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ABSTRACT
We describe a view-management component for interactive
3D user interfaces. Byview management,we mean
maintaining visual constraints on the projections of objects
on the view plane, such as locating related objects near each
other, or preventing objects from occluding each other. Our
view-management component accomplishes this by
modifying selected object properties, including position,
size, and transparency, which are tagged to indicate their
constraints. For example, some objects may have geometric
properties that are determined entirely by a physical
simulation and which cannot be modified, while other
objects may be annotations whose position and size are
flexible.

We introduce algorithms that use upright rectangular
extents to represent on the view plane a dynamic and
efficient approximation of the occupied space containing
the projections of visible portions of 3D objects, as well as
the unoccupied space in which objects can be placed to

avoid occlusion. Layout decisions from previous frames are
taken into account to reduce visual discontinuities. We
present augmented reality and virtual reality examples to
which we have applied our approach, including a
dynamically labeled and annotated environment.

CR Categories and Subject Descriptors: H.5.1
[Information Interfaces and Presentation] Multimedia
Information Interfaces—Artificial, augmented, and virtual
realities; H.5.2 [Information Interfaces and
Presentation] User Interfaces—Graphical User Interfaces,
Screen design; I.3.6 [Computer Graphics] Methodology
and Techniques—Interaction Techniques; I.3.7 [Computer
Graphics] Three-Dimensional Graphics and Realism—
Virtual Reality.

Additional Keywords and Phrases: view management,
environment management, annotation, labeling, wearable
computing, augmented reality, virtual environments

1. INTRODUCTION
Designing a 3D graphical user interface (UI) requires
creating a set of objects and their properties, arranging them
in a scene, setting a viewing specification, determining
lighting and rendering parameters, and deciding how to
update these decisions for each frame. Some of these
decisions may be fully constrained; for example, a
simulation may determine the position and shape of certain
objects, or the viewing specification may be explicitly
controlled by the user. In contrast, other decisions must be
resolved by the UI designer. We are especially interested in



Figure 1. View management in augmented reality testbed
(imaged through a tracked, see-through, head-worn
display).

decisions that determine the spatial layout of the projections
of objects on the view plane. We refer to these decisions as
view management.For example, some objects may be
sufficiently important to the user’s task that they should not
be occluded, while the members of a group of related
objects may need to be placed together to emphasize their
relationship.

In a static scene, observed from a fixed viewing
specification, view-management decisions might be made in
advance, by hand, and hold throughout the life of an
application. It is also common in both 2D and 3D
interactive UIs to control view management manually when
possible. For example, a fixed area of the screen may be
dedicated to a menu, or the user may explicitly control the
positions of permanent menus or temporary pop-up menus,
or the positions and sizes of windows or widgets. However,
hard-wired or direct-manipulation control is problematic
when applied to dynamic scenes that include autonomous
objects, and to head-tracked displays: continual and
unpredictable changes in object geometry or viewing
specification result in continual changes in the spatial and
visibility relationships among the projections on the view
plane. In these cases, view-management decisions must be
made on the fly if they are to take dynamic changes into
account.

Augmented reality applications are especially challenging
in this regard. Virtual and physical objects reside in the
same 3D space, and we may have no way to control the
behavior of many of the physical objects. For example, the
view through an optical see-through head-worn display
includes all the physical objects that occupy the user’s field
of view in addition to the virtual objects, and the portion of
the field of view that can be augmented may be relatively
small.

In the real world, we make simple view management
decisions routinely, and often subconsciously. For example,
we push aside a centerpiece to enable eye contact with
others at dinner, or we hold a city guidebook so that we can
read a relevant section, while simultaneously viewing an
historic building that it describes as we pass by on a bus.
We are interested in automating view-management
decisions in virtual and augmented reality, including ones
that may be far too complex to tackle by hand in the real
world. For example, to document an unfamiliar
environment, we may wish to have labels or other
annotations placed in or near the projections of the objects
to which they refer, yet avoid blocking the user’s view of
other objects. In the real world, we may view a static
annotated map, holding it so as to complement our view of
the surrounding environment. Instead, we would like to
have virtual annotations interspersed among the objects
they describe, and reconfigured automatically and
understandably to take into account changes in the objects
themselves and how they are viewed.

