
Published in IJCAI-01 Workshop on Stochastic Search Algorithms, Aug. 2001. 1

Complexity of Continuous, 3-SAT-like
Constraint Satisfaction Problems

Yi Shang, Markus P.J. Fromherz, Tad Hogg
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

fyshang,fromherz,hoggg@parc.xerox.com

Warren B. Jackson
HP Labs

1501 Page Mill Road, MS 4U-12
Palo Alto, CA 94304

warrenjackson@hp.com

Abstract

Continuous constrained optimization is at the core
of many real-world applications such as planning,
scheduling, control, and diagnosis of physical sys-
tems (car, planes, factories). Effective constraint-
based techniques must handle the complexity of
real-world continuous constraint problems by dy-
namically adapting solvers to the structure of the
problem. Toward this end, we analyze continuous
constraint satisfaction problem formulations based
on (discrete) 3-SAT problems, which have a strong
relation between structure and search cost. We
compare the search complexities of three different
problem formulations and three randomized search
algorithms. This allows us not only to compare dif-
ferent problems and solution approaches, but also
to connect back to results from similar studies on
SAT problems. In particular, we find that median
search cost is characterized by simple parameters
such as the constraint-to-variable ratio, and that dis-
crete search algorithms such as GSAT have contin-
uous counter-parts with similar behavior.

1 Introduction
Many important real-world software problems in domains
such as planning, control, reconfiguration, and fault diagnosis
can be regarded as constrained optimization problems[Bon-
darenkoet al., 1998]. These optimization problems are often
best solved in the continuous domain, because either the un-
derlying physical system is continuous or because discrete
implementations exhibit abrupt changes in outputs for small
changes in inputs. Such manifest nonlinearities often lead
to undesirable behaviors – limit cycles, chaos, and oscilla-
tions – when such systems interact with the real world[Stro-
gatz, 1994]. Continuous constrained optimization minimizes
these problems. However, effective constraint-based tech-
niques must handle the complexity of real-world continuous
constraint problems by dynamically adapting solvers to the
structure of the problem. Toward this end, this paper extends
some of the progress made in understanding complexity re-
sults for discrete optimization problems to continuous prob-
lems.

In particular, significant progress has been made in under-
standing problem complexity of the (discrete) satisfiability
(SAT) problem[Hogget al., 1996a]. The SAT problem be-
longs to an important class of discrete constraint-satisfaction
problems (CSP). Many problems in artificial intelligence,
logic, computer aided design, database query, and planning,
etc. can be formulated as SAT problems.

Generally, aSAT problemis defined as follows. Given a
set ofm clausesfC1, C2, � � �, Cmg on n Boolean variables
x = (x1; x2; � � � ; xn), xi 2 f0; 1g, and a Boolean formula in
conjunctive normal form

C1 ^ C2 ^ � � � ^ Cn; (1)

find an assignment of values to the variables so that (1) evalu-
ates to betrue, or derive its infeasibility if (1) is infeasible. In
the well-studied 3-SAT problem, clauseCi involves exactly
three variables that may appear either positively or negatively,
as inCi = xj _ xk _ :xl (j; k; l 2 f1; :::; ng).

SAT problems can be formulated as discrete or continu-
ous, constrained or unconstrained, optimization problems. In
the past, constrained programming algorithms have been de-
veloped to solve SAT problems transformed into integer pro-
gramming problems. In a typical example[Kamathet al.,
1990], a SAT clauseCi is transformed into a linear inequal-
ity:

nX
j=1

qi(yj) � 2� jCij (2)

whereyj 2 f�1; 1g is thejth variable and

qi(yj) =

(
yj if literal xj is in clauseCi

�yj if literal :xj is in clauseCi

0 otherwise
(3)

While the simplex method is effective for solving linear
programming problems, integer linear programming prob-
lems are much harder to solve. Various methods such as
branch-and-bound, cutting plane[Hooker, 1988], and inte-
rior point methods[Kamathet al., 1990] have been applied
to solve SAT problems. Previous results show that integer
programming methods may be faster than resolution for cer-
tain classes of problems, although they often fail to solve hard
SAT instances[Guet al., 1997].

