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Abstract

This work aims to aid in introducing, experimenting and benchmarking algorithms
for PDE-constrained optimization problems by presenting a set of such model prob-
lems. We specifically examine a type of PDE-constrained optimization problem, the
parameter estimation problem. We present three model parameter estimation prob-
lems, each containing a different type of partial differential equation as the constraint.
We also shortly describe discretization and solution techniques for each problem. We
further supply a simple to modify matlab code with the article.

1 Introduction

PDE-constrained optimization problems are optimization problems with partial differential
equations as constraints. Partial differential equations mathematically represent a multitude
of natural phenomena, and in turn, applications in science and engineering ubiquitously
give rise to problems formulated as PDE-constrained optimization problems. For instance,
PDE-constrained optimization problems arise in such diverse areas as aerodynamics ([48,
50]), mathematical finance ([16, 21, 22]), medicine ([4, 40]), and environmental engineering
([1, 2, 41]). PDE-constrained optimization problems are generally infinite dimensional in
nature, large and complex. As a result, this class of optimization problems present significant
computational challenges, many of which have been studied in recent years in such works as
[6, 13, 29, 53, 7, 11, 14, 19, 31, 32, 33, 35, 36, 37, 38, 39, 51, 56], just to name a few.

As computing power grows and optimization techniques become more advanced, one won-
ders whether there are enough commonalities among PDE-constrained optimization prob-
lems from different fields to develop algorithms for more than a single application. This
question has been the topic of many papers, workshops and recent grants (see, for example,
[12, 43, 44, 45]). It is, without a doubt, a difficult question to answer. At first, develop-
ing generic solution techniques for PDE-constrained optimization seems unrealistic; as John
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Dennis once said, “if we could solve all PDE-constrained optimization problems with a sin-
gle toolbox, then we could solve all PDEs by optimizing a constant subject to the PDE”.1

While it may be the case that different PDEs give rise to different challenges, there are sev-
eral classification approaches that might aid in broadening the scope of solution algorithms.
For example, PDEs could be classified as hyperbolic, parabolic, or elliptic, or they could
be classified as linear or nonlinear. If we find a useful classification from an optimization
point of view, then we may be able to develop more generic algorithms and software. The
goal of this paper is to assist in the development of such generic algorithms by classifying
some PDE-constrained optimization problems. We propose a few relatively simple model
problems (at least from a PDE standpoint) that are involved enough to explore some of the
major difficulties in the field. To allow for other practitioners to test their ideas, we also
supply Matlab code for the solution of each problem, as well as the Jacobians needed for
optimization.

When attempting to solve a PDE-constrained optimization problem, one might first ask
an important question: should I discretize the optimization problem first and solve a discrete
optimization problem, or should I optimize the continuous problem first and obtain a set of
equations to discretize? The first approach is often referred to as “Discretize-Optimize” (DO)
and the second approach is known as “Optimize-Discretize” (OD). An important challenge
in optimization is that, in general, these two steps does not commute. As a result, the two
different approaches could lead to two different solutions. The advantages and disadvantages
of both problems are nicely summarized by Gunzburger in [26]:

• Optimize-Discretize (OD): With this approach, one can obtain inconsistent gradients
of the (discrete) objective functionals. In other words, unless the grid is fine enough,
the approximate gradient obtained with OD is not a true gradient of anything: not of
the continuous functional nor the discrete functional.

• Discretize-Optimize (DO): This approach requires the differentiation of computational
facilitators such as turbulence models, shock capturing devices or outflow boundary
treatment.

These two approaches to solve a PDE-constrained optimization problem lead to a simple
example of a classification of such problems. The first group contains problems that can be
trivially discretized first, implying a DO approach. In other words, the first group contains
problems whose discretization does not lead to non-differentiable components (such as flux
limiters). In contrast, while the second group of problems are continuously differentiable
before discretizing, we obtain non-differentiable components after discretizing such problems.
Our intention in this paper is to work with discrete optimization algorithms for smooth
functions. Therefore, we only consider problems in which the DO approach can be taken.

The model problems chosen for this paper are parameter estimation problems, one of
the most important and common types of PDE-constrained optimization problems. A large
amount of interest on parameter estimation problems has been generated in recent years;
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see, for example, [6, 29, 52, 53] and references therein. A parameter estimation problem
is an inverse problem that seeks to recover one or more unknown coefficients in a partial
differential equation using some a priori knowledge of the solution of that equation.

This paper is organized as follows: section 2 describes the general formulation of the
parameter estimation problem. We discuss possible difficulties in the solution of the pa-
rameter estimation problem, while reviewing reduced Hessian-based techniques, in section 3.
Section 4 presents the model problems. Finally, results of numerical experimentation with
our Matlab code are presented in section 5.