1.1 View Management Testbed
To explore the potential for automated view management,
we have developed a prototype view-management
component that maintains relationships among the
projections of virtual and real 3D objects on the view plane.
The input to our view-management component includes
objects that are tagged to indicate constraints on their
properties, such as translation, scale, and transparency, and
inter-object spatial relationships that should be maintained.
The view-management component uses the upright 2D
rectangular extents of the objects’ projections in an
interactive analytic visible-surface determination algorithm
to create a dynamic and efficient approximation of the
space occupied by the visible parts of the projections, along
with the empty space in which other objects can be placed
to avoid occlusion. We use this representation to develop a
variety of view-management strategies, including ones that
take into account decisions made during previous frames to
minimize frame-to-frame visual discontinuities.

Figure 1 shows examples of the kinds of visual constraints
our prototype view manager interactively resolves. The
scene is photographed through a see-through head-worn
display from the perspective of one user in a collaborative
augmented reality environment [34, 7, 6, 2]. Two users are
sitting across from each other, discussing a virtual campus
model located between them. In response to a request from
the user whose view is displayed, all virtual campus
buildings have been labeled with their names. Each label is
scaled within a user-selectable range and positioned
automatically. A label is placed either directly within a
visible portion of its building’s projection, or, if the visible
parts of the projection are deemed too small to
accommodate a legible label, the label is placed near the
building, but not overlapping other buildings or



annotations, and is connected to its building by an arrow.
Additional annotations include an agenda, at the left, and
images and text related to the buildings to which they are
attached, which are invoked or dismissed by selecting their
building.

The projections of annotations avoid other objects,
including the visible user’s head, to allow a direct line of
sight between users. The user whose view is being
displayed has created a copy of one of the buildings to
examine more closely at the upper right. (The copy is a
“world in miniature” [32], screen-stabilized in the spirit of
the “Fix and Float” object movement technique [29], but
constrained such that it continually avoids occluding other
objects.)

All annotations are placed automatically by our view-
management component, personalized for the individual
view that a meeting participant has onto the otherwise
shared graphical scene. The personalized annotations
appear as local variations in a shared augmented reality
environment, supported by a distributed graphics package
similar in spirit to that of [25, 20].

In the remainder of this paper, we first describe related
work in Section 2. Next, we examine the object properties
and constraints we support in Section 3. We follow this by
introducing the algorithms that we use to perform view
management in Section 3.5, and our implementation in
Section 5. Finally, we present our conclusions and a
discussion of future work in Section 6.

2. RELATED WORK
Some of the earliest work on automated view management
in 2D UIs was performed in the design of tiled window
managers [35] that automate the placement of non-
overlapping windows, and of constraint-based window
managers for both tiled [11] and non-tiled [3] windows that
enforce spatial constraints among objects. However, none
of these systems addresses relationships in 3D
environments.

Researchers have often labeled and annotated objects in
virtual and augmented environments without taking into
account visibility constraints (e.g., [33, 13, 14, 31, 27, 38]).
In contrast, graph layout algorithms [4] and label placement
algorithms for point, line, and area features on maps and
graphs [9] are closely related to the view-management tasks
in which we are interested. Approaches to labeling point
features typically explore a set of candidate positions
arranged in a circle around each feature. An objective
function rates a solution’s goodness, based on factors such
as the overlap of labels with features and other labels, and
the location of labels relative to their features. Christensen,
Marks, and Shieber show that an exhaustive search
approach to labeling point features is NP-hard [9]. As
described in Section 3.5, our work uses a greedy, non-
optimal algorithm for positioning objects (e.g., labels or

other annotations) near points or areas. Our algorithm can
efficiently determine the set of areas in which an object can
be placed, while avoiding overlapping other objects, and
maintaining a desired spatial relationship with selected
objects.

In virtual and augmented reality, it is possible to avoid
some view-management decisions by caching virtual
objects out of the user’s field of view (e.g., in a virtual tool
belt or just above the view volume), and displaying them
briefly when needed [26]. Filtering approaches, in general,
can be used to limit the number of virtual objects being
displayed [1, 23]. Nevertheless, there are many applications
in which multiple objects may need to be displayed such
that they are located near objects to which they are related
or avoid occluding or being occluded by other objects.