In formulating a continuous SAT problem, discrete vari-
ables in the original problem are transformed into continuous



variables in such a way that solutions to the continuous prob-
lem are solutions to the original problem. The continuous
formulation is potentially beneficial because the continuous
function can provide a continuous path from a given infeasi-
ble point to a feasible one without using discontinuous jumps.
Another motivation for using a continuous formulation is that
it allows the application to employ continuous reasoning sim-
ilar to fuzzy logic. A disadvantage is that continuous formula-
tions often require computationally expensive algorithms[Gu
et al., 1997].

Some CSPs are NP-complete and require algorithms of ex-
ponential complexity in the worst case to obtain a satisfying
assignment. One particularly well-studied phenomenon for
discrete SAT problem formulations is thecomplexity phase
transition [Hogg et al., 1996b]. For a variety of complete
search algorithms, the average time to find a solution or de-
termine that none exists is short when the ratio of clauses to
variables is small (i.e., the problem is underconstrained) as
well as when this ratio is large (where the problem is over-
constrained), while solving time is largest in the intermediate
case. For satisfiable problems, incomplete algorithms such
as GSAT[Selmanet al., 1992] exhibit similar complexity
curves[Yokoo, 1997]. This paper compares these results with
a study of continuous problem formulations and (incomplete)
randomized continuous constraint solving algorithms.

The rest of this paper is structured as follows. In the next
section, we present three different continuous problem for-
mulations of the 3-SAT problem. In Section 3, the problems
are solved and analyzed using three variations of a random-
ized continuous constraint solving algorithm. As for discrete
3-SAT studies, measures of the problem solving difficulty are
examined as a function of the ratio of constraints to vari-
ables. The solution complexity semi-quantitatively follows
the behavior exhibited by discrete problems and exhibits a
distinct change in behavior as the ratio of constrains to vari-
ables reaches 2.0. Section 4 discusses these results and com-
pares them to results from discrete formulations. Section 5
closes with conclusions and an outline of future work.

2 Problem Formulations
We present three alternative formulations for continuous con-
straint satisfaction problems. Based on the concept of clauses
in 3-SAT, constraints in the three formulations are represented
by quadratic, sigmoid, and exponential functions. The com-
mon characteristics of these continuous formulations are as
follows.
� Each positive literalx in a 3-SAT clause is converted

to a continuous functionf(x), and each negative literal
:x is converted tof(1 � x), wheref depends on the
formulation.

� Disjunction (e.g.,x1 _ x2) is represented as addition in
the constraint (e.g.,f(x1) + f(x2)).

� Each clause (e.g.,x1 _ x2 _ :x3) is transformed into an
inequality constraint (e.g.,f(x1)+f(x2)+f(1�x3) �
c, where constantc depends on the formulation).

In the rest of this section, we illustrate the continuous
formulations by using a simple example, the 3-SAT clause
x1 _ x2 _ :x3.

 
 

 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 

-1.5 

-1.0 

-0.5 

0.5 

1.0 

1.5 

2.0 

2.5 

x1∨x2 

x1∨¬x2 

 

 
 

 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 

-1.5 

-1.0 

-0.5 

0.5 

1.0 

1.5 

2.0 

2.5 

x1 ∨ x2 

¬x1∨¬x2 

 

Figure 1: 2-D feasible spaces of the quadratic formulation for
two 2-SAT problems (white regions).

2.1 Quadratic formulation

The basic transformation function of the quadratic formula-
tion is

f(x) = x2 (4)

and the constant limit for the inequality isc = 1. Based on
this function, clausex1 _ x2 _ :x3 is transformed into the
quadratic constraint

x21 + x22 + (1� x3)
2 � 1 (5)

Using this transformation, a 3-SAT problem withn
Boolean variables andm clauses is converted into a CSP with
n continuous variables andm continuous constraints. A fea-
sible solution to the SAT clause, i.e.,x1 = 1, x2 = 1, or
x3 = 0, always satisfies the corresponding continuous con-
straint.

As an illustration, Figure 1 shows 2-D feasible spaces of
continuous CSPs created from two 2-SAT problems. The left
diagram is for the SAT problem(x1_x2)^(x1_:x2), and the
right diagram is for the SAT problem(x1_x2)^(:x1_:x2).
The interior of the dark areas are infeasible regions, whereas
the white areas including points on the boundary are feasible
regions.

