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A declared need is around for geoinformatic surveillance statistical science and software
infrastructure for spatial and spatiotemporal hotspot detection. Hotspot means something unusual,
anomaly, aberration, outbreak, elevated cluster, critical resource area, etc. The declared need may be
for monitoring, etiology, management, or early warning. The responsible factors may be natural,
accidental, or intentional.

This proof-of-concept paper suggests methods and tools for hotspot detection across geographic
regions and across networks. The investigation proposes development of statistical methods and
tools that have immediate potential for use in critical societal areas, such as public health and disease
surveillance, ecosystem health, water resources and water services, transportation networks,
persistent poverty typologies and trajectories, environmental justice, biosurveillance and biosecurity,
among others.

We introduce, for multidisciplinary use, an innovation of the health-area-popular circle-based
spatial and spatiotemporal scan statistic. Our innovation employs the notion of an upper level set,
and is accordingly called the upper level set scan statistic, pointing to a sophisticated analytical and
computational system as the next generation of the present day popular SaTScan.

Success of surveillance rests on potential elevated cluster detection capability. But the clusters can
be of any shape, and cannot be captured only by circles. This is likely to give more of false alarms
and more of false sense of security. What we need is capability to detect arbitrarily shaped clusters.
The proposed upper level set scan statistic innovation is expected to fill this need

Keywords: confidence set of hotspots, early warning, geosurveillance statistics, hotspot detection,
hotspot rating, nested upper level set scan statistic, typology of space-time hotspots
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1. Introduction

Three central problems arise in geographical surveillance for a spatially distributed
response variable. These are (i) identification of areas having exceptionally high (or low)
response, (ii) determination of whether the elevated response can be attributed to chance
variation (false alarm) or is statistically significant, and (iii) assessment of explanatory
factors that may account for the elevated response. Although a wide variety of methods
have been proposed for modeling and analyzing spatial data (Cressie, 1991), the spatial
scan statistic (Kulldorff and Nagarwalla, 1995; Kulldorff, 1997) has quickly become a
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Figure 1. Limitations of circular scanning windows. (Left) An irregularly shaped cluster—perhaps
a cholera outbreak along a winding river floodplain. Small circles miss much of the outbreak and
large circles include many unwanted cells. (Right) Circular windows may report a single irregularly
shaped cluster as a series of small clusters.

popular method for detection and evaluation of disease clusters, and is now widely used by
many health departments, government scientists, and academic researchers. Kulldorff ez
al. (1998) have developed the SaTScan software system, which is available on the web
without charge. A commercial software system (Biomedware, 2001) is also available. Two
books (Glaz and Balakrishnan, 1999; Glaz et al., 2001) cover the scan statistic, although
their emphasis is on the one-dimensional version. When applied in space-time, the scan
statistic approach can provide early warning of disease outbreaks and can monitor the
spatial spread of an outbreak (Kulldorff, 2001; Mostashari et al., 2002; Waller, 2002).
With suitable modifications, the scan statistic approach can be used for critical area
analysis in fields other than the health sciences. We describe some promising
developments for generalizing the spatial scan statistic to make it applicable to hotspot-
related issues encountered by environmental scientists.

Basic ingredients of the scan statistic are the geometry of the area being scanned, the
probability distribution generating responses under the null-hypothesis of chance
variation, and the shapes and sizes of the scanning window. Depending on the application,
different response distributions are chosen and the test statistic is evaluated through Monte
Carlo simulation (Dwass, 1957). Currently available spatial scan statistic software suffers
from several limitations:

e First, circles have been used for the scanning window, resulting in low power for
detection of irregularly shaped clusters (Fig. 1). Alternatively, an irregularly shaped
cluster may be reported as a series of circular clusters. Kulldorff et al. (2002) explore
the potential of elliptical scanning windows.

e Second, the response variable has been defined on the cells of a tessellated
geographic region, preventing application to responses defined on a network (stream
network, highway system, water distribution network, etc.).

e Finally, reflecting the epidemiological origins of the spatial scan statistic, response
distributions have been taken as discrete (specifically, binomial or Poisson).