2 General Formulation

We consider the problem of recovering an approximation for a model (parameter function)
based on measurements of solutions of a system of partial differential equations (PDEs). In
other words, we are interested in the inverse problem of recovering an approximation for a
model, u(x), based on measurement data d on the solution y(x) of the forward problem.
In general, the forward problem can be nonlinear with respect to y. In this paper, we will
consider an important class of problems that share two common features:

• We assume that the forward problem is linear with respect to y and the PDE can be
written as

A(u)y = q, (2.1)

where A is a differential operator depending on the model u(x), the problem is defined
on an appropriate domain Ω, and the problem is equipped with suitable boundary
conditions. For simplicity, we will assume that there is a unique solution y for any
fixed choice of u and q.

• As explained in the introduction, we assume that the discretization of the problem is
“straightforward” and that no “exotic” features such as flux limiters are needed. In
this case, the discrete forward problem is continuously differentiable with respect to
both y and u.

Although our assumptions may look highly restrictive, problems that satisfy the above
assumptions constitute a large variety of applications such as magnetotelluric inversion, DC
resistivity, hydrology and diffraction tomography; see [18, 20, 23, 49, 53] and references
therein.

Given the forward problem for y we define an operator Q to be the projection of y onto
the locations in Ω to which the data d are associated. Thus, we can interpret the data as a
nonlinear function of the model u:

d = QA(u)−1q + ε (2.2)

Here, ε is the measurement noise. Because the data are finite and noisy, and the operator
A−1 is typically compact, the inverse problem of recovering u is ill-posed. For this reason,
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a process of regularization is required to recover a relatively smooth, locally unique solution
to a nearby problem (for details, see for example [54]).

Suppose we employ the regularization method of minimizing the Tikhonov functional
to find u. More precisely, the inverse problem to approximate u becomes a minimization
problem of the form

min
u

1

2
‖QA(u)−1q − d‖2 + αR(u− ur) (2.3)

where ur is a reference model and α ≥ 0 is the regularization parameter. For this paper we
will employ a common choice for the regularization functional R:

R(u− ur) =
1

2

∫
Ω

(β(u− ur)
2 + |∇(u− ur)|2) (2.4)

where β is a constant. Many other choices for R can be made; in fact, the choice of R is a
research topic on its own, however we choose to concentrate on other optimization issues.

The formulation (2.3) implies that the PDE is eliminated to obtain an unconstrained
optimization problem. However, solving the PDE in practice can be challenging, and elimi-
nating the PDE at an early stage may prove to be computationally inefficient. We therefore
consider the equivalent constrained formulation

min
u,y

1

2
‖Qy − d‖2 + αR(u− ur) (2.5)

s.t A(u)y − q = 0

The optimization problem (2.5) is an equality constrained optimization problem. In many
applications simple bound constraints on u are added however, here, we ignore those con-
straints for the sake of simplicity.

3 Discretization and Optimization

Suppose we discretize the PDE in (2.1) using a technique such as finite differences or finite
elements, and we obtain

A(u)y = q , (3.6)

where A is a nonsingular matrix, y is the grid function approximating y(x) and arranged as a
vector, and u and q likewise relate to u(x) and q(x). Discretize the regularization functional
(2.4) similarly, so that

R(u− ur) =
1

2
‖L(u− ur)‖2,

where L is a matrix not dependent on u. The resulting optimization problem is written in
constrained form as

min
y,u

1

2
‖Qy − d‖2 +

1

2
α‖L(u− ur)‖2 (3.7a)

s.t. A(u)y − q = 0 . (3.7b)
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There exist several approaches for the solution of the discrete optimization problem.
Starting with the discrete problem (3.7), consider an inexact Newton-type method to find a
solution. We can vary the solver for the KKT system arising from each Newton iteration,
but we will apply a preconditioned Krylov method directly to the KKT system. Note that
this method is also referred to as the ‘all-at-once’ approach ([29, 34, 50]), as the solutions of
the forward problem and the inverse problem are computed simultaneously.

Let us briefly review the inexact Newton-type method to solve the constrained formula-
tion (3.7). Introduce the Lagrangian

L(y, u, p) =
1

2
‖Qy − d‖2 +

1

2
α‖L(u− ur)‖2 + p>V (A(u)y − q) (3.8)

where p is a vector of Lagrange multipliers and V is a diagonal matrix such that for any
functions w(x), p(x) and their corresponding grid functions w and p,∫

Ω

p(x)w(x) dx ≈ p>V w.

It is interesting to note that classical optimization algorithms do not require the matrix
V . However, if we intend to keep the meaning of the grid function p as a discretization of a
continuous Lagrange multiplier p(x), the matrix V is necessary.

