binary methods). In case they are
not defined certain restrictions are imposed on iterated specifications (via improper ground
signatures).

The first subsection describes the technicalities. The material is taken from [Hen99] and
adopted to the setting of this report. I can only give the definitions here, for the rationale

77

8. Iterated Specifications

behind them I refer the reader to [HJ97] or [Hen99]. The second subsection characterises
those iterated specifications which have a well-defined semantics. The third subsection gives
guidelines on how to ensure consistency for iterated specifications.

8.1. Semantics of Iterated Specifications

The technical means to allow type checking and semantics for iterated specifications are ground
signatures. A ccsl specification consists of a finite list of entities S1,S2, . . . ,Sn, standing one
after each other in one file. Each of the Si is either a ground signature extension, a class
specification, or an abstract data type specification. For each of the Si there is a ground
signature Ωi and a model Mi of it, which are both not explicit in the ccsl source. The first
pair 〈Ω0,M0〉 consists of the empty ground signature (i.e., |Ω0| = ∅ and Ω0σ = ∅) and the
empty model. Each of the Si can define type constructors and constants. These items are
added22 to Ωi and Mi to yield Ωi+1 and Mi+1. Then Ωi+1 is used to type check Si+1 and
Mi+1 is used for the semantics of Si+1. This way a specification has access to (or can use) all
the specifications and all the ground signature extensions that appear before it.

In the following I consider an arbitrary S from the finite list of Si with associated ground
signature Ω and a model M of Ω. For the three possibilities (S is a ground signature, an
abstract data type, or a class specification) I describe which type constructors and constants
are defined by S and what semantics they have. For some of the items a semantics can only
be defined if the model M is proper and/or additional conditions hold. For these items I take
the following approach: I first describe their semantics. If this is well defined, then the corre-
sponding item is defined by S and added to the ground signature. The item stays undefined
(and is not added to the ground signature) otherwise. This way it can happen that the ground
signature Ω′ (or its model) that is build from Ω and S is not proper, despite the fact that Ω
(or its model) is proper. This has the described consequences for subsequent specifications.

The ccsl compiler deviates slightly from what I describe in the following. It generally uses
only one interpretation for any given type variable, see Subsection 3.4.

8.1.1. Ground Signature Extensions

Let S be a ground signature extension. To state the obvious, S defines all items which are
declared in S. The semantics is taken from the environment or from the ccsl source as
described in Subsection 4.

8.1.2. Abstract Data Type Specifications

Let S be an abstract data type specification with k type parameters α1, . . . , αk and n con-
structor declarations c1 : σ1, . . . , cn : σn. Recall from page 35 that the combined constructor
22I disregard name clashes here. In the ccsl compiler later defined items hide earlier ones with the same name

(there is no overloading).

78

8.1. Semantics of Iterated Specifications

type of S is defined as σS = TC(c1) + · · · + TC(cn). Recall also that the special type Self,
which functions in the σi as place holder for the data type being defined, occurs in all the σi

only strictly covariantly. Therefore I drop the contravariant argument, when considering the
semantics of σS . For data type specifications the variance of the type parameters is defined as

Vx(S) def= Vx(σS)

The following list describes what items are defined by the specification S. In the description
I use U to denote an arbitrary interpretation of the type variables α = α1, . . . , αk. For the
interpretation of types positive and negative occurrences of the type variables are interpreted
with different sets. However, for terms every type variable is interpreted by only one set.
So depending on the context U denotes either 2k sets U−

1 , U
+
1 , . . . , U

−
k
, U+

k
or only k sets

U1, . . . , Uk. Further I set FS
U

(X) def= JσSKU (X).

Type Constructor CS Let δU : FS
U

(XU) //XU denote the initial FS
U

algebra. If δU exists for
all interpretations U , then the specification defines the type constructor CS of arity k:

` CS :: [Vα1(S); . . . ;Vαk(S)]

Its semantics is the carrier of the initial algebra:

JCSK(U) = XU

The action on morphisms can be defined via reduce, see below. None of the following
items is defined, if δU does not exist for all U .

Constructors For every constructor declaration ci : σi the specification S defines a constant

α | ∅ ` ci : σi[CS [α] / Self]

where [CS [α] / Self] denotes the substitution of CS [α] for Self in σi. The semantics is

JciKU = δU ◦ κi

where κi is the interpretation injection belonging to ci (compare page 38).

Reduce The (higher-order) function reduce creates the unique algebra morphism out of the
initial JσSK algebra.

α, β | ∅ ` reduceS : (σ1[β / Self]× · · · × σn[β / Self]) ⇒ CS [α] ⇒ β

Let V be the interpretation of β and fix a list of functions f = f1 : Jσ1KU (V), . . . , fn :
JσnKU (V). Note that the copairing [f1, . . . , fn] is then a function with codomain V .

79

8. Iterated Specifications

Now JreduceKU,V (f) is defined as the unique function that makes the following diagram
commute.

FS
U

(XU)
δU //

FS
U

(
JreduceSKU,V (f)

)
�
�
�
�
�

��

XU

JreduceSKU,V (f)
�
�
�
�
�

��
FS

U
(V)

[f1, . . . , fn]
// V

Map The map combinator gives the action of the functor JCSK on morphisms. Recall from
Section 4 that for a proper model M of the ground signature Ω the interpretation of the
σi can be considered as a functor taking 2k+ 1 arguments23 Its action on morphisms is
denoted with JσiKg(f) for suitable functions g and f . For each constructor ci set σ̂i

def=
TC(ci). Let V = V −

1 , V
+
1 , . . . , V

−
k
, V +

k
be another interpretation of the type parameters

α1, . . . , αk and let g = g−1 , g
+
1 , . . . , g

−
k
, g+
k

be a list of functions such that

g−1 : V −
1

//U−
1

g+
1 : U+

1
//V +

1

· · ·
g−
k

: V −
k

//U−
k

g+
k

: U+
k

//V +
k

Then, for proper models M of the ground signature, the semantics of CS is extended to
a functor via

JCSK(g) = JreduceSKU,XV

(
Jc1KV ◦ Jσ̂1Kg(idXV

), . . . , JcnKV ◦ Jσ̂nKg(idXV
)
)

Case Distinction For each constructor ci let σ̂i
def= TC(ci)[CS [α] / Self]. The specification S

defines case distinction as

α, β | ∅ ` caseS :
(
(σ̂1 ⇒ β)× · · · × (σ̂n ⇒ β)

)
⇒ CS [α] ⇒ β

Let V be an interpretation for β, f1, . . . , fn be a suitable vector of functions, and x ∈ XU .
Then

JcaseSKU,V (f1, . . . , fn)(x) =

...

fi(y) if ∃y ∈ Jσ̂iKU . x = δU (κi y)
...

23The contravariant argument for Self is ignored here.

80

8.1. Semantics of Iterated Specifications

Recognisers For each constructor declaration ci : σi the specification S defines the recogniser

α | ∅ ` c?i : CS [α] ⇒ Prop

The semantics is
Jc?iKU (x) = JcaseSKU,bool(f1, . . . , fn)(x)

where fi = λx .> and fj = λx .⊥ for j 6= i.

Predicate Lifting PredCS For predicate lifting consider the following operator for a fixed list
of 2k parameter predicates P .24

Q ⊆ XU
� //

∐
δU

Pred(JσSK)(P ,Q,Q) (4)

If this operator has a least fixed point, then the specification S defines predicate lifting
as

α | ∅ ` PredCS : (α1 ⇒ Prop) ⇒ (α1 ⇒ Prop) ⇒
(α2 ⇒ Prop) ⇒ (α2 ⇒ Prop) ⇒ · · · ⇒

(αk ⇒ Prop) ⇒ (αk ⇒ Prop) ⇒ CS [α1, . . . , αk] ⇒ Prop

Its semantics is the least fixed point of (4).

Relation Lifting RelCS For relation lifting fix 2k parameter relations (such that R+
i ⊆ U+

i ×
V +

i and R−
i ⊆ U−

i × V −
i) and consider the following operator.

S ⊆ XU ×XV
� //

∐
δU×δV

Rel(JσSK)(R,S, S) (5)

If this has a least fixed point, then the specification S defines relation lifting as

α, β | ∅ ` RelCS : (α1 × β1 ⇒ Prop) ⇒ (α1 × β1 ⇒ Prop) ⇒
(α2 × β2 ⇒ Prop) ⇒ (α2 × β2 ⇒ Prop) ⇒ · · · ⇒ (αk × βk ⇒ Prop) ⇒

(αk × βk ⇒ Prop) ⇒ CS [α1, . . . , αk]× CS [β1, . . . , βk] ⇒ Prop

The semantics of RelCS is the least fixed point of (5).

Remark 8.1

24[Hen99] defines this operator as Q ⊆ XU
� // (δU

−1)∗ Pred(· · ·) . However, the equation (f−1)∗ =
∐

f

holds in Pred for isomorphisms f .

81

8. Iterated Specifications

1. In addition to the items above, the ccsl compiler also defines accessor functions. Accessor
functions cannot be correctly typed in the type theory of this report (see the remarks
on this issue in Example 4.2 on page 30). For a constructor c : σ1× · · ·×σm ⇒ Self that
takes m arguments there are m (partial) accessor functions

α | ∅ ` accj
c : CS [α] ⇒ σj

They get semantics either as a partial function or as a dependently typed function via

Jaccj
cKU (x) =

{
yj if ∃y1, . . . , ym . δU (κc(y1, . . . , ym)) = x
undefined otherwise

where κc is the interpretation injection for the constructor c.

2. The semantics of case can be defined via reduce. Consider the following diagram:

FS
U

(XU)

δU

��

FS
U

(precase)
_________ // FS

U
(XU × V)

FS
U

(π1)

��
FS

U
(XU)

〈δU , [f1, . . . , fn]〉

��
XU

precase ____________ // XU × V
π2 // V

By exploiting the arguments f1, . . . , fn one can define an FS
U

algebra on XU × V
(on the right hand side in the preceding diagram). Initiality of δU defines the unique
function precase, which makes the preceding diagram commute. Then one can define
JcaseSKU,V (f1, . . . , fn) = π2 ◦ precase.

3. The predicate lifting for the abstract data type S is defined if the (full) predicate lifting
for JσSK is defined. This is for instance the case, if the ground signature Ω and its model
M are proper. For the relation lifting an analogous statement holds. Both, the predicate
lifting and the relation lifting, are computable functions.25 The definition that I gave on
the preceding pages does not describe an algorithm because I use a fixed point construc-
tion. The theorem provers pvs and isabelle/hol admit such definitions. However, in

25A function is computable if there exists a algorithm (in the form of a Turing machine for instance) that can
compute the function.

82

8.1. Semantics of Iterated Specifications

proofs it is often easier to work with definitions that describe a terminating algorithm
(because then one can turn the definition into a terminating rewrite system). For this
reason the ccsl compiler uses the following —equivalent— definitions for predicate and
relation lifting of abstract data types.

For predicate lifting the ccsl compiler outputs the following (I take the liberty to omit
the technical noise of the U and of J−K):

PredCS (P) = reduceS
(

Pred(Jσ1K) (P , tt, tt), . . . ,Pred(JσnK) (P , tt, tt)
)

Here tt ⊆ bool
def= {>} is the predicate that holds only for true.

The relation lifting for abstract data types is slightly more complicated to define. The idea
is as follows: From an element u ∈ XU one computes a function f ∈ XV ⇒ bool such that
for v ∈ XV one has f v = > if and only if JRelCS KU,V (R)(u, v). As definition mechanism
for functions with domain XU there is only reduce available, therefore one needs an
algebra acting on XV ⇒ bool. This algebra is defined with a particular instantiation of
the operator for relation lifting. Recall from Definition 5.7 (2) that relation lifting is a
function of the following type

Rel(τ)(R,S) : JτKU (Y) × JτKV (X) // bool (∗)

where R is a list of parameter relations Ri ⊆ Ui × Vi and S ⊆ Y × X (I ignore the
contravariant argument relation for Self). Define now

Rel′(τ)(R) : JτKU (X ⇒ bool) × JτKV (X) // bool

Rel′(τ)(R) def= Rel(τ)(R, λf ∈ X ⇒ bool, y ∈ X . f y)

That is, in (∗) one takes Y = X ⇒ bool and uses an S that performs function application.
Now, for any constructor ci : σi ⇒ Self, there is the following function

Relci(R) : JσiKU (XV ⇒ bool) // XV ⇒ bool

Relci(R) def= λf : JσiKU (XV ⇒ bool) . λy : XV .

Jc?iKV (y) ∧ Rel′(JσiK)(R)(f, δV
−1 y)

Here ∧ should be evaluated in a non-strict way: if the recogniser c?i returns false then the
result is false. Otherwise the inverse of the algebra δV delivers something in JσiKV (XV),
as required by Rel′. Note that the Relci form an S algebra on XV ⇒ bool and can
therefore be passed as argument to reduce:

JRelCS KU,V (R)(u, v) = JreduceSKU,XV ⇒bool

(
· · ·Relci(R) · · ·

)
u v

83

8. Iterated Specifications

Begin list[A : Type] : ADT
Constructor

null : Carrier;
cons(car, cdr) : [A, Carrier] −> Carrier

End list

Figure 14: The data type of lists from the ccsl prelude

RelEvery(R: [[U , V] −> bool]) : [[list[U] , list[V]] −> bool] =
Lambda (u: list[U] , v: list[V]) :

reduce[U, [list[V] −> bool]]
(null?[V] ,
Lambda (x: U , y: [list[V] −> bool]) : Lambda (l: list[V]) :

cons?[V](l) And R(x , car[V](l)) And y(cdr[V](l)))
(u)(v)

Figure 15: The relation lifting for lists, generated by the ccsl compiler

This definition yields the least fixed point of 5.

As an example for this mind twisting definition I show in Figure 15 what the ccsl
compiler generates as relation lifting for the abstract data type of lists from Figure 14.
The relation lifting is called RelEvery there and instead of the inverted list algebra the
ccsl compiler uses the two accessors car and cdr. All instantiations are given in square
brackets after the identifier.

Example 8.2 This example shows the items that are defined by the abstract data type spec-
ification of lists from the ccsl prelude. For convenience Figure 14 repeats the ccsl source
code. It defines the type constructor

` list : [(?, 0)]

Its semantics is the functor list : Set //Set that maps every set A to the initial list algebra
[nilA, consA] : 1 +A×A∗ //A∗ , where A∗ is the set of finite words over A. As before I ignore
the argument for the negative occurrences of A.

For a function f : X //Y the action of the functor list(f) : X∗ //Y ∗ (i.e., the map

84

8.1. Semantics of Iterated Specifications

combinator for lists) is defined as

list(f)(nilX) = nilY

list(f)(consX(x, l)) = cons(f x, list(f)(l))

In the context of lists, reduce is sometimes called foldright. For a constant y ∈ Y and a function
g : X × Y //Y it is defined as

reduce(y, g)(nilX) = y

reduce(y, g)(consX(x, l)) = g(x, reduce(y, g)(l))

For a parameter predicate P ⊆ X the predicate lifting Predlist(P) ⊆ X∗ is

Predlist(P)(nilX) = >
Predlist(P)(consX(x, l)) = P x ∧ Predlist(P)(l)

For relation lifting one has to stare for a while at Figure 15 to see that it is equivalent with
the following characterisation (for R ⊆ U × V)

Rellist(R)(l1, l2) =

> if l1 = nilU ∧ l2 = nilV

R(u, v) ∧ Rellist(R)(l′1, l
′
2)

if l1 = consU (u, l′1)
∧ l2 = consV (v, l′2)

⊥ otherwise �

8.1.3. Coalgebraic Class Specifications

I turn now to the description of the items that class specifications contribute to the current
ground signature.

Let S be a class specification over the ground signature Ω with a model M of Ω. Assume
that the signature of S contains k type parameters α = α1, . . . , αk, n method declarations
mi : τi, and m constructor declarations cj : σj . Subsection 5 defines (on page 35) the combined
method type of S as τS = TM (σ1) × · · · × TM (σn) and the combined constructor type σS =
TC(σ1) + · · ·+ TC(σm). The variance of the type parameters and of Self in S is defined as

Vx(S) def= Vx(τS)

What items are defined by S in the following depends (among other things) on whether S is
processed with final or loose semantics. Loose semantics is the default, final semantics can be
chosen with the keyword FINAL, see Subsection 5.2. Like on the preceding pages I use U to
denote an arbitrary interpretation of the type variables α and also FS

U
(Y,X) = JτSKU (Y,X).

