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Abstract. One method for detecting fraud is to check for suspicious changes in user behavior. This paper
describes the automatic design of user profiling methods for the purpose of fraud detection, using a series of data
mining techniques. Specifically, we use a rule-learning program to uncover indicators of fraudulent behavior from
a large database of customer transactions. Then the indicators are used to create a set of monitors, which profile
legitimate customer behavior and indicate anomalies. Finally, the outputs of the monitors are used as features in
a system that learns to combine evidence to generate high-confidence alarms. The system has been applied to the
problem of detecting cellular cloning fraud based on a database of call records. Experiments indicate that this
automatic approach performs better than hand-crafted methods for detecting fraud. Furthermore, this approach
can adapt to the changing conditions typical of fraud detection environments.
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1. Introduction

In the United States, cellular fraud costs the telecommunications industry hundreds of mil-
lions of dollars per year (Walters and Wilkinson, 1994; Steward, 1997). One kind of cellular
fraud calledcloning is particularly expensive and epidemic in major cities throughout the
United States. Cloning fraud causes great inconvenience to customers and great expense to
cellular service providers. Existing methods for detecting cloning fraud aread hocand their
evaluation is virtually nonexistent. We have embarked on a program of systematic analy-
sis of cellular call data for the purpose of designing and evaluating methods for detecting
fraudulent behavior.

Cloning fraud is one instance ofsuperimposition fraud, in which fraudulent usage is
superimposed upon (added to) the legitimate usage of an account. Other examples are credit
card fraud, calling card fraud and some forms of computer intrusion. Superimposition fraud
typically occurs when a non-legitimate user gains illicit access to the account or service
of a legitimate user. Superimposition fraud is detectable if the legitimate users have fairly
regular behavior that is generally distinguishable from the fraudulent behavior.

This paper presents a framework, and a corresponding system, for automatically gen-
erating detectors for superimposition fraud. We have applied the system in the domain
of cellular cloning fraud. Under the framework, massive amounts of cellular call data are
analyzed in order to determine general patterns of fraud. These patterns are then used
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to generate a set of monitors, each of which watches customers’ behavior with respect to
one discovered pattern. A monitor profiles each customer’s typical behavior and, in use,
measures the extent to which current behavior is abnormal with respect to the monitor’s
particular pattern. Each monitor’s output is provided to a neural network, which weights
the values and issues an alarm when the combined evidence for fraud is strong enough.

This article is organized as follows. We first describe the problem of cellular cloning fraud
and some existing strategies for detecting it. We then describe the framework in detail using
examples from the implemented system. We present experimental results comparing the
system against other known methods for detecting fraud. Finally, we discuss the evaluation
and describe issues in the future of automatic fraud detection.

2. Cellular communications and cloning fraud

Whenever a cellular phone is on, it periodically transmits two unique identification numbers:
itsMobile Identification Number(MIN) and itsElectronic Serial Number(ESN). These two
numbers together specify the customer’s account. These numbers are broadcast unencrypted
over the airwaves, and they can can be received, decoded and stored using special equipment
that is relatively inexpensive.

2.1. Cloning fraud

Cloning occurs when a customer’s MIN and ESN are programmed into a cellular telephone
not belonging to the customer. When this second telephone is used, the network sees the
customer’s MIN and ESN and subsequently bills the usage to the customer. With the stolen
MIN and ESN, a cloned phone user (whom we shall call abandit) can make virtually unlim-
ited calls, whose charges are billed to the customer. The attraction of free and untraceable
communication makes cloned phones very popular in major metropolitan areas.

If the fraudulent usage goes undetected, the customer’s next bill will include the cor-
responding charges. Typically, the customer then calls the cellular service provider (the
carrier) and denies the usage. The carrier and customer then determine which calls were
made by the “bandit” and which were legitimate calls. The fraudulent charges are credited
to the customer’s account, and measures are taken to prohibit further fraudulent charges. In
certain cases, the fraudulent call records will be referred to a law enforcement agency for
prosecution.

There are two primary motivations for cloning fraud. Obviously, cloning fraud allows
low-costcommunications. A bandit is not charged for calls, which are usually worth far
more (in retail dollars) than the cost of the cloned phone. Less obviously, cloning fraud
allows untraceablecommunications because the bandit’s identity cannot be tied to the
cloned account. This second aspect is very important to criminals (DeMaria and Gidari,
1996).

Cloning fraud is detrimental in many ways. First, fraudulent usage congests cell sites,
causing service to be denied to legitimate customers. Second, most cellular calls are to
non-cellular destinations, so fraud incurs land-line usage charges. Third, cellular carriers
must pay costs to other carriers for usage outside the home territory. Because these are
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retail costs, they constitute a considerable financial burden to the customer’s carrier. Fourth,
the crediting process is costly to the carrier and inconvenient to the customer; the customer
is more likely to switch to another carrier (“customer churn”) if the other is perceived to
be less susceptible to fraud. For these reasons, cellular carriers have a strong interest in
reducing cloning fraud.

2.2. Strategies for dealing with cloning fraud

There are two classes of methods for dealing with cloning fraud.Pre-call methods try to
identify and block fraudulent calls as they are made.Post-callmethods try to identify fraud
that has already occurred on an account so that further fraudulent usage can be blocked.

2.2.1. Pre-call methods. Pre-call detection methods involve validating the phone or its
user when a call is placed. A common method is requiring that a Personal Identification
Number (PIN) be entered before every call. A PIN serves as a password that is validated
by the switch prior to allowing the call into the network. PINs are in use throughout many
metropolitan areas in the United States. Unfortunately, like MIN-ESN pairs, PINs are
broadcast over the airwaves unencrypted. For technical reasons, PINs are more difficult
to receive and decode, but with more sophisticated equipment PIN cracking is possible
(Herzog, 1995). Although PINs make cloning fraud more difficult, they do not prevent it.

Other methods of prevention include RF Fingerprinting and Authentication (Redden,
1996). RF Fingerprinting is a method of identifying cellular phones by their transmission
characteristics. Authentication is a reliable and secure private-key encryption method that
imposes no inconvenience on the customer. It has been predicted that authentication will
eliminate cloning fraud eventually. However, authentication requires changes in hardware:
both phones and switches must be capable of processing authentication requests. Currently
about thirty million non-authenticatable cell phones are in use in the United States alone,
and their replacement will not be immediate (Steward, 1997). In the meantime, cloning
fraud will continue to be a problem and the industry will rely onpost-callfraud detection
methods.