A number of researchers have developed approaches for
automatically avoiding 3D occlusion of selected objects.
Some of these rely on controlling the viewing specification
(e.g., [19, 28]), which is not possible in head-tracked
environments in which the viewing specification is slaved
to the user’s head. Others utilize illustrative effects, such as
cut-away views and transparency [16] or line style [24, 15],
without altering object geometry. Visual access distortion
[8] moves objects away from the user’s line of sight to a
selected focus point by displacing each object
perpendicular to the line of sight by a function of the
magnitude of the object’s distance from the line of sight.
However, this approach does not actually guarantee the
visibility of an object at the focus point: the size of an
object’s projection is not taken into account when
determining how far to move it (e.g., a large object may still
occlude the focus point after the move), and the summed
displacements for an object that lies between lines of sight
to multiple focus points may not move the object in a useful
way (e.g., the projection of an object that lies along the
vector average of two lines of sight may not move). In
contrast, our view-management approach can select
positions for objects that guarantee that desired occlusion
relationships with other objects are maintained.

3. OBJECT PROPERTIES AND CONSTRAINTS
Each of the objects in our scene has properties, some of
which may be tagged ascontrollableor constrainedby the
user, the view-management component, or other
components (e.g., a tracker or a simulation). The view-
management component makes use of controllable
properties to help maintain its constraints. We support a set
of object properties that constrain the layout (currently
visibility, position, size, and priority) and transparency of
objects in a 3D scene. In our current testbed, constraints
and properties can be set explicitly by the user. We are also
exploring the use of rule-based approaches to set properties
and impose constraints in response to changes in context
and user interaction.



3.1 Visibility
Visibility constraints specify occlusion relationships on the
view plane: those objects that a given object should not
occlude, and those objects that it is allowed to occlude.
Examples of the use of visibility constraints illustrated in
this paper include:

• Pavement and grass patches in the campus scene
can always be occluded by any other objects.

• Campus buildings can be occluded by certain other
objects at certain times. Buildings can be overlaid
by their own labels, but not by labels for other
objects.

• The collaborating user’s face may not be occluded
by any other objects.

3.2 Position
Position constraints specify the minimum and maximum
distance to be maintained from:

• other objects: For example, a “speech balloon”
may be constrained to be above and near an area
feature (mouth).

• a point, area, or volume in a coordinate system,
which may be screen-stabilized (relative to the
user’s head position/orientation) or world-
stabilized (relative to the world).

3.3 Size
Size constraints specify a range of possible sizes. For
example, labels are associated with a font size range, with
preference towards the high end of the range when possible.

3.4 Transparency
Transparency constraints specify a range of object
transparency values. For example, transparency can be
modified to minimize the consequences of occluding other
objects.

3.5 Priority
Each object can be associated with a priority. This allows
the system to determine the order in which objects are
included in the image, so that less important objects can be
elided if adding them will violate other constraints.

4. VIEW-MANAGEMENT APPROACH
Our view-management component keeps track of the
projections on the view plane of the visible portions of
objects, using a representation that makes it easy to query
where objects have been rendered, as well as where objects
have not been rendered.

To ensure that constraints are satisfied in a dynamic
environment, our system adjusts the position and size of the
controllable objects at every frame. As shown in Figure 2,
we first determine the view-plane representation for all non-
controllable objects that are needed to satisfy the
constraints. Then, we process each controllable object in

priority order, determining its position and size. Each
controllable object whose visibility constraints involve
other controllable objects that have not yet been processed
must also be added to the view-plane representation.

4.1 View-Plane Representation
For the sake of efficiency, we approximate each object by
the upright rectangular extent of its projection on the view
plane. (Note that this approximation is used for view-
management only, not for rendering.) Our algorithm
extends the 2D space management approach of Bell and
Feiner [5]. The original algorithm is given an incrementally
specified input set of possibly overlapping, axis-aligned,
rectangles. It automatically maintains an efficient
representation of the dual of this set of rectangles: the area
that has not been rendered. Any object whose projection
lies wholly within this unrendered area will not occlude or
be occluded by any of the objects in the input. The
representation of the unrendered area is especially easy to
query because it consists of a set of axis-aligned “largest
empty-space rectangles.” Each largest empty-space
rectangle has a height and width that is as large as it can be
without overlapping any of the input rectangles. Thus, each
of the largest empty-space rectangles is bounded on the left,
right, top, and bottom by an edge of an input rectangle or an
edge of the viewport.