85

8. Iterated Specifications

Type Constructor CS The specification S defines the type constructor CS of arity k:

` CS :: [Vα1(S); . . . ;Vαk(S)]

The semantics of CS should be a functor taking 2k arguments (compare Definition 3.5
on page 23). However, in many cases this functor is not fully defined. The morphism
component of JCSK is only defined under the following two conditions: The specification S
must request final semantics and S must not contain any assertions. If the specification S
does contain assertions then the object component of JCSK is only defined if the respective
arguments for positive and negative occurrences are equal, that is if U−

i = U+
i , regardless

whether final or loose semantics is used. In the following I simply state the definitions
without repeating these side conditions again.

For final semantics let εU : XU
//FS

U
(XU , XU) denote the final FS

U
coalgebra satisfying

the assertions of S.26 For every possible U choose δU such that (〈XU , εU , δU 〉)U is a model
of S.

For loose semantics choose an arbitrary model (〈XU , εU , δU 〉)U of S.

Then
JCSK(U) = XU

If the specification S contains no assertions and if non of the αi has mixed variance, then
for final semantics the mapping JCSK is extended to a functor, see Item Map below.

Methods For each method declaration mi : τi the specification S defines a symbol

α | ∅ ` mi : τi[CS [α] / Self]

Note that τi is a method type, so it can be decomposed into τi = (Self × τ ′i) ⇒ τ ′′i . The
semantics of mi is (as defined in Definition 6.3):

JmiKU = λx : XU , p : Jτ ′iKU (XU , XU) . πi(εU (x)) (p)

Here πi is the interpretation projection belonging to the method mi (see page 38).

Constructors For each constructor declaration cj : σj the specification S defines a symbol

α | ∅ ` cj : σj [CS [α] / Self]

By definition σj is a constant constructor type, so σj = σ′j ⇒ Self. Now

JcjKU = δU ◦ κj

26Note that such εU might exist, even in case where there is no final coalgebra for FS
U

.

86

8.1. Semantics of Iterated Specifications

Coreduce If S is processed with final semantics then there is a (higher-order) function coreduce
(sometimes also called unfold) that creates the unique morphism into the final coalgebra.

α, β | ∅ ` coreduceS : (τ1[β / Self]× · · · × τn[β / Self]) ⇒ β ⇒ CS [α]

For the semantics fix an interpretation V of β and let f = f1, . . . , fn be a list of functions
such that fi : JτiKU (V, V). With some shuffling one can transform the fi into a FS

U

coalgebra on state space V , denoted with 〈f〉. The semantic of coreduceS is only defined
for those fi for which 〈f〉 fulfils the method assertions of S. If this is the case then
JcoreduceKU,V (f1, . . . , fn) is the unique function that lets the following diagram commute.

V
JcoreduceSKU,V (f)

〈f〉
��

__________________ // XU

εU
��

FS
U

(V, V)

FS
U

(V, coreduceSKU,V (f)) MMMMMMM

&&

FS
U

(X,X)

FS
U

(JcoreduceSKU,V (f), X)q q q q q q q

xx
FS

U
(V,X)

Map For final semantics the morphism part of JCSK is defined under the following conditions:
First, the model M of the ground signature must be proper. Second S must not contain
any assertions.

If these conditions are met, the interpretation of the method types τi can be regarded as
a functor taking 2k+ 2 arguments, whose morphism part is denoted with JτiKg(f−, f+).
The morphism part of JCSK can now be defined via coreduce: Fix a second interpretations
for the type parameters V = V −

1 , V
+
1 , . . . , V

−
k
, V +

k
and assume a vector of functions

g−1 : U−
1

//V −
1

g+
1 : V +

1
//U+

1

· · ·
g−
k

: U−
k

//V −
k

g+
k

: U+
k

//V +
k

and set g = g−1 , g
+
1 , . . . , g

−
k
, g+
k

. Then

JCSK(g) = JcoreduceSKU,XV

(
· · · JτiKg(idXV

, idXV
)
(
JmiKV

)
· · ·
)

Invariant Recogniser The invariant recogniser for S is a functional that takes a signature
model of S and a predicate on the state space of that signature model as arguments.

87

8. Iterated Specifications

It returns true if the predicate is an invariant (for the signature model) according to
Definition 5.10 (1). The invariant recogniser is defined whenever the ground signature Ω
is proper. Its type is as follows.

α, β | ∅ ` invariantS : (τ1[β / Self]× · · · × τn[β / Self]) ⇒
(β ⇒ Prop) ⇒ Prop

If 〈class〉 is the name of S in the ccsl source code then the ccsl compiler generates
the identifier 〈class〉 class invariant? for the invariant recogniser.

Bisimulation Recogniser The bisimulation recogniser takes two signature models and a rela-
tion as arguments. It returns true if the relation is a bisimulation according to Defini-
tion 5.10 (3). The type of the bisimulation recogniser is

α, β, γ | ∅ ` bisimulationS : (τ1[β / Self]× · · · × τn[β / Self]) ⇒
(τ1[γ / Self]× · · · × τn[γ / Self]) ⇒ (β × γ ⇒ Prop) ⇒ Prop

The compiler uses 〈class〉 class bisimulation? as identifier for bisimulationS .

Morphism Recogniser The morphism recogniser returns true for functions that are coalgebra
morphisms. Its type is

α, β, γ | ∅ ` morphismS : (τ1[β / Self]× · · · × τn[β / Self]) ⇒
(τ1[γ / Self]× · · · × τn[γ / Self]) ⇒ (β ⇒ γ) ⇒ Prop

The ccsl compiler generates the name 〈class〉 class morphism? for it.

The ccsl compiler treats the three recognisers for invariants, bisimulations, and mor-
phisms special. They are added to the ground signature after processing the signature
of S such that one can use these recognisers in method and constructor assertions.

Predicate Lifting PredCS For predicate lifting consider the following operator

Q ⊆ XU
� // ε∗

U
Pred(JτSK)(P ,>XU

, Q) (6)

where P = P−
1 , P

+
1 , . . . , P

−
k
, P+

k
are 2k parameter predicates. If (6) has a greatest fixed

point for all parameter predicates then the specification S defines the constant for pred-
icate lifting as

α | ∅ ` PredCS : (α1 ⇒ Prop) ⇒ (α1 ⇒ Prop) ⇒
(α2 ⇒ Prop) ⇒ (α2 ⇒ Prop) ⇒ · · · ⇒

(αk ⇒ Prop) ⇒ (αk ⇒ Prop) ⇒ CS [α] ⇒ Prop

The semantics of PredCS is the greatest fixed point of (6).

88

8.1. Semantics of Iterated Specifications

Begin Sequence[A : Type] : ClassSpec
Method

next : Self −> Lift[[A,Self]];
End Sequence

Figure 16: Possibly infinite queues in ccsl

Relation Lifting RelCS For relation lifting consider the following operator for a suitable list
of parameter relations R (with R+

i ⊆ U+
i × V +

i and R−
i ⊆ U−

i × V −
i):

S ⊆ XU ×XV
� // (ε∗

U
× ε∗

V
) Rel(JτSK)(R,S, S) (7)

If it has a greatest fixed point then there is a constant for relation lifting of the following
type

α, β | ∅ ` RelCS : (α1 × β1 ⇒ Prop) ⇒ (α1 × β1 ⇒ Prop) ⇒
(α2 × β2 ⇒ Prop) ⇒ (α2 × β2 ⇒ Prop) ⇒ · · · ⇒ (αk × βk ⇒ Prop) ⇒

(αk × βk ⇒ Prop) ⇒ CS [α]× CS [β] ⇒ Prop

Its semantics is the greatest fixed point of (7).

In general, predicate and relation lifting for class specifications is only semi decidable.27

So it is impossible to give an algorithmic description for the liftings of class specification. The
ccsl compiler outputs definitions that rely on a the Knaster/Tarski characterisation of fixed
points in complete lattices [Tar55].

Example 8.3 The queue example is not well-suited for illustration here because its type
parameter occurs with mixed variance, so for the queue specification not all items are fully
defined. Let me therefore consider possibly infinite sequences. Its rather short ccsl version is
in Figure 16.

The sequence signature contains one type parameter occurring strictly covariant, therefore

` Sequence :: [(?, 0)]

The final model for sequences is described in Subsection 2.6.7 in [Tew02b]. The interpreta-
tion for the type constructor Sequence is defined for all interpretations U−, U+ of the type
27A predicate P is semi decidable if there exists an algorithm with the following properties. If the algorithm

gets x ∈ P as input then it terminates with result
”
yes“. On an input x /∈ P it terminates with

”
no“ or

runs forever, see [U. 97]. In particular the characteristic function of a semi decidable predicate cannot be
computable.

89

8. Iterated Specifications

parameter A. However, since the type parameter A has positive variance, the argument U− is
ignored:

JSequenceK(U−, U+) = Seq[U+]
= {f : N //Lift[U+] | ∀n ∈ N . f(n) = bot implies ∀m > n . f(m) = bot}

where bot is the constant associated with the abstract data type Lift, see Example 4.2 (on
page 29). In the following I silently ignore the argument for the negative occurrences of the
type parameter A.

The interpretation of coreduce is given by the unique function ! into the final sequence
coalgebra. Let g be a function Y //U × Y + 1 , then h = JcoreduceKU,Y (g) : Y //Seq[U] is
the unique function for which the following equation holds:

JnextKU (h y) =
{

bot if g y = bot
up(u, h y′) if g y = up(u, y′)

(As an alternative to the definition of coreduce for a concrete representation of the final model
one can use the preceding equation with a lazy evaluation scheme as the definition of coreduce.
This is in fact what the experimental programming language Charity [CF92] does.)

Let me turn to the morphism part of JSequenceK now. Assume a function g : V //U . Then
JSequenceK(g) is a function Seq[V] //Seq[U] , which is defined as

JSequenceK(g) f n =
{

bot if f n = bot
up(g v) if f n = up v

The predicate lifting PredSequence(P), for a parameter predicate P ⊆ U , is the greatest predicate
Q with the following property

Q(f) if and only if

{
JnextKU (f) = ⊥ or

JnextKU (f) = up(u, f ′) ∧ P (u) ∧ Q(f ′)

for all f ∈ Seq[U]. It is easy to see that

PredSequence(P)(f) if and only if ∀n . f n = up(u) implies P u

The relation lifting RelSequence(R), for a parameter relation R ⊆ U × V , is the greatest
relation S ⊆ Seq[U]× Seq[V] such that

S(f, g) if and only if

JnextKU (f) = ⊥ ∧ JnextKV (g) = ⊥ or

JnextKU (f) = up(u, f ′) ∧ JnextKV (g) = up(v, g′)
∧ R(u, v) ∧ S(f ′, g′)

Again, for the concrete final model, it is easy to see that

RelSequence(R)(f, g) if and only if ∀n .
{
f n = g n = ⊥ or
f n = up(u) ∧ g n = up(v) ∧ R(u, v) �

90

8.2. Iterated Specifications for Polynomial Functors

8.2. Iterated Specifications for Polynomial Functors

The general case of iterated specifications is not completely understood yet. For instance,
it is unclear how to get a functorial semantics of the queue specification from Example 6.15.
Further, the case where iterated specifications contain class specifications with binary methods
has not been investigated. Only the case of polynomial functors has been investigated in [HJ97,
Hen99, Röß00b]. The result is the following theorem.

Theorem 8.4 Let 〈Si,Ωi,Mi〉i≤n be a finite list of triples, where each Si is either a ground
signature extension, a coalgebraic class specification, or an abstract data type specification, and
where the Ωi and the Mi are constructed as described on the preceding pages. Assume that all
the Si comply with the following conditions:

• If Si is a ground signature extension, then Si and its model are proper. Further, all type
constructors of Si are type constants (i.e., have arity zero).

• If Si is a coalgebraic class specification, then

– all its type parameters have strictly positive variance,

– all its method types are polynomial,

– it specifies final semantics via the keyword FINAL,

– if Si contains assertions then all Sj with j > i use the type constructor CSi only
with constant arguments,

– all method assertions and all constructor assertions of Si are invariant with respect
to behavioural equality,

– Si is consistent.

• If Si is an abstract data type specification, then all its type parameters have strictly
positive variance.

If these conditions hold then all Ωi and all Mi are proper with one exception: The morphism
component of some class specifications might be undefined. In particular, there exist initial
models for all data type specifications and final models for all class specifications among the
Si.

Further the following two technical conditions are fulfilled for all type constructors C: The
interpretation of the relation lifting RelC is fibred (over the interpretation of C) and it commutes
with equality.

Before I can tackle the proof I have to generalise a few results from Chapter 3 of [Tew02b].
For the following two lemmas let M be a proper model of a proper ground signature Ω such
that all relation liftings in M are fibred and commute with equality.

91

8. Iterated Specifications

Lemma 8.5 Let τ be a polynomial type over Ω. Then the relation lifting of τ is fibred and
commutes with equality.

Proof By induction on the structure of types. �

Lemma 8.6 Let τ be a polynomial type over Ω. Then τ coalgebra morphisms are functional
bisimulations.

Proof Follows from fibredness of the relation lifting of τ . �

Proof (of Theorem 8.4) The proof goes by induction on i and coalesces Proposition 6.18
of this report with the results of Chapter 4 of [Hen99] and Chapter 6 of [Röß00b]. For i = 0
the proposition holds trivially, because Ω0 is the empty ground signature and M0 the empty
model. In the induction step there are three possibilities:

• If Si is a ground signature extension, then the assumptions on ground signatures guar-
antees that Ωi and Mi are proper. The relation lifting of the type constants in Si fulfils
the technical conditions trivially, because the relation lifting for constants takes no ar-
guments.

• Let Si be a coalgebraic class specification over signature Σ with combined method type τ .
All type constructors in Ωi−1 are either constants, least fixed points (stemming from ab-
stract data type specifications), or greatest fixed points (stemming from coalgebraic class
specifications). Therefore the semantics of τ is a data functor in the sense of Rößiger and
Hensel. Rößiger’s Lemma 6.2.7 gives the final τ coalgebra as a set of labelled elementary
trees.

If Si does not contains any assertions then its semantics is fully defined (including the
morphism component).

In case Si does contain assertions then, by Lemma 8.6, τ coalgebra morphisms preserve
the validity of the method assertions of Si and we can construct the final model of Si

as in Proposition 6.18. This gives the semantics of any constant instantiation of Si in
subsequent specifications. The morphism component of the semantics of Si is not used
and stays undefined.

The proof of this case is finished with Hensel’s results: His Theorem 4.8 proves the
existence of predicate and relation lifting, Proposition 4.9 shows that relation lifting is
fibred, and Lemma 4.22 that it commutes with equality.

• Let Si be an algebraic class specification with combined constructor type σ. Again the
semantics of σ is a data functor and the initial σ algebra exists by Rößiger’s Lemma 6.2.6.
Then Hensel’s Theorem 4.8 shows that predicate and relation lifting for Si exist, Propo-
sition 4.9 shows that relation lifting is fibred, and by Lemma 4.18 it commutes with
equality. �

92

8.3. Using CCSL consistently

In this subsection I combined results from [HJ97] and [Röß00b] to characterise the fragment
of ccsl for which (at the time of writing) the semantics is well defined. The ccsl compiler
provides the -pedantic switch (see Subsection 10.9 on page 108) for checking whether a
specification lies within the well defined fragment of ccsl.

Note that even the simple queue specification from Figure 11 does not fulfil the assumptions
of the preceding theorem because it has a type parameter with mixed variance. This shows
that there is still a need for more general results on the existence of initial algebras and final
coalgebras.

8.3. Using CCSL consistently

The preceding theorem 8.4 proves that the semantics of ccsl is well defined for polynomial
functors and their iterations. As long as one stays in this fragment one can only introduce
inconsistencies by writing an inconsistent specification. Interesting examples lead often beyond
the assumptions of Theorem 8.4: Already the queue specification contains a contravariant type
variable and does therefore not fit into the preceding theorem.

To cope with the general situation, the ccsl compiler is very carefully constructed such
that a few guide lines suffice to ensure consistency. For instance, when the ccsl compiler
generates the relation lifting of a class specification it uses a greatest fixed point construction
in the target theorem prover. This way one has to prove in the theorem prover that the greatest
fixed point does indeed exists before one can use the relation lifting. Further the compiler does
only generate those items of the semantics that are well defined. Assume for example a class
specification S that depends on a class specification S ′, where S ′ contains a type parameter
with mixed variance. In this case the compiler does not generate the definition of coalgebra
morphism for the signature of S.

The only dangerous point is the semantics of the type constructors for coalgebraic class
specifications. It does not make sense to use Rößiger’s construction in conjunction with Propo-
sition 6.18 to built the final model of a class specification in the target theorem prover. Rößiger’s
construction is far too complicated for this purpose. Therefore, for the semantics of class speci-
fications, the compiler generates a new type and a few axioms. This can lead to inconsistencies,
if the class specification has no model (for loose semantics) or if it does not have a final model
(for final semantics).