We suggest ways of overcoming all these limitations.

2. Background theory of scan statistics

The spatial scan statistic deals with the following situation. A region R of Euclidian space
is tessellated or subdivided into cells (which will be denoted by the symbol a). Data are
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available in the form of a count Y, (non-negative integer) on each cell a. In addition, a
‘‘size’’ value A, is associated with each cell. The cell sizes A, are regarded as known and
fixed, while the cell counts Y, are independent random variables. Two distributional
settings are commonly studied:

e Binomial: A, = N, is a positive integer and Y, ~Binomial (N,,p,), where p, is an
unknown parameter attached to cell @ with 0 < p, < 1.

® Poisson: A, is a positive real number and Y, ~Poisson (4,A4,), where 4, > 0 is an
unknown parameter attached to cell a.

Each distributional model has a simple interpretation. For the binomial, N, people reside in
cell a and each has a certain disease independently with probability p,. The cell count Y, is
the number of diseased people in the cell. For the Poisson, A, is the size ( perhaps area or
some adjusted population size) of the cell a, and Y, is a realization of a Poisson process of
intensity 4, across the cell. In each scenario, the responses Y, are independent; it is
assumed that spatial variability can be accounted for by cell-to-cell variation in the model
parameters.

The spatial scan statistic seeks to identify ‘‘hotspots’’ or ‘‘clusters’’ of cells that have an
elevated response compared with the rest of the region. Elevated response means large
values for the rates (or intensities),

instead of for the raw counts Y,. Cell counts are thus adjusted for cell sizes before
comparing cell responses. The scan statistic easily accommodates other adjustments, such
as for age or for gender.

A collection of cells from the tessellation should satisfy several geometrical properties
before it could be considered as a candidate for a hotspot cluster. First, the union of the
cells should comprise a geographically connected subset of the region R (Fig. 2). Such
collections of cells will be referred to as zones and the set of all zones is denoted by Q.
Thus, a zone Z € Q is a collection of cells that are connected. Second, the zone should not
be excessively large—for, otherwise, the zone instead of its exterior would constitute
background. This restriction is generally achieved by limiting the search for hotspots to
zones that do not comprise more than, say, fifty percent of the region.

The notion of a hotspot is inherently vague and lacks any a priori definition. There is no
““true’’ hotspot in the statistical sense of a true parameter value. A hotspot is instead
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Figure 2. A tessellated region. The collection of shaded cells in the left-hand diagram is connected
and, therefore, constitutes a zone in Q. The collection on the right is not connected.
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defined by its estimate—provided the estimate is statistically significant. To this end, the
scan statistic adopts a hypothesis testing model in which the hotspot occurs as an unknown
zonal parameter in the statement of the alternative hypothesis. The following is a statement
of the null and alternative hypotheses in the binomial setting:

H,: p, is the same for all cells in region R, i.e., there is no hotspot.
H: There is a non-empty zone Z (connected union of cells) and parameter values
0 < py,p; < 1 such that

for all cells a in Z,
Pa = {P1 and  p; > p,.

po forallcellsainR—Z,

The zone Z specified in H; is an unknown parameter of the model. The full model,
H,\U H |, involves three unknown parameters:

Z,po,p; With ZeQ and py <p,.

The null model, H,, is the limit of H, as p; — p,; however, the parameter Z is not
identifiable in the limit. If one is searching for regions of low response, the condition
p1 > po in the alternative hypothesis is changed to p; < p,.

For given Z, the likelihood estimates of p, and p; can be written down explicitly which
determines the profile likelihood for Z:

L(Z) = I[P?)XL(vampl) = L(Z7ﬁ07ﬁl)'
0571

The difficult part of hotspot estimation lies in maximizing L(Z) as Z varies over the
collection Q of all possible zones. In fact, Q is a finite set but it is generally so large
that maximizing L(Z) by exhaustive search is impractical. Two different search
strategies are available for obtaining an approximate solution of this maximization
problem:

(1) Parameter-space reduction. Replace the full parameter space by a subspace Q, C Q
of a more manageable size. The profile likelihood L(Z) is then maximized by
exhaustive search across €. This works well if Q, contains the MLE for the full Q
or at least a close approximation to that MLE. Parameter space reduction is roughly
analogous to doing a grid search in conventional optimization problems.

