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Abstract: Recreational mathematics is as old as mathematics itself, so a survey of its
history is out of the question. Instead we discuss a few neat things, setting each in its
historical context and explaining their significance. As a benchmark for looking for-
ward and back we shall take Charles Hutton’s Recreations in Mathematics and Natural
Philosophy, which in turn is based on works of Ozanam and Montucla on recreational
mathematics.
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Introduction

If you will pardon me, I will begin immodestly, with a personal story. Some years ago I was working
in my office when the phone rang. The caller said that he had learned that I was interested in
old mathematics books and that he had one that he thought would interest me. We talked for
a while and he offered to send it to me. Needless to say, I was skeptical, for one does not just
send seventeenth-century books to strangers. I asked if he was a book dealer and he said that he
was not, he was just an individual interested in old books. Eventually we agreed that he would
send the book to me so that I could enjoy reading it. It was an early edition of Ozanam’s work
on recreational mathematics. It was in French so my reading was slow, but I did enjoy it. Every
couple of weeks I would call him and report on what I had read. I asked if I should send it back,
but he was clarly in no hurry to have it back. After several months he called me and asked if the
Bowling Green library would be interested in the book. I responded that it would be a valuable
addition to the collection but that, honestly, I would likely be the only reader. It would be better



if it were in a collection that was better known to scholars. I suggested the University of Michigan
because I was well aware that they had a substantial collection of rare mathematics works [16].
Several weeks later he called again and asked if T would take the book up to the rare book room
at Michigan to see if they were interested in purchasing it. I agreed and contacted the rare book
librarian. Since I was a known user of the collection, the librarian, Peggy Daub, asked me to give
my opinion as to whether the library should purchase it. So I asked her to pull all of the works
by Ozanam in the collection. I took the book up and spent an afternoon examining all of their
copies. It was clear that it would be a nice addition to the collection, but not an essential addition.
I suggested they buy it if it was not too expensive. As instructed by the owner, I left the book
there and thought the story was over. But it was not.

Several years later two undergraduate classics majors asked if I would direct a readings course
in Euclid for them, as they saw no merit in taking an algebra class to fulfill their liberal arts
requirement (they were right). I agreed and said that our library had an 1984 edition of Gerard
of Cremona’s twelfth-century Latin translation of Euclid and we could read that. They agreed
and it was a wonderful experience. I also suggested that we could go up to the University of
Michigan and look at some of their early Euclids. In preparation for this trip, I went up to make
the arrangements. One thing [ wanted to show them was the first printed edition of Euclid, the
Ratdolt printing of 1482, but I could not find it in the computer catalog and I knew they had one
as I had previously examined it. When I asked, the librarian, Peggy Daub, said that it was an
incunabula (a book published in the sixteenth-century, literally ‘in the cradle’ of printing) and was
catalogued by publisher, not author. She also remarked that the library had recently received a gift
of a collection of mathematical works and asked if I would like to see the list. Of course I wanted
to see what new items they had. A few minutes later she appeared with a sheepish grin on her
face, saying that my name was in the file. I was puzzled, but she said that I had suggested to the
donor that he give his collection to Michigan. There were about fifty books in the gift including
the Ozanam that I had read earlier. Also there was a copy of the 1670 edition of the Arithmetica
of Diophantus, the one where Fermat’s last theorem is first stated [7]. Needless to say, I am now
always a welcome reader in the rare book room.

When I joined the West Point faculty in 1998, there was a copy of the four volumes of Charles
Hutton’s English translation of Ozanam’s work on recreational mathematics in my outer office,
which contains three bookcases full of mostly nineteenth-century works. Markings in it indicated
that it was an ‘old text’ that was used at the Academy, but it did not take much investigation to
learn that this was an error made by an earlier bibliographer. What was used as a text was Hutton’s
A Course of Mathematics; this has been confirmed by comparing the mathematics in several copy
books carefully written by cadets with Hutton’s Course. Nonetheless, I enjoyed reading Hutton’s
Recreations in Mathematics and Natural Philosophy (1803). It is the contents of this work that I
shall describe to you here.