2.2.2. Post-call methods.Post-call methods periodically analyze call data on each account
to determine whether cloning fraud has occurred. One such method,collision detection,
involves analyzing call data for temporally overlapping calls. Since a MIN-ESN pair is
licensed to only one legitimate user, any simultaneous usage is probably fraudulent. A
closely related method,velocity checking(Davis and Goyal, 1993), involves analyzing the
locations and times of consecutive calls to determine whether a single user could have
placed them while traveling at reasonable speeds. For example, if a call is made in Los
Angeles 20 minutes after a call is made on the same account in New York, two different
people are likely using the account.

Collisions and velocity checks are both believed to be accurate, but they share the dis-
advantage that their usefulness depends upon a moderate level of legitimate activity. Low-
usage subscribers (for example, people who only use cellular phones in emergencies) will
rarely cause collisions or velocity alarms with bandits.



P1: KCU

Data Mining and Knowledge Discovery KL503-04-Fawcett September 29, 1997 9:38

294 FAWCETT AND PROVOST

Another post-call method,dialed digit analysis, mines call data to build up a database of
telephone numbers called by bandits during periods of fraudulent activity. For detection,
this database is matched against the numbers called by customers, and alarms are produced
when the number of hits is above a threshold (“dialed digit hits”).

2.2.3. User profiling. User profiling methods constitute a special class of post-call meth-
ods. They involve analyzing calling behavior in order to detect usage anomalies suggestive
of fraud. Profiling often works well with low-usage subscribers because unusual behavior
is very prominent. For this reason, profiling is a good complement to collision and velocity
checking because it covers cases the others might miss.

Figure 1 shows some chronological call data from an example (fabricated) frauded ac-
count (the fields shown are just a sample; our call data contain many more attributes than
shown here). The column at the far right indicates whether the call is fraudulent or not; that
is, whether the call was placed by the customer or the bandit. A fraud analyst looking at
this account would quickly be able to recognize the two classes of calls:

1. The legitimate user calls from the metro New York City area, usually during working
hours, and typically makes calls lasting a few minutes.

2. The bandit’s calls originate from a different area (Boston, Massachusetts, about 200
miles away), are made in the evenings, and last less than a minute.

Ideally, a fraud detection system should be able to learn such rules automatically and use
them to catch fraud.

This paper addresses the automatic design of user profiling methods. User profiling
methods are attractive because they do not depend upon any special hardware capability,
as authentication does, nor do they require that the customer replace or upgrade existing
equipment. Moreover, the ability to generate such detectors is domain independent: such
a system should be able to generate fraud detectors for any domain with superimposition
fraud.

Figure 1. Call records of a sample frauded account.
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2.3. The need to be adaptive

There are a number of commercially available expert systems for fraud detection that
include user profiling. Fraud analysts or system administrators can tune the techniques by
adjusting parameters, or by entering specific patterns that will trigger alarms. Unfortunately,
determining which potential patterns will be useful is a time-consuming process of trial-
and-error. Moreover, the patterns of fraud are dynamic. Bandits constantly change their
strategies in response to new detection techniques or new cellular hardware capabilities. By
the time a system is manually tuned, the fraudulent behavior may have changed significantly.

The environment is dynamic in other ways as well. The level of fraud changes dramat-
ically month-to-month because of modifications to work practices (both the carrier’s and
the bandits’). Also, the costs of missing fraud or of dealing with false alarms change with
intercarrier contracts, and because of fraud analyst workforce issues.

For all these reasons, it is important that a fraud detection system adapt easily to new
conditions. It should be able to notice new patterns of fraud. It should also be able to modify
its alarm generation behavior, for example, as the level of fraud or the cost of dealing with
a false alarm changes. Such adaptability can be achieved by generating fraud detection
systems automatically from data, using data mining techniques.

3. Automatic construction of profiling fraud detectors

One approach to building a fraud detection system is to classify individual transactions, calls
in our case, as being fraudulent or legitimate. Classification has been well explored, e.g.,
in machine learning and statistics, so this would seem to be a straightforward application
of existing techniques.

We have not had success using standard machine learning techniques to construct such
a classifier. Some specific results are discussed in Section 6.3. In general, there are two
problems that make simple classification approaches infeasible.

• Context: A call that would be unusual for one customer would be typical for another.
For example, a call placed from Brooklyn is not unusual for a subscriber who lives there,
but might be very strange for a Boston subscriber. Thus, it is necessary (i) to discover
indicators corresponding tochangesin behavior that are indicative of fraud, rather than
absolute indicators of fraud, and (ii) toprofile the behavior of individual customers to
characterize their normal behavior.
If there were available substantial information about an account’s context, we could
possibly ameliorate this problem. Context information would comprise behavior infor-
mation such as what the phone is used for, what areas it is used in, what areas/numbers
it normally calls, what times of day, and so on. Context information is not available1, so
our solution is to derive it from historical data specific to each account. The discovery of
context-sensitive fraud indicators and the profiling of individual accounts comprise two
of the three major elements of the learning problem.

• Granularity: At the level of the individual call, the variation in calling behavior is large,
even for a particular user. Legitimate subscribers occasionally make calls that look
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suspicious. As far as we have been able to determine, it is not possible to achieve simul-
taneously the high degree of accuracy and high level of coverage necessary to classify
individual calls effectively. Any classifier that fires on a significant number of defrauded
accounts produces an unacceptably large number of false alarms. Therefore, decisions
to take corrective action cannot be made with confidence on the basis of individual calls.
Instead, it is necessary to aggregate customer behavior, smoothing out the variation, and
watch for coarser-grained changes that have better predictive power. This is the third ma-
jor element of the learning problem; in the experiments we describe later, we aggregate
customer behavior intoaccount-days.

In sum, the learning problem comprises three questions, each of which corresponds to a
component of our framework.

1. Which call features are important? Which features or combinations of features are
useful for distinguishing legitimate behavior from fraudulent behavior?

2. How should profiles be created? Given an important feature, how should we charac-
terize/profile the behavior of a subscriber with respect to the feature, in order to notice
important changes?

3. When should alarms be issued? Given the results of profiling behavior based on multiple
criteria, how should they be combined to be effective in determining when fraud has
occurred?

Each of these issues corresponds to a component of our framework.