Therefore the golden rule for using ccsl consistently is

If S is a class specification processed with loose semantics: Do not proceed until
you have constructed a model of S in the target theorem prover.

If S is processed with final semantics, then do not proceed until you have con-
structed the final model of S.

If this does not give enough security, then one can use the compiler switch -pedantic. It
causes the compiler to accept only those source files that fulfil the assumptions of Theorem 8.4

93

9. CCSL and Object Orientation

(see Subsection 10.9 for the user interface of the ccsl compiler).

9. CCSL and Object Orientation

In this section I investigate the relation of ccsl to the concept object orientation. Chapter 2
of [Mey97] lists 29 criteria of object orientation. Depending on personal preferences and the
interpretation of these criteria one can argue whether ccsl fulfils more criteria than, for
instance, Java. The main difference is that ccsl is a specification language. So some of the
criteria make no sense at all for ccsl. Consider for instance dynamic binding (often called late
binding). When a method is called for a specific object, then the method body corresponding
to the actual type of the object (in contrast to the static type of the identifier that refers to
the object) should be executed. Method declarations in ccsl have no method bodies. Further
it is unclear what execution should mean for ccsl. So the term dynamic binding does not
apply to ccsl (and not to specification languages in general).

Based on this illustration I consider the question whether ccsl is object oriented as irrel-
evant. The term object-orientation does apply to software construction systems, it does not
apply to a single specification language. So ccsl is not an object-oriented specification lan-
guage. However, I claim that ccsl is a specification language for object-oriented programming.
A ccsl specification is organised as a series of class and abstract data type specifications. Each
class specification contains a number of method declarations, whose behaviour is specified to-
gether. This perfectly matches the view of object-oriented programming, where software is
organised in classes. However, object orientation consists of more than just the concept of
classes.

In the past ccsl has sometimes been criticised for the lack of a particular object-oriented
feature. It would indeed be possible to make ccsl more object-oriented in the sense of providing
additional syntax for a specific object-oriented feature and including it into the semantics.
However, even for key features of object orientation there is no consensus among the object-
oriented community on how to do it right. Witness for this are programming languages in
the field, for instance C++, Java and Eiffel, which are quite different in their view on object
orientation. An attempt to make ccsl more object oriented would necessarily specialise ccsl
from a general specification language for object orientation to a specification language for a
specific programming language. While it is an interesting challenge in its own to design, for
instance, a specification language for Java, the aim of this work was to create a specification
language that is independent of a specific programming language. As a result syntax and
semantic of ccsl are relatively simple.

In this section I discuss some design choices that have been made for ccsl and compare it
with the choices of the programming languages ocaml, Eiffel, C++, and Java. The information
about these languages has been taken from [LDG+01, Mey92, Mey97, Str97] and [GJS96],
respectively. This section is necessarily more informal in style. The arguments in favour of

94

9.1. Inheritance

or against a particular decision are often of similar strength, the decision depends then on
personal preferences.

The following subsection shed light on the relation of ccsl with inheritance (Subsec-
tion 9.1), subtyping (Subsection 9.2), multiple inheritance (9.3), and overriding and dynamic
binding (9.4).

9.1. Inheritance

Inheritance allows one to derive an implementation for a class heir from a class parent without
actually copying the source code of parent. In this case the class heir inherits from class parent.
Equivalently one says that heir is a descendent of parent or that parent is an ancestor of
heir. Inheritance is a key concept of object orientation. For ccsl inheritance is important
in two ways. First, it would be nice if a specification for both classes heir and parent has a
similar structure. It should consist of a class specification SP for the class parent and a class
specification SH for the class heir such that SH is derived from SP . Second, it is desirable that
this derivation at the specification level does not involve textual copying of SP .

The first point is an abstract property of the involved specifications, it is covered by the
notion of subspecification (Definition 6.16). The second point is a syntactic feature of ccsl
that is independent from the notion of coalgebraic specification.

Object-oriented programming languages differ with respect to whether inheritance propa-
gates constructors or not. Let us consider two classes heir and parent in different programming
languages. Let parent be an ancestor of heir, let parent contain a constructor c, and assume that
heir does not override or redefine c. In C++ the constructor c is inherited by heir and if it is
called to initialise an object of heir the additional instance variables of heir stay uninitialised,
possibly containing random data. In Java and in ocaml the situation is similar, but the prob-
lem with the random data does not occur. The Java runtime system performs an initialisation
of all instance variables with default values for their respective type. In ocaml variables can
only be introduced by a let–binding, which at the same time provides an initialisation for the
variable. This applies also to record fields and instance variables.

On a conceptual level constructors are used to initialise newly created objects and to
establish invariants that are necessary for the correct behaviour of the methods. An inherited
constructor can achieve this only in very special cases. Similar considerations lead in [Mey97]
to the following design decision: All features (in Eiffel methods are called features) of a class are
inherited. The creation features (the Eiffel term for constructors) of a parent class loose their
special status during inheritance. So it is not possible to use a creation feature of the parent
class for initialisation (unless the derived class declares it as creation feature again). For ccsl
I adopt the same point of view. Therefore the definitions of subsignature and subspecification
(compare Definitions 5.3 and 6.16) neglect constructor declarations and creation conditions.

The concrete syntax of ccsl contains an inheritance clause with which it is possible to
build a subsignature hierarchy without copying. The syntax is as follows.

95

9. CCSL and Object Orientation

inheritsection ::= INHERIT FROM ancestor {| , ancestor |}

ancestor ::= identifier [argumentlist]
[RENAMING renaming {| AND renaming |}]

renaming ::= identifier AS identifier

An inheritance clause has the following effect: First the type parameters of the ancestor are
instantiated with the provided type expressions. Then the instantiated attribute and method
declarations are added (disjointly) to the current class together with all method assertions. If
an attribute or method identifier of a parent class occurs already in the heir, then it is renamed
automatically. The user can rename attributes and methods himself with RENAMING’s in order
to prevent unintended name clashes. The ccsl compiler takes care that, if a renaming occurs,
the inherited method assertions refer to the inherited methods.

9.2. Subtyping

A second key concept of object orientation is that one can pass an object o into an environment
which expects only a subset of the methods that are available for o. This idea is formalised
by enriching the type system with a subtype relation. Intuitively a type σ is a subtype of τ
(alternatively τ is a supertype of σ), denoted by σ ≤ τ , if it is safe to pass an inhabitant of
σ to a function that has domain τ . Type systems for object orientation are usually equipped
with a subtype relation, see for instance [PT94, CW85, AC96, Cas97]

A language has implicit subtyping if the programmer is not required to insert a type
conversion when he passes an object to an environment that expects a supertype. The languages
C++, Eiffel, and Java do have implicit subtyping. In ocaml the types for objects are modelled
with parametric polymorphism involving an anonymous type variable (often called the row
variable). One of the consequences is that in ocaml one has to use explicit subtyping . This
means that the programmer has to insert a type conversion into the ocaml source code at
each point where an object is passed into a function that expects an object of a different class.
One can argue that explicit subtyping has not much to do with subtyping, because a type
conversion that converts objects of a subtype σ to a supertype τ can be seen as a function
σ //τ , so that no subtype relation is required at all. One can also consider implicit subtyping
as an additional feature that is provided by the compiler, which automatically inserts a type
conversion at every point where types do not match. Indeed, such behaviour is specified for
Java (compare §5 in [GJS96]).

ccsl has a semantics in set theory. There, types are represented by sets and implicit
subtyping is provided by the subset relation. However, the subset relation is far to restrictive,
for instance M × N 6⊆ M in general, so ccsl and its semantics cannot provide implicit
subtyping.

The subtype relation is often confused with the inheritance relation. In [CHC90] it is shown

96

9.3. Multiple Inheritance

that both relations are independent. The programming language ocaml adopts this point of
view: It is an easy exercise to write three independent ocaml programs, each containing two
classes a and b, that have the following properties. In the first program b inherits from a but
a is a subtype of b. In the second program b inherits from a and a and b are not related by
subtyping. Finally in the third program b is a subtype of a but neither a inherits from b nor
b inherits from a.

In practice software is structured in an inheritance hierarchy and it is often desirable to
identify subtyping and inheritance as much as possible. Moreover, understanding a subtype
relation is a difficult challenge, whereas understanding an inheritance relation is relatively
simple. Therefore many languages identify subtyping and inheritance at the price of loosing
(static) type safety. Examples are C++, Java, and Eiffel.

In an object-oriented programming language a class usually gives rise to a type, the type
of objects of that class. As a consequence all objects that belong to one class have an uni-
form structure. In ccsl there is the notion of class specifications and of models of that class
specification. One class specification can have different models. The state space of two such
models can have different structure. Consider for instance the model of the queue signature in
Example 5.6. There I used pairs of natural numbers and functions as state space. There are
models of this signature in which the state space is a set of functions, in other models it is a
set of lists. There is no uniform type for the state space of all models of one class. So for a
function that models explicit or implicit subtyping it is not clear what codomain this function
should have. For this reason it does not make sense to require that ccsl models implicit or
explicit subtyping. The user of ccsl who constructs the models has the choice: He can build
the models in a way such that the state spaces are in a subset relation. Alternatively he can
provide conversion functions that model explicit subtyping.

Certain conversion functions are always provided through the structural properties of coal-
gebraic class specifications. Consider a model M = 〈X, c, a〉 of a specification S. The subsig-
nature projection πΣ′ that belongs to a subspecification S ′ ≤ S yields a coalgebra πΣ′ ◦ c that
fulfils the assertions of S ′, so in a sense, it converts objects that fulfil the specification S into
objects that fulfil the method assertions of S ′. Note that it might be impossible to find an
algebra a′ such that 〈X,πΣ′ ◦ c, a′〉 is a model of S ′. This happens because the definition of
subspecification and of subsignature put no constraints on constructors and creation condi-
tions. [Jac96] suggests to use final semantics, then coreduceS′(πΣ′ ◦ c) maps objects in X to
the canonical model of S ′.

9.3. Multiple Inheritance

The programming languages Eiffel, C++, and ocaml allow multiple inheritance. And so does
ccsl. Multiple inheritance means that a given class can inherit from multiple ancestors. In
particular it is possible that a given ancestor is inherited twice or more times via different
paths. This is called repeated inheritance. The question is, if an object of the heir should

97

9. CCSL and Object Orientation

contain the instance variables (and the methods) of a repeated ancestor once (the repeated
ancestor is shared) or several times (the repeated ancestor is not shared). There is no general
answer, because there exist examples where sharing has advantages over non-sharing and vice
versa. In ocaml common ancestors are never shared (the last copy hides and overrides all
previous ones). In C++ the user has the choice via declaring the ancestor class as virtual or
not. Eiffel solves the problem via its resolving of name clashes: Features that have the same
name are shared (if certain consistency requirements are met), features that have different
names are not shared. Java has the simplest answer to this question: it supports only single
inheritance.

In ccsl the question is a bit more difficult, because usually the ancestors are parametric
in some type variables. So in order to decide whether a given class is inherited twice it is
necessary to have an equality relation on types. On the one hand, if ccsl would allow sharing
of common ancestors one would need an appropriate equality relation on types. Besides that
additional syntax would be necessary to let the user decide whether he or she wants sharing
in a particular case or not. On the other hand even if in ccsl repeatedly inherited classes are
never shared, an user can easily enforce sharing by an assertion

〈path to first copy〉(x) = 〈path to second copy〉(x)

where 〈path to . . . 〉 is a suitable combination of subsignature projections.
Under these considerations it seems best to opt for the second alternative: If a class spec-

ification is repeatedly inherited in ccsl its method declarations and assertions are included
multiple times. Name clashes (one identifier refers ambiguously to more than one declaration)
cannot occur, because the semantics of the inherit section is defined via disjoint union. The
ccsl compiler automatically renames declarations if otherwise a name clash would occur.

9.4. Overriding and Dynamic Binding

Overriding describes the technique to give a new definition for a method that is inherited from
an ancestor class. In [Mey97] Meyer distinguishes dynamic and static binding . The term late
binding is a synonym for dynamic binding.

Dynamic binding means that for overridden methods the executed method body is chosen
according to the dynamic type of the object. For static binding the type of the variable that
holds the object determines the method body that will be executed. Eiffel, Java, and ocaml
offer only dynamic binding. In C++ the user has the choice: dynamic binding takes effect if
the method is declared as virtual in the parent class and if the object is handled via a reference
or a pointer. Otherwise static binding is used.

The first (and more important) question is, how one can model programs in ccsl that
exploit dynamic binding. And, secondly, although Meyer considers static binding as “gravest
possible crime in object-oriented technology”28 it is interesting if one can model static binding
28[Mey92], page 345

98

9.4. Overriding and Dynamic Binding

at the same time. The general answer is that ccsl can model both static and dynamic binding
in different ways. In the following I will show several examples to demonstrate how this can
be done. All these examples are the result of a long discussion with Bart Jacobs about static
and dynamic binding in ccsl.

Consider the following ocaml fragment.

class parent = object

method m = 0

end

class heir = object

inherit parent

method m = 1

end

Class parent contains one method m that returns the integer 0 on every invocation. Class heir
inherits from parent and overrides m to return 1. Consider now the method invocation o#m
where o is a variable of type parent.29 What can we derive about the result of o#m? Certainly
not that the result is 0, because in a run of the program an instance of heir could have been
assigned to o. Assuming that there are no other subtypes of class heir we can derive that the
result is less than 2. To be more precise we need information about the dynamic type of the
object that is held by o.

How can a specification for the classes parent and heir look like? It should be possible to
reason not only about complete programs but also about program fragments. Thus it would be
inadequate to assume that one can derive the dynamic type of every object for every method
call in the verification environment. Let Sparent denote the specification for class parent. There
are at least two points of view: First, the monotone approach considers the specification Sparent

as a specification of the objects of parent and all its descendents. Second, in the nonmonotone
approach Sparent is a specification for the objects of class parent only. Objects of heir do not
need to fulfil the method assertions of Sparent.

The monotone approach is consistent with Eiffel. There the class invariants, the pre- and
the postconditions are a specific conjunction of the corresponding properties of the ancestor
classes.30 The monotone approach is also preferable from a logical point of view. The non-
monotone approach takes the point of view of a programmer who expects an assertion o.m = 0
29ocaml uses o#m instead of o.m to syntactically distinguish method invocation from record selection.
30In Eiffel classes can contain logical properties formulated in a special propositional logic. Via a compiler

switch the user can enable their evaluation at runtime. If one of the properties is violated it yields an
exception (similar to the assert directive in C++). One can specify class invariants (properties that are
checked whenever the control flow enters or leaves a feature of that class), preconditions (properties about
the arguments of a feature), and postconditions (properties about the return value of a feature).

99

9. CCSL and Object Orientation

Begin SParent : ClassSpec
Method

m : Self −> nat;
Assertion Selfvar x : Self

p1 : x.m ≤ 1;
End SParent

Begin SHeir : Classspec
Inherit From SParent
Assertion Selfvar x : Self

h1 : x.m = 1;
End SHeir

Figure 17: The monotone approach to model dynamic binding.

in Sparent because this fits best with the source code of parent. Both approaches are consistent
with the semantics of ccsl as described so far. However to force either one, one had to in-
troduce technical complications into the semantics of ccsl. At the point of writing it is not
clear if the monotone approach is superior to the nonmonotone or vice versa. It seems that the
decision, which approach to prefer, depends very much on the concrete verification problem.
Moreover both approaches are equivalent in the sense that if the semantics of ccsl would be
monotone, then it would be possible to write specification that mimic nonmonotone semantics
and vice versa. As a conclusion from these various considerations it seems best to leave the
semantics of ccsl as simple as possible and let the user decide. In the following I describe how
one can model the monotone and the nonmonotone style of specification in ccsl.

In the monotone style one adds assertions to further restrict the inherited methods. The
resulting specifications are in Figure 17. The specifications SParent and SHeir in Figure 17 are
both consistent. The only problem that remains is that, in case we know that an object of
type parent is assigned to a variable o then, we cannot derive that o#m = 0. To fix this it is
necessary to incorporate the notion of dynamic type into the specification. The simplest way
to do this is to assume that the ground signature contains a type of sufficient cardinality that
models the dynamic types of the objects. For simplicity I use the natural numbers here, and let
0 be the dynamic type of parent and 1 be the dynamic type of heir. The modified specification
that takes dynamic type information into account is in Figure 18.

Now we can derive o#m = 0 provided we have information about the dynamic type of o.
The subsignature projection is linked to dynamic binding because it does not change the value
of dynamic type. In terms of Java it is a widening reference conversion (§5.1.4 in [GJS96]).