Now, a necessary condition for an optimal solution of our problem is

Ly = Q>(Qy − d) + A(u)>V p = 0, (3.9a)

Lu = αL>L(u− ur) + G(y, u)>V p = 0, (3.9b)

Lp = V (A(u)y − q) = 0, (3.9c)

where G(y, u) = ∂(A(u)y)/∂u. To compute G(y, u) it is possible to use automatic differen-
tiation tools (such as [10]). However, we show that if the forward problem is discretized in
a simple way, then it is usually easier to compute G(y, u) directly.

Although it is possible to use the Full Approximation Scheme (FAS) to solve the nonlinear
system in the context of multigrid methods (see [15]) we concentrate here on a Newton’s type
approach. In our opinion, the approach has a few advantages. First, it is more modular, i.e.
it does not necessarily require a multilevel solver. Second, while there is no current theory
for global convergence of FAS methods for optimization problems there is such theory for
constrained optimization. Furthermore, recent advances in the field allow for inaccurate
solutions of the KKT system [17].

A Newton linearization for solving the nonlinear equations (3.9) leads to a KKT system
at each iteration, so that a Newton step requires the solution of the systemQ>Q ∗ A>V

∗ αL>L + ∗ G>V
V A V G 0

 δy
δu
δp

 = −

Ly

Lu

Lp

 , (3.10)
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where ∗ represents second order derivatives. Although a Newton method can be used, many
practical codes use the Gauss-Newton method instead. In the Gauss-Newton approximation,
one disregards second order terms in the KKT system, so that the system to solve becomesQ>Q 0 A>V

0 αL>L G>V
V A V G 0

 δy
δu
δp

 = −

Ly

Lu

Lp

 . (3.11)

This approach usually results in convergence that is only linear, but it guarantees a symmetric
positive definite reduced Hessian. Since it is often difficult to check the inertia of the KKT
system, such approximations can be beneficial in practice.

The problem of solving the KKT system (3.11) is an active area of research, with a wide
variety of solvers proposed (see [6, 5, 9, 13, 29], or [53], just to name a few). One approach
to solve the KKT system, the reduced Hessian method. The approach can be interpreted as
a block elimination process, eliminating δy first and then δp, one obtains an equation for δu.
The approach requires solving a linear system

Hredδu = −gred (3.12)

where
Hred = J>J + αL>L

is the reduced Hessian in which J = −QA−1G and gred is the reduced gradient. Although the
reduced Hessian system is smaller than the KKT system, it is still large in distributed param-
eter estimation applications. In addition, the reduced Hessian is dense in most applications,
and should not be formed or stored. However, depending on the problem, employing the
reduced Hessian method can be an efficient way to solve the PDE-constrained optimization
problem; preconditioning the reduced Hessian system is an open area of research [54].

The reduced Hessian method, when using inexact solves in one or more of the steps,
yields an approximate inverse to the KKT matrix. If it is possible to find an inexpensive
approximate inverse to the KKT matrix using the reduced Hessian method, we could consider
using this approximate inverse as a preconditioner for a solver of system (3.11). For instance,
if we run a small number of iterations of a stationary method such as multigrid, Gauss-
Seidel or Jacobi when solving the systems involving the forward problem, we could use the
(approximate) reduced Hessian as a preconditioner for a Krylov subspace method to solve
the KKT system.

One attractive approach to obtain an approximation to the inverse of the reduced Hessian
Hred is to use some quasi-Newton method [27, 13]. In particular, one can use the limited
memory Broyden-Fletcher-Goldberg-Shanno (LBFGS) update to approximate the inverse of
the reduced Hessian. Such an approach uses a sequence of reduced gradients to build an
approximation to the reduced Hessian inverse. It is also possible to use an non-stationary
iterative solver for the forward problem in the course of preconditioning. Such solver has the
advantage of using existing codes for the forward and adjoint problems for the precondition-
ing of the KKT system. However, if such code is to be used then one has to choose a flexible
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method for the KKT solver. The results in our numerical experiments are obtained by using
a flexible GMRES method. We believe that flexible methods has been under-utilized for
such problems and that they can offer better robustness.

The above description for the solution of the discrete problem is not complete, as it
gives rise to some important open questions. First, classical SQP algorithms require an
accurate solution of the linear system (3.11), which is usually very expensive for large scale
problems. It is natural to wonder what the lowest accuracy might be in the solution of
the KKT system to guarantee global convergence. Recently, a framework for inexact SQP
method has been developed [17]. Our preliminary experienece with their approach is highly
encoureging. Second, developing optimal solvers for the KKT system is an open problem.
For some particular problems, multigrid methods have been applied successfully ([15, 43, 5]),
while for others, multigrid methods can be difficult to apply.