4. The Detector Constructor framework

Our Detector Constructorframework is illustrated in figure 2. Under the framework, a
system first learns rules that serve as indicators of fraudulent behavior. It then uses these
rules, along with a set of templates, to create profiling monitors (M1 throughMn). These
monitors profile the typical behavior of each account with respect to a rule and, in use,
describe how far each account is from its typical behavior. Finally, the system learns
to weight the monitor outputs so as to maximize the effectiveness of the resulting fraud
detector.

Figure 3 shows how such a detector will be used. The monitors are provided with a
single day’s calls from a given account, and each monitor generates a number indicating
how unusual that account-day looks for the account. The numeric outputs from the monitors
are treated as evidence and are combined by the detector. When the detector has enough
evidence of fraudulent activity on an account, based on the indications of the monitors, it
generates an alarm.

We now discuss each step of the framework in detail, illustrated by the particular choices
made in our first implemented system, as applied to the problem of cloning fraud detection.
The first Detector Constructor system is called DC-1. The call data used for detecting
cloning fraud are chronological records of calls made by each subscriber, organized by
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Figure 2. The framework for automatically constructing fraud detectors.

Figure 3. A DC-1 fraud detector processing a single account-day of data.



P1: KCU

Data Mining and Knowledge Discovery KL503-04-Fawcett September 29, 1997 9:38

298 FAWCETT AND PROVOST

account. These data describe individual calls using attributes such as DATE, FROM-STATE,
DURATION and CELL-SITE.

4.1. Learning fraud rules

The first stage of detector construction,rule learning, involves searching the call data for
indicators of fraud. In the DC-1 system, the indicators are conjunctive rules discovered by
a standard rule-learning program.

As discussed above, an obvious way of mining fraud indicators is to create an example
set consisting of all frauded calls and all legitimate calls, and apply to a rule learning
algorithm to the example set. However, this approach loses context information about the
normal behavior of the account in which the fraud occurred. To illustrate the importance
of context, consider a situation in which half the subscribers live in New York and half in
Los Angeles. When cloned, the New York accounts are used in Los Angeles and the Los
Angeles accounts are used in New York. Applying rule learning to the combined set of
call records would uncover no fraud rules based on call origin; in other words, knowing
that a call originated in New York says nothing about how likely it is to be fraud. In fact,
this conclusion would be wrong: in this scenario a New York account with Los Angeles
calls is much more likely to have been cloned than if it had only New York calls. This fact
is missed when using a combined example set, because in combining examples all account
context information is lost.

In light of the need to maintain context information, rule learning is performed in two
steps. Rules are first generated locally based on differences between fraudulent and normal
behavior for each account, then they are combined in a rule selection step.

4.1.1. Rule generation. DC-1 uses the RL program (Clearwater and Provost, 1990;
Provost and Aronis, 1996) to generate indicators of fraud in the form of classification rules.
Similar to other MetaDENDRAL-style rule learners (Buchanan and Mitchell, 1978; Segal
and Etzioni, 1994; Webb, 1995), RL performs a general-to-specific search of the space of
conjunctive rules. This type of rule-space search is described in detail by Webb (1995). In
DC-1, RL uses a beam search for rules with certainty factors above a user-defined threshold.
The certainty factor we used for these runs was a simple frequency-based probability esti-
mate, corrected for small samples (Quinlan, 1987). In order to deal with the very large num-
bers of values for some of the attributes used to describe calls (more than 10,000 values in
total), RL also used breadth-first marker propagation techniques, so that the algorithm’s time
complexity does not depend on the number of attribute values (Aronis and Provost, 1997).
(RL’s time complexity is linear in the number of attributes and the number of examples.)

The call data are organized by account, with each call record labeled as fraudulent or
legitimate. When RL is applied to an account’s calls it produces a set of rules that serve
to distinguish, within that account, the fraudulent calls from the legitimate calls. As an
example, the following rule would be a relatively good indicator of fraud:

(TIME-OF-DAY = NIGHT) AND (LOCATION = BRONX) ==> FRAUD
Certainty factor = 0.89
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This rule denotes that a call placed at night from The Bronx (a Borough of New York City)
is likely to be fraudulent. TheCertainty factor = 0.89 means that, within this
account, a call matching this rule has an 89% probability of being fraudulent.

From each account, RL generates a “local” set of rules describing the fraud on that
account. Each rule is recorded along with the account from which it was generated. The
covering heuristic typically used by RL was disabled, so that all of the (maximally general)
rules with probability estimates above threshold would be generated. This option was
chosen because rule generation in DC-1 is local and decisions about coverage should not
be made locally. The next step, rule selection, incorporates information about coverage and
generality.

4.1.2. Rule selection. After all accounts have been processed, a rule selection step is per-
formed. The purpose of this step is to derive a set of rules that will serve as fraud indicators.

A rule selection step is necessary because the rule generation step typically generates
tens of thousands of rules in total, most of which are specific only to single accounts. The
system cannot knowa priori how general each rule will be. For example, from one account
RL may generate the rule:

(LOCATION = FREEHOLD) AND (DAY-OF-WEEK= SATURDAY) AND
(CALL-DURATION < 47 SECS) ==> FRAUD

This rule is probably specific only to the account from which it was generated, but there
is no a priori way to know a rule’s generality in the generation step, which processes a
single account at a time. If this rule is found in (“covers”) many accounts, it is probably
worth using; if it was only found in a single account, it is probably not a general indicator
of fraudulent behavior. Even if the same account is cloned again, it will not be defrauded
in exactly the same way. Note that DC-1’s notion of coverage is slightly different from the
standard notion, because of the multiple levels of granularity; in particular, DC-1 selects a
set of rules that covers theaccounts, as opposed to typical classifier learning, in which a set
of rules is selected that covers the examples (in this case, the calls).

The rule selection algorithm is given in figure 4. The algorithm identifies a small set
of general rules that cover the accounts. Two parameters control the algorithm.Trules is a
threshold on the number of rules required to “cover” each account. In the selection process, if
an account has already been covered byTrulesrules, it will not be examined.Tacctsis the num-
ber of accounts a rule must have been found in (i.e., mined from) in order to be selected at all.

For each account, the list of rules generated by that account is sorted by the frequency of
occurrence in the entire account set. The highest frequency unchosen rule is selected. An
account is skipped if it is already sufficiently covered. The resulting set of rules is used in
construction of monitors.