Using this 2D representation in its original form, we can
represent the projections of 3D objects as the upright
rectangular extents of their projections on the view plane.
This makes possible the following simple, but limited,
technique, which we use as a starting point for the
extensions described in this paper.

4.1.1 Preventing an object from occluding or being
occluded by all others
Suppose that the axis-aligned rectangular extents of the
projections of all scene objects have been added to the
representation, and that we are given the extentA of some
new object’s projection. To determine locations within
which A will neither occlude nor be occluded by any other
existing object, we can compareA with each largest empty-
space rectangle to find all largest empty-space rectangles
that wholly contain it. The set of largest empty-space

for each frame {
compute view-plane representation for all

non-controllable objects needed to satisfy constraints
// See Section 4.2

for each controllable object in priority order {
determine object position and size, based on constraints

and temporal continuity // See Sections 4.3-4.5
if object has visibility constraints involving controllable

objects that have not yet been processed then
add object to view-plane representation

}
}

Figure 2. View Management pseudocode.



rectangles that wholly containA represents the full range of
locations in which A can be placed to satisfy these
constraints.

4.2 Visible-Surface Determination
The technique of Section 4.1.1 treats all 3D scene objects
as the single undifferentiated 2D silhouette of the union of
their projections. However, we need to determine the
relationship of one or more 3D objects to the visible
portions of one or more other 3D objects. To accomplish
this, it is necessary to do visible-surface determination to
determine which parts of the scene’s objects are actually
visible. Furthermore, we would like to represent visible
surfaces such that new objects can be allocated within the
projections of a desired subset of the existing objects (e.g.,
to place labels within or near the existing objects). In the
remainder of this section and Sections 4.3–4.5, we discuss
how we have extended the 2D space management approach
to address these issues.

We perform visible-surface determination for view
management by sorting the upright extents of the objects’
projections in visibility order. (Visible-surface
determination for interactive rendering is accomplished
independently by the graphics hardware.) We use the
Binary Space Partitioning (BSP) Tree algorithm [36] to
efficiently produce the visibility order for an arbitrary
projection of a scene. A BSP tree is a binary tree whose
nodes typically represent actual polygons (or polygon
fragments) in the scene. Because we need to determine the
visibility order for objects, rather than for the polygons of
which they are composed, our BSP tree nodes are defined
by planes that separate objects, rather than planes that
embed objects’ polygons. We choose these planes using
the heuristics of [36]. Although BSP trees are often used for
purely static scenes, dynamic objects can be handled
efficiently by adding these objects to the tree last and
removing and adding them each time they move [10].

4.2.1 Determining the visible portions of each object
For each frame, we traverse the BSP tree in front-to-back
order relative to the eye to find the visible portions of the
scene’s objects. We extend the 2D space representation to
determine approximations of the full and empty portions of
the view plane. Much as our largest empty-space
representation provides an efficient way to find suitable
locations within the empty space, the approach we
introduce here provides an efficient way to find suitable
locations within the visible area of each object’s projection.

As shown in Figure 3, for each node obtained from the BSP
tree in front-to-back order, the new node’s upright extent is
intersected with the members of the current list of largest
empty-space rectangles. This can be performed efficiently
because we maintain the largest empty-space rectangles in a
2D interval tree [30], allowing an efficient window query to
determine the members that actually intersect the extent.
(The intersection operation itself is trivial because all
rectangles are axis-aligned.) The intersection yields a set of
rectangles (not necessarily contiguous), some of which may
be wholly contained within others; these subset rectangles
are eliminated. The result is a set of largest rectangles
whose union is the visible portion of the new node (Figure
3b).