Jacques Ozanam published his Récréations in 1694 [1], Montucla revised it in 1778 [4] and
Hutton translated it into English in 1803 [5]. For more detail on the complicated publishing history
of this work, see [1, 2, 3, 4, 5, 6]. Unless otherwise stated I will be using the 1803 translation
of the Recreations by Hutton. Since these three individuals are hardly household names in the
mathematical community, I will begin with some biographical information.

Ozanam, Montucla, and Hutton

Jacques Ozanam (1640-1717) studied to be a Catholic priest, but after his father died, devoted
himself to mathematics, being almost entirely self taught. In Lyons he began a career of teaching



individuals, mostly for free. “He was addicted to gaming; his private pecuniary resources were
limited; and the stern realities of distress would speedily dissipate all illusions about the dignity
of teaching science for its own sake.” [6, p. v]. When he loaned money to two men without any
bond they showed their gratitude by arranging for him to come to Paris where there were more
opportunities. He was young, gallant, and handsome, but his penchant for gambling kept him
impoverished. He married a woman of modest means and they had twelve children, most of whom
died young. His wife’s death ended a happy marriage and he lived the rest of his life in a melancholy
state.

The first volume of Hutton’s Recreations contains a short note “On the life and writings of
Ozanam, the first author of these Mathematical Recreations,” which is the source of an oft-told
tale about him.

Ozanam possessed a mild and calm disposition, a cheerful and pleasant temper, an
inventive genius, and a generosity almost unparalleled. After marriage, his conduct was
irreproachable; and, at the same time that he was sincerely pious, he had a great aversion
to disputes about theology. On this subject he used to say, that it was the business of
the Sorbonne doctors to discuss, of the Pope to decide, and of a Mathematician to go
straight to heaven in a perpendicular line. [5, pp. xiii—xv]

Ozanam was not a creative mathematician but he was an excellent expositor. He wrote on
algebra, trigonometry, fortifications, perspective, cartography, and higher geometry. But his fame
rests on three expository works, the two volume Dictionnaire mathématique (1691), the five volume
Cours de mathématiques (1693) and the two (later four) volume Récréations mathématiques et
physiques (1694). All of these books sold well and ran to many editions, especially the last two. It
is certainly for his work on recreational mathematics that Ozanam will be most remembered. His
book was the precursor of books on recreational mathematics which followed in the next 200 years.

Jean Etienne Montucla (1725-1799) received a solid education in ancient languages and
mathematics at the Jesuit collége in his native Lyons. The curriculum was principally directed to
the ancient languages, “but having a natural taste for philological studies, and a powerful memory,
he was enabled to acquire an accurate knowledge of several modern languages; among which Italian,
German, Dutch, and English are mentioned.” [6, p. vi] After legal studies at Toulouse he moved
to Paris, where he supported himself with a variety of government positions, and where he took up
a serious interest in the history of mathematics. His Histoire des recherches sur la quadrature du
cercle (1754; English 1873) earned him a corresponding membership in the Berlin Academy. After
publishing a sourcebook on smallpox (Daniel Bernoulli was the first to model the disease with a
differential equation) he published the work which was to bring him lasting fame, his Histoire de
Mathématiques (1758, 2 volumes; second edition 1799-1802, 4 volumes). This is a work that is
still valuable to scholars (who have the knowledge to separate the still valuable material from the
dated).

Then in 1778 Montucla produced the work of interest to us here, a new edition of Ozanam’s
Récréations [4]. The work was published anonymously under the initials ‘C. g. f.” which abbreviate
‘Chanla géometrie forézien,” where the word ‘forézien” means ‘from Feurs’ or ‘of the Forez region.’
“So carefully had he concealed his connection with the work, that on its completion, a copy was
sent to him, in his capacity of censor, for examination and approval.” [6, p. vi]. It is said that he
corrected several items, made some additions, and sent it back for publication.

Besides expunging from the work of Ozanam much that was absurd, puerile, and obso-
lete, he enriched the edition with dissertations upon almost every branch of practical
science; and much of what he added is valuable even at the present day. [6, p. vi].