4.2. Constructing profiling monitors

Rule learning produces a set of rules characterizing changes that commonly occur when
an account is cloned. These rules are not universal: for a given account, we do not know
to what extent that account’s normal behavior already satisfies the rule. For example, the
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Figure 4. Rule selection and covering algorithm used by DC-1.

“Bronx-at-night” rule, mentioned above, may be very useful for someone living in Hartford,
Connecticut, but it may cause many false alarms on a subscriber living in the Bronx. A
fraud detection system should distinguish the two. In the latter case the system should
inhibit the rule from firing, or at least require a much higher level of activation.

Sensitivity to different users is accomplished by converting the rules intoprofiling mon-
itors. Each monitor has aProfiling step and aUsestep. Prior to being used on an account,
each monitor profiles the account. In the Profiling step, the monitor is applied to a segment
of an account’s typical (non-fraud) usage in order to measure the account’s normal activity.
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Statistics from this profiling period are saved with the account. In the monitor’s Use phase,
the monitor processes a single account-day at a time. The monitor references the normalcy
measures calculated in Profiling, and generates a numeric value describing how abnormal2

the current account-day is.
Profiling monitors are created by the monitor constructor, which employs a set of tem-

plates. The templates are instantiated by rule conditions. Given a set of rules and a set of
templates, the constructor generates a monitor from each rule-template pair. Two monitor
templates are shown in figure 5. At the top is a template that createsthresholdmonitors.

Figure 5. Two templates for creating monitors from rules. A threshold monitor learns a threshold on maximum
use and outputs a 1 whenever daily usage exceeds the threshold. A standard deviation monitor outputs the number
of standard deviations over the mean profiled usage.
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Figure 6. Using mean and standard deviation in profiling.

Such a monitor yields a binary feature corresponding to whether the user’s behavior was
above threshold for the given day. The bottom of figure 5 shows a template for astandard
deviationmonitor. In the Profiling period, such monitors measure the mean (µ) and stan-
dard deviation (σ ) of typical usage; in the Use period, they produce a continuous output
representing how many standard deviations above the mean an account-day is.

As an example, assume the Bronx-at-night rule mentioned earlier was used with the
template shown in figure 5(b). Assume that, on some account, the subscriber called from
the Bronx an average of five minutes per night with a standard deviation of two minutes.
At the end of the Profiling step, the monitor would store the values (5, 2) with that account.
In Use on that account, if the monitor processed a day containing three minutes of airtime
from the Bronx at night, the monitor would emit a zero; if the monitor saw 15 minutes, it
would emit(15− 5)/2 = 5. This value denotes that the account is five standard deviations
above its average (profiled) usage level.

Standard deviation monitors are sensitive both to the expected amount of activity on an
account and to the expected daily variation of that activity. Figure 6 illustrates the difference,
showing one monitor applied to two accounts. The account on the left has low variation in
the Profiling period so its standard deviation is lower. Consequently the erratic behavior in
its Use period will produce large values from the monitor. The account on the right has the
same mean but exhibits much larger variation in Profiling period, so the standard deviation
is higher. The variations in behavior during the Use period will not produce large values
from the monitor.

4.3. Combining evidence from the monitors

The third stage of detector construction learns how to combine evidence from the monitors
generated by the previous stage. For this stage, the outputs of the monitors are used as
features to a standard learning program. Training is done on account data, and monitors
evaluate one entire account-day at a time. In training, the monitors’ outputs are presented
along with the desired output (the account-day’s correct class: fraud or non-fraud). The
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evidence combination weights the monitor outputs and learns a threshold on the sum so
that alarms may be issued with high confidence.

Many training methods for evidence combining are possible. We chose a simple Linear
Threshold Unit (LTU) (Nilsson, 1965; Young, 1984) for the experiments reported be-
low. An LTU is simple and fast, and enables a good first-order judgment of the features’
worth.

A feature selection process is used to reduce the number of monitors in the final detector.
Some of the rules do not perform well when used in monitors, and some monitors overlap in
their fraud detection coverage. We therefore employ a sequential forward selection process
(Kittler, 1986) which chooses a small set of useful monitors. Empirically, this simplifies
the final detector and increases its accuracy.

The final output of DC-1 is a detector that profiles each user’s behavior based on several
indicators, and produces an alarm if there is sufficient evidence of fraudulent activity.
Figure 3 shows an example of a simple detector evaluating an account-day.

Before being used on an account, the monitors each profile the account. They are
applied to a profiling segment (thirty days in our experiments) during which they measure
unfrauded usage. In our study, these initial thirty account-days were guaranteed free of
fraud, but were not otherwise guaranteed to be typical. From this initial profiling period,
each monitor measures a characteristic level of activity.

4.4. Summary of the detector construction process

In sum, DC-1 begins by examining the call records of defrauded accounts. The call
records are expressed in terms of a set of base-level attributes with thousands of possi-
ble values. From these data, the system generates rules characterizing fraudulent calls
within accounts, then selects a smaller set of general rules as indicators of fraudulent
behavior.

These rules are used as the basis from which to build a set of profiling monitors, each
of which examines behavior based on one learned rule. A monitor learns the typical be-
havior of an account by scanning an initial sequence of the account’s calls (its “profiling
period”) and saving some statistics. Subsequently, the monitor examines chunks of calls
(in our experiments, account-days). The monitor subsequently examines each chunk (day)
of each account’s behavior and outputs a number indicating how far away from normal the
behavior is.

In order to construct a high-confidence detector, DC-1 must then learn to combine the
outputs of the monitors effectively. To do this, it trains a classifier on a sample of account-
days. Each account-day is a training instance expressed as a vector of monitor outputs for
that day, and labelled as either containing fraud or not. After training, the system has a
classifier that is able to combine the monitors effectively.

The final output of the system is a set of monitors and a trained classifier for combining
their outputs. In order to be applied to a new account, the monitors must see a profiling
period of days from that account.

The next sections describe our cellular call data and the experiments we have performed
on the system.
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5. The data

The call data used for this study are records of cellular calls placed over four months by
users in the New York City area—an area with high levels of fraud. Each call is described
by thirty-one attributes, such as the phone number of the caller, the duration of the call, the
geographical origin and destination of the call, and any long-distance carrier used. Because
of security considerations, we are unable to disclose all the features used in the system.