Some objects are represented by a single BSP tree node,
while others are split across nodes. (Objects may be split
during BSP tree construction, or split prior to BSP tree
construction to better approximate a large object by the
upright extents of a set of smaller objects.) Therefore, a
node’s visible rectangles must be coalesced with those of all
previously processed nodes from the same object to create
the list of largest rectangles in the union of the nodes.

4.2.2 Coalescing lists of largest visible rectangles
To coalesce two lists of largest visible rectangles, we merge
each visible rectangle from one list with the visible
rectangles of the other list. This operation is similar to the
deletion algorithm of [5], in which the largest empty-space
rectangles that are revealed when a covering rectangle is
deleted are combined with all adjacent largest empty-space
rectangles. Unlike the deletion algorithm, we combine lists
of largest visible rectangles incrementally, which means
that some pairs of rectangles being processed may overlap.
To handle these cases, the function that combines two

Figure 3. Adding a new object to the view-plane
representation. (a) New object extent (medium grey) is
added to original object (dark grey), shown separately with
each of the four original largest empty spaces (light grey).
(b) Resulting visible largest spaces of new object extent
(medium grey).

(a) (b)

Figure 4. Two overlapping largest rectangles (white boxes)
create an additional largest rectangle (grey boxes) in each
dimension in which their combined extent is greater than
that of either original rectangle.



largest visible rectangles must support overlap, creating up
to two new largest visible rectangles, as shown in Figure 4,
Thus for each rectangle in one list, we find all ways in
which it can combine with the rectangles in the other list,
and remove those that are enclosed by any other, to
determine the largest visible rectangles in the union of the
two lists.

The resulting representation supports a variety of layout
strategies. Each object is represented by the largest
rectangles contained within its the visible parts of the
object’s projection. Thus, an appropriate position and size
can be selected for a new object within any object’s visible
projection. This makes it possible to perform the equivalent
of area feature labeling [37] in a 3D environment where
objects can partially occlude each other; in this situation,
we need to determine which parts of an object are visible,
and select that one that would be best to contain a label.

When laying out a new object, a rectangle can be selected
that lies within one of a set of objects. Alternatively, the
coalescing algorithm can be used to merge the largest
rectangles of multiple objects to create a meta-object that
corresponds to the union of those objects. This enables the
system to lay out a new object whose projection spans the

space of multiple objects. Objects can either be coalesced
as they are added to the representation or after the
representation is built. If both the original objects and the
coalesced objects are desired, the coalesced objects can be
created in a second space manager representation.

Since full space objects are represented the same way as
empty space, both can be coalesced; for example, to treat
certain objects as empty space (e.g., the grass, pavement,
and sky shown in the figures). Note that coalescing full
space with empty space isnot the equivalent of simply not
using the full space objects when constructing the
representation: some full space objects might obscure parts
of others. For example, in our model the grass and
pavement obscure underground infrastructure that would be
treated as visible if the grass and pavement were not added.

4.3 Area Feature Labeling
To label area features, we adopt a two-tiered approach that
creates both internal and external labels, ensuring that no
label is occluded by any object (including other labels) and
no label occludes any part of any object except the object it
labels. Figures 5-6 show examples of labels laid out by our
system for the same scene imaged with different viewing

Figure 6. Fewer external labels are used as the camera
moves in.

Figure 5. Long shot results in a majority of external labels.

(a) (b) (c)

Figure 7. Area feature labeling comparison. (a) Naïve label placement at projected centroid of each building causes overlaps,
and mislabeling because of buildings hidden partially or entirely. (b) Suppression of labels for buildings whose projected
centroid is not visible. (c) Label placement using approach of Section 4.3.



specifications.

We first describe our approach without taking into account
temporal continuity. For each object to be labeled, we
determine the internal largest rectangle that can contain the
largest copy of the object’s label, given a user-settable font
and size range, and taking into account an additional buffer
around the label to keep adjacent labels from appearing to
merge. This copy is added to the scene and to the view-
plane representation at the center of that rectangle to label
the object internally

If no internal rectangle for an object is large enough, the
object will not be labeled internally, but could instead be
labeled externally. External labels can be processed in any
desired order. We currently use the front-to-back order;
however, since the allocation algorithm is greedy, if an
importance metric were available for labels, we could sort
on it instead. To lay out an external label, the system looks
for a rectangle in the list of largest empty-space rectangles

that can contain the label within a user-settable size range,
and within a user-settable distance from the object. If the
label is allocated within this space, it will neither be
occluded by nor occlude any other object. If no such space
can be found, then no label is allocated.