(2) Stochastic optimization methods. These methods include genetic algorithms
(Knjazew, 2002) and simulated annealing (Aarts and Korst, 1989; Winkler,
1995). These are iterative procedures that converge, under certain assumptions, to
the global optimum in the limit of infinitely many iterations. These procedures are
computationally intensive enough that they can be difficult to replicate many times
particularly when a simulation study is needed to determine null distributions. For
this reason, stochastic optimization methods will not be discussed further in this
paper; however, Duczmal and Assuncdo (2002) have applied simulated annealing
to do global optimization for the scan statistic.

The traditional spatial scan statistic uses expanding circles to determine a reduced list €,
of candidate zones Z. By their very construction, these candidate zones tend to be compact
in shape and may do a poor job of approximating actual clusters. The circular scan statistic
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has a reduced parameter space that is determined entirely by the geometry of the
tessellation and does not involve the data in any way. The scan statistic that we propose
takes an adaptive point of view in which €, depends very much upon the data. In essence,
the adjusted rates define a piece-wise constant surface over the tessellation, and the
reduced parameter space Q, = Q;; g consists of all connected components of all upper
level sets (ULS) of this surface. The cardinality of Q¢ does not exceed the number of
cells in the tessellation. Furthermore, Qj; 5 has the structure of a tree (under set inclusion),
which is useful for visualization purposes and for expressing uncertainty of cluster
determination in the form of a hotspot confidence set on the tree. Since €y g is data-
dependent, this reduced parameter space must be recomputed for each replicate data set
when simulating null distributions.

Although the traditional spatial scan statistic is applicable only to tessellated data, the
ULS approach has an abstract graph (i.e., vertices and edges) as its starting point.
Accordingly, this approach can also be applied to data defined over a network, such as a
subway, water or highway systems. In the case of a tessellation, the abstract graph is
obtained by taking its vertices to be the cells of the tessellation. Two vertices are joined by
an edge if the corresponding cells are adjacent in the tessellation. There is complete
flexibility regarding the definition of adjacency. For example, one may declare two cells as
adjacent (i) if their boundaries have at least one point in common, or (ii) if their common
boundary has positive length, or (iii) in the case of a drainage network, if the flow is from
one cell to the next. The user is free to adopt whatever definition of adjacency is most
appropriate to the problem at hand.

3. ULS scan statistic

The ULS scan statistic is an adaptive approach in which the reduced parameter space
Q) = Q5 is determined from the data by using the empirical cell rates
Y
G,=-*2.

a Aa
These rates determine a function a — G, defined over the cells in the tessellation (more
generally, the vertices of the abstract graph). This function has only finitely many values
(levels) and each level g determines a ULS

U,={a:G, > g}

Since upper level sets do not have to be geographically connected (Fig. 3), we take the
reduced list of candidate zones, Qy g, to consist of all connected components of all
possible upper level sets.

The zones in Qyy; g are certainly plausible as potential hotspots since they are portions of
upper level sets of the response rate. The number of zones is small enough for practical
maximum likelihood search—in fact, the size of Q¢ does not exceed the number of
vertices in the abstract graph (e.g., the number of cells in the tessellation). Finally, a tree
structure can be defined on the reduced parameter space Qj; 5. The nodes of the tree are the
members of Q; g, i.e., the candidate zones. Two nodes Z, Z' € Q; ¢ are joined by an edge if
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Figure 3. Schematic response surface with two response levels, g and g’. The upper level set
determined by g has three connected components, Z,, Z, and Z5; that determined by g’ has Z,, Zs and
Zg as its connected components. The diagram also illustrates the three ways in which connectivity
can change as the level drops from g to g": (i) zones Z; and Z, grow in size and eventually coalesce
into a single zone Z,, (ii) zone Z; simply grows to Zs, and (iii) zone Zg is newly emergent.

i. Z is a proper subset of Z', written as Z Cu Z'.
ii. There is no node W e Qg such that ZC_ W C,Z'.