Now that we have described a general formulation and some approaches to solve a general
parameter estimation problem, we are ready to present three parameter estimation test
problems.

4 Model Problems

In this section we describe three model problems. We present a problem whose underlying
PDE is elliptic, one whose underlying PDE is parabolic, and one whose underlying PDE is
hyperbolic. For each of the problems, we describe the discretization, present the Jacobians,
and identify other optimization-related issues. For ease of presentation and programming,
we choose to concentrate on the finite difference discretization, but finite element or spectral
methods can easily be applied as well.

4.1 An Elliptic Model Problem

4.1.1 Formulation

The following model problem arises in groundwater modeling and DC resistivity applications
([23, 53]). In this case, the forward problem (2.1) takes the form

−∇ · (eu∇yi) = qi , x ∈ Ω (4.13a)

∇yi · n = 0 , x ∈ ∂Ω (4.13b)∫
Ω

yi d Ω = 0 i = 1, ..., ns (4.13c)

where yi is some potential field, u is known as the log conductivity, and Ω ⊂ R3. Note that
the choice of the log conductivity is applied to handle the practical difficulty often arising
when the conductivity varies widely over a few orders of magnitude. Condition (4.13b)
implies that the flux vanishes in the normal direction to the boundary, n. The first two
equations in (4.13) specify yi up to a constant; we add equation (4.13c) to ensure uniqueness
of the solution yi. The number of PDE’s in applications can be rather large, which makes the
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problem more computationally complex but yields overall better recovery of u. For simplicity
of presentation in this section we use ns = 1. In our numerical experiments we use ns = 6.

4.1.2 Discretization

We now briefly describe finite difference discretization of (4.13). To aid in the development
of algorithms, we also point out a few of the important challenges from an optimization point
of view.

Assume that the domain Ω is the unit cube and consider discretization on a uniform grid
to form a union of N3 cubic cells of side h each. We define the components of the vector
y (corresponding to the continuous function y(x)) in the cell centers. Note that the vector
y has N3 elements. Next, let D be the short, central difference matrix (which incorporates
Neumann boundary conditions) in one dimension for a grid function of N points. The
gradient of y can be approximated by the following tensor products:

∇h :=

I ⊗ I ⊗D
I ⊗D ⊗ I
D ⊗ I ⊗ I


where I is the N ×N identity matrix. In a similar way, we can approximate the divergence
by

[∇· ]h := −∇>
h .

Next, place the components of the vector u (corresponding to the parameter function
u(x)) in cell centers, as in y, so that the vector u has N3 elements. Since we need eu at
cell faces (each component of eu should lie in the same spatial location as the corresponding
component of ∇h y), averaging is needed. It is well known that harmonic averaging of eu is
required in order to obtain accurate simulations (see [6] and references therein). Let Af

c be
an averaging matrix from cell centers to faces. The quantity eu on cell faces can be written
as

(eu)faces = (Af
c e
−u)−1

where (·)−1 denotes the inversion of each component of the vector.
It is interesting to pause here and to look at the difference between the discrete and

the continuous models. In the continuous model, the problem is bilinear with respect to
σ = exp(u) and y. However, in the discrete setting, the problem is nonlinear with respect
to σ due to the harmonic average. This is a simple demonstration of the difference between
the OD approach and the DO approach. it is interesting to observe that the Euler-Lagrange
equations of the discrete optimization problem are quite different than the discretization of
the Euler-Lagrange equations of the continuous problem.

Using the gradient, divergence, and averaging matrices, we obtain a discretization of the
forward problem:

A(u) y = ∇>
h diag

(
(Af

c e
−u)−1

)
∇h y = q (4.14)

Here, q is a vector that corresponds to the function q(x), with components that lie in the
same spatial locations as the components of the grid function y.

8



The matrix A(u), as defined in (4.14), is singular, since y is only specified up to a constant
in this representation. We therefore must incorporate condition (4.13c) before continuing.
In discrete terms, we will add in the condition that e>y = 0, where e is a vector of ones, to
form a discretization of (4.13), the nonsingular system

Ã(u) y = (A(u) + h3ee>)y = q . (4.15)

Note that Ã(u) is dense, however, we only use matrix-vector products in iterative methods.
As a result, the matrix Ã(u) need not be formed explicitly.

4.1.3 Jacobians

To carry out gradient-based optimization, we need to compute the Jacobians of the forward
problem. The Jacobian with respect to y is trivial, but the Jacobian with respect to u is
more complicated. One can verify that, given y,

G(y, u) =
∂(Ã(u)y)

∂u
= ∇>

h diag (∇h y) diag
(
(Af

c e
−u)−2

)
Af

c diag
(
e−u

)
.