Solutions to the continuous problems can be mapped to so-
lutions to the original (discrete) SAT problems through the
following thresholding: if a valuexi of the continuous so-
lution is equal to or larger than 0.5, then setxi to 1 in the
solution to the SAT problem; otherwise setxi to 0. Note that
a mapping like this does not guarantee that a solution to the
continuous problem is always mapped to a feasible solution to
the original SAT problem. For example, considering the right
diagram in Figure 1, when bothx1 andx2 have large positive
or large negative values at the same time, they are feasible
solutions to the continuous CSP. However, after thresholding,
they are not feasible solution to the original SAT problem.

This issue can be addressed by introducing simple bounds
on the variables in the continuous formulation. For example,
by adding the constraints

�0:5 � xi � 1:5 for i = 1; : : : ; n; (6)

a solution to the continuous problem is always mapped to a
feasible solution to the SAT problem using the 0.5 threshold.

2



-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 

-1.5 

-1.0 

-0.5 

0.5 

1.0 

1.5 

2.0 

2.5 

x1∨x2 

x1∨¬x2 

 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 

-1.5 

-1.0 

-0.5 

0.5 

1.0 

1.5 

2.0 

2.5 

x1∨x2 

¬x1∨¬x2 

 

Figure 2: 2-D feasible spaces of the sigmoid formulation for
two 2-SAT problems (white regions).

2.2 Sigmoid formulation
The basic transformation function of the sigmoid formulation
is

f(x) =
1

1 + e��(x�1)
(7)

and the constant limit for the inequality isc = 1
2 . Based on

this function, clausex1 _ x2 _ :x3 is transformed into the
nonlinear constraint

1

1 + e
��(x1�1)

+
1

1 + e
��(x2�1)

+
1

1 + e
�x3

�
1

2
(8)

The constant� is chosen to make sure that a solution to the
continuous constraint can be mapped to a feasible solution
to the original problem through thresholding. In other words,
the center of the search space between 0 and 1, the vector (0.5,
0.5,� � �, 0.5), should not satisfy the continuous constraint. For
3-SAT problems, we have

3

1 + e0:5�
<

1

2
=) � > 2 ln 5 � 3:2189

We arbitrarily set� = 3:3 in our experiments.
Using this formulation, a feasible solution to a SAT prob-

lem, such asx1 = 1, x2 = 1, or x3 = 0 for the sample SAT
clause, is always a feasible solution to the continuous CSP,
and vice versa. A solution to the continuous CSP is always
mapped to a feasible solution to the original SAT problem
through simple thresholding: setxi to 1 if xi � 0:5; other-
wise setxi to 0. Recall that the unbounded quadratic formu-
lation does not have this property.

Figure 2 shows 2-D feasible spaces of continuous CSPs
created from the same two 2-SAT problems as before, us-
ing the sigmoid formulation. The left diagram is for the SAT
problem(x1 _ x2)^ (x1 _:x2), and the right diagram is for
the SAT problem(x1 _ x2) ^ (:x1 _ :x2). The interior of
the dark areas are infeasible regions, whereas the white areas
including points on the boundary are feasible regions.

2.3 Exponential formulation
The basic transformation function of the exponential formu-
lation is

f(x) = 2�(x�1) (9)
and the constant limit for the inequality isc = 1. Based on
this function, clausex1 _ x2 _ :x3 is transformed into the
nonlinear constraint

2�(x1�1) + 2�(x2�1) + 2��x3 � 1 (10)

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 

-1.5 

-1.0 

-0.5 

0.5 

1.0 

1.5 

2.0 

2.5 

x1∨x2 

x1∨¬x2 

 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 

-1.5 

-1.0 

-0.5 

0.5 

1.0 

1.5 

2.0 

2.5 

x1∨x2 

¬x1∨¬x2 

 

Figure 3: 2-D feasible spaces of the exponential formulation
for two 2-SAT problems (white regions).