To these thirty-one attributes are added several derived attributes that incorporate knowl-
edge we judged to be potentially useful. One such attribute is a categoricalTIME-OF-DAY
variable representing the time segment of the day in which a call is placed. Its values
are MORNING, AFTERNOON, TWILIGHT, EVENING and NIGHT. Another derived
attribute isTO-PAYPHONE, a binary flag indicating whether the call terminated at a pay-
phone. Note that any number of additional features could be added to encode relevant
domain knowledge.

Each call is also give a class label of legitimate or fraudulent. This is done by cross
referencing a database of all calls that were credited as being fraudulent for the same time
period.

5.1. Data cleaning

Like all real-world data, our cellular call data contain errors and noise from various sources.
For example, calls are marked as fraudulent based on a process calledblock crediting. In
this process, the customer and the carrier representative together establish the range of dates
during which the fraud occurred, and the calls within the range are credited. The customer is
usually not asked about each individual call. The block crediting process uses heuristics to
discard obvious non-fraudulent calls from the credited block, but these heuristics are fallible.
Also, if there is a disagreement about the fraud span, the customer service representative
usually concedes, in the customer’s favor, to a wider date span. Any erroneously credited
calls constitute noise in our data.

Because of these noise sources, we cleaned the data in several ways.

• Each account’s calls were scanned automatically to eliminate credited calls to numbers
that had been called outside of the credited block. In other words, the program looked
for credited calls made to a phone number that also had been called by the legitimate
subscriber; in this case, the crediting may have been a mistake, so the call is discarded
completely.

• An account-day was classified as fraudulent only if five or more minutes of fraudulent
usage occurred. Days including one to four minutes of fraudulent usage were discarded.
This policy eliminated a small number of “gray area” account-days probably mislabelled
due to small amounts of noise. For example, the database of credits due to fraud occa-
sionally included credits for other reasons, such as wrong numbers.

• Within any time period there will be fraud that has not yet been detected. We assumed
that some genuinely fraudulent calls would not be marked as such because of this time
lag. We attempted to minimize this noise by delaying the data retrieval by two weeks.
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• In preliminary experiments, rule learning uncovered some unusual attribute values (e.g.,
CELLSITE = 0) that seemed to be very strong indicators of fraud. Discussions with the
database providers led us to conclude that these suspicious values were artifacts of the
crediting process: in some circumstances, crediting would erase or replace certain fields.
Because the values appeared primarily in credited records, data mining had extracted
them as high-confidence fraud rules. We found five or six such misleading values and
eliminated from the database all records containing them.

In addition, the start times of calls had been recorded in local time with respect to the
switch of origin. The calls were normalized to Greenwich Mean Time for chronological
sorting.

5.2. Data selection

The call data were separated carefully into several partitions for rule learning, account
profiling, and detector training and testing. Once the monitors are created and the accounts
profiled, the system transforms raw call data into a series of account-days using the outputs
of the monitors as features.

Rule learning and selection used 879 accounts comprising over 500,000 calls. About
3600 accounts were selected for profiling, training, and testing. The only condition used
to select these 3600 accounts was that they be guaranteed to have at least thirty fraud-free
days of usage before any fraudulent usage. The initial thirty days of each account were used
for profiling. The remaining days of usage were used to generate approximately 96,000
account-days. Using randomly selected accounts, we generated sets of 10,000 account-
days for training and 5000 account-days for testing. Training and testing accounts were
distinct, so their account-days were not mixed between training and testing3. Each set of
account-days was chosen to comprise 20% fraud and 80% non-fraud days.

6. Experiments and evaluation

Rule learning generated 3630 rules, each of which applied to two or more accounts. The
rule selection process, in which rules are chosen in order of maximum account coverage,
yielded a smaller set of 99 rules sufficient to cover the accounts. Each of the 99 rules was
used to instantiate two monitor templates, yielding 198 monitors. The final feature selection
step reduced this to eleven monitors, with which the experiments were performed.

6.1. The importance of error cost

In this domain, different types of errors have different costs. A realistic evaluation should
take misclassification costs into account. Classification accuracy, a standard metric within
machine learning and data mining, is not sufficient.

A false positive error (a false alarm) corresponds to wrongly deciding that a customer
has been cloned. Based on the cost of a fraud analyst’s time, we estimate the cost of a false
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positive error to be about $5. A false negative error corresponds to letting a frauded account-
day go undetected. Rather than using a uniform cost for all false negatives, we estimated a
false negative to cost $.40 per minute of fraudulent airtime used on that account-day. This
figure is based on the proportion of usage in local and non-local (“roaming”) markets, and
their corresponding costs.

Because LTU training methods try to minimize errors but not error costs, we employed
a second step in training. After training, the LTU’s threshold is adjusted to yield minimum
error cost on the training set. This adjustment is done by moving the decision threshold
from −1 to +1 in increments of .01 and computing the resulting error cost. After the
minimum cost on training data is found, the threshold is clamped and the testing data are
evaluated.

6.2. DC-1 compared with alternative detection strategies

Table 1 shows a summary of results of DC-1 compared against other detectors. The name
of each detector is shown in the left-most column. Classification accuracy averages and
standard deviations are shown in the second column. The third column shows the mean
and standard deviations of test set costs. The right-most column, “Accuracy at cost,” is
the corresponding classification accuracy of the detector when the threshold is set to yield
lowest-cost classifications.

Each detector was run ten times on randomly selected training and testing accounts. For
comparison, we evaluated DC-1 along with other detection strategies.

• Alarm on All represents the policy of alarming on every account every day. The opposite
strategy,Alarm on None, represents the policy of allowing fraud to go completely
unchecked. The latter corresponds to the maximum likelihood accuracy classification.
Note that the cost ofAlarm on None does not take into account the inhibitory effect of
fraud detection, without which fraud levels would likely continue to rise.

• Collisions and Velocitiesis a detector using collision and velocity checks described in
Section 2.2.2. DC-1 was used to learn a threshold on the number of collision and velocity
alarms necessary to generate a fraud alarm. It is surprising that Collisions and Velocity

Table 1. Accuracies and costs of various detectors.