It is interesting to note that, in this case, computing the Jacobians directly is not only
possible, but it is a much better alternative to using Automatic Differentiation (AD) tools. In
particular, observe that we can take advantage of the particular structure of the matrix Ã(u)
(the fact that its density is due to a rank one perturbation) when we use direct differentiation.
However, AD tools simply return a dense matrix when differentiating Ã(u)y with respect to
y.

4.1.4 Data and regularization

Assume that the data is measured in discrete points in the domain. As a result, define the
linear interpolation matrix Q so that it interpolates the potential field y linearly onto the
measurement points.

To discretize the regularization operator, we use the previous discretization of the gradi-
ent, ∇h, to obtain the matrix L:

L = h
3
2

(
∇h

β
1
2 I

)
(4.16)

where I is the N3 ×N3 identity matrix. As a result, the discretized regularization term is

Rh(u) = ‖Lu‖2 = h3
(
‖∇hu‖2 + β‖u‖2

)
. (4.17)

4.2 Parabolic Model Problem

4.2.1 Formulation

The forward problem in our next distributed parameter estimation problem is parabolic
and time-dependent. The following problem is motivated by similar parameter estimation
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problems that arise in applications such as optical tomography ([4, 40]) and electromagnetic
imaging ([18, 20, 28]). Here, we consider a very simplified model and state the forward
problem (2.1) as:

yt −∇ · (eu∇y) = 0 , x ∈ Ω , t ∈ [0, T ] (4.18a)

y(x, 0) = y0(x) , x ∈ Ω (4.18b)

∇y · n = 0 , x ∈ ∂Ω , t ∈ [0, T ] (4.18c)

where Ω ⊂ R3.
In the context of optical tomography in medical imaging, y = y(x, t) is the photon density

and u = u(x) is the diffusion coefficient. Also, in optical tomography, there is an additional
term in (4.18a) that contains information about the absorption cross section at position x.
Note that the complexity of this forward problem is higher than that of the groundwater
flow distributed parameter estimation problem due to the the addition of time. We wish
to recover the parameter function u based on data taken on the solution y of the forward
problem (4.18).

4.2.2 Discretization

To discretize the time dependent problem (4.18), we first fix a time tk and discretize the PDE
in space using the same discretization discussed above for the elliptic problem. In particular,
we obtain the following discretization:

∇ · (eu∇y(x, tk)) ≈ A(u)yk , where (4.19a)

A(u) = −∇>
h diag

(
(Af

c e
−u)−1

)
∇h . (4.19b)

Here, yk is the grid function corresponding to y(x, tk), and ∇h and Af
c are the matrices

described in the discretization of the elliptic model problem. This representation yields a
large and stiff ordinary differential equation (ODE) of the form

yt = A(u)y . (4.20)

Since the problem is stiff, we use the Backward Euler method to discretize the problem
in time. More accurate methods can be used; such methods lead to a slight increase of
complexity of presentation.

Assume that time ranges from 0 to 1 and consider a uniform discretization of the time
interval with (Nt + 1) grid points, so that each time step has length ht = 1/Nt. This yields
the system

1

ht

(yk − yk−1)− A(u)yk = 0 for k = 1, 2, . . . , Nt . (4.21)

To put all model problems on equal footing, it is useful to write equation (4.21) as a
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single linear system for the vector y = [y1, . . . yNt ]:

Ã(u)y =


B(u)
−I B(u)

· ·
· ·
−I B(u)




y1

y2

·
·

yNt

 =


y0

0
·
·
0

 = q (4.22)

where B = B(u) = I − htA(u). Clearly, the forward problem system can be very large, even
with a coarse grid discretization. Nevertheless, the forward system need not be formed or
stored, and only matrix-vector products are needed for the solution of the problem.

4.2.3 Jacobians, data, and regularization

As in the elliptic model problem, a trivial computation leads to the Jacobian with respect
to y, but we must perform some additional calculations to find the Jacobian with respect to
u. It can be verified that, given y,

G(y, u) =
∂(Ã(u)y)

∂u
= −ht


G1

G2

.

.
GNt

 , where

Gk =
∂(A(u)yk)

∂u
= −∇>

h diag
(
∇h yk

)
diag

(
(Af

c e
−u)−2

)
Af

c diag
(
e−u

)
.

Since it is possible to compute the Jacobians with direct differentiation, and this technique
exploits the structure of the matrices, we prefer direct differentiation over AD tools. Similarly
to the elliptic model problem, assume that the data is measured in discrete points in the
domain, and define the matrix Q so that it interpolates y linearly onto the measurement
points.