Since external labels are potentially ambiguous, we also
generate a leader-line arrow from the label to the interior of
its object. (Note that many classical map labeling
algorithms base their label-placement quality estimate on
whether the label can be visually identified easily with only
a single feature [22]. Providing the leader line helps
mitigate possible misidentifications.) Because internal
labels occlude parts of the object that they label, we also
support tagging an object to indicate whether or not certain
parts should be internally labeled (e.g., internal labels may
be suppressed for faces). Each external label is added to the
view-plane representation as it is created, so that objects
added later do not occlude it. Labels can be created to lie
in the view plane or, for stereo viewing, can be positioned
to lie just on the viewer’s side of the object being labeled
(or just on the viewer’s side of the object on which the
external label is placed if it is closer).

Figure 7 compares our strategy with a simple layout
approach that positions each label at the projected centroid
of the object with which it is associated (7a), and a variant
on this approach that suppresses labels whose object’s
centroid is not visible (7b). These other approaches result in
overlaps and mislabelings because they do not take into
account hidden parts of the buildings or conflicts in label
placement. In contrast, each internal label in Figure 7(c)
appears within the visible projection of its building and no
labels overlap. Figure 8 shows a simple 3D modeling
utility that uses our algorithm to label the named objects in

Figure 10. Annotations associated with multiple objects,
including buildings and avatar for outdoor user. Building
annotations were specified to have higher priority than
avatar’s annotation, causing avatar’s annotation to avoid
buildings and their annotations.

Figure 9. Pictorial annotations associated with building
avoid occluding other objects, including Sun Dial.

Figure 8. Labeling
approach applied to
named objects in
VRML models. This
variant uses only
external labels.



a VRML file, suppressing objects that are not visible.
Because visibility is determined with approximations, some
objects are incorrectly determined to be invisible (e.g.,
lforearm), an issue we address in Section 6.

4.4 Area Feature Annotations
In contrast to our area feature labeling approach, we also
support area feature annotations that contain additional
material that annotates an object, such as images and textual
descriptions. Examples are shown in Figures 9–10. Each
building annotation is connected to its object by a leader
object to the center of the largest upright rectangle
contained within the projection of the visible portion of the
object. Each of these annotations is positioned within the
smallest empty space rectangle that is closest to the object
being annotated and which can contain the annotation. The
text balloon attached to the outdoor user’s avatar in Figure
9 is constrained relative to the avatar’s mouth. Like labels,
annotations avoid occluding each other as well as buildings.

4.5 Temporal Continuity
Thus far, we have described our system without taking into
account temporal continuity. However, if the layout of
objects in sequential frames is computed independently,
discontinuous changes in object position and size occur,
which can be annoying. Therefore, we need to take into
account decisions made during previous frames when laying
out the current frame. We address this in three ways. First,
we introduce hysteresis in the discrete state changes that
can take place. Second, we try to make sure that objects
being laid out occupy roughly the same position relative to
their defining object (or to their screen position if screen-
stabilized) as they did in the previous frame. Third, we
interpolate between certain kinds of discrete changes.

4.5.1 State Hysteresis
There are several situations in which objects may change
state, resulting in a discrete visual change, such as from an
internal label to external one, or from being displayed to not
being displayed. Some UIs use three constraints on the size
of an object being displayed: minimum size, maximum size,
and preferred size (e.g., Java 2D). As shown in the state
diagram of Figure 11, we borrow this approach, modifying
the definition of minimum size by defining both an absolute
minimum size (absMin) and a sustained minimum size
(min) to make possible state hysteresis to avoid oscillation
between states at size boundary conditions.