100

9.4. Overriding and Dynamic Binding

Begin SParent : ClassSpec
Method

dynamic type : Self −> nat;
m : Self −> nat;

Assertion Selfvar x : Self
p1 : x.m ≤ 1;
p2 : dynamic type(x) = 0 Implies x.m = 0;

Constructor
new parent : Self;

Creation
p3 : dynamic type(new parent) = 0

End SParent

Begin SHeir : ClassSpec
Inherit From SParent
Assertion Selfvar x : Self

h1 : dynamic type(x) = 1 Implies x.m = 1;

Constructor
new heir : Self;

Creation
h2 : dynamic type(new heir) = 1

End SHeir

Figure 18: The monotone approach to model dynamic binding taking dynamic type informa-
tion into account.

The specification in Figure 18 does not model static binding. One can easily fix this
by adding a method declarations static parent : Self ⇒ Self with an additional assertion
dynamic type(static parent(x)) = 0, where x is a variable of type Self.

The modelling of the nonmonotone approach follows ideas from the Java branch in the loop
project, see [HJ00]. An example specification for the nonmonotone approach is in Figure 19.
Note that the specification SHeir is consistent because during inheritance the method dec-
laration m of SParent is renamed, say to parent m, and the inherited assertion p1 refers to
parent m. The important thing to note is that now the subsignature projection corresponds to
static binding. The problem in this approach lies in the modelling of dynamic binding.

Let me fix some notation to explain how this works. Let SP = 〈ΣP , {p1}, ∅〉 be the coal-

101

10. Miscellaneous

Begin SParent : ClassSpec
Method

m : Self −> nat;
Assertion Selfvar x : Self

p1 : x.m = 0;
End SParent

Begin SHeir : ClassSpec
Inherit From SParent
Method

m : Self −> nat;
Assertion Selfvar x : Self

h1 : x.m = 1;
End SHeir

Figure 19: Example for the nonmonotone approach to model dynamic binding.

gebraic specification for SParent and let SH = 〈ΣH , {p′1, h1}, ∅〉 be the specification for SHeir.
A model for SH consists of a state space X together with a coalgebra c : X //N×N where
π1 ◦ c interprets the method parent m and π2 ◦ c interprets m. The subsignature projection
maps c to π1 ◦ c, which is a model for SP . The trick in getting dynamic binding to work lays in
a suitable rearrangement of the methods in the coalgebra. In this simple example we see that
π2 ◦ c is a (signature) model for ΣP in which the interpretation of m provably equals 1. Note
that π2 ◦ c does not fulfil the assertion p1. With sophisticated rearrangements one can model
upcasts that bind some methods statically and some dynamically. This can be used to model
C++, where dynamic binding applies only to methods that are declared as virtual. In [HJ00]
this technique is used to model the widening reference conversion of Java. The special feature
of Java is that this conversion uses dynamic binding for the methods and static binding for
the fields (instance variables).

10. Miscellaneous

This section explains those parts of ccsl that do not fit into one of the previous sections. The
first subsection describes the structure of input files and what the compiler generates. The
following subsections are on the include directive, on lifting requests, importings, infix opera-
tors, (qualified) identifiers, anonymous ground signatures, the prelude, the user interface of the
ccsl compiler, and the implementation and internal structure of the current implementation.

102

10.1. Input and Output Files

10.1. Input and Output Files

A complete ccsl specification consists of a sequence of ground signature extensions, class
specifications, and abstract data type specifications. Such a sequence can be spread over several
files by using the include directive (see the following Subsection). In the following grammar
rules the meta symbol file stands for a complete ccsl specification (and not for the contents
of exactly one file).

file ::= {| declaration |} EOF

declaration ::= classspec
| adtspec
| groundsignature
| typedef
| groundtermdef

The meta symbol typedef is also allowed outside of ground signatures. Together with the
meta symbol groundtermdef it provides a lightweight syntax for ground signature extensions,
see 10.7 below.

The theorem provers isabelle and pvs organise their input material in theories. Each
theory can depend on a number of other theories and contains axioms, type and constant
declarations, and proof goals. For pvs it is important that all the material in one theory
depends on all type parameters of the theory. Therefore pvs theories tend to be rather short.
For pvs one file can contain several theories. In isabelle there is no problem with the type
parameters. However, an isabelle file might contain only one theory.

In this setting the ccsl compiler behaves as follows. For each specification or ground
signature 〈spec〉 in the input file it generates a number of different internal theories. What
theories are precisely generated depends on the properties of the input and on the target
theorem prover. For pvs the compiler dumps one internal theory into one pvs theory. All
theories that belong to the specification 〈spec〉 are put into one file 〈spec〉 basic.pvs. For
isabelle the compiler combines all internal theories into one isabelle theory 〈spec〉 basic
and prints it into the file 〈spec〉 basic.thy.

If a class specification contains a theorem section then the formulas there are translated
into a theory 〈spec〉Theorem and written into a separate file.

For a ground signature 〈gsig〉 that defines types or constants version 2.2 of the ccsl compil-
er generates one theory 〈gsig〉Definition and possibly several theories 〈gsig〉Definitionn,
where n stands for a generated sequence number. The reason for separating the material of
one ground signature into several theories lays in the different treatment of type parameters
in pvs and ccsl. The compiler generates no output for ground signatures that contain only
declarations (i.e., no defining equations).

For an abstract data type specification 〈adt〉 the ccsl compiler can generate the following

103

10. Miscellaneous

theories.

name of theory contents
〈adt〉 data type declaration
〈adt〉Util reduce, accessors, recognisers
〈adt〉Map map combinator
〈adt〉Every (full) predicate lifting
〈adt〉RelLift (full) relation lifting

The theory 〈adt〉Util is only generated for isabelle. The theories for the map combinator
and for the liftings are generated if these notions exist for the adt in question and if the target
theorem prover does not provide them.

The theories that can be generated for a class specification are displayed in the Tables 20
and 21. Again, these theories are only generated, if there contents is defined for the actual
class specification. For instance for class specification for which loose semantics is requested
the theories for the final model and for the map combinator are not generated.

The ccsl compiler generates a fair amount of theorems. Unfortunately, it generates only
very few proofs. For pvs this is no problem. For isabelle the compiler generates sorry31

proofs.

10.2. Include Directive

The ccsl compiler supports a C-preprocessor like include directive:

include ::= #include "string"

The string must be the name of a file, which is literally substituted for the include directive.
The include directive is handled by the lexer, it can appear at any place in the input.

10.3. Lifting Requests

During type checking the ccsl compiler determines all uses of behavioural equality, derives the
types and generates appropriate liftings. However, sometimes an user wishes to use behavioural
equality for types that do not occur in the specification. The ccsl compiler supports these
users via lifting requests. A lifting request consists of a name and a type expression. The
compiler generates the relation lifting for this type and adds a declaration with the given
name in the generated files.
31The Isar command sorry does a fake proof pretending to solve the pending proof goal without further

ado [Wen02].

104

10.3. Lifting Requests

name of theory contents
〈class〉Interface signature declaration
〈class〉Method Id tags for method wise modal operators
〈class〉MethodPredicateLifting (method wise) predicate lifting,

method-wise invariants
〈class〉MethodInvariantRewrite utility lemmas for invariants
〈class〉MethodInvariantInherit link methodwise invariants with super

classes
〈class〉Box (method wise) modal operators
〈class〉BoxInherit link modal operators with super

classes
〈class〉Bisimilarity relation lifting and bisimulations
〈class〉BisimilarityRewrite utility lemmas for bisimulations
〈class〉PublicBisimilarityRewrite utility lemmas for bisimulations with

respect to the public subsignature
〈class〉BisimilarityEquivalence bisimulation on one model,

bisimilarity
〈class〉BisimilarityEqRewrite utility lemmas for bisimilarity
〈class〉PublicBisimilarityEqRewrite utility lemmas for bisimilarity with

respect to the public subsignature
〈class〉ReqObsEq additional liftings
〈class〉Morphism definition of 〈class〉–coalgebra

morphisms
〈class〉MorphismRewrite utility lemmas for morphisms
〈class〉Semantics semantics of the specification
〈class〉Basic utility lemmas for assertions and

creation conditions
〈class〉FullInvariant full predicate lifting and every

combinator
〈class〉FullBisimulation full relation lifting and relevery

combinator
〈class〉Finality properties of the final

〈class〉–coalgebra, coreduce
〈class〉FinalityBisim Bisimilarity on the final model
〈class〉Final axiomatic final model
〈class〉FinalProp axiom for final model

Table 20: Generated theories for a class specification 〈class〉, Part I

105

10. Miscellaneous

name of theory contents
〈class〉MapStruct coalgebra structure for map

combinator
〈class〉Map map combinator
〈class〉Loose axiomatic loose model
〈class〉 top level import theory for 〈class〉
〈class〉Theorem translated theorem section

Table 21: Generated theories for a class specification 〈class〉, Part II

requestsection ::= REQUEST request {| ; request |}

request ::= identifier : type

10.4. Importings

In pvs and in isabelle there must be a strict hierarchy between all theories. One can only
use the identifiers that are declared in the current theory or in one of the theories on which
the current theory depends.

Therefore it is necessary that the ccsl compiler generates the right dependencies between
the theories in its generated output. During parsing the ccsl compiler collects all type con-
structors that are used in each specification and generates the right dependencies. For ground
signatures that declare nonstandard material it is necessary to inform the ccsl compiler where
the material in the ground signature is defined. For special applications it is sometimes neces-
sary to adapt the automatically inferred dependency relation. All this is done via the importing
clause (in pvs the dependency between theories is given by importing statements). Importings
can occur at the beginning of ground signatures or class specifications, or in a section for
assertions or creation conditions.

importing ::= IMPORTING identifier [argumentlist]

For pvs it is sometimes preferable to instantiate parametric theories in importing state-
ments. Therefore it is possible to provide an argument list in the ccsl importing clause. For
isabelle the arguments are suppressed.

10.5. Infix Operators

ccsl permits the declaration of infix operators in ground signatures to allow expressions like
3+4 in assertions. The infix operators of ccsl are very similar to the ones of ocaml [LDG+01]
and use the same implementation technique. Infix operators can be several characters long.
They are sequences of the following characters

106

10.6. Identifiers and Qualified Identifiers

! $ & * + - . / \ : < = > ? @ ^ | ~ #

where the first character is one of

$ & * + - / \ < = > @ ^ | ~ #

Infix operators are grouped into precedence levels according to their first characters. Associa-
tivity is fixed and depends also on the first characters. Operators starting with ** have the
highest precedence. These operators are right associative. On the next precedence level are
the operators which have *, / or \ as first character, followed by those with + or -, followed
by the operators starting with @, ^, or #. All these operators are left associative. On the least
precedence level are the operators starting with =, ~, <, >, |, &, or $. They are non-associative.

Infix operators must be declared as functions taking two arguments, so their type must
have a structure either like (τ × σ) ⇒ ρ or like τ ⇒ σ ⇒ ρ. If an infix operator is surrounded
by a pair of parenthesis it becomes a (prefix) function symbol. In the declaration in the ground
signature the parenthesis are also required.

Two infix operators are predefined: = for equality and ∼ for behavioural equality.

10.6. Identifiers and Qualified Identifiers

Identifiers in ccsl are sequences of letters, digits, the underscore, and the question mark.
Identifiers must begin with a letter. The list of reserved words is in the Appendix C on page 130.

Let me use the term specification in this subsection to denote a class specification, a ground
signature, or an abstract data type specification that occurs in the ccsl input. Any specifica-
tion defines certain items for the specifications that follow, as explained in Section 8. One can
use a qualified identifier to refer to one of these items, even if the identifier is hidden by an-
other declaration. Qualified identifiers can occur at the expression level in assertions (denoting
constants or functions) or in type expressions (denoting types from a ground signature). Their
syntax is as follows.

qualifiedid ::= idorinfix
| identifier [argumentlist] :: idorinfix

idorinfix ::= (infix operator)
| identifier

The meta symbol idorinfix (whose definition is repeated here for convenience) stands for
an unqualified identifier, which may be an infix operator in parenthesis. A qualified identifier
consists of a specification identifier, an optional argument list, and an unqualified identifier. If
the specification declares type parameters the argument list must be present.

107

10. Miscellaneous

10.7. Anonymous Ground Signatures

It is possible to define or declare type constructors and constants outside of ground signatures
with the keywords TYPE and CONSTANT. The concrete syntax is the same as inside ground
signatures. For convenience I repeat the relevant meta symbols from the grammar:

typedef ::= TYPE identifier [parameterlist] [= type]

groundtermdef ::= CONSTANT termdef [;]

termdef ::= idorinfix [parameterlist] : type [formula]

The ccsl compiler combines any sequence of such declarations into an anonymous ground
signature.

10.8. The Prelude

Before processing the actual input file the ccsl compiler parses a string that is hard wired
into the compiler: the CCSL prelude. The prelude extends the ground signature to contain some
basic types and constants. The prelude of the compiler version 2.2 is displayed in Figure 22.
The ground signatures EmptySig and EmptyFunSig belong only to the prelude, if the target
theorem prover is pvs. For isabelle the data type of lists has constructors Nil and Cons to
match isabelle’s definition. The compiler is clever enough to avoid the repetition of the list
data type in the target theorem prover.

10.9. User Interface

The ccsl compiler is a command line tool in the Unix tradition. Besides command line switches
it expects its source files on the command line and outputs into files in the current directory
(unless option -d is present). Here is a selection of the command line switches for version 2.2
(for a complete listing see the reference manual [Tew02a] or the manual page).

-fixedpointlib path Set the location of the pvs fixed point library. The path of the fixed
point library appears in the generated output. It must point to the correct location,
otherwise type checking in pvs fails. The default path is set during installation.

-d dir Place all generated files in directory dir

-pvs Set the target theorem prover to pvs. This is the default.

-isa Set the target theorem prover to isabelle/hol in the syntax of new style Isar the-
ories [Wen02]. Of a sequence of -pvs and -isa options the last one takes effect.

108

10.9. User Interface

Begin EmptySig : GroundSignature
Importing EmptyTypeDef
Type EmptyType

End EmptySig

Begin EmptyFunSig [A : Type]: GroundSignature
Importing EmptyFun[A]
Constant

empty fun : [EmptyType −> A];
End EmptyFunSig

Begin list[X : Type] : Adt
Constructor

null : Carrier;
cons(car, cdr) : [X, Carrier] −> Carrier

End list

Begin Lift[X : Type] : Adt
Constructor

bot : Carrier;
up(down) : X −> Carrier

End Lift

Begin Coproduct[X : Type, Y : Type] : Adt
Constructor

in1(out1) : X −> Carrier;
in2(out2) : Y −> Carrier;

End Coproduct

Begin Unit : Adt
Constructor

unit : Carrier;
End Unit

Figure 22: The ccsl prelude

109

10. Miscellaneous

-nattype type Set the type name of natural numbers to type. Defaults to nat. More
precisely, the type checker uses type type for all natural number constants (consisting
only of digits) in the source. This option is necessary to prevent type checking errors if
you use natural number constants in combination with a type different from nat (for
instance int).

Note that type must be a valid type at each occurrence of a natural number constant in
the source. So you probably need to add a ground type declaration for type at the start
of the specification.

-batch Generate a batch processing file. The precise behaviour depends on the output
mode. For pvs the compiler generates a file pvs-batch.el containing Emacs lisp code. For
isabelle the file is called ROOT.ML and contains SML code.

-class spec Only generate output for specification spec. Repeat this option to get output
for several classes.

-dependent-assertions Normally the semantics of an assertion is a predicate on the state
space that is independent from all other assertions. With this option each assertions has
the preceding assertion as assumption. This does not change the semantics of a class
specification. However, it makes it possible to discharge type-check conditions (TCC’s)
with the help of previous assertions.

-pedantic Enforce all assumptions of Theorem 8.4 except the consistency requirement for
class specifications. To ensure invariance with respect to behavioural equality the com-
piler performs a syntactic check according to the Propositions 6.6 and 6.11. This check
is relaxed in the following two cases:

• Polymorphic constants are recognised as behaviourally invariant if they are instan-
tiated with a constant type.

• Constructors of a class specification are allowed in the creation assertions of that
class specification. This rests on the construction in the proof of Proposition 6.18.

-expert Turn on expert mode. This turns a number of errors into warnings. As a result the
compiler might generate inconsistent output.

-path Generate output for inductive characterisation of invariants. This is currently exper-
imental and does not work for all class signatures.

-no-opt Turn off formula optimisation. Normally the ccsl compiler performs several op-
timisations before printing formulae and expressions. (The compiler uses simple equiv-
alences for optimisation like > ∧ p = p but assumes also that all ground signature
extensions are proper.)