Charles Hutton (1737 — 1823) was born in Newcastle, the youngest son of an overviewer
(supervisor) of a coal mine. When he was seven, Hutton was involved in a street-brawl and severely
dislocated his left elbow. He hid this injury from his parents and by the time they learned of it,
it was too late to treat it properly, so the injury became permanent. Since Hutton was unable to
join his older brothers in the mine, he was sent to school to learn to read. After several years the
teacher left and Hutton replaced him, thus beginning a habit of teaching by day and learning by
night.

One pupil that Hutton attracted was Robert Shafto. He made his private library available to
Hutton and then encouraged him to publish. Hutton’s first work, The Schoolmasters Guide, or a
Complete System of Practical Arithmetic, appeared in 1764 and became the standard school text for
half a century. During the Christmas holiday of 1666, Hutton advertised that “Any schoolmaster,
in town or country, who are desirous of improvement in any branch of the mathematics, by applying
to Mr Hutton” [13, p. 63]. This in-service training was repeated the next year. That there was
ample audience is attested to by the 59 schoolmasters from the Newcastle area who were subscribers
to his next book, A Treatise on Mensuration (1767). Besides its mathematical interest this work is
noted for the woodcuts by the young Thomas Bewick, who became one of the great masters of the
art. Alas, this just makes the book more expensive for the historian of mathematics to acquire.

In 1760, Hutton opened his own school in Newcastle. This became a success and he became
known as an excellent teacher. His patron, Shafto, suggested that he should move to London and
apply for a vacancy at the Royal Military Academy [RMA] in Woolwich [12]. The position was
to be filled by competitive examination which lasted several days. Col. Watson, Bishop Horsley,
the editor of Newton’s works, and Nevel Maskelyn, the Astronomer Royal, examined the eleven
candidates. Half were judged satisfactory for the post, but Hutton stood out, so he obtained this
professorship in 1773. He remained at Woolwich for 34 years.

Howson so nicely tells one event in Hutton’s career that I shall quote the passage in its entirety:

In 1786 Hutton began to suffer from pulmonary disorders. The RMA was situated near
the river [Thames] and dampness began to affect his chest; his predecessor Simpson [of
Simpson’s Rule fame] had in fact died from a chest complaint. Hutton decided then to
move, and bought land on the hill south of the river overlooking Woolwich. There he
built himself a house and also others for letting. No sooner had he done this than it was
decided to move the Academy from the damp riverside to the hilltop. A magnificent
new building was erected, but, in the eyes of George II1, its attractiveness was spoiled by
the presence of Huttons houses. These were therefore sold to the crown who promptly
demolished them, leaving Hutton with a hefty profit from his speculation, sufficient to
guarantee his financial future. Thus a physical disability turned him to mathematics
and ill-health made him rich. [13, pp. 66-67.]

Huttons most important and best known work was his Mathematical and Philosophical Dictio-
nary. This appeared in two volumes in 1795. The USMA library has it, but the first volume is not
the first printing. There is an 1813 letter from Joseph G. Swift, the first graduate of West Point
and later Superintendent, saying that he read it before it was sent on to USMA library. Hutton
worked on this for 10 or 12 years. It is an excellent survey of mathematics, includes biographies
of many mathematicians, and is a pioneer contribution to the history of mathematics [13, p. 67].
Although it was criticized as unbalanced in content, unduly cautious in tone, and somewhat lacking
judgment, the dictionary has served as a valuable source for historians of mathematics. [10, vol. 5,
p. 577]

Hutton is also famous as editor of The Ladys Diary, a journal that appeared from 1704 to



1841 [15]. In August 1798, the ‘Notices of works in hand’ section of the Monthly Magazine lauded
Hutton’s A Course in Mathematics before it appeared:

From Dr Hs talents and long experience in his profession, there is every reason to expect
that this will not only be a most useful and valuable work, but will completely supersede
every other of the same description. [13, p. 67].

It did prove to be popular, appearing in numerous editions over fifty years. There were several
editions that were published in North America and there was even an Arabic edition. Thus, it is not
surprising that this text was used in the US and at USMA, for the British influence on American
education was extremely strong at this time.