It only remains to express the discretization of the regularization operator. As we use the
regularization functional (2.4), we can use the discretization of the regularization operator
given in (4.16).

4.3 Hyperbolic Model Problem

Our third model problem corresponds to a hyperbolic forward problem with smooth initial
data. A similar problem arises in the Monge-Kantorovich (MKP) mass transfer problem
with applications of mass transfer to statistics, fluid mechanics, and image processing; see
[3, 8], and references therein.
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4.3.1 Formulation

Let x ∈ Ω ⊂ R2, and consider two given bounded density functions y0(x) ≥ 0 and yT (x) ≥ 0.
Assume that ∫

Ω

y0(x) dx ≈
∫

Ω

yT (x) dx. (4.23)

Given these two masses, we wish to find a mapping from one density to the other that
is optimal (in some sense). We define this optimal mapping φ(x) : R2 → R2 to be the
minimizer of the L2 Kantorovich distance between y0 and yT . In particular, we wish to find

min
φ

∫
Ω

|φ(x)− x|2y0(x) dx (4.24)

among all maps φ that transport y0 to yT .
Several approaches have been proposed to solve the above optimization problem. To set

the problem in a parameter estimation framework, consider reformulating the problem to
obtain a fluid mechanics problem, as Benamou and Brenier proposed in [8]. They proved that
finding the solution to (4.24) is equivalent to the following optimization problem. Introduce
a time interval [0, T ], and consider seeking a smooth, time-dependent density field y(t,x)
and a smooth, time-dependent velocity field u(t,x) = (u1(t,x), u2(t,x)) that satisfy

min
y,u

1

2
‖y(T,x)− yT (x)‖2 +

1

2
αT

∫
Ω

∫ T

0

y||u||2dt dx (4.25a)

st. yt +∇ · (yu) = 0 , (4.25b)

y(0,x) = y0 . (4.25c)

Equation (4.25) is a continuous PDE-constrained optimization problem, where the PDE
is a hyperbolic equation. The next section will describe the finite difference discretization of
the components of (4.25), highlighting some of the unique challenges that arise when solving
this problem.

4.3.2 Discretization

For simplicity, let us limit the problem to one in which the initial and final densities are
smooth. In this case, simpler standard discretization techniques can be used. Observe
that this example once again demonstrates the difference between the DO and the OD
approach. If the initial or final densities are non-smooth, one cannot use simple discretization
techniques, and methods such as upwinding or flux limiters are required (see [42]). Note that
even the lowest form of upwind involves terms such as |y|; as a result, although the PDE is
linear with respect to y, its discrete analog is not. Furthermore, the discrete analog in this
case is not differentiable.

Since the velocity field u is unknown a priori, it is difficult to choose appropriate time
steps to ensure stability of the scheme for explicit discretization. We therefore choose an
implicit Lax-Friedrichs scheme to discretize (4.25b) in order to avoid the limitations of CFL
conditions.
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We discretize the time interval [0, T ] using Nt time steps, each with width ht = T/Nt.
Next, assume that Ω = [0, 1]× [0, 1], and discretize the spatial domain Ω with Nx grid points
in each direction, so that the side of each cell has length hx = 1/Nx. Next, for each time
step tk, form the vectors yk, uk

1, and uk
2, corresponding to y(tk,x), u1(tk,x), and u2(tk,x),

respectively, where the elements are cell-centered. Using yk
i,j to denote the element in the

vector corresponding to y(tk,xi,j) (and a similar notation for u1 and u2), we can write the
finite difference approximations for the implicit Lax-Friedrichs scheme as follows:(

∂y

∂t

)k

i,j

≈ 1

ht

[
yk+1

i,j − 1

4
(yk

i+1,j + yk
i−1,j + yk

i,j+1 + yk
i,j−1)

]
, (4.26a)

(∇ · (yu))k
i,j ≈ (4.26b)

1

2hx

[
(y � u1)

k+1
i+1,j − (y � u1)

k+1
i−1,j + (y � u2)

k+1
i,j+1 − (y � u2)

k+1
i,j−1

]
.

Here, we use the symbol � to denote the (componentwise) Hadamard product. Assuming
periodic boundary conditions, a common assumption for this type of problem, this scheme
can be expressed in matrix form as follows:

1

ht

[yk+1 −Myk] + B(uk+1)yk+1 = 0, (4.27)

where M corresponds to an averaging matrix and B(u) is the matrix which contains difference
matrices in each direction. After reordering (4.27), the system to solve is:

Ck+1yk+1 = Myk (4.28)

for k = 0, 1, ..., Nt − 1 where Ck+1 = C(uk+1) = I + htB(uk+1). Therefore, the forward
problem (4.25b) can be written in discrete form as

A(u)y =


C(u1)
−M C(u2)

. .
. .
−M C(uNt)




y1

y2

.