110

10.9. User Interface

-no-inline-lifting Turn off inlining of liftings of non-recursive classes and of abstract
data types. A non-recursive class (abstract data type) is one whose signature corresponds
to a constant functor. The predicate and relation lifting for a such classes is a conjunction;
and for non-recursive abstract data types it is a case distinction. Normally the ccsl
compiler uses these liftings directly. With the option -no-inline-lifting it uses the
appropriate combinators instead.

-output-prelude Print the prelude to stdout. See also Subsection 10.8.

--help Print usage information.

-c Act as filter. Print all generated output to stdout.

-prf Proofs only. Do not generate any theories, only generate proofs. Useful for proof test-
ing.

-prooftest name Proof testing. Do not generate any output. Only print the proof for lem-
ma name to stdout.

-v Verbose. Print some messages about compilation progress.

-D number Set debugging flags to number. If several options -D are given the result is xor
of all numbers. The compiler recognises the following flags:

1 Verbose. Equivalent to -v.

2 Debug messages for the lexer.

4 Debug messages for the parser.

8 Debug messages for resolution pass.

16 Debug messages for inheritance pass.

32 Debug messages for type checking.

64 Dump internal syntax tree to stderr after type checking.

128 Dump symbol table to stderr on unknown identifier.

256 Apply debugging level also when processing the prelude.

512 Debug messages for type unification.

1024 Print assertions, creation conditions, and theorems to stderr after parsing. Useful
for problems with operator precedence.

2048 Debug messages for variance pass.

4096 Debug messages for feature pass.

8192 Debug messages for pedantic checks.

111

10. Miscellaneous

10.10. Implementation

The ccsl compiler is implemented in the programming language ocaml [LDG+01] using
standard compiler construction techniques (see for instance [ASU86]). It is organised in several
passes. Version 2.2 consists of about 40.000 lines in about 100 files. ocaml is a strongly typed
functional programming languages similar to SML [MTH91]. It contains extensions for an
imperative programming style (references, while loops) and also for an object-oriented style.

ocaml was chosen for the following reasons: The transformation of ccsl into higher-
order logic requires a lot of symbolic manipulations. This can most easily be programmed
with abstract data types and pattern matching. ocaml integrates well with a standard Unix
environment and with Emacs. The ocaml distribution contains, besides the compiler, ocaml
versions of Lex and Yacc, the replay debugger that allows one to run programs backwards,
and an extensive library. The compiler itself is small and produces fast code. One of the
disadvantages of ocaml is that the object-oriented constructs integrate only purely with the
functional part of the programming language. It is for instance not possible to define a set of
mutually recursive types such that some of the types are classes and the other are abstract
data types. To define such a set of types one has to use the special construction of object types,
which makes the whole code very complex. A second problem with ocaml is that it does not
allow one to specialise the result type of methods during inheritance.

Some of the intermediate data structures of the ccsl compiler are defined as classes and
some as variant types. The three important classes are called iface, member, and theory body.
The internal representations of abstract data type specifications, class specifications, and
ground signature extensions are derived from the class iface by inheritance. The classes for
attributes, methods, constructors, and ground signature constants are derived from the class
member. The class theory body is the data structure to capture the output that the ccsl
compiler generates. There is one specific class that inherits from theory body for every theory
in the output.

The variant types formalise the internal representation of types, formulae and expressions.32

All these types are mutually dependent, for instance formulae are expressions (of boolean
type), expressions contain types, type constructors that occur in types can stem from class
specifications, and, finally, a class specification contains formulae. This dependency suggests
to define all involved types in one mutual recursion. However this is not feasible for several
reasons. The most important is the absence of method specialisation: The class iface contains
a method get members that returns a list of member’s. Using inheritance one wants to define the
class ccsl iface that overrides get methods such that it returns now a list of ccsl member’s.
However, the ocaml type checker requires that the overriding method has the same type as
the overridden method.

One solution to this problem (which has been adopted in the ccsl compiler) is to write a
32Although higher-order logic does not distinguish between formulae and expression, it is conceptually easier

to use different types for formulae and expressions internally.

112

10.10. Implementation

class pre iface that is polymorphic in a type variable α (possibly constraining α to be a subtype
of member). The method get methods in pre iface returns a list of α’s. The desired iface class
can be obtained by instantiating α with member. By inheritance one can derive a polymorphic
class ccsl pre iface. The class ccsl iface is obtained from ccsl pre iface by instantiating it
with ccsl member. Now the method get members in ccsl iface has the desired type. Note that
in ocaml the class ccsl iface is not a subtype of class iface.

For the ccsl compiler we introduced several type parameters to break the (formal) depen-
dency between the type definitions. All the variant types are polymorphic in two type variables,
one is instantiated with the internal type for class specifications, the other is instantiated with
the internal representation of methods (and attributes). The class pre iface takes three type
parameters. The first will be instantiated with an instance of class member, the second with
an instance of theory body, and the third type variable is instantiated with the class iface
itself. For instance the file ccsl classtype.ml contains the following code.

class type ccsl iface type

= [ccsl member type,

(ccsl iface type, ccsl member type) ccsl pre theory body type,

ccsl iface type] ccsl pre iface type

and ccsl member type =

[ccsl iface type, ccsl member type] ccsl pre member type

This code fragment defines suitable instantiations of iface and member as abbreviations
ccsl iface type and ccsl member type, respectively. The instantiations are in brackets. The
second argument for ccsl pre iface type must be instantiated as well. For some obscure
reason one has to group these instantiations with parenthesis (instead of brackets). Note that
both abbreviations are (mutually) recursive. This is no problem in ocaml.

The ccsl compiler consists of the following passes

Lexing & Parsing The lexer and the parser are generated by ocamllex and ocamlyacc, respec-
tively. Theses are the ocaml variants of lex and yacc. Keywords are recognised with a
hash table that sits in between the lexerer and the parser. The contents of this keyword
hash table is generated from the yacc source by a home grown tool, which has been
inspired by gperf [Sch90].

The parser resolves all type identifiers. Identifiers for variables, methods and constructors
are resolved later.

The result of the parser is an abstract syntax tree. All following passes work on this syntax
tree and add information by destructive updates. This syntax tree contains information
about source code locations such that later passes can generate exact error messages.

113

11. Summary

Update Methods Scan class signatures for attributes and generate update methods.

Inheritance Resolve inheritance in class specifications. Lookup ancestors, instantiate them,
perform method renaming, check for name clashes, and update the symbol table of the
heir. When this pass is completed all inherited methods can be found via the symbol
table of the heir.

Update Assertions Generate update assertions. Take inherited attributes and inherited up-
date methods into account.

Variance Compute variances for all type parameters. Classify interface functors for data types
and classes according to the hierarchy of functors in Chapter 3 of [Tew02b].

Features Depending on the type constructors (and their instantiation) that are used in class
and data type signatures this pass determines which parts of the general semantics
described in Section 8 are defined for every specification.

Special Class Members Definition of the special class member coreduce, and the recognizers
for invariants (〈class〉 class invariant?),
bisimulations (〈class〉 class bisimulation?),
and morphisms (〈class〉 class morphism?).

Resolution Resolution of variables, methods and constructors.

Type Checking Type check all assertions. The type checker is based on unification of types.
It temporarily inserts (internal) free type variables into the abstract syntax tree. Their
solutions are determined with unification.

Theory Generation Generate all theories in an internal version of higher-order logic.

Pretty Printing Dump the generated theories in the syntax of the target theorem prover.

This description shows clearly that the design of the ccsl compiler is not optimised for
efficiency. However, efficiency has never been a problem: An input file of a few hundred lines
is processed in less than a second.

11. Summary

This report described the coalgebraic class specification language ccsl. The unique feature of
ccsl is the combination of abstract data type specification with coalgebraic class specifications
that enables the iteration of (algebraic) abstract data types and (coalgebraic) behavioural
types. The semantics of ccsl is based on algebras and on coalgebras. Other distinctive features

114

of ccsl are the higher-order equational logic used in the class specifications and the method-
wise modal operators.

This report is mostly identical to Chapter 4 of my forthcoming PhD [Tew02b].

Comparison with other Specification Environments

OBJ is a family of similar algebraic specification languages based on order sorted algebra.
Members of the family are for instance OBJ3 [GM96], CafeOBJ [DF98], and BOBJ. The
latter two include support for hidden algebras and reasoning about hidden congruences, so it
is possible to specify behavioural types in CafeOBJ and in BOBJ. All members of the OBJ
family contain parametrised modules and provide module expressions for the manipulation of
modules. OBJ inherits the restrictions of algebraic specification. Most notably, signatures can
only contain operations of the form S1 × · · · × Sn

//S0 , where all the Si are primitive sorts.
Structured input and output types, as they occur naturally in ccsl, are impossible in OBJ.

The common framework initiative [Mos97] aims at a common framework for algebraic
specification and development. It integrates many of the diverging extensions of algebraic
specification. The initiative includes the design of the Common Algebraic Specification Lan-
guage, casl33 [Mos00]. The logic of casl is a first-order logic with equality, partial functions,
subsorting, and sort generation constraints. There are various sublanguages of casl, for in-
stance for conditional equational logic or horn-clause logic. However, casl does only contain
algebraic signatures, so structured input and output types are not possible. At the moment
casl does not support behavioural types.

DisCo [Kel97] is a specification method for reactive systems, it is developed at Tam-
pere University of Technology, Finland. DisCo is based on the temporal logic of actions
(TLA) [Lam94]. In the DisCo specification language one can specify object systems and
their transitional behaviour. Objects have a state chart like hierarchical structure but may not
contain methods. Methods are specified outside of the objects as actions. DisCo specifications
can be animated or translated into pvs. In pvs one can do refinement proofs, but it appears
that crucial parts of the refinement proof cannot be formalised in pvs, because the translation
of DisCo into pvs is incomplete [Kel97]. There is no notion of abstract data type in the DisCo
specification language.

The Unified Modelling Language UML is a graphical notion mainly developed for software
design. However, in combination with the Object Constraint Logic OCL one can use UML class
diagrams to specify properties of a software system. Such specifications can be equivalently
described in ccsl. In general, a ccsl specification cannot be formulated as an UML class
diagram.

33The casl language of the common framework initiative has nothing in common with the Custom Attack
Simulation Language (casl) [VEK00, Sec98].

115

11. Summary

Future Work

There are many ideas about how to develop ccsl further. Here are the more important ones:

• Support algebraic specifications (that is abstract data types with axioms).

• Generate more proofs for standard results.

• Include support for the powerset type constructor.

For the semantics of ccsl the open questions of Chapter 3 of [Tew02b] are important,
especially how iterated specifications behave if they contain binary methods. Also type pa-
rameters with negative and mixed variance need clarification. Type parameters are important
when they get instantiated with the special type Self. If a type parameter gets only instantiat-
ed with constant types, then it behaves more or less like an (unknown) constant. So it seems
that in Theorem 8.4 one could allow type parameters with negative or mixed variance under
the proviso that they get only instantiated with constant types. However, it is not clear how
to get the technicalities right.

ccsl as presented here has the following disadvantages. The logic of ccsl is different
from the logic of the target theorem prover. This is a consequence of developing the ccsl
compiler as a front end to existing theorem provers. A possible solution would be to build a
theorem prover for ccsl or to integrate ccsl into an existing theorem prover. The latter is an
interesting idea in conjunction with the generic theorem prover isabelle. In principle ccsl
could be integrated into isabelle/hol in the same way as the data type package of [BW99].

The second disadvantage of developing ccsl as a front end is that type checking ccsl
specifications is a two stage process. First, the ccsl compiler reads and checks a specification,
then one has to load the generated theories into the target theorem prover. Some typing errors
in the specification might only become apparent after the output of the ccsl compiler has been
type checked in the target theorem prover. For instance a wrong use of an accessor function is
not reported by the ccsl compiler. It only yields an unprovable type correctness condition in
pvs.

116

Appendix

A. CCSL Case Studies

A. CCSL Case Studies

This appendix reports on some case studies that have been performed with ccsl

The MSMIE Protocol

The Multiprocessor Shared-Memory Information Exchange protocol [BA94] is a protocol for
communication between several processors in a real-time control system. The protocol has been
used for instance in the embedded software of Westinghouse nuclear system design. In [Mey99]
an early version of ccsl is used to analyse the protocol. Meyer develops 4 specifications of
the protocol in ccsl and proves several refinements. Finally he implemented the protocol in
Java and uses an early version of the loop tool [JvdBH+98] to translate the Java sources into
(their semantics in) pvs. Then he proved that the Java program forms a valid model of the
ccsl specification of the MSMIE protocol.

The YAPI Case Study

The Y–chart Application Programmers Interface [dKE99] is used at Phillips for the develop-
ment of signal processing systems. For one aspect of the interface, the buffered data transfer,
[Lam00] develops a ccsl specification and shows its correctness via refinement.

Case Study on Transaction Mechanisms

Transactions are used to make certain designated sequences of actions atomic. Transaction
mechanisms are important in the context of databases or operating systems, but also in the
world of smart cards — where there is always the possibility that a smart card is removed
before an appropriate sequence of actions is completed, see Chapter 5 of [Che00]. In the joint
work [JT01] we provide an abstract specification of a (simplified) transaction mechanism.
There are two standard implementation techniques for a transaction mechanism: new value
logging and old value logging. For both approaches we derive an assertional refinement from the
original specification and prove its correctness in pvs. This case study uses the current ccsl
compiler to translate the three specifications into pvs. The complete ccsl and pvs sources
are available at the following URL: http://wwwtcs.inf.tu–dresden.de/∼tews/Transaction.

The Fiasco Case Study

Fiasco [Hoh00, Hoh98] is a micro kernel operating system developed within the
drops [HBB+98] project. The drops project is hosted at the computer science depart-
ment of the Technische Universität Dresden (Dresden University of Technology) and aims on
the construction of an operating system that supports quality of service requirements. As a
micro kernel Fiasco implements only the absolutely necessary operating system functionality:

118

address spaces, processes, and interprocess communication. Fiasco is an implementation of
the L4 micro kernel interface in C++. It contains about 20.000 lines of C++ code.

In the Fiasco case study I formalised a part of the internal interface of the memory
management in Fiasco. Then I tried to prove that the source code of Fiasco gives rise to a
model of my specification. The case study revealed some hidden assumptions in the scrutinised
interface, therefore the proof could not be completed. The case study is described in full detail
in [Tew00], the source code (comprising all ccsl and pvs source files and also some C++ files)
is available in the world wide web at http://wwwtcs.inf.tu-dresden.de/∼tews/vfiasco/.

For the Fiasco case study address spaces and virtual memory are important. Virtual
memory is the memory that is visible to applications. Physical memory is the main memory
that sits on the mother board of the computer. The operating system takes care that each
application can use a fair amount of physical memory and that one application cannot access
or modify the memory of another application without proper authorisation. This task is ac-
complished with address spaces. An address space defines a partial mapping of (addresses in)
virtual memory to (addresses in) physical memory. Each application has its own address space
so that the same virtual addresses usually refer to different physical addresses in different ap-
plications. Address spaces are partial mappings, because not all virtual addresses are mapped
to physical addresses. If an application accesses such a non-mapped virtual address then the
hardware signals a page fault. Page faults occur as the result of programming errors or when
the operating system has swapped parts of the applications memory to hard disc. In the former
case the application is usually terminated. In the latter case the operating system loads the
data from the swap area and adjusts the address space of the application. If an application
needs more memory it has to request it from the operating system. In case the request can be
satisfied, the operating system changes the address space of the application. This shows that
the manipulation of address spaces is a primary task for an operating system.

In an Intel based personal computer (more precisely in the IA32 architecture) the data
structure that represents an address space is called a page directory. A page directory is a
hierarchical structure of pointers that describe the address mapping. Any manipulation of
address spaces boils down to the insertion or deletion of some pointers in a page directory.
(For a more detailed account of virtual memory and address mapping see [Int99] or Chapter 4
of [Tew00].)

Fiasco is a particular nice challenge for ccsl because Fiasco was developed following the
object–oriented paradigm: The whole micro kernel consists of a set of classes, each capturing
some particular functionality. The class space t provides the internal abstraction of address
spaces: Objects of space t are page directories and the methods of space t provide suitable
services. For instance the methods v insert and v delete insert or delete mappings of virtual
memory (in the address space that is represented by the object on which these methods are
invoked). Another method is switchin context. It implements the change of the address space
(by advising the hardware to use from now on the page directory in the current object for
translating virtual addresses into physical ones).

119

A. CCSL Case Studies

In the case study I decided to investigate two correctness properties of the methods v insert
and switchin context. The first correctness property is that these two methods should always
terminate without itself producing a page fault. The second property is that after the insertion
of a super page mapping34 with a subsequent call of switchin context the hardware should map
the virtual addresses as desired.