Detector Accuracy (%) Cost (US$) Accuracy at cost (%)

Alarm on all 20 20000 20

Alarm on none 80 18111± 961 80

Collisions+ velocities 82± .3 17578± 749 82± .4

High usage 88± .7 6938± 470 85± 1.7

Best individual DC-1 monitor 89± .5 7940± 313 85± .8

State of the art (SOTA) 90± .4 6557± 541 88± .9

DC-1 detector 92± .5 5403± 507 91± .8

SOTA plus DC1 92± .4 5078± 319 91± .8
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Checks, commonly thought to be reliable indicators of cloning, performed poorly in our
experiments.
The performance of collisions and velocity checks was originally worse than reported here
because of false alarms. Manual inspection of false alarms revealed a few synchronization
problems; for example, some apparent collisions were caused when a call was dropped
then quickly re-established in a neighboring cell whose clock did not agree with the
first cell’s. Some such conditions could be caught easily, so we patched the detection
algorithms to check for them. The results in this paper are for the improved detectors.
Investigation of confusion matrices revealed that the collision and velocity check de-
tectors’ errors were due almost entirely to false negatives. In other words, when the
detectors fired they were accurate, but many fraud days never exhibited a collision or
velocity check.

• Some fraud analysts believe that cloning fraud is usually accompanied by large jumps in
account usage, and sophisticated mining of fraud indicators is probably unnecessary since
most fraud could be caught by looking for sudden increases in usage. We created the
High Usagedetector to test this hypothesis. It generates alarms based only on amount of
usage. It is essentially a standard deviation monitor (see figure 5) whose rule conditions
are always satisfied. The threshold of this detector was found empirically from training
data.
Note that the evaluation of cost for the high usage detector may be overly optimistic,
due to inadequacies in our cost model. In particular, a trained high usage detector learns
to optimally “skim the cream,” without regard to the fact that the errors it makes will
involve annoying the best customers. In these cases, the cost of a false alarm may be
much higher than the fixed cost we assigned.

• TheBest Individual DC-1 Monitor was used as an isolated detector. This experiment
was done to determine the additional benefit of combining monitors. The best individual
monitor was generated from the rule:

(TIME-OF-DAY = EVENING) ==> FRAUD

Rule learning had discovered (in 119 accounts) that the sudden appearance of evening
calls, in accounts that did not normally make them, was coincident with cloning fraud.
The relatively high accuracy of this one monitor reveals that this is a valuable fraud
indicator.
Our TIME-OF-DAY attribute has five possible values: MORNING, AFTERNOON,
TWILIGHT, EVENING and NIGHT. Although EVENING is by far the most frequent
value implicated in fraud, rule learning generated fraud rules involving each of these
values. This suggests that any time-of-day change in a subscriber’s normal behavior may
be indicative of fraud, though the other shifts may not be predictive enough to use in a
fraud monitor.

• TheDC-1 detector incorporates all the monitors chosen by feature selection. We used
the weight learning method described earlier to determine the weights for evidence com-
bining.

• The SOTA (“State Of The Art”) detector incorporates thirteen hand-crafted profiling
methods that were the best individual detectors identified in a previous study. Each
method profiles an account in a different way and produces a separate alarm. Weights
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for combining SOTA’s alarms were determined by our weight-tuning algorithm. Details
on the detectors comprising SOTA are given in the appendix.

The results in Table 1 demonstrate that DC-1 performs quite well. In fact, DC-1 out-
performs SOTA in terms of both accuracy and cost4. In our experiments, lowest cost clas-
sification occurred at an accuracy somewhat lower than optimal. In other words, some
classification accuracy can be sacrificed to decrease cost. More sophisticated methods
could be used to produce cost sensitive classifiers, which would probably produce better
results.

Finally, the monitors of SOTA and DC-1 were combined into a hybrid detector. The
resulting detector (SOTA plus DC-1) exhibits no increase in classification accuracy, but
does show a slight improvement in fraud detection cost.

In this work we have dealt with differing costs of false positive and false negative errors.
However, we have still glossed over some complexity. For a given account, the only false
negative fraud days that incur cost to the company are those prior to thefirst true positive
alarm. After the fraud is detected, it is terminated. Thus, our analysis overestimates the
costs slightly; a more thorough analysis would eliminate such days from the computation.

6.3. Fraudulent call classifiers

Section 4.1 asserted that account context is important in the rule learning step: a global
example set taken from all accounts would lose information about each account’s normal
behavior. In order to test this hypothesis, two such call classifiers were created from global
example sets.

Applying standard classification algorithms to the call data was difficult for several
reasons. First, the description language is very detailed because many thousands of attribute
values appear in the data. Because of this, the volume of data necessary was relatively large
for desktop platforms; the use of fewer than 100,000 examples led to erratic classification
behavior. Furthermore, in order to achieve high coverage of calls, massively disjunctive
concept descriptions had to be learned—there were no simple classifiers that performed
well.

After trying many approaches, we chose two classifiers learned in the following manner.
A set of 100,000 training examples was sampled from the accounts set aside for rule learning.
The sample was random, but stratified to achieve a 50/50 class distribution. RL was applied
to these data, with parameters set so that it learned massively disjunctive rule sets. The two
classifiers, CC 1054 and CC 1861, comprise 1054 and 1861 rules, respectively5. Each of
these rule sets covered around 60% of the calls in a 92212 example test set, with an accuracy
of about 75% on the calls it covered. We observed a clear and graceful tradeoff between
accuracy and coverage: as the coverage increased, the accuracy decreased.

In order to achieve a competitive comparison, the call classifiers were then given the
advantage of profiling and monitoring. A standard deviation airtime monitor was created
from each. Specifically, instead of instantiating the monitor template with a single rule,
the template was instantiated with the entire classifier. The resulting monitor profiled
each account’s normal behavior with respect to the classifier’s output. The call classifier
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Table 2. A comparison of DC-1 to two global call classifiers.

Detector Accuracy (%) Cost (US$) Accuracy at cost (%)

CC 1054 88± .4 8611± 531 88± .6

CC 1861 88± .5 8686± 804 88± .6

DC-1 detector 92± .5 5403± 507 91± .8

monitor learns if a particular customer’s legitimate behavior typically triggers a positive
output. Furthermore, each call classifier monitor was inserted into the DC-1 weight-training
framework in order to find an “optimal” output threshold for accuracy maximization or cost
minimization.

The results are shown in Table 2. The two call classifiers perform similarly, and DC-1
outperforms both by a considerable margin. Indeed, we were surprised that the the call
classifier monitors perform as well as they do.