The constant� is chosen to make sure that a solution to the
continuous constraint can be mapped to a feasible solution
to the original clause through thresholding. In other words,
the center of the search space between 0 and 1, (0.5, 0.5,� � �,
0.5), should not satisfy the continuous constraint. For 3-SAT
problems, we have

3� 2�0:5� < 1 =) � > 2 log2 3 � 3:1699

We arbitrarily set� = 3:2 in our experiments.
This formulation has properties similar to the sigmoid for-

mulation. For example, a feasible solution to a SAT problem,
such asx1 = 1, x2 = 1, or x3 = 0 for the sample SAT
clause, is always a feasible solution to the continuous CSP,
and vice versa. A solution to the continuous CSP is mapped
to a feasible solution to the original SAT problem through the
same thresholding scheme: setxi to 1 if xi � 0:5 and to
0 otherwise. These two formulations are very similar inside
the center region [0,1], but become very different when the
variables have large values. In the sigmoid formulation, con-
straint violation saturates at a constant far away from the cen-
ter region, whereas in the exponential formulation constraint
violation increases to infinity. The latter potentially provides
better search guidance to search algorithms when they look
for feasible regions.

Figure 3 shows 2-D feasible spaces of continuous CSPs
created from the same two 2-SAT problems as before, using
the exponential formulation. The left diagram is for the SAT
problem(x1 _ x2)^ (x1 _:x2), and the right diagram is for
the SAT problem(x1 _ x2) ^ (:x1 _ :x2). The interior of
the dark areas are infeasible regions, whereas the white areas
including points on the boundary are feasible regions.

3 Search Algorithms
3.1 Sequential Quadratic Programming and

MATLAB implementation
The sequential quadratic programming (SQP) optimization
method represents the state-of-the-art in nonlinear program-
ming methods. Based on the work of Biggs, Han, and Pow-
ell, the method mimics Newton’s method for constrained
optimization just as for unconstrained optimization[Powell,
1983]. It is an iterative method starting from some initial
point and converges to a constrained local minimum. At each
iteration of an SQP method, one solves a quadratic program

3



(QP) that models the original nonlinear constrained problem
at the current point. The solution to the QP is used as a search
direction to find an improving point, which is used in the next
iteration.

The functionfmincon is a MATLAB implementation of
an SQP method. Anfmincon iteration consists of three main
stages: (a) updating of the Hessian matrix of the Lagrangian
function, (b) quadratic programming problem solution, and
(c) line search and merit function calculation. This iteration
is repeated until an optimal or feasible solution is found (for
optimization or satisfaction problems, respectively). The cost
of an iteration is thus on the order ofn function evaluations
(n the number of variables), as the slope of the Lagrangian
function is computed for small step sizes in each of the vari-
ables. (A small, constant number of function evaluations is
added to the cost for the other two stages offmincon.)

fmincon is a local search algorithm in the continuous
search space, just like GSAT[Selmanet al., 1992] is a local
search algorithm in the discrete search space. It starts from
an initial point and usually converges to a constrained local
optimum close to the initial point.fmincon may be trapped
by local optima and may not be able to find a feasible solu-
tion when constraints are nonlinear.fmincon cannot prove
infeasibility when no feasible solution exists.

3.2 Solver 1: Global random restart of local
searches

The first algorithm we used is a local search strategy that
mimics GSAT by combiningfmincon with random global
restart. fmincon is started from a random initial point in a
certain search region. If it stops without finding a consistent
solution,fmincon is restarted from a new random point in the
search region. This is repeated until a solution is found. Vari-
able valuesxi in the initial and restart points are constrained
to be in the interval [0,1].

In working with the quadratic formulation, although the
bounded formulation is more closely mapped to the SAT
problem, empirically the bounded problem is much harder to
solve usingfmincon than the unbounded formulation. An in-
tuitive explanation is that feasible regions of the bounded for-
mulation are very small for overconstrained problems, such
as when the constraints to variables ratio is over 2. When the
constraints are nonlinear and the feasible regions are small,
SQP have difficulty in finding feasible solutions.

In using the unbounded formulation to solve SAT prob-
lems, we treat the case where the discretized version of a so-
lution to the continuous problem is not a feasible solution to
the SAT problem as failure of the local solver. When this
happens, we simply restart the continuous local solver from
randomly generated points. This is done repeatedly until a
feasible solution to the SAT problem is found.