To be able to express the two correctness properties I first developed the ccsl specification
PhyMem of physical memory. The physical memory provides operations for reading and writing
of memory cells. Further it is bounded, that is, accesses to addresses above a memory depended
limit go into nowhere.

By exploiting inheritance of ccsl specifications, the physical memory is extended into a
specification VirtMem of virtual memory. The virtual memory has a method virt to phy to
translate virtual addresses into physical ones. The read and write methods are redefined as
partial methods that work on virtual addresses now. They are partial methods because they
fail if their virtual address argument is not mapped to a physical address by the address space
in charge.

The two specifications of virtual and physical memory form the basis of the case study.
Therefore I checked their consistency and constructed the final model for both. The inspection
of the state space of both models shows that there is no unwanted behaviour in the final models.
This provides an informal argument for the correctness of the two memory specifications.

The specification Space t captures a part of the interface of the class space t. As assertions
it contains the two correctness properties from above, which can now be expressed in terms of
read and write operations on the virtual memory of VirtMem. The aim of the case study was
then to show that the C++ source code of the methods v insert and switchin context of class
space t yields a model of the Space t specification. For that I translated the C++ source by
hand into pvs and tackled the proof. This sounds rather easy but the proof development in pvs
was a three–month enterprise. The hand translation of the C++ sources into pvs is certainly
a weakness of the case study. However, a translation tool that computes the semantics of a
C++ program in the logic of pvs was certainly beyond the scope of the case study.35

As I indicated above the attempted proof failed because the space t interface contains
some hidden assumptions that have not been formalised in the specification Space t. During
the proof it became apparent that, if one combines certain states of the virtual memory with
certain arguments of the method v insert, then an assert statement36 in the method v insert
fails (for a more precise formulation see Proposition 6.1 in [Tew00]). The hidden assumption
in the interface of v insert is that one may only insert address mappings for virtual addresses
that are not already mapped. The source of Fiasco tests always for this condition.

The case study required about four months of work. It was carried out in the autumn of
34A super page is a continuous memory area of 4 megabyte aligned at an address that is a multiple of 222.
35Such a translation tool would of course be nonsensically unless it restricts C++ to a well understood subset.
36In C++ the assert statement (which is actually a preprocessor macro) tests for a logical condition and aborts

the program if the condition is not true.

120

1998 with pvs version 2.2, patch level 1.46. It consists of about 5, 000 line of source code.
There are 230 lemmas and 150 type correctness conditions that are proved with about 4, 000
pvs commands. To type check the whole specification and to run all the proofs takes more
than half a hour on a 333MHz Pentium II box.

Although the proof of the main theorem failed it was possible to verify a few properties
of the fiasco source code. Therefore it is fair to say that the case study was successful in
the sense it showed that coalgebraic specification can well be applied to operating-system
verification.

One has to say that pvs did not perform very well under this case study. During the case
study I submitted numerous bug reports. Some time after I completed the case study pvs
version 2.3 was released. This new version crashed when parsing the source code of the case
study. At the time of writing pvs version 2.4 patch level 1 is available. It still contains some
bugs that make it impossible to port the case study.

B. Proving Coalgebraic Refinement

This appendix generalises the definition of coalgebraic refinement from [JT01] to parametric
class specifications and shows an example refinement of the queue specification from Exam-
ple 6.15 from Figure 11.

Refinement is a relation between specifications. It links a specification that is considered to
be more ‘abstract’ with a specification that is considered to be more ‘concrete’. The intuition is
as follows: A concrete specification SC refines an abstract specification SA, if all models of SC

can be transferred into models of SA. Refinement could also be paraphrased as relative model
construction: If SC refines SA then one can build a model of SA by assuming an arbitrary
model of SC . Typically refinement involves a translation of signatures: The operations of the
signature of SA must be expressed with the operations available in SC .

Refinement is an important notion in software verification. Instead of relating the imple-
mentation directly with the specification one often uses several refinement steps, as depicted
below.

��������� ���������	�
�
��
� �
� �

�����������	�
�
��
� �
� �

���
���� �
� �
� ��
��� �

�
 !
�"

121

B. Proving Coalgebraic Refinement

As the size of the boxes indicate there is a chain of increasingly complex and increasingly
more concrete specifications. The last specification in the chain, Spec III, sufficiently resembles
the implementation. So it is feasible to prove that the implementation is a model of Spec III. The
specifications are related by refinements. If the chosen notion of refinement is compositional
(i.e., if the refinement relation is transitive) it follows that the implementation is also a model
of the specification Spec I.

[Wir90] describes refinement in the context of algebraic specification, but see also [BvW98]
for program refinement. For coalgebraic specification refinement was first studied in [Jac97a]
and in [Jac97b]. The experience with constructing refinements of ccsl specifications in the
theorem prover pvs showed that Jacobs’ original notion of coalgebraic refinement is not gen-
eral enough. A number of generalisation finally lead to two notions of refinement: assertional
refinement and behavioural refinement. Both notions and the need for the generalisations are
discussed in detail in the joint work [JT01].

Assertional refinement requires that the assertions of the abstract specification should
hold for each translated model of the concrete specification. This implies that for assertional
refinement the translation of signatures must cover the complete signature of the abstract
specification (because every method of the abstract signature can occur in the assertions).
Sometimes this complete coverage is inappropriate. For instance, if the abstract signature
contains private methods then one might want to construct a refinement for the public methods
only.

In behavioural refinement one requires that each translated model of the concrete speci-
fication should be behaviourally equal to some abstract model. The behavioural equality can
be taken with respect to a subsignature of the abstract specification, for instance to hide the
private methods.

In the following I present the definitions from [JT01] in the formal context of this report
and explain how one can prove refinements of ccsl class specifications with the theorem prover
pvs. Recall from the Definitions 5.1 and 6.14 (on page 34 and 63, respectively) that a class
specification S is a triple 〈Σ,AM ,AC〉, where Σ = 〈ΣM ,ΣC〉 is the signature, consisting of the
method declarations ΣM and the constructor declarations ΣC , and AM and AC are sets of
method and constructor assertions, respectively.

Definition B.1 (Assertional Refinement) Let SC be a concrete coalgebraic class specifi-
cation over the signature ΣC with n type parameters and let SA be an abstract coalgebraic
class specification over the signature ΣA with m type parameters α1, . . . , αm.

1. A parameter translation from ΣA to ΣC is a n-tuple of types (τ1, . . . , τn) such that every
τi contains only the type variables α1, . . . , αn, that is

α1 : Type, . . . , αm : Type ` τi : Type

can be derived.

122

2. Let (τ1, . . . , τn) be a parameter translation from ΣA to ΣC . A fixed interpretation
U1, . . . , Um of the type parameters α1, . . . , αm induces an interpretation JτiKU1,...,Um of
the types τi. A translation map (from ΣC to ΣA with respect to (τ1, . . . , τn)) is a family
of mappings (φU1,...,Um) such that for an interpretation U1, . . . , Um of the type parame-
ters α1, . . . , αm the map φU1,...,Um assigns to every model M = 〈X, c, a〉Jτ1K,...,JτmK of the
specification SC a signature model φ(M) = 〈X ′, c′, a′〉U1,...,Um of ΣA such that X ′ ⊆ X.

3. A translation map φ is an assertional refinement, if φ(M) is a model of SA for all models
M of SC .

The notion of parameter translation is not present in [JT01], there we discuss only refine-
ments between class specification without type parameters. The parameter translation deals
with the (rare) situation where the number of type parameters of the abstract and the concrete
specification differ. In most cases the parameter translation is the identity, that is τi = αi.

The main restriction in the preceding definition of assertional refinement is that the state
space of the translated model φ(M) is a subset of the state space X of the original model. The
requirement that X ′ must only be a subset of X accounts for the fact that in a refinement one
might want to exclude certain (unreachable) states from M .

Definition B.2 (Behavioural Refinement)

1. Let S be a coalgebraic class specification over signature Σ = 〈ΣM ,ΣC〉 and let
Σ′ = 〈Σ′

M ,Σ
′
C〉 be a subsignature of Σ with the same set of constructors: ΣC = Σ′

C .
A behavioural model (of S with respect to Σ′) is a model 〈Y, d, b〉 of Σ′ such that there
exists a model 〈X, c, a〉 of S with Rel(JσΣK)(c↔d)(a, b), where σΣ is the combined con-
structor type of Σ (see page 35).

2. Assume a concrete specification, consisting of a coalgebraic class specification SC over
the signature ΣC = 〈ΣCM ,ΣCC〉 with n type parameters and a subsignature Σ′

C =
〈Σ′

CM ,Σ
′
CC〉 such that ΣCC = Σ′

CC . Let SA be an abstract coalgebraic specification over
a signature ΣA = 〈ΣAM ,ΣAC〉 with a subsignature Σ′

A = 〈Σ′
AM ,Σ

′
AC〉. A translation

map φ from Σ′
C to Σ′

A is called a behavioural refinement from 〈SC ,Σ′
C〉 to 〈SA,Σ′

A〉 if φ
maps behavioural models of SC to behavioural models of SA.

Both notions of refinements are compositional. If one considers behavioural refinements
from 〈SC ,ΣC〉 to 〈SA,ΣA〉 (i.e., the case where no methods are hidden) then, under certain
(reasonable) assumptions on the assertions of the abstract specification, one can prove that
assertional refinement coincides with behavioural refinement. See [JT01] for details.

In the remainder of this subsection I construct an assertional refinement for the queue
specification of Figure 11 (on page 69). The refinement is based on the idea that lists form
queues, if one appends new elements at the end. The refining specification ListQueue is in

123

B. Proving Coalgebraic Refinement

Begin ListOp[A : Type] : GroundSignature
Constant

append : [list[A], list[A] −> list[A]];
End ListOp

Begin ListQueue[A : Type] : ClassSpec
Attribute

contents : Self −> list[A];

Defining
put : [Self, A] −> Self
put(x,a) = set contents(x, append(contents(x), cons(a,null)));

top : Self −> Lift[[A, Self]]
top x = Cases contents x of

null : bot,
cons(a,rest) : up(a, set contents(x,rest))

EndCases;

Constructor
l new : Self

Creation
new empty : contents(l new) = null;

End ListQueue

Figure 23: A refinement of queues in ccsl

Figure 23. The complete source code of the refinement and the proofs are available in the
material distributed along with my PhD, see http://wwwtcs.inf.tu-dresden.de/ tews/PhD/.

In Figure 23 the ground signature ListOp introduces the function append for the concatena-
tion of lists, which is predefined in pvs. The class specification ListQueue has only two methods
contents and set contents, where the latter is automatically generated by the ccsl compiler
as an update method for the attribute contents (see Subsection 5.2). The method set contents
has the following type

set contents : [Self, list[A]] −> Self

Further the ccsl compiler generates the following assertion.

contents set contents : Forall(l : list[A]) : contents(set contents(x, l)) = l

124

QueueRefine[X, A : Type] : Theory
Begin

Importing ListQueueBasic[X,A]
c : Var (ListQueueAssert?)

Importing QueueBasic[X,A]

abs c(c) : QueueSignature[X,A] =
(# top := top(c),

put := put(c) #)

abs new(c)(z : (ListQueueCreate?(c))) : QueueConstructors[X,A] =
(# new := l new(z) #)

model : Proposition Forall(z : (ListQueueCreate?(c))) :
QueueModel?(abs c(c), abs new(c)(z))

End QueueRefine

Figure 24: The theory ListQueue containing the refinement proof

So models of ListQueue are records with one field of type list[A].
An assertional refinement of the queue specification consists of three items: first, a param-

eter translation, second, a translation function that maps models of ListQueue to models of
the queue signature, and, third, a proof that the result of the translation function is a model
of Queue. A parameter translation is not necessary in this example, so I choose the identity
translation. This means that models of ListQueue[A] get translated into models of Queue[A].

For the second ingredient of an assertional refinement I need an interpretation of the
methods top and put for an arbitrary model of ListQueue. Because it is so obvious how to do
that I defined these two methods in the ListQueue specification as definitional extensions.

It remains to prove that the queue assertions hold. This is done in pvs in the theory
QueueRefine, see Figure 24. The variable declaration for c on line 4 uses the dependent types
of pvs. Recall that ListQueueAssert? is a predicate on ListQueue coalgebras. By putting paren-
thesis around such a predicate one obtains the (sub–) type of those inhabitants that fulfil the
predicate. So c is a ListQueue coalgebra (on state space X) that fulfils the method assertions
of ListQueue. Technically, the declaration of c (together with the type parameters X and A)
amounts to the assumption of an arbitrary ListQueue model.

The importing statement for QueueBasic makes all necessary notions from the specification
Queue available. The functions abs c and abs new form the translation map φ (of Item 2 of
Definition B.1). The definition of abs new looks a bit complicated because the interpretation

125

B. Proving Coalgebraic Refinement

z of the constructor of ListQueue cannot be declared as a variable.
It remains to prove the proposition model. The proof is not completely trivial because it

involves some reasoning about bisimilarities. In the proof I used the following three utility
lemmas:

bisim char : Lemma Forall(x, y : X) :
bisim?(c)(x,y) IFF contents(c)(x) = contents(c)(y)

abs bisim : Lemma Forall(x, y : X) :
bisim?(c)(x,y) Implies bisim?(abs c(c))(x,y)

bisim abs : Lemma Forall(x, y : X) :
bisim?(abs c(c))(x,y) Implies contents(c)(x) = contents(c)(y)

The first one, bisim char, gives a characterisation of bisimilarity on models of ListQueue: Two
states are bisimilar precisely if their contents field is equal. The second lemma abs bisim states
that two bisimilar states x and y are also bisimilar when considered as states of a queue with
respect to the translated coalgebra abs c(c). The third lemma describes the converse situation.

Behavioural refinements are more difficult to construct in general because usually the exis-
tential quantifier, which is hidden in the notion of behavioural models, requires the construction
of a suitable abstract model. However, the technical aspects of the translation of a behavioural
refinement into pvs are as simple as for assertional refinements. For a behavioural refinement
one would prove a proposition similar to the following.

same behaviour : Proposition Forall(z : (ListQueueCreate?(c))) :
bisim?(d(c), abs c(c))(new(b(c)(z)), new(abs new(c)(z)))

Here abs c and abs new form the translation map as before. The functions d and b give the
abstract model, which is required in the notion of behavioural models. Usually the abstract
model must be chosen in dependence of the concrete model, therefore d and b take the concrete
model as arguments.