.
yNt

 =


My0

0
.
.
0

 = q . (4.29)

where y0 is the vector obtained after discretizing the given density function y0 consistently.
The discretization of the forward problem (4.25b) is now complete.

4.3.3 Jacobians

To compute the Jacobian with respect to u, first examine the structure of the difference
matrix B(uk):

B(uk) =
(
D1 D2

) (
diag(uk

1)
diag(uk

2)

)
(4.30)
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where D1 and D2 are central difference matrices in each direction. As a result, we can
compute the Jacobian of A(u)y with respect to u:

G(y, u) = ∂(A(u)y)
∂u

=


G1

G2

.
.

GNt

 , where

Gk = ∂(C(uk)yk)
∂uk = ht

(
D1 D2

) (
diag (yk)

diag (yk)

)
.

The Jacobian with respect to y is trivial. Now that the components of the forward
problem (4.25b) and its derivatives have been well-defined, we can discretize the remaining
components of the problem.

4.3.4 Data and regularization

To represent the objective function (4.25a) in discrete form, first define some matrices and
vectors. Let

u =



u1
1

u1
2

u2
1

u2
2

.

.
uNt

1

uNt
2


, (4.32a)

L =


I I

I I
. .

I I

 , and Q = hx

(
0 . . 0 I

)
, (4.32b)

where I is the N2
x ×N2

x identity matrix. Note that we include the grid spacing hx into the
matrix Q to ensure grid independence in the data fitting term. Also, let d be the vector
obtained after discretizing the density function yT consistently (taking scaling into account).
Then it is easy to show that the discrete representation of (4.25a) is

1

2
‖Qy − d‖2 +

1

2
αThth

2
xy
>Ldiag(u)u . (4.33)

Combining the expressions (4.29) and (4.33), the discrete optimization problem becomes

min 1
2
‖Qy − d‖2 + 1

2
γy>Ldiag(u)u (4.34a)

st. A(u)y − q = 0 (4.34b)
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Here, γ = αThth
2
x. Observe the variation in the regularization term from (3.7) to (4.34);

for this reason, let us present the Euler-Lagrange equations and the KKT system associated
with (4.34).

First, a necessary condition for an optimal solution of our problem is expressed in the
Euler-Lagrange equations,

Ly = Q>(Qy − d) +
1

2
γLdiag(u)u + A(u)>V p = 0, (4.35a)

Lu = γdiag(L>y)u + G(y, u)>V p = 0, (4.35b)

Lp = V (A(u)y − q) = 0, (4.35c)

where p is a vector of Lagrange multipliers, and G is defined in section 4.3.3. Next, using a
Gauss-Newton approximation, the KKT system is computed as

Hs =

Q>Q 0 A>V
0 γdiag(L>y) G>V

V A V G 0

 δy
δu
δp

 = −

Ly

Lu

Lp

 . (4.36)

5 Numerical Experiments

The following experiments were performed on the three model problems using Matlab code,
which is available online at (www.mathcs.emory.edu/ haber). To solve the optimization
problem (3.7), we run a Newton iteration to find the zeros of the Euler-Lagrange equations,
approximating the inverse of the reduced Hessian with a limited memory BFGS update. In
particular, when solving (3.11) (or (4.36)) at each outer iteration, we use flexible GMRES
preconditioned with the reduced Hessian method (as described in Section 3), applying limited
memory BFGS to approximate H−1

redgred in (3.12).
Whenever we require a forward problem solution (solving linear systems involving A(u)),

we apply a Krylov method with a fixed stopping tolerance. Note that the application of the
Krylov method, assuming it yields an inexact solution, leads to a nonstationary precondi-
tioner for the KKT system. This is permissible as long as we use flexible GMRES to solve the
KKT system. Also, note that it is possible to view the all-at-once method and the reduced
Hessian method as identical methods except in the exactness of the forward problem solves.
In other words, an exact forward and adjoint problem solves leads to the reduced Hessian
method, and an inexact forward and adjoint problem solve leads to the all-at-once method.

An important issue when designing any algorithm for PDE-Optimization problem is the
measure of work. It is possible to use cpu time or ”flops” but such measures can be difficult
to compare, especially if one compares performance on different computational hardware.
Here we suggest yet another way to compare the different algorithms. Note that the main
building block in all the above algorithms is the product of the forward problem Jacobians
with a vector. Thus, counting the forward matrix-vector products gives a good indication of
the amount of work needed to accomplish the task. Profiling our code, we found that such
products consist of roughly 80% of the computational time. Below, we give some sample
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results from our codes. We hope that other practitioners in the field could use these as a
starting point in order to improve our algorithms and obtain substantially faster methods.