An object's visual size is guaranteed to be the sustained
minimum size at least once within a settable time intervaln.
The system displays the object only when there is enough
space for the sustained minimum size, and removes it when
it is below the absolute minimum size. Furthermore, if the
object is already being displayed and there is only enough
space for an object within the absolute and sustained
minimum sizes for time >n, the object is removed.
Otherwise, the object is displayed at the largest possible

size no greater than its maximum size. The state diagram of
Figure 11 employs similar tests to make an additional
distinction between drawing an object inside (preferred) vs.
outside another object, which we use for displaying area
feature labels. The values selected forn and the difference
between the absolute minimum and sustained minimum
sizes help avoid visual discontinuities.

4.5.2 Positional Stability
For an objectL being placed relative to objectA, we
compute two possible layouts: the best possible layout
independent of the previous layout, and the closes t possible
layout to the previous layout. For example, whenL is an
internal label for A, the best possible layout that we
currently compute uses the visible space inA that can
contain the largest allowable version ofL. To determine the
closest possible layout to the previous layout, we compute
the position ofL’s centroid in the previous frame relative to
A's unclipped width and height in the previous frame. We
then use these proportions to compute fromA's unclipped
width and height in the current frame, a predicted position
LC for L’s centroid. Next, we compare best and closest
possible layouts. If they are the same we use it; if they are
different, we start a timer and if the best and closest fail to
coincide after a set amount of time, we use the best position
and reset the timer.

4.5.3 Interpolation
To minimize the effect of discontinuous jumps during the
state changes discussed above,L is interpolated from its
previous position and scale to its new ones. In changing
from internal to external labels, we also grow or shrink the
arrow.

5. IMPLEMENTATION
Our view-management component has been implemented in
Java 1.3 with Java 3D 1.2.1.01 [12]. The images in this
paper were computed on a 1.4 GHz Intel Pentium 4

Figure 11. State hysteresis in area feature labeling. Area
features are preferentially labeled inside rather than
outside. Labels are promoted from left to right through
comparison with min and demoted from right to left through
comparison with absMin.
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processor with 512MB RAM and a SONICBlue FireGL 2
graphics board, running Windows2000. Note that the
visible-surface processing performed by our algorithm is
used for view management only; rendering is accomplished
entirely through Java3D. While performance depends on
the complexity of the scene, for the models used in this
paper, our systems runs at about 10–25 frames per second
in stereo for an 800x600 resolution Sony LDI-D100B head-
worn display (with the view-plane representation computed
for a single eye).

6. CONCLUSIONS AND FUTURE WORK
We have implemented a prototype view-management
component for virtual and augmented reality, and have
experimented with it in a set of applications that support
dynamic labeling of area features in the environment, and
the maintenance of visibility relationships among different
objects. There are a number of issues that we will be
exploring with our system:

Improved layout strategy. While our current layout
algorithms run just fast enough for comfortable interaction,
we believe that we could significantly improve their quality
by incorporating additional constraints, especially on the
placement of potentially ambiguous external labels. The
map label placement literature includes a variety of
heuristics that we do not currently use, including
preferences for the direction in which labels should be
placed relative to a feature, and the desirability of avoiding
locations that are too near other objects [22]. Adding
information to our view-plane representation about the
objects that bound each largest empty-space would make it
possible to evaluate potential placements more effectively.
We intend to apply these techniques to pre-rendered
material, in order to experiment with look-ahead and with
algorithms that are more computationally intensive than is
feasible in a real-time environment.

Layout quality depends in part on how well objects are
approximated by their upright rectangular extents. This
depends both on an object’s intrinsic shape and on its
orientation; a thin rectangular prism that lies along the view
plane’s diagonal is a particularly bad example. To address
this, we intend to use hierarchical object representations
that allow the system to choose an appropriate level of
detail. For example, the rectangular prism might be
expressed as a set of smaller prisms when their rectangular
extents are determined to better approximate the object’s
projection.

Rule-based view management.While our current system
uses constraints that are imposed explicitly by users, we are
especially interested in exploring how knowledge-based
component could control the view-management component
in response to changes in the users’ environments and tasks.

Usability studies.The algorithms that we have presented
make it easy to design a wide range of different behaviors.

To determine what will work best for users engaged in
different tasks, we are beginning to design a series of
usability studies. Our goal is to compare performance with
and without different versions of the view-management
component on modeling tasks in cluttered environments
that would appear to be good candidates for its use.
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