126

C. The CCSL Grammar

This appendix contains the complete ccsl grammar. It is given in a BNF–like notation. Brack-
ets [. . .] denote optional components, braces {|. . . |} denote arbitrary repetition (including zero
times), and parenthesis (. . .) denote grouping. Terminals are set in UPPERCASE TYPEWRITER,
non–terminals in lowercase slanted. The terminal symbols for parenthesis and brackets are
written as (,), [, and].

file ::= {| declaration |} EOF

declaration ::= classspec
| adtspec
| groundsignature
| typedef
| groundtermdef

classspec ::= BEGIN identifier [parameterlist] :
[FINAL] CLASSSPEC
{| importing |} {| classsection |}
END identifier

parameterlist ::= [parameters {| , parameters |}]

parameters ::= identifier {| , identifier |} : [variance] TYPE

variance ::= POS
| NEG
| MIXED
| (numberorquestion , numberorquestion)

numberorquestion ::= ?
| number

classsection ::= inheritsection
| [visibility] attributesection [;]
| [visibility] methodsection [;]
| definitionsection
| classconstructorsection [;]
| assertionsection
| creationsection
| theoremsection
| requestsection [;]

visibility ::= PUBLIC
| PRIVATE

127

C. The CCSL Grammar

inheritsection ::= INHERIT FROM ancestor {| , ancestor |}

ancestor ::= identifier [argumentlist]
[RENAMING renaming {| AND renaming |}]

renaming ::= identifier AS identifier

attributesection ::= ATTRIBUTE member {| ; member |}

methodsection ::= METHOD member {| ; member |}

member ::= identifier : type -> type

definitionsection ::= DEFINING member formula ; {| member formula ; |}

classconstructorsection ::= CONSTRUCTOR classconstructor {| ; classconstructor |}

classconstructor ::= identifier : type
| identifier : type -> type

assertionsection ::= ASSERTION {| importing |}
[assertionselfvar] {| freevarlist |}
namedformula {| namedformula |}

assertionselfvar ::= SELFVAR identifier : SELF

freevarlist ::= VAR vardecl {| ; vardecl |}

creationsection ::= CREATION {| importing |} {| freevarlist |}
namedformula {| namedformula |}

namedformula ::= identifier : formula ;

requestsection ::= REQUEST request {| ; request |}

request ::= identifier : type

theoremsection ::= THEOREM {| importing |} {|
freevarlist |} namedformula {| namedformula |}

formula ::= FORALL (vardecl {| , vardecl |}) (: | .) formula
| EXISTS (vardecl {| , vardecl |}) (: | .) formula
| LAMBDA (vardecl {| , vardecl |}) (: | .) formula
| LET binding {| (; | ,) binding |} [; | ,] IN formula
| formula IFF formula
| formula IMPLIES formula
| formula OR formula
| formula AND formula
| IF formula THEN formula ELSE formula

128

| NOT formula
| formula infix operator formula
| ALWAYS formula FOR

[identifier [argumentlist] ::] methodlist
| EVENTUALLY formula FOR

[identifier [argumentlist] ::] methodlist
| CASES formula OF caselist [; | ,] ENDCASES
| formula WITH [update {| , update |}]
| formula . qualifiedid
| formula formula
| TRUE
| FALSE
| PROJ N
| number
| qualifiedid
| (formula : type)
| (formula {| , formula |})

vardecl ::= identifier {| , identifier |} : type

methodlist ::= { identifier {| , identifier |} }

qualifiedid ::= idorinfix
| identifier [argumentlist] :: idorinfix

idorinfix ::= (infix operator)
| identifier

binding ::= identifier [: type] = formula

caselist ::= pattern : formula {| (; | ,) pattern : formula |}

pattern ::= identifier [(identifier {| , identifier |})]

update ::= formula := formula

adtspec ::= BEGIN identifier [parameterlist] : ADT
{| adtsection |}
END identifier

adtsection ::= adtconstructorlist [;]

adtconstructorlist ::= CONSTRUCTOR adtconstructor {| ; adtconstructor |}

adtconstructor ::= identifier [adtaccessors] : type
| identifier [adtaccessors] : type -> type

129

C. The CCSL Grammar

adtaccessors ::= (identifier {| , identifier |})

groundsignature ::= BEGIN identifier [parameterlist] : GROUNDSIGNATURE
{| importing |} {| signaturesection |}
END identifier

signaturesection ::= typedef
| signaturesymbolsection [;]

signaturesymbolsection ::= CONSTANT termdef {| ; termdef |}

typedef ::= TYPE identifier [parameterlist] [= type]

groundtermdef ::= CONSTANT termdef [;]

termdef ::= idorinfix [parameterlist] : type [formula]

type ::= SELF
| CARRIER
| BOOL
| [type {| , type |} -> type]
| [type {| , type |}]
| qualifiedid
| identifier argumentlist

argumentlist ::= [type {| , type |}]

importing ::= IMPORTING identifier [argumentlist]

CCSL Keywords

The following words are reserved.

adt always and as assertion
attribute begin bool carrier cases
classspec constant constructor creation defining
else end endcases eventually exists
false final for forall from
groundsignature if iff implies importing
in inherit lambda let method
mixed neg not of or
pos private public renaming request
self selfvar then theorem true
type var with

130

Include Directive

The include directive has the following form:

include ::= #include "string"

The string is interpreted as a file name. The compiler substitutes the contents of the file for
the include directive. The directive can stand at any place in the input.

131

D. References

D. References

[ABB+99] Augustsson, L., D. Barton, B. Boutel, W. Burton, J. Fasel, K. Ham-
mond, R. Hinze, P. Hudak, T. Johnsson, M. Jones, J. Launchbury,
E. Meijer, J. Peterson, A. Reid, C. Runciman, and P. Wadler: Re-
port on the Programming Language Haskell 98, February 1999. Available via
http://www.haskell.org/.

[AC96] Abadi, M. and L. Cardelli: A Theory of Objects. Springer-Verlag, New York,
1996.

[AS85] Alpern, Bowen and Fred B. Schneider: Defining liveness. Information Pro-
cessing Letters, 21(4):181–185, 7 October 1985.

[ASU86] Aho, A. V., R. Sethi, and J. D. Ullman: Compilers: principles, techniques,
tools. Addison-Wesley, 1986.

[BA94] Bruns, G. and S. Anderson: The formalization and analysis of a communica-
tions protocol. Formal Aspects of Computing, 6(1):92–112, 1994.

[Bar92] Barendregt, H. P.: Lambda calculi with types. In Abramsky, S., D. M. Gab-
bay, and T.S.E. Maibaum (editors): Handbook of Logic in Computer Science,
volume 2. Oxford Science Publications, 1992.

[BvW98] Back, R.-J. and J. von Wright: Refinement Calculus: A Systematic Introduc-
tion. Springer-Verlag, 1998.

[BW99] Berghofer, S. and M. Wenzel: Inductive datatypes in HOL — lessons learned
in formal-logic engineering. In Bertot, Y., G. Dowek, A. Hirschowitz,
C. Paulin, and L. Théry (editors): Theorem Proving in Higher Order Log-
ics, volume 1690 of Lecture Notes in Computer Science, pages 19–36. Springer,
September 1999.

[Cas97] Castagna, Giuseppe: Object-Oriented Programming: A Unified Foundation.
Progress in Theoretical Computer Science. Birkhauser, Boston, 1997.

[CF92] Cockett, R. and T. Fukushima: About Charity. Yellow Series Report
92/480/18, Department of Computer Science, University of Calgary, June 1992.

[CHC90] Cook, W. R., W. Hill, and P. S. Canning: Inheritance is not subtyping. In
ACM (editor): POPL ’90. Proceedings of the seventeenth annual ACM sympo-
sium on Principles of programming languages, pages 125–135, New York, NY,
USA, 1990. ACM Press.

132

[Che00] Chen, Z.: Java Card Technology for Smart Cards. The Java Series. Addison-
Wesley, 2000.

[Ĉır99] Ĉırstea, C.: A coalgebraic equational approach to specifying observational struc-
tures. In Jacobs, B. and J. Rutten (editors): Coalgebraic Methods in Computer
Science ’99, volume 19 of ENTCS. Elsevier, Amsterdam, 1999.

[Cor98] Corradini, A.: A completeness result for equational deduction in coalgebraic
specification. In Presicce, F. Parisi (editor): Recent Trends in Data Type
Specification, volume 1376 of Lecture Notes in Computer Science, pages 190–205.
Springer, Berlin, 1998.

[CS92] Cockett, J. R. B. and D. Spencer: Strong categorical datatypes I. In Seely,
R. A. G. (editor): Proc. of Int. Summer Category Theory Meeting, Montréal,
Québec, 23–30 June 1991, volume 13 of Canadian Mathematical Society Conf.
Proceedings, pages 141–169. American Mathematical Society, Providence, RI,
1992.

[CW85] Cardelli, Luca and Peter Wegner: On understanding types, data abstrac-
tion, and polymorphism. ACM Computing Surveys, 17(4):471–522, December
1985.

[DF98] Diaconescu, R. and K. Futatsugi: CafeOBJ Report: the Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification. World
Scientific, Singapore, 1998.

[dKE99] Kock, E. A. de and G. Essink: Y–chart application programmer’s interface.
Technical note 0008/99, Philips Naturkundig Laboratorium, March 1999.

[GJS96] Gosling, J., B. Joy, and G. Steele: The Java Language Specification.
Addison-Wesley, 1996.

[GM93] Gordon, M. J. C. and T. F. Melham: Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press, 1993.

[GM96] Goguen, J. and G. Malcolm: Algebraic Semantics of Imperative Programs.
MIT Press, Cambridge, Mass., 1 edition, 1996.

[Gol92] Goldblatt, R.: Logics of Time and Computation, Second Edition, Revised and
Expanded, volume 7 of CSLI Lecture Notes. CSLI, Stanford, 1992.

[Gol01] Goldblatt, R.: A calculus of terms for coalgebras of polynomial functors. In
Corradini, A., M. Lenisa, and U. Montanari (editors): Coalgebraic Methods
in Computer Science ’01, volume 44 of ENTCS. Elsevier, Amsterdam, 2001.

133

D. References

[Gun92] Gunter, Elsa L.: Why we can’t have SML style datatype declarations in HOL.
In Claese, L. J. M. and M. J. C. Gordon (editors): Higher Order Logic
Theorem Proving and Its Applications, volume A–20 of IFIP Transactions, pages
561–568. North-Holland Press, September 1992.

[HBB+98] Härtig, H., R. Baumgartl, M. Borriss, Cl.-J. Hamann, M. Hohmuth,
F. Mehnert, L. Reuther, S. Schönberg, and J. Wolter: DROPS: OS sup-
port for distributed multimedia applications. In Proceedings of the Eighth ACM
SIGOPS European Workshop, Sintra, Portugal, September 1998.

[Hen99] Hensel, U.: Definition and Proof Principles for Data and Processes. PhD thesis,
Univ. of Dresden, Germany, 1999.

[HHJT98] Hensel, U., M. Huisman, B. Jacobs, and H. Tews: Reasoning about classes
in object–oriented languages: Logical models and tools. In Hankin, Ch. (edi-
tor): European Symposium on Programming, volume 1381 of Lecture Notes in
Computer Science, pages 105–121. Springer, Berlin, 1998.

[HJ97] Hensel, U. and B. Jacobs: Proof principles for datatypes with iterated recur-
sion. In Moggi, E. and G. Rosolini (editors): Category Theory and Comput-
er Science, volume 1290 of Lecture Notes in Computer Science, pages 220–241.
Springer, Berlin, 1997.

[HJ98] Hermida, C. and B. Jacobs: Structural induction and coinduction in a fibra-
tional setting. Information and Computation, 145(2):107–152, 1998.

[HJ00] Huisman, M. and B. Jacobs: Inheritance in higher order logic: Modeling and
reasoning. In Aagaard, M. and J. Harrison (editors): Theorem Proving in
Higher Order Logics, volume 1869 of Lecture Notes in Computer Science, pages
301–319. Springer, Berlin, 2000.

[Hoh98] Hohmuth, M.: The Fiasco kernel: Requirements definition. Technical Report
TUD–FI–12, TU Dresden, December 1998. Available at URL: http://os.inf.tu-
dresden.de/fiasco/doc.html.

[Hoh00] Hohmuth, M.: The Fiasco kernel: System architecture. Available at URL:
http://os.inf.tu-dresden.de/fiasco/doc.html, 2000.

[HPF92] Hudak, P., J. Peterson, and J. H. Fasel: A Gentle Introduction to Haskell
98. Available via http://haskell.cs.yale.edu/tutorial/, October 1992.

[Hug01] Hughes, Jesse: Modal operators for coequations. In Corradini, A., M. Lenisa,
and U. Montanari (editors): Coalgebraic Methods in Computer Science ’01,
volume 44 of ENTCS. Elsevier, Amsterdam, 2001.

134

[Hui01] Huisman, M.: Reasoning about Java programs in Higher-order logic using PVS
and Isabelle. PhD thesis, University of Nijmegen, The Netherlands, 2001.

[Int99] Intel Corp.: Intel Architecture Software Developer’s Manual, Volume 3: System
Programming, 1999.

[Jac95] Jacobs, B.: Mongruences and cofree coalgebras. In Alagar, V.S. and M. Nivat
(editors): Algebraic Methodology and Software Technology, volume 936 of Lecture
Notes in Computer Science, pages 245–260. Springer, Berlin, 1995.

[Jac96] Jacobs, B.: Objects and classes, co–algebraically. In Freitag, B., C.B. Jones,
C. Lengauer, and H.-J. Schek (editors): Object–Orientation with Parallelism
and Peristence, pages 83–103. Kluwer Acad. Publ., 1996.

[Jac97a] Jacobs, B.: Behaviour-refinement of coalgebraic specifications with coinductive
correctness proofs. In Bidoit, M. and M. Dauchet (editors): TAPSOFT’97:
Theory and Practice of Software Development, volume 1214 of Lecture Notes in
Computer Science, pages 787–802. Springer, Berlin, 1997.

[Jac97b] Jacobs, B.: Invariants, bisimulations and the correctness of coalgebraic refine-
ments. In Johnson, M. (editor): Algebraic Methodology and Software Technolo-
gy, volume 1349 of Lecture Notes in Computer Science, pages 276–291. Springer,
Berlin, 1997.

[Jac99] Jacobs, B.: Categorical Logic and Type Theory, volume 141 of Studies in Logic
and the Foundations of Mathematics. North Holland, Elsevier, 1999.

[Jac00] Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. Tech-
nical Report CSI-R0020, University of Nijmegen, 2000.

[Jac02] Jacobs, B.: Exercises in coalgebraic specification. In R. Backhouse, R. Crole
and J. Gibbons (editors): Algebraic and Coalgebraic Methods in the Mathematics
of Program Construction, volume 2297 of Lecture Notes in Computer Science,
pages 237–280. Springer, Berlin, 2002.

[Jay96] Jay, C. B.: Data categories. In Houle, M. E. and P. Eades (editors): Pro-
ceedings of Conference on Computing: The Australian Theory Symposium, pages
21–28. Australian Computer Science Communications, January 1996.

[JT01] Jacobs, B. and H. Tews: Assertional and behavioural refinement in coalgebraic
specification. Submitted, 2001.

135

D. References

[JvdBH+98] Jacobs, B., J. van den Berg, M. Huisman, M. van Berkum, U. Hensel,
and H. Tews: Reasoning about classes in Java (preliminary report). In Object–
Oriented Programming, Systems, Languages and Applications, pages 329–340.
ACM Press, 1998.

[Kel97] Kellomäki, P.: Mechanical Verification of Invariant Properties of DisCo Spec-
ifications. PhD thesis, Tampere University of Technology, Finland, 1997.

[KM00] Kawahara, Y. and M. Mori: A small final coalgebra theorem. Theoretical
Computer Science, 233(1–2):129–145, February 2000.

[Kur98] Kurz, A.: Specifying coalgebras with modal logic. In Jacobs, B., L. Moss,
H. Reichel, and J. Rutten (editors): Coalgebraic Methods in Computer Science
’98, volume 11 of ENTCS, pages 57–72. Elsevier, 1998.

[Kur00] Kurz, A.: A co-variety-theorem for modal logic. In Zakharyaschev, A.,
K. Segerberg, M. de Rijke, and H. Wansing (editors): Advances in Modal
Logic, volume 2, pages 385 – 398, 2000.

[Lam94] Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

[Lam00] Lambooij, P.: The YAPI protocol for buffered data transfer. Techn.
Rep. CSI-R9923, Comput. Sci. Inst., Univ. of Nijmegen. Available at URL
http://www.cs.kun.nl/csi/reports/info/CSI-R9923.html, 2000.

[LDG+01] Leroy, X., D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon: The
Objective Caml system, release 3.04, December 2001. Available at URL
http://caml.inria.fr/ocaml/htmlman/.

[LLP+00] Leavens, G. T., K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs: JML:
notations and tools supporting detailed design in Java. In OOPSLA 2000 Com-
panion, pages 105–106, Minneapolis, Minnesota, October 2000. ACM.

[Mey92] Meyer, B.: Eiffel: The Language. Prentice Hall, 1992.

[Mey97] Meyer, B.: Object-Oriented Software Construction, Second Edition. The Object-
Oriented Series. Prentice-Hall, Englewood Cliffs (NJ), USA, 1997.

[Mey99] Meyer, D.: A case study in object oriented specification and verification: The
MSMIE protocol. Graduation thesis, Catholic University of Nijmegen, January
1999.

136

[Mos97] Mosses, P. D.: CoFI: The common framework initiative for algebraic specifica-
tion and development. In Bidoit, M. and M. Dauchet (editors): TAPSOFT ’97:
Theory and Practice of Software Development, volume 1214 of Lecture Notes in
Computer Science, pages 115–140. Springer-Verlag, 1997.

[Mos99] Moss, Lawrence S.: Coalgebraic logic. Annals of Pure and Applied Logic,
96(1–3):277–317, 1999.

[Mos00] Mossakowski, T.: CASL: From semantics to tools. In Graf, S. and
M. Schwartzbach (editors): Tools and Algorithms for the Construction and
Analysis of Systems, volume 1785 of Lecture Notes in Computer Science, pages
93–108. Springer, 2000.

[MP88] Mitchell, J. C. and G. D. Plotkin: Abstract types have existential types.
ACM Trans. on Programming Languages and Systems, 10(3):470–502, 1988.

[MTH91] Milner, R., M. Tofte, and R. Harper: The Definition of Standard ML. MIT
Press, Cambridge, MA, 1991.

[NPW02a] Nipkow, T., L. C. Paulson, and M. Wenzel: Isabelle’s Logics: HOL, March
2002. Available via http://isabelle.in.tum.de/.

[NPW02b] Nipkow, T., L.C. Paulson, and M. Wenzel: Isabelle/HOL, A Proof Assis-
tant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[ORR+96] Owre, S., S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas: PVS: Com-
bining specification, proof checking, and model checking. In Alur, R. and T.A.
Henzinger (editors): Computer Aided Verification, volume 1102 of Lecture Notes
in Computer Science, pages 411–414. Springer, Berlin, 1996.