This tree is called the ULS-tree; its nodes are the zones ZeQy; ¢ and are therefore
collections of vertices from the abstract graph. Leaf nodes are (typically) singleton
vertices at which the response rate is a local maximum; we say ‘typically’’ because the
response rate at a local maximum could be constant across several adjacent vertices. The
root node consists of all vertices in the abstract graph (which we assume to be connected,
for otherwise the ULS tree would be a forest instead of a tree). Fig. 4 shows the tree
structure for the surface displayed in Fig. 3.

A consequence of adaptivity of the ULS approach is that Q;; ¢ must be recalculated for
each replicate in a simulation study. Efficient algorithms are needed for this calculation.
Finding the connected components for an upper level set is essentially the issue of
determining the transitive closure of the adjacency relation on the cells in the upper level
set. Several generic algorithms are available in the computer science literature (Cormen et
al., 2001, Section 22.3 for depth first search; Knuth, 1973, p. 353 or Press et al., 1992,
Section 8.6 for transitive closure).

But special features of the ULS connectivity problem permit enhanced efficiency. We
represent cell adjacency by a zero-one adjacency matrix A whose rows and columns are
labeled with the cells of the tessellation. Entry A, equals 1 if cells a and b are the same or
are adjacent in the tessellation. Otherwise, A, vanishes. The cells (row and column labels)
are arranged in order of decreasing intensity G, = Y, /A, so that the adjacency matrix for
any upper level set is a square submatrix in the northwest corner of the full adjacency
matrix A. This reordering of the rows and columns of A is the only data dependent part of
the algorithm. As the level drops cells are added one after another and one has to keep
track of how the connectivity changes with each addition of a cell. As shown in Fig. 3,
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Figure 4. ULS connectivity tree for the schematic surface displayed in Fig. 3. The four leaf nodes
correspond to surface peaks. The root node represents the entire region. Junction nodes (A, B and C)
occur when two (or more) connected components coalesce into a single connected component.

there are three possibilities:

i. Two or more connected components coalesce into one. This occurs when the new cell
is adjacent to several existing connected components and forms a bridge among them.
ii. An existing connected component grows in size. This occurs when the new cell is
adjacent to exactly one existing connected component.
iii. A new connected component is formed. This occurs when the newly added cell is
not adjacent to any of the existing connected components.

Execution time will depend on the number of nodes in the tree. However, as we trace down
the tree from leaf nodes to root, each cell of the tessellation makes its first appearance in a
uniquely determined node. This implies that the number of nodes in the tree is less than or
equal to the number of cells in the tessellation. Equality holds when distinct cells @ have
distinct intensity levels G, = Y, /A,. Computer efficiency can be further improved since it
is not necessary to compute the portion of the tree below a specified level below which
cells are background and not plausible locations for a hotspot.

4. Continuous response distributions

Our strategy for handling continuous responses is to model the mean and variance of each
response distribution in term of the size variable A ; modeling is guided by the principle
that the mean response should be proportional to A, and the relative variability should
decrease with A,. Just as with the Poisson and binomial models, we take the Y, to be
independent. The approach is best illustrated for the gamma family of distributions.

4.1 Gamma distribution

We parameterize the gamma distribution by (k, ) where £ is the index parameter and f is
the scale parameter. Thus, if Y is a gamma-distributed variate,
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E[Y] =kp and Var[Y] = kp*

Both k and f§ can vary from cell to cell but additivity with respect to the index parameter
suggests that we take k proportional to the size variable:

where ¢ is an unknown parameter but whose value is the same for all a. This gives the
following mean and squared coefficient of variation:

_ﬁaAa ¢
==

and CV*[Y,]=—.