6.4. Shifting distributions of fraud

As discussed in Section 2.3, a fraud detection system should be able to adapt to shifting
fraud distributions. For example, each month the relative amount of fraud changes slightly,
and it is rarely possible to predict the level of fraud far into the future. Thus, unless it is
adaptive, even a well-tuned detection system will begin to lose its edge.

To illustrate this point, we simulated the effects of changing fraud distributions on detector
performance. One DC-1 detector was trained on a fixed distribution of account-days (80%
non-fraud, 20% fraud) and tested against several other distributions (ranging from 75% to
99% non-fraud account-days), to simulate a well-tuned but non-adaptive detection system.
Another DC-1 detector was allowed to adapt to each distribution; its LTU threshold was
re-trained for minimum predicted cost on a training set with the new distribution.

The results are shown in figure 7. TheX-axis is the percentage of non-fraud account-
days, and theY-axis is the cost per account day. This figure shows that the second detector,
which is allowed to adjust itself to each new distribution, is consistently more cost effective
than the fixed detector. This difference increases as the testing distribution becomes more
skewed from the distribution upon which the fixed detector was trained.

We close by noting that these experiments illustrated changes in fraud detection perfor-
mance with respect to fairly simple changes in fraud distribution (changing fraud volume).
The patterns of fraud also change, particularly in reponse to detection methods. Thus the
ability to use data mining to discover new patterns amplifies the benefit of adaptability.

6.5. Discussion

It is difficult to evaluate DC-1 against existing expert systems for fraud detection. Fraud
detection departments carefully protect information about how much fraud they have and
how effective their detection strategies are. Likewise, vendors of fraud detection systems
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Figure 7. The effects of changing fraud distributions.

protect details of their systems’ operation that may constitute trade secrets. Little perfor-
mance data on fielded systems are available, and what data do exist are insufficient for
careful evaluation.

For these reasons, we evaluated DC-1 against individual known fraud detection tech-
niques, as well as against a collection of techniques representing the state of the art as we
understand it. Results in the previous sections show that the DC-1 detector performs better
than the high-usage alarm and the collision/velocity alarm. DC-1 also out-performs the
SOTA detector, consisting of a collection of the best fraud detection techniques known to
us, trained by DC-1’s evidence combining method.

DC-1’s framework has three main components, and is more complex than other ap-
proaches. Our experiments were designed not only to evaluate the overall performance of
the system, but also to analyze the contribution of the individual components. In particular:

• The High Usage detector profiles with respect to undifferentiated account usage. Compar-
ison with DC-1’s performance demonstrates the benefit of using rule learning to uncover
specific indicators of fraudulent calls.

• The Call Classifier detectors represent rule learning without the benefit of account context.
Comparison with DC-1’s performance demonstrates the value of DC-1’s rule generation
step, which does preserve account context.

• Comparison of DC-1 with the single best individual DC-1 monitor demonstrates the
benefit of combining evidence from multiple monitors.
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• Experiments with shifting fraud distributions indicate the benefit of making evidence
combination sensitive to fraud distributions.

In each of these cases, the composite DC-1 system out-performed the detector in which
a significant piece was missing. These results suggest that each component contributes
critically to the performance of the entire detector.

Our system uses a Linear Threshold Unit to combine evidence from the monitors. Other
methods of evidence combination are possible. We performed some experiments with
multi-layer neural networks, but found that adding units to a hidden layer did not improve
performance. These networks produced higher training accuracies, but lower accuracies on
the test sets; such behavior is symptomatic of data overfitting. Additional experimentation
might yield better-performing networks, but we have not pursued this. It is possible that,
because the neural network is applied far along in the fraud detection process as a means
of combining evidence, non-linear combinations of the evidence contribute little to fraud
detection performance.

By increasing the expressiveness of the language used for inductive learning, it may be
possible to learn more general patterns of fraudulent behavior, reducing the need for highly
disjunctive class descriptions. The caveats mentioned earlier about the inability to procure
background knowledge for context notwithstanding, it may be possible to provide addi-
tional context by linking call and account data to geographic and demographic databases.
Furthermore, it may be possible to learn context in one stage, and then apply relational
learning approaches in a later stage.

One such possibility is to make use of inductive learners that learn concept descriptions
in first-order logic, such as FOIL (Quinlan, 1990) or ILP methods (Dˇzeroski, 1996). Given
the appropriate context information, it is possible that more expressive methods could learn
general relational rules such as the following, which indicates fraud when a user calls from
an abnormal location.

CALL_ORIGIN(X,ORIG) &
NORMAL_CALL_LOCS(USER,LOCS) &

ORIG /∈ LOCS ==> FRAUD

Another possibility is to use a learner that forms propositional rules, but can take ad-
vantage of relational background knowledge in the process (Aronis et al., 1996). We have
not explored the use of relational learning to any great extent. We have linked the data
to knowledge about the geographic locations of telephone numbers ((Aronis and Provost,
1997), which does produce useful generalizations of the areas to which calls are placed.

Finally, it is important to point out additional limitations to the evaluation of learned
classifiers on real-world problems. For the work described in this paper, we made use of
techniques to deal with skewed class distributions, viz., stratified sampling, and to deal with
nonuniform misclassification costs, viz., empirical threshold adjustment. We also ensured
that our evaluation include cost effectiveness in addition to accuracy. However, because
of the complexity and dynamics of real-world domains, determiningpreciselythe target
cost and class distributions is often impossible. As noted above, levels of fraud and costs
change monthly. It is important to be able to compare competing classification methods
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under imprecision in these distributions. The investigation and design of such techniques
is an important area for future research (Provost and Fawcett, 1997).

7. Related work

Fraud detection is related tointrusion detection, a field of computer security concerned with
detecting attacks on computers and computer networks (Frank, 1994; Sundaram, 1996;
Kumar, 1995). Many forms of intrusion are instances of superimposition fraud, and thus
candidates for systems built with our framework. Within the intrusion detection community,
anomaly detectionsystems try to characterize behavior of individual users in order to detect
intrusions on that user’s account via anomalies in behavior. Existing anomaly detection
systems typically examine audit trails of user activities, which fill the same roll as cellular
call records in DC-1. DC-1 would be considered a statistical anomaly detection system.
Sundaram (1996) writes:

An open issue with statistical approaches in particular, and anomaly detection systems
in general, is the selection of measures to monitor and the choice of metrics. It is not
known exactly what the subset of all possible measures that accurately predicts intrusive
activities is.