3.3 Solver 2: A simple heuristic in generating
better starting points

In our experiments with Solver 1,fmincon often runs only a
single iteration between restarts. Our hypotheses is that, as
the constraint ratio increases, most restart points are far from
feasible regions in the search space, andfmincon immedi-
ately gives up. Thus, most runs offmincon are wasted.

The goal for our second solver was to generate better start-
ing points. Instead of generating a single random point, the
algorithm randomly samplesk points in the search space and
selects the best one as the initial and restart points forfmin-
con. In our experiments, we setk both ton, the number
of variables, and tom, the number of constraints. (Our pre-
liminary observation is thatk should probably increase with
the constraint ratio.) The best sample point is defined as the
point with the smallest constraint violation, which should be
the one closest to or even in a feasible region. As in Solver 1,
variable valuesxi in the sample points are constrained to be
in the interval [0,1].

Recall that eachfmincon iteration requires aboutn func-
tion evaluations. Thus, each restart withk random sample
points results in a total of aboutk + n function evaluations.
In contrast,k restarts in Solver 1 result in a total of aboutkn
function evaluations.

3.4 Solver 3: Local random restart of local
searches

Similar to Solver 1, Solver 3 callsfmincon from a starting
point randomly generated in a certain search region. The
difference is that whenfmincon fails to find a feasible so-
lution, Solver 3 restartsfmincon from a random point close
to the stopping point of the failed run. Specifically, in our
experiments, the restart points are generated in the interval
[x�i � 0:25,x�i + 0:25], wherex�i is the value of the variable
in the stopping point of the failed run. Note that Solver 1 al-
ways restarts inside the hypercube[0; 1]n, whereas Solver 3
may restart outside the hypercube.

The motivation for this solver is that the local search may
have been on the right path, but got stuck in an adverse neigh-
borhood of the function, e.g., a flat region. Instead of com-
pletely abandoning the prior search as in a global restart, a lo-
cal restart tries to make use of history by searching for a better
point from where to continue search with the local solver.

4 Experimental Results
We ran experiments with the three continuous formulations
on randomly generated 3-SAT problems withn ranging from
10 to 60. Figure 4 shows the indicative results of the three
formulations with 25 and 50 variables and the constraint ra-
tio (ratio of constraints to variables) varying from 1 through
3.4. 100 random instances were solved. Each instance was
solved once from a random starting point. The same random
instances were solved by Solver 2 and 3, from the same start-
ing points as well. The median numbers of iterations in solv-
ing the 100 instances are shown. Results of problems with
different number of variables are similar.

We use the number offmincon iterations as a measure of
the computational cost for solving the problems, and we plot
this cost in relation to the constraint ratio (ratio of constraints
to variables). Each iteration typically involves on the order of
n function calls. Thus, total computation time is proportional
ton times the number of iterations. For Solver 2, computation
time is also increased by a small value (roughly equivalent to
one iteration ifk = n) to account for the sample evaluations
between restarts.

4



1

10

100

1 1.5 2 2.5 3 3.5

M
ed

ia
n 

 #
 o

f i
te

ra
tio

ns

Ratio of constraints-to-variables

Quadratic form, 25 vars
Sigmoid form, 25 vars

Exponential form, 25 vars
Quadratic form, 50 vars

Sigmoid form, 50 vars
Exponential form, 50 vars

Figure 4: Complexity of continuous problems in the three
formulations using Solver 1.

In Figure 4, the median number of iterations versus con-
straint ratio is plotted forn = 25 and 50 variables for the
three different continuous formulations of the 3-SAT prob-
lem. There is virtually no difference between the different
mappings, a result validated for other values ofn. This re-
sult indicates that when predicting the difficulty in solving a
continuous SAT problem, the results are independent of how
the problem is mapped to the continuous domain. One rea-
son may be that the three formulations are not very different
within the hypercube[0; 1]n, where the searches mostly take
place.

A second observation is that the curves exhibit great sim-
ilarity to each other and to discrete 3-SAT results. Slightly
above a constraint ratio of 2 both the 25 and 50 variable prob-
lems become exponentially more difficult, while below this
ratio the problems are relatively easy to solve. Thus, the ra-
tio of constraints to the number of variables is an important
parameterization of the problem.