E[Y
A

The hotspot hypothesis testing model is analogous to that of the binomial described
previously:

Hy: f, is the same for all g, i.e., there is no hotspot.
H,: There is a non-empty zone Z and parameter values 0 < f3, f; such that

g - {ﬁl for all objects a in Z, and B, > o,

po  for all objects a outside of Z,

The full model has four unknown parameters Z, ¢, f,, 5, that need to be estimated. The
profile likelihood function for Z is obtained by fixing an arbitrary candidate zone Z and
maximizing the likelihood with respect to the other three parameters. The latter
optimization problem reduces to the solution of three likelihood equations. Two of these
equations can be solved for f; and f8; in terms of c:

0 1
Z()Ya Z()Ya
0 1
Z()Aa Z()Aa

where Z(O) and Z(l) indicate summation over objects outside Z and inside Z, respectively.
Equations (1) are used to eliminate 5, and f§; from the remaining likelihood equation,
giving a single equation to be solved for the final parameter c. This equation, which cannot
be solved in closed form, is

A, A, © >y,
afee() (7)) - (74 ey
(1)
+ (Z(1>Aa) log% — za:Aa 10g§—z,

where /(- ) is the digamma function. It is well known that the function

8(1) =log(t) —y(1), =0,

is strictly increasing with g(0) = 0 and g(c0) = 0. Accordingly, the LHS of Equation (2)
is a strictly decreasing function of ¢ which ranges from oo down to 0. On the other hand,
the RHS of (2) is non-negative since arithmetic means are greater than geometric means.
Thus, Equation (2) gives a unique MLE for c. The Newton—Raphson algorithm gives rapid

Bo=c

and f, =c

: (1)
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convergence. The likelihood estimate for the hotspot zone Z is obtained by maximizing the
profile likelihood on the ULS tree, as before.

4.2 Lognormal and other continuous distributions

A similar approach is applicable to other two-parameter families of distributions on the
positive real line. Specifically, for the lognormal distribution, we take

and CV*[Y,] = [—] d,

E[Y
Aa

a
where d is either user-specified (e.g., d = 1) or is an unknown parameter to be estimated.

In terms of its conventional parameters (i, %), the first two moments of the lognormal are
2

E[Y] — et /2 and CVZ[Y] =e” —1,

which gives

A d
eha = ”7/C,BH and % =1+ (A£> .
L+ (c/A,)" “

These equations explicitly specify the lognormal parameters (u, %) for each a in terms of
the unknown parameters so that the likelihood can be written down explicitly (assuming
independence).

4.3 Simulating the null distribution to obtain p-values

Conditional simulation is used to obtain the null distribution in the cases of the binomial
and Poisson response distributions. One conditions on the sufficient statistic (under H)) to
eliminate the unknown parameters from the null model. The resulting parameter-free
distributions are hypergeometric and multinomial, respectively, and are easily simulated.
This is not the case for most continuous distributions. A glance at the H-version of
Equation (2) shows that one of the sufficient statistics is > A,log(Y,/A,) and the
conditional distribution is not anything familiar. Accordingly, simulation might be done by
replacing unknown parameters with their maximum likelihood estimates under H,.

5. Confidence sets for hotspot estimation

The hotspot MLE is just that—an estimate. Removing some cells from the MLE and
replacing them with other cells can generate an estimate that is almost as plausible in the
likelihood sense. This zonal estimation uncertainty can be expressed by a confidence set of
zones. For example, if we wish to determine if a particular cell (e.g., county, zip code)
belongs to the hotspot, it would not be appropriate to ask if the cell belongs to the zonal
MLE Z. It would be better to ask if the cell belongs to at least one of the zones in a
confidence set for the hotspot.
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5.1 Hotspot membership rating

Extending this idea, zonal estimation uncertainty can be visually depicted by inner and
outer envelopes, where the outer envelope consists of all cells belonging to at least one
zone in the confidence set. Cells in the inner envelope belong to all (or to a sufficiently
large percentage) of the zones in the confidence set. In other words, the outer envelope is
the union of all zones in the confidence set while the inner envelope is their intersection
(Fig. 5).

The hotspot confidence set also lets us assign a numerical rating to each cell for inclusion
in the hotspot. The rating is the percentage of zones in the confidence set that includes the
cell under consideration. The inner envelope consists of cells receiving a 100% rating while
the outer envelope contains the cells with a nonzero rating. A map of these ratings, with
superimposed MLE, provides a visual display of uncertainty in hotspot delineation.