For each model problem, we present some output in which we vary the FGMRES stop-
ping tolerance for the solution of (3.11) and the stopping tolerance for the conjugate gradient
method for the forward problem solution. For PDE-optimization problems it is also inter-
esting to see how the problem scales when different grids are used. To this extent we use 3
different grids for the solution of each problem.

To initialize the unknowns in each problem we use the reference model for u and then
approximately solved the forward problem to a tolerance of 10−2. We notice that when the
forward problem is solved tightly in order to initialize the solution more outer iterations are
needed for convergence. For all problems we chose regularization parameters that give a
rough misfit of the noise level.

The results are presented in Table 1. For each problem we record the grid size, total
number of unknowns (y, u, p) the tolerance of the FGMRES solver, the tolerance of the
forward solver within the GMRES solver, the number of outer (nonlinear) iterations. The
total number of forward problem vector products, and the total number of KKT matrix-
vector products.

There are a few interesting observations

• The average number of FGMRES per iteration is more or less mesh independent. In
some cases it is difficult to compare between levels and the FGMRES can behave in
an unpredictable manor.

• Since the ”work-horse” of the problem is the solution of the forward problem, the
problem does not scale linearly with the mesh size. This can be obviously improved if
an optimal method such as multigrid is used for the forward problem.

• Similar to many other problems, tightening the tolerance of the linear solver does
decrease the number of (nonlinear) iteration but increase the overall work.

A more interesting observation that deserves further studying is that in some cases,
using a lower tolerance for the forward problem 10−4 in the FGMRES (i.e. getting a better
preconditioner) with a ”relaxed” stopping criteria for the FGMRES 10−2 lead to a substantial
increase in the number of outer iterations. To try and explain this phenomena, we observed
the directions and residuals obtained at the end of each solution of the KKT system. We
observe that for small tolerance of the forward solve, the residuals for the (linearized) forward
and adjoint equations are very small while the residual for the model (or control) is rather
large. Since the stopping criteria for the FGMRES is based on the 2-norm of the residual,
this implies that the direction taken in u may not be a good direction overall compared with
the directions for y and λ. We suspect that this cause the algorithm to stall.
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6 Conclusions

In this paper lay-out simple model problems for PDE optimization. We described a family of
algorithms based on the reduced Hessian method and its approximation. We supply the code
and perform experiments with the code. It is important to note that the code we supply is
not optimal. For example, the solution of the forward problem is performed by using simple
iterative methods with simple preconditioners. Much better performance can be obtained
by using optimal preconditioners for the forward problem. Second, the implementation of
the solution to the KKT system is not optimal. We hope that better algorithms can be
developed and implemented to dramatically accelerate the solution of this type of problems.

Our hope is that by releasing a publicly available, easy to modify matlab code, we will
encourage practitioners in linear algebra and optimization to further improve upon current
technology in PDE optimization solvers.
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grid # unknowns KKT tol Forward tol outer iter # for MV # KKT MV
Elliptic

83 6656 10−2 10−2 5 22245 82
10−2 10−4 14 55919 109
10−4 10−2 4 31446 127
10−4 10−4 4 37063 90

163 53245 10−2 10−2 5 42611 83
10−2 10−4 30 178246 161
10−4 10−2 4 62051 132
10−4 10−4 4 63550 76

323 425984 10−2 10−2 5 403057 516
10−2 10−4 50 432570 161
10−4 10−2 4 1198021 1465
10−4 10−4 4 112667 79

Parabolic
83 × 8 8704 10−2 10−2 8 82489 256

10−2 10−4 10 49882 85
10−4 10−2 8 75534 245
10−4 10−4 8 65828 127

163 × 16 135168 10−2 10−2 8 119176 111
10−2 10−4 20 209592 95
10−4 10−2 6 120010 123
10−4 10−4 7 166396 100

323 × 32 2129920 10−2 10−2 7 373082 132
10−2 10−4 17 419497 55
10−4 10−2 6 388739 141
10−4 10−4 6 440809 84

Hyperbolic
162 × 8 12288 10−2 10−2 7 7048 188

10−2 10−4 7 9197 127
10−4 10−2 5 10230 279
10−4 10−4 5 12838 188

322 × 16 98304 10−2 10−2 5 8329 135
10−2 10−4 5 10650 82
10−4 10−2 6 51301 954∗

10−4 10−4 6 51051 438∗

643 × 32 786432 10−2 10−2 5 28397 270
10−2 10−4 5 32346 143
10−4 10−2 4 37740 387
10−4 10−4 4 42849 198

Table 1: Results for different model problems. The ∗ means that FGMRES did not converge
for some of the outer iterations within 200 inner iterations.
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