DC-1’s framework directly addresses this problem. Its rule learning step examines large
numbers of fraud episodes in order to generate features (measures) that distinguish fraudu-
lent from legitimate behavior. To the best of our knowledge, no published anomaly detection
system does this.

Calling card fraud and credit card fraud are other forms of superimposition fraud. A
system built by Yuhas (1993, 1995) examines a set of records representing calling-card
validation queries to identify queries corresponding to fraudulent card usage. Yuhas trans-
formed the problem into a two-class discrimination task and trained several machine learning
models on the data. All three models had comparable performance on the test sets. His
system must be provided with appropriate features; it neither mines the data for fraud indi-
cators nor measures typical customer usage. Stolfo et al. (1997) address credit card fraud
detection. They also transform the problem into a two-class discrimination task, and do not
use customer-specific information in detection. Specifically, they predict whether individ-
ual transactions are fraudulent. In our domain, we found that DC-1 significantly improves
detection performance over systems that use transaction classification alone. It would be
interesting to determine whether a system like DC-1 could improve performance on these
other superimposition fraud tasks.

Ezawa and Norton (1995, 1996) have addressed the problem of uncollectible debt in
telecommunications services. They use a goal-directed Bayesian network for classification,
which distinguishes customers who are likely to default from those who are not. As with our
work, Ezawa and Norton’s work faces problems with unequal error costs and skewed class
distributions. However, it does not face the problem of determining the typical behavior
of individual customers so as to recognize superimposed fraudulent behavior. Mining the
data to derive profiling features is not necessary.
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Because fraud happens over time, methods that deal with time series are relevant to this
work. However, traditional time series analysis (Chatfield, 1984; Farnum and Stanton,
1989) in statistics strives either to characterize an entire time series or to forecast future
events in the series. Neither ability is directly useful to fraud detection.

Hidden Markov Models (Rabiner and Juang, 1986; Smyth, 1994) are concerned with
distinguishing recurring sequences of states and the transitions between them. However,
fraud detection usually only deals with two states (the “frauded” and “un-frauded” states)
with a single transition between them. Yuhas (1995) mentions the possibility of recognizing
“at home” and “travel” states in order to distinguish frauded states more effectively. This
differentiation could be useful for reducing false alarms. We are aware of no work pursuing
this idea.

8. Conclusion

The detection of cellular cloning fraud is a relatively young field. Fraud behavior changes
frequently as bandits adapt to detection techniques, and fraud detection systems should be
adaptive as well. However, in order to build usage monitors we must know which aspects of
customers’ behavior to profile. Historically, determining such aspects has involved a good
deal of manual work, hypothesizing useful features, building monitors and testing them.
Determining how to combine them involves much trial-and-error as well.

We have presented and demonstrated a framework that automates the process of generat-
ing fraud detectors. This framework is not specific to cloning fraud, but may be applied to
superimposition fraud problems in any domain. Prime candidates are toll fraud, computer
intrusion and credit-card fraud. For example, in credit-card fraud, data mining may identify
locations that arise as new hot-beds of fraud. The constructor would then incorporate mon-
itors that notice if customers begin to charge more than they usually do from these specific
locations.

Even with relatively simple components, DC-1 is able to exploit mined data to produce
a detector whose performance exceeds that of the state-of-the-art. The SOTA system took
several person-months to build; the DC-1 detector took several CPU-hours. Furthermore,
DC-1 can be retrained at any time as necessitated by the changing environment.

Such adaptability is beneficial in many ways. It can save effort in time-consuming manual
feature identification and detector tuning. It can save on monetary losses that would occur
during the manual identification and tuning process. It can save on less quantifiable damage
done due to higher fraud, such as lower customer opinion (or even customer churn). Finally,
it can act topreventfraud; a system that quickly adapts to new patterns will be avoided by
bandits in favor of easier prey.

Appendix

State of the art (SOTA) detector

The SOTA (“State Of The Art”) detector incorporates thirteen profiling methods. Each
method profiles an account in a different way and produces a separate alarm. Some of
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the monitors were designed by hand, but those that employ weights used DC-1’s weight
tuning methods. Specifically, SOTA contains the following monitors:

• Two collision detectors, which scan for call collisions of greater than 30 seconds and 60
seconds, respectively.

• Two velocity detectors, using velocity thresholds of 400 and 600 miles per hour, respec-
tively.

• Three “dialed digits” monitors. We created a dialed digit database as follows. We
scanned through accounts reserved for rule learning and recorded how many distinct
accounts called a given number both legitimately and in a fraud period. A phone number
was discarded if any legitimate subscriber called it; otherwise, a count was saved of the
number of times it was called from a cloned phone.
Because we did not know an ideal threshold on the number of “hits” required, we created
three monitors each with a different threshold.

• Two daily standard deviation usage monitors. One counted the number of calls on that
account-day, one measured total airtime on that account-day.

• Four “bad cellsite” indicators. It is commonly believed that certain cellsites are the locus
for higher than average amounts of fraud, so calls originating from those cellsites might
be suspicious. To test this strategy, we tallied the frauded accounts calling each of the
cellsites in our region, then computed the percentage of frauded accounts using each
cellsite. The twenty worst cellsites were extracted from this list. Using this cellsite list,
we created four detectors that counted hits to these “bad cellsites” each in a different way.
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Notes

1. In fact, because many cellular phones belong to large corporate accounts, often even basic user information
such as home town and work location is unavailable.

2. Technically, the numeric value only describes how much above normal the account is. Behavior levels below
normal are not considered.

3. If account-days from a single account appear in both training and testing sets, the performance evaluation can
be deceptively optimistic. Fraudulent behavior within a specific cloning episode is more similar than fraudulent
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behavior between episodes. When deployed, the monitors will be used to search for previously unseen cloning
episodes.

4. Earlier work (Fawcett and Provost, 1996) reported a higher accuracy for SOTA than is shown here. Further
development of SOTA revealed that some of its component methods, developed in a prior study, had been built
from account data that overlapped data used to test the methods. When a strict separation was enforced, SOTA
performance declined slightly to the figures shown here.

5. To learn CC 1861 (1054) RL tried to cover the example set with rules each of which covered at least 50 (100)
examples and had a Laplace estimate greater than or equal to 0.95, using a beam width of 5000.
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