5.2 Confidence set determination

We employ the standard duality between confidence sets and hypothesis testing, namely
that the confidence set consists of all null hypotheses that cannot be rejected at a specified
significance level o (Bickel and Doksum, 1977, p. 179; Lehmann, 1986, Section 3.5,
Theorem 4). The confidence level is ¢ = 1 — «. Alternatively, the confidence set contains
all null hypotheses for which the p-value exceeds 1 —c. In the present setting, the
parameter space is j; g: the set of all zones which are connected components of upper
level sets of the rate function. The confidence set will be a subset of Qy;; g and a particular
zone Zy € Q5 is in the confidence set if we cannot reject the following null hypothesis
(formulated for the binomial distribution for definiteness):
H, : There are binomial parameters p; > p, such that

| py, forallcells a in Zg;
Pa=\'py, for all cells a outside Z,.

Outer envelope

MLE

Inner envelope

Figure 5. Estimation uncertainty in hotspot delineation. Cells in the inner envelope belong to all
plausible estimates (at specified confidence level); cells in the outer envelope belong to at least one
plausible estimate. The MLE is nested between the two envelopes.
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This hypothesis is to be tested against the general alternative in which the hotspot zone Z is
allowed to vary freely over Qy; . Schematically, then, we are testing H,, : Z = Z, versus
H, : Z#Z, and the confidence set consists of all zones Z, for which H,, cannot be rejected.

We carry out the test using the likelihood ratio statistic, LR, for which two questions
need to be addressed:

(1) How is the null distribution to be simulated for given Z;?
(2) How do we handle and interpret multimodality of the LR statistic giving rise to
“‘disconnected’’ confidence sets?

For the first question, we note that the null hypothesis ﬁo involves, as nuisance parameters,
the rates p, and p, outside and inside zone Z,. Conditioning on the totals outside and inside
can eliminate these nuisance parameters so that the simulation amounts to sampling
without replacement outside and inside this zone. Dependence of the null distribution upon
Z, is a matter that needs to be examined.

The second question is nicely addressed by the ULS tree structure on our reduced
parameter space ;5. The nodes of Qy;; g are our candidate zones and a likelihood-based
confidence set is an upper level set of the likelihood ratio function defined over the tree
(Fig. 6). As shown in Fig. 6, this upper level set may have several connected components,
exactly one of which contains the MLE. This is because we cannot say with statistical
certainty that the MLE correctly identifies the hotspot locus. The other connected
components are plausible (at the current confidence level) alternative loci. The nodes

Tessellated Region R

Alternative

Junction Node —P
3 Hotspot Delineation

Alternative
Hotspot Locus

Figure 6. A confidence set of hotspots on the ULS tree. The different connected components
correspond to different hotspot loci while the nodes within a connected component correspond to
different delineations of that hotspot—all at the appropriate confidence level.
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Figure 7. Temporal evolution of a spatial hotspot is represented by the shape of the hotspot in space-
time. Cylinders may not adequately capture this shape.
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Figure 8. The four diagrams on the left depict different types of space-time hotspots. The spatial
dimension is represented schematically on the horizontal axis while time is on the vertical axis. The
diagrams on the right show the trajectory (sequence of time slices) of a merging hotspot.

comprising a connected component are the plausible delineations of that hotspot locus.
The connectivity and the makeup of the connected components change with the
confidence level, corresponding to varying degrees of plausibility.

6. Filtering for explanatory variables

The scan statistic searches for regions of high response relative to a geo-referenced set of
prior expected responses. Thus, a hotspot map depicts regions of extreme departure from
expectation in the multiplicative sense, i.e., multiplicative residuals. The size values A,
which are proportional to model expectations, are the link between the response variable
and potential explanatory variables. In disease surveillance, the A, are routinely adjusted
for factors like age, gender, and population size before beginning the analysis (Bithell e?
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al., 1995; Kulldorff et al., 1997; Rogerson, 2001; Waller, 2002; Walsh and Fenster, 1997,
Walsh and DeChello, 2001). Such standard, agreed-upon, factors are often unavailable in
other applications in which case the initial analysis may identify absolute hotspots by
setting all A, equal to unity. Locations of these highs can provide clues for identifying
potential explanatory factors. Next, the size values are adjusted for these factors and the
scan statistic is rerun with the adjusted sizes. Comparative configuration of new and old
hotspots reveals the impact of these factors upon the response under study.