This transition from polynomial to exponential cost is anal-
ogous to a transition in discrete 3-SAT[Hogg and Williams,
1994; Coarfaet al., 2001]. In particular, an approximate
theory predicts a transition from polynomial to exponential
scaling of costs occurs just when there are enough clauses
to make the expected number of consistent partial assign-
ments no longer monotonic as a function of the number of
assigned variables. For randomk-SAT, this occurs when
the clause to variable ratio� satisfiesk� = (2k � 1) ln 2
(Eq. 8 of[Williams and Hogg, 1994]). For 3-SAT, this gives
� = 1:62.

These results are qualitatively quite similar to those found
in discrete 3-SAT problems[Selmanet al., 1996]. The analy-
ses of both the discrete and continuous problems indicate that
the complexity is independent of the number of constraints
when the constraint-to-variable ratio is less than 2. The dis-
crete case undergoes a transition from weak dependence of
complexity to strong dependence at a slightly higher ratio
than the continuous case. In both continuous and discrete
cases, the exponential rate of increase is approximately in-
dependent of the number of variables and depends only on
the ratio of constraints to variables. The marked similarity

1

10

100

1000

1 1.5 2 2.5 3 3.5 4

M
ed

ia
n 

 #
 o

f i
te

ra
tio

ns

Ratio of constraints-to-variables

Solver 1, 25 vars
Solver 2, 25 vars
Solver 3, 25 vars

Figure 5: Complexity of continuous problems (25 variables)
in the exponential formulation solved by the three solvers.

1

10

1 1.5 2 2.5 3

M
ed

ia
n 

 #
 o

f i
te

ra
tio

ns

Ratio of constraints-to-variables

Solver 1, 50 vars
Solver 2, 50 vars
Solver 3, 50 vars

Figure 6: Complexity of continuous problems (50 variables)
in the exponential formulation solved by the three solvers.

between the discrete and continuous cases is strong evidence
that the observed complexity of solving the 3-SAT problems
are characteristic of the problem and not the representation of
the problem.

We examine the effect of the three different algorithms in
Figure 5 forn = 25 and in Figure 6 forn = 50, with k = n
for Solver 2. All three algorithms exhibit a transition to the
exponential behavior at about the same constraint ratio for the
various numbers of variables.

The exponential slope of the median number of iterations
does appear to have a dependence on the algorithm and there-
fore cannot yet be considered solely a characteristic of the
problem. The median number of iterations increases more
slowly for Solvers 2 and 3 than Solver 1. That the transition
between easy and hard problems appears to be independent
of the algorithm again suggests that the observed complexity
behavior is characteristic of the problem. However, the dif-
ferent slopes represent significantly different solution times
for problems above the critical constraint ratio. The solution
times can vary as much as a factor of ten between the various
algorithms.

5



5 Conclusion and Future Work
In this work, the complexities for solving continuous and dis-
crete versions of SAT problems exhibit highly similar behav-
ior as a function of problem characteristics such as the num-
ber of variables and the number of constraints. Importantly,
this behavior is independent of the mapping between the dis-
crete and continuous problems and largely independent of the
algorithm used to solve the continuous problem.

One major difference between the discrete and continuous
problems is that, for the discrete case, complete algorithms
exist that can eliminate infeasible regions, and it is possible
to prove that there are no solutions. This fact causes highly
constrained discrete problems to become easier after reaching
a maximum difficulty where neither search for possible solu-
tions or elimination of infeasible regions works well. No such
simplification currently exists for continuous problems, and
problems currently continually become more difficult with in-
creasing constraint ratio.

The marked similarity between the continuous and discrete
problem complexity provides further strong evidence that the
complexity transitions are characteristic of the problem rather
than the algorithm or representation of the problem. More-
over, much of the work on discrete optimization probably ap-
plies in some form to the continuous SAT problems.

Our results confirm the conclusion that methods such as
SQP are only appropriate for underconstrained problems. It
is also clear that, when using these algorithms for problems
arising in real-time applications, one would want to stay to
the left of the exponential part of the complexity curve, since
it becomes quickly impossible to guarantee sensible time
bounds.