[ORSvH95] Owre, S., J.M. Rushby, N. Shankar, and F. von Henke: Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Trans.
on Softw. Eng., 21(2):107–125, 1995.

[OS93] Owre, S. and N. Shankar: Abstract datatypes in PVS. Technical Report SRI-
CSL-93-9R, Computer Science Laboratory, SRI International, Menlo Park, CA,
December 1993. Extensively revised June 1997; Also available as NASA Contrac-
tor Report CR-97-206264.

[Pau02] Paulson, L. C.: Introduction to Isabelle, March 2002. Available via
http://isabelle.in.tum.de/.

137

D. References

[PT94] Pierce, B. C. and D. N. Turner: Simple type-theoretic foundations for object-
oriented programming. Journal of Functional Programming, 4(2):207–247, April
1994.

[Rei95] Reichel, H.: An approach to object semantics based on terminal co–algebras.
Mathematical Structure in Computer Science, 5:129–152, 1995.

[Röß99] Rößiger, M.: Languages for coalgebras on datafunctors. In Jacobs, B. and
J. Rutten (editors): Coalgebraic Methods in Computer Science, volume 19 of
ENTCS. Elsevier, Amsterdam, 1999.

[Röß00a] Rößiger, M.: Coalgebras and modal logic. In Reichel, H. (editor): Coalge-
braic Methods in Computer Science ’00, volume 33 of ENTCS. Elsevier Science
Publishers, 2000.

[Röß00b] Rößiger, M.: Coalgebras, Clone Theory and Modal Logic. PhD thesis, Univ. of
Dresden, Germany, 2000.

[Rot00] Rothe, J.: Modal logics for coalgebraic class specification. Master’s the-
sis, TU Dresden, Germany, 2000. Available at URL: http://wwwtcs.inf.tu-
dresden.de/∼janr/diplom.ps.gz.

[RTJ01] Rothe, J., H. Tews, and B. Jacobs: The coalgebraic class specification lan-
guage CCSL. Journal of Universal Computer Science, 7(2):175–193, March 2001.

[Rut00] Rutten, J. J. M. M.: Universal coalgebra: A theory of systems. Theoretical
Computer Science, 249(1):3–80, October 2000.

[Sch90] Schmidt, D. C.: gperf: a perfect hash function generator. In USENIX C++
Conference, pages 87–101, Berkeley, CA, USA, 1990. USENIX Association.

[Sch97] Schroeder, M. A.: Higher order charity. Master’s thesis, The University of
Calgary, Department of Computer Science, 1997.

[Sec98] Secure Networks: Custom Attack Simulation Language (CASL), User man-
ual, January 1998.

[Sti92] Stirling, Colin: Modal and temporal logics. In Abramsky, S., D. M. Gab-
bay, and T.S.E. Maibaum (editors): Handbook of Logic in Computer Science,
volume 2, chapter Modal and Temporal Logics. Oxford Science Publications,
1992.

[Str97] Stroustrup, B.: The C++ Programming Language: Third Edition. Addison-
Wesley Publishing Co., Reading, Mass., 1997.

138

[Tar55] Tarski, Alfred: A lattice-theoretic fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

[Tew00] Tews, H.: A case study in coalgebraic specification: Memory management in
the fiasco microkernel. Technical Report TPG2/1/2000, SFB 358, April 2000.
Available at URL http://wwwtcs.inf.tu-dresden.de/∼tews/vfiasco/.

[Tew02a] Tews, H.: The Coalgebraic Class Specification Language CCSL (Reference man-
ual), 2002. Available via URL wwwtcs.inf.tu-dresden.de/∼tews/ccsl/.

[Tew02b] Tews, H.: Coalgebraic Methods for Object-Oriented Specification. PhD thesis,
University of Dresden, 2002. available via wwwtcs.inf.tu–dresden/∼tews/PhD.

[U. 97] U. Schöning: Theoretische Informatik kurz gefasst. Akademischer Verlag, 3.
Auflage, 1997.

[vdBJ01] Berg, J. van den and B. Jacobs: The LOOP compiler for Java and JML. In
Margaria, T. and W. Yi (editors): Tools and Algorithms for the Construction
and Analysis of Systems, volume 2031 of Lecture Notes in Computer Science,
pages 299–312, 2001.

[VEK00] Vigna, G., S.T. Eckmann, and R.A. Kemmerer: Attack languages. In Pro-
ceedings of the IEEE Information Survivability Workshop, Boston, MA, October
2000. available via http://www.cs.ucsb.edu/∼vigna/.

[Wen02] Wenzel, M.: The Isabelle/Isar Reference Manual, March 2002. Available via
http://isabelle.in.tum.de/.

[Wir90] Wirsing, M.: Algebraic specification. In Leeuwen, J. van (editor): Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics, chap-
ter 13, pages 673–788. Elsevier/MIT Press, 1990.

139

Notation Index

Notation Index

The notation index is split into six parts: (1) the index of logical entailments, (2) the index of
symbols based on the Greek alphabet, (3) the index of symbols based on the Latin alphabet
(on page 141), and (4) the index of other symbols (on page 141).

Entailment Index

` k : Kind — kind judgement, 10
Ξ ` τ : k — type judgement, 11

` C : [v1, . . . , vk] — type constructor with variance annotation, 19
αi :: vi, Self :: v ` τ : Type — type judgement with variance annotation, 19

Ξ | Γ ` t : τ — term judgement, 49

Greek Symbols

α, β — type variables, 10
κ1, κ2 — coproduct injections, 50

κc — interpretation injection, 38
λx : σ . t — λ–abstraction as term, 50

Ω — ground signature, 28
|Ω| — set of type constructors in Ω, 28
ΩP — ground signature for the ccsl prelude, 29
ϕ,ψ — formulae, 51

π1, π2 — product projections, 50
πm — interpretation projection, 38
πΣ′ — subsignature projection, 38

Σ — class signature, 34
Σ′ ≤ Σ — subsignature, 35

σΣ — combined constructor type of Σ, 35
ΣC — class signature, constructor declarations, 34
ΣM — class signature, method declarations, 34
τ, σ — types, 11

τ × σ — product of types, 11
τ + σ — coproduct of types, 11
τ ⇒ σ — exponent of types, 11

τΣ — combined method type of Σ, 35
Ξ — type variable context, 11

140

Latin Symbols

C — set of type constructors, 11
C — type constructor, 11

cases t of κ1 x : r, κ2 y : s — case analyses, 50
coreduce — unique morphism into the final coalgebra, 87
Form(Σ) — formulae over Σ, 51

if r then s else t — conditional, 50
k — kind, 10
K — type constant, 11
M — model of a class signature, 36
N

? — extended natural numbers, 17
Pred(JτK) — (full) predicate lifting, 39

PredC — predicate lifting of C, 29
Prop — type of formulae, 11, 49

reduce — unique morphism from the initial algebra, 79
Rel(JτK) — (full) relation lifting, 40

RelC — relation lifting of C, 29
s, t — terms, 49

s ∧ t — conjunction of terms, 50
s ∨ t — disjunction of term, 50
s ⊃ t — logical implication, 50

S ′ ≤ S — subspecification, 64
Self — special type, 11

(t1, t2) — pair, 50
TC — constructor type extraction, 35
TM — method type extraction, 35

Terms(Σ) — terms over Σ, 49
Type — kind of types, 10
V — set of variances, 18
V — well-formed variances, 18

Other Symbols

? — unknown variance, 17
X /Y — partial function from X to Y , 30

∗ — only inhabitant of 1, 49
↔M — bisimilarity on M, 42
⊥ — false, term of type Prop, 49

141

Notation Index

�MP — infinitary modal operator always, 59
♦MP — infinitary modal operator eventually, 59
− · − — substitution operation for variances, 18

∃x : τ . t — existential quantification, 50
∀x : τ . t — universal quantification, 50

⊃⊂ — logical equivalence, 50
λ→ — polymorphic type theory, 10

σ ≤ τ — subtype relation, 96
J−K — interpretation mapping

JτK – for types, 24
JCK – for type constructors, 23
JfK – for ground signature symbols, 31
JmKM – for methods or constructors, 38
J�MP KA – for modal operators, 61
JtKMΩ,MΣ – for terms, 54

¬t — negation, 50
t1 ∼ t2 — behavioural equality, 50

> — true, term of type Prop, 49
∨ — join operation for variances, 18
0 — empty type, 11
1 — unit type, 11
× — product of types, 11
+ — coproduct of types, 11
⇒ — exponent of types, 11
∧ — conjunction of terms, 50
∨ — disjunction of term, 50
⊃ — logical implication, 50

142

Subject Index

Entries in UPPERCASE TYPEWRITER are ccsl keywords. Entries in slanted are meta symbols.
For both kinds of entries page numbers smaller than 127 refer into the body of this report,
larger page numbers refer into Appendix C with the full ccsl grammar.

A
abstract data type, 5, 66, 103, 116

in ccsl, 72, 78
accessor function, 30

in ccsl, 73, 82
ADT, 72, 129
adtaccessors, 72, 130
adtconstructor, 72, 129
adtconstructorlist, 72, 129
adtsection, 72, 129
adtspec, 72, 129
algebra, 36

initial, 71, 79
algebraic specification, 6, 7, 72, 115, 116
ALWAYS, 65, 129
always, modal operator, 58

in ccsl, 59
ancestor, 95
ancestor, 96, 128
AND, 65, 96, 128
arbitrary, 30, 75
argumentlist, 14, 130
arity, 10
AS, 96, 128
ASSERTION, 67, 128
assertionsection, 67, 128
assertionselfvar, 67, 128
ATTRIBUTE, 44, 128
attributesection, 44, 128

B
BEGIN, 32, 43, 72, 127, 129, 130
behavioural equality, 28

in ccsl, 50
behavioural model, 123
behaviourally invariant, 55, 62, 64, 91, 110
binary method, 27, 77, 116
binding, 65, 129
bisimilarity, 42, 47, 51, 55, 56, 58, 105
bisimulation, 31, 39–42, 47, 55, 67, 88, 92,

105
in ccsl, 42
recogniser, 67, 88, 114

BOOL, 14, 130
bot, 29
bot?, 30

C
car, 30
CARRIER, 14, 130
caselist, 65, 129
CASES, 65, 129
category

of class signatures models, 37
ccsl compiler, 6
ccsl prelude, 29, 31, 108
cdr, 30
class signature, 34
class specification, 63
classconstructor, 45, 128
classconstructorsection, 45, 128
classsection, 43, 127
CLASSSPEC, 43, 127
classspec, 43, 127
coalgebraic class signature, 34
coalgebraic class specification, 63

143

Subject Index

coinduction, 67
cons, 29
cons?, 29
consistent class specification, 64
CONSTANT, 33, 108, 130
constant constructor type, 27
constant type, 27
CONSTRUCTOR, 45, 72, 128, 129
constructor

assertion, 63
declaration, 34, 50, 72
type, 27

context
of term variables, 49
of type variables, 11

Coproduct, 29
coproduct

for types, 10, 12, 20
coreduce, 67, 87, 87, 90, 97, 105, 114
CREATION, 67, 128
creationsection, 67, 128

D
data functor, 28, 36, 77
data type, see abstract data type
declaration, 103, 127
DEFINING, 45, 128
definitional extension, 125

in ccsl, 45
definitionsection, 45, 128
descendent, 95
down, 30
dynamic binding, 94, 98

E
ELSE, 65, 128
empty type, 11, 12, 19
empty fun, 30
EmptyType, 29
END, 32, 43, 72, 127, 129, 130

ENDCASES, 65, 129
EOF, 103, 127
EVENTUALLY, 65, 129
eventually, modal operator, 58

in ccsl, 59
EXISTS, 65, 128
explicit subtyping, 96
exponent

for types, 10, 12, 20
extended cartesian functor, 22
extended polynomial (method) type, 27
extended polynomial functor, 22, 36

F
FALSE, 65, 129
file, 103, 127
FINAL, 43, 85, 127
FOR, 65, 129
FORALL, 65, 128
formula

in ccsl, 51
formula, 65, 128
freevarlist, 67, 128
FROM, 96, 128
full predicate lifting, 41
full relation lifting, 41

G
greatest invariant, 58–63
ground signature, 9, 10, 28, 28–33, 42, 57,

59, 67, 78, 87, 88, 91, 103, 106, 108,
110

anonymous, 108
model, 31
plain, 28
proper, 28
proper model, 31

GROUNDSIGNATURE, 32, 130
groundsignature, 32, 130
groundtermdef, 108, 130

144

H
higher-order pol. (method) type, 27
higher-order polynomial functor, 36

I
idorinfix, 33, 107, 129
IF, 65, 128
IFF, 65, 128
implicit subtyping, 96
IMPLIES, 65, 128
IMPORTING, 106, 130
importing, 106, 130
IN, 65, 128
in1, 30
in1?, 30
in2, 30
in2?, 30
include, 104, 131
include directive, 104
infix operator, 106
INHERIT, 96, 128
inheritance, 35, 95

multiple -, 97
inheritsection, 96, 128
interpretation of type constructor, 23
invariant, 31, 39–42, 46, 67, 68, 87, 105

in ccsl, 42
in Eiffel, 99
recogniser, 67, 87, 114

iterated specification, 24, 28, 76

J
join operation, 18
judgement

for kinds, 10
for terms

in ccsl, 9, 49, 52, 53
for types

in ccsl, 11, 12
with variance annotation, 19

K
kind, 10, 12

L
LAMBDA, 65, 128
late binding, 98
LET, 65, 128
Lift, 29
list, 29
loop project, 5

M
member, 44, 128
METHOD, 44, 128
method

assertion, 63
declaration, 34
type, 27

methodlist, 65, 129
methodsection, 44, 128
MIXED, 22, 127
mixed variance, 15, 21
modal logic, 58–63
model

abstract data types, 72
class signature, 36
class specification, 64
of ground signature, 31

morphism
recogniser, 67, 88, 114

multiple inheritance, 97

N
namedformula, 68, 128
NEG, 22, 127
negative variance, 15, 21
NOT, 65, 129
null, 29
null?, 29
numberorquestion, 22, 127

145

Subject Index

O
OF, 65, 129
OR, 65, 128
out1, 30
out2, 30
overriding, 98

P
page directory, 119
parameter translation, 122
parameter, (type -), 32, 34, 72
parameterlist, 32, 127
parameters, 32, 127
partial function, 30
pattern, 65, 129
polynomial (method) type, 27
polynomial functor, 36
POS, 22, 127
positive variance, 15, 21
powerset, functor, 33
predicate

lifting
for ccsl, 39
for type constructors, 29

prelude, see ccslprelude
PRIVATE, 43, 127
product

for types, 10, 12, 20
PROJ N, 65, 129
Prop, 11, 12, 19, 49
PUBLIC, 43, 127

Q
qualifiedid, 107, 129

R
reduce, 74, 79, 79, 80, 82, 83, 85, 104
refinement, 121–126

assertional, 122
behavioural, 123

relation

lifting
for ccsl, 40
for type constructors, 29

RENAMING, 96, 128
renaming, 96, 128
repeated inheritance, 97
REQUEST, 106, 128
request, 106, 128
requestsection, 106, 128

S
SELF, 14, 67, 128, 130
Self, 11, 12, 19
SELFVAR, 67, 128
shared ancestor, 98
signature

class -, 34
ground -, see ground signature

signaturesection, 33, 130
signaturesymbolsection, 33, 130
static binding, 98
strictly positive variance, 15, 21
strong invariant, 59
subsignature, 35
subsignature projection, 38
subspecification, 64
substitution, 12, 21
substitution operation, 18
subtype, 96
subtyping, 96
supertype, 96

T
TCC, 110
term

in ccsl, 49
termdef, 33, 108, 130
THEN, 65, 128
THEOREM, 68, 128
theoremsection, 68, 128

146

translation map, 123
TRUE, 65, 129
TYPE, 32, 33, 108, 127, 130
type, 9–14

classification of -, 27
constant, 10, 11
constructor, 10, 12, 20
parameter, 32, 34, 72
variable, 9, 10, 12, 19

context, 11
type, 14, 130
typedef, 33, 108, 130

U
Unit, 29
unit, 30
unit type, 11, 12, 19
up, 29
up?, 30
update, 65, 129
update assertion, 71
update method, 71

V
VAR, 67, 128
vardecl, 65, 129
variable, 49

context, 49
type -, see type variable

variance, 14–28
algebra, 18
mixed, 15, 21
negative, 15, 21
positive, 15, 21
strictly positive, 15, 21

variance, 22, 127
visibility, 43, 127

W
weakening, 12, 20, 53
WITH, 65, 129

147