Several methods are available for adjusting the A,. Suppose, first, that there is only one
explanatory variable X. A nonparametric approach partitions the X-values into intervals
and calculates the mean response for each interval. These calculations should utilize all
available pertinent data. The adjusted size value for vertex a becomes

Ay =224,

where A, is the old size value, m,, is the mean response for the interval containing vertex a,
and m is an overall mean response. Regression of Y upon X can also be the basis for
adjustment provided an appropriate functional relation is identified. Similar approaches
work, in principle, for multiple factors. However, the ‘‘curse of dimensionality’’ often
comes into play and data sparseness prevents calculation of dependable local means. Our
approach, in such cases, is to cluster the data points in factor space. A mean response is
then calculated for each cluster.

7. Typology of space-time hotspots

Scan statistic methods extend readily to the detection of hotspots in space-time. The space-
time version of the circle-based scan statistic employs cylindrical extensions of spatial
circles. But cylinders are often unable to adequately represent the temporal evolution of a
hotspot (Fig. 7). The space-time generalization of the ULS scan statistic can detect
arbitrarily shaped hotspots in space-time. This lets us classify space-time hotspots into
various evolutionary types—a few of which appear on the left hand side of Fig. 8. The
merging hotspot is particularly interesting because, while it comprises a connected zone in
space-time, several of its time slices are spatially disconnected. The diagrams in Fig. 8 are
motivated a study on ‘‘trajectories of persistent poverty in the US’’ being conducted by
Amy Glasmeier of Penn State University. Census tract data for the 1970-2000 census years
are used in the study.

8. Some additional issues

Nested ULS scan statistic. The hypothesis-testing model for the spatial scan statistic
supposes that the response rate takes only two distinct values—an elevated value in the
hotspot zone Z and a smaller value outside Z. This is a very crude approximation since the
response rate actually varies gradually from location to location. A more realistic model
might use nested zones Z; = Z, in which the response rate takes a very high value in Z;, a
moderately high value in Z, — Z;, and a low value outside Z,. The zones Z; and Z, are
unknown model parameters and need to be estimated. Maximizing the likelihood function
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across all nested pairs Z; =Z, would be computationally infeasible with the circles
approach because of the large number of such pairs. Their number becomes much more
practical when Z; and Z, are restricted to nodes on the ULS tree. In addition, the search can
be limited to portions of the ULS tree in the vicinity of the single-zone MLE.

Parameterized null distributions. Under standard conditions, the log-likelihood ratio
statistic is asymptotically chi-squared with appropriate degrees of freedom. Unfortunately,
the scan statistic setting is highly non-standard since (i) the zonal parameter space Q is
finite and discrete and (ii) the zonal parameter is not identifiable under the null hypothesis
(see Davies, 1977, in this connection). Nonetheless, it is natural to ask if the simulated null
distributions can be accurately approximated (especially in the upper tails) across a wide
range of conditions by standard parametric families of probability distributions. Potential
families include the chi-squared, the gamma (scaled chi-squared distribution), and the beta
of the second kind (scaled F-distribution). Assuming a good-fitting family can be
identified, the parameter values will depend upon numerous conditions such as
aggregation level, tessellation geometry, and population sizes and their spatial distribution
across the tessellation. Parameter values will also depend upon whether the circle-based or
ULS-scan statistic is used. No general a priori rules relating parameter values to these
conditions can be expected, so parameters for approximating null distributions will be
estimated using simulated data. But, this should reduce substantially the number of
replicates required and should also allow extrapolation to smaller p-values. Also, fitted
null distributions and their parameters are of independent interest for characterizing and
contrasting different geographical regions or different levels of data aggregation.
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