There are several variations on the algorithms presented in
this paper that are promising candidates for further analysis.
As a next step, we plan to evaluate Solver 1 with a larger
window for the random restart points in order to increase the
chance to be in or close to a feasible region. From early exper-
iments, we have indications that a window such as [-1,2] im-
proves the solver’s performance. (The sigmoid formulation,
for one, is largely flat outside that window, and thus a much
larger window probably won’t improve performance.) An-
other logical extension is to make the same change to Solver
3 as Solver 2 is to Solver 1, i.e., to sample multiple points
before a restart. Another direction for research is the adaptive
variation of problem and algorithm parameters over the run
of a solver, such as increasing� and� for the sigmoid and
exponential problem formulations, starting from low values,
in order to speed up convergence, and the adaptive variation
of k in Solver 2 to minimize the overhead.

Longer term, we plan to go beyond 3-SAT-like problems
and to analyze and compare complexity results for random
nonlinear constraint satisfaction and optimization problems.

References
[Bondarenkoet al., 1998] A. S. Bondarenko, D. M. Bortz,

and J. J. Mor´e. COPS: Large-scale nonlinearly con-
strained optimization problems. Technical Memorandum
ANL/MCS-TM-237, Argonne National Laboratory, Ar-
gonne, Illinois, 1998.

[Coarfaet al., 2001] Cristian Coarfaet al. Random 3-SAT:
The plot thickens. Technical report, Dept. of Computer
Science, Rice Univ., 2001. Available at www.cs.rice.edu/˜
vardi/papers.

[Guet al., 1997] J. Gu, P. W. Purdom, J. Franco, and B. W.
Wah. Algorithms for the satisfiability (sat) problem: A
survey. In Ding-Zhu Du, Jun Gu, and Panos Pardalos,
editors,Satisfiability Problem: Theory and Applications,
pages 19–152. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, American Mathemati-
cal Society, 1997.

[Hogg and Williams, 1994] Tad Hogg and Colin P. Williams.
The hardest constraint problems: A double phase transi-
tion. Artificial Intelligence, 69:359–377, 1994.

[Hogget al., 1996a] T. Hogg, B. A. Huberman, and C. P.
Williams, editors. Artificial Intelligence, Special Volume
on Frontiers in Problem Solving: Phase Transitions and
Complexity, volume 81:1-2. Elsevier, March 1996.

[Hogget al., 1996b] Tad Hogg, Bernardo A. Huberman, and
Colin Williams. Phase transitions and the search problem.
Artificial Intelligence, 81:1–15, 1996.

[Hooker, 1988] J. N. Hooker. Generalized resolution and
cutting planes.Annals of Operations Research, 12:217–
239, 1988.

[Kamathet al., 1990] A. P. Kamath, N. K. Karmarkar, K. G.
Ramakrishnan, and M. G. C. Resend e. Computational ex-
perience with an interior point algorithm on the satisfiabil
ity problem. Annals of Operations Research, 25:43–58,
1990.

[Powell, 1983] M. J. D. Powell. Variable metric methods for
constrained optimization. In A. Bachem, M. Grotschel,
and B. Korte, editors,Mathematical Programming: The
State of the Art, pages 288–311. Springer-Verlag, 1983.

[Selmanet al., 1992] B. Selman, H. J. Levesque, and D. G.
Mitchell. A new method for solving hard satisfiability
problems. InProc. of AAAI-92, pages 440–446, San Jose,
CA, 1992.

[Selmanet al., 1996] Bart Selman, David Mitchell, and Hec-
tor J. Levesque. Generating hard satisfiability problems.
Artificial Intelligence, 81:17–29, 1996.

[Strogatz, 1994] S. H. Strogatz. Nonlinear Dynamics and
Chaos: with Applications in Physics, Biology, Chemistry
and Engineering. Addison Wesley, 1994.

[Williams and Hogg, 1994] Colin P. Williams and Tad Hogg.
Exploiting the deep structure of constraint problems.Arti-
ficial Intelligence, 70:73–117, 1994.

[Yokoo, 1997] M. Yokoo. Why Adding More Constraints
Makes a Problem Easier for Hill-Climbing Algorithms:
Analyzing Landscapes of CSPs. InProc. of CP’97, num-
ber 1330 in LNCS, pages 357–370. Springer Verlag, 1997.

6