Ozanam based his Récréations on the Greek Anthology and on works by Bachet, Mydorge,
Leurechon, and Schwenter. According to Hutton, the most important influence on Ozanam’s
Récréations was Claude Gaspar Bachet de Méziriac’s Problémes plaisans et délectable sur les Nom-
bres (1626). This was a solid piece of scholarship that seems to have been used by all writers
on the topic for a century or so. The first work containing the words ‘Mathematical Recreations’
in its title was Recreation Mathematiques, composé de plusieurs Problémes plaisans et facetieux,
par H. van Etten (1627; English translation 1633). Hutton seems unaware that ‘van Etten’ was a
pseudonym for the Jesuit Jean Leurechon (1591-1670). The work was popular for it went through
thirty editions/printings before 1700. But Hutton was not impressed with the book, referring to it,
in his Preface, as “a mere wretched rhapsody” which prompted Claude Mydorge, in his Examen du
livre des Récréations mathématiques (1630), to correct “with some asperity the wretched things it
contained.” Both Montucla and D. E. Smith agree with this appraisal. But, in the mind of Hutton,
Mydorge fares no better:

This work exhibits a confused collection of questions, the greater part of which are silly
and childish, and expressed in barbarous language, sufficient to disgust any person of
only common taste. [5, p. V]

The final source for Ozanam was Deliciae physico-mathematicae (1636) by Daniel Schwenter
(1585-1613). It is this sad state of affairs, according to Hutton, that prompted Ozanam to prepare
his own book on recreations. The work had gone through several editions by the time Hutton was
preparing his translation, yet Hutton finds Montucla’s “book was both very faulty, and incomplete.”
Consequently, “To render this work more worthy of the enlightened age in which we live, it was
necessary to make numerous corrections and considerations.” [5, p. vii]. It seems that Hutton felt
a need to justify his own work by denegrating his predecessors.

The Contents of Hutton’s Recreations

Volume 1. 1 Arithmetic p.1

II Geometry pp. 263447
Volume 2. III Mechanics p-1

v Optics p- 169

A\ Acoustics and Music pp. 375464

Volume 3. VI Astronomy and Geography p. 1
VII Dialling p- 259



VIII Navigation p. 354

X Architecture p- 392

X Pyrotechny pp. 438-501
Volume 4. XI Elements p-1

XII Magnets p- 269

XIIT  Electricity p- 313

XIV ~ Chemistry pp. 391-516

Although the three last volumes contain much of interest, we shall concentrate our attention on
the first, for it is most closely connected with mathematics. It is divided into two sections, one on
arithmetic the other on geometry. Now arithmetic is not as boring a section as one might imagine,
for this is not a textbook, but a book for those who already know the basics of computation.
Immediately after introducing the concept of a prime number (not surprising for the time, it is not
clear if 1 is a prime) Hutton states

One curious property of prime numbers is, that every prime number, 2 and 3 excepted,
if increased or diminished by unity, is divisible by 6. This may be readily seen in any
numbers taken at pleasure, as 5, 7, 11, 13, 17, 19, 23, 29, 31, &c; but I do not know,
that any one has ever yet demonstrated this property a priori. [5, p. 31].

At the bottom of the page of the copy that I am using, someone has inked in a proof:

The property is easily demonstrated. Universally, if « — 1, a, & a + 1 represent any
three consecutive numbers, some one of them must be divisible by 3. For if in the case
of a — 1, the remainder is 1, in that of a it must be 2, & in that of a + 1 there must be
no remainder. If a be prime, as a is not divisible, either a — 1 or a 4+ 1 must be divisible
by 3, and since a

That is all that I can read of the proof, for the volume has been rudely trimmed, and the conclusion
of the proof is missing, but the proof seems to be right on track. It is curious how Ozanam, or was
it Hutton, could have made such an elementary error as to think this result was hard to prove.

There is only one other annotation in the book but before giving it — to give you a feel for the
style of writing in the book — I quote the problem it concerns in full:

A gentleman taking a fancy to a horse, which a horsedealer wished to dispose of at as
high a price as he could, the latter, to induce the gentleman to become a purchaser,
offered to let him have the horse for the value of a twenty-fourth nail in his shoes,
reckoning one farthing for the first nail, two for the second, four for the third, and so on
to the twenty-fourth. The gentleman, thinking he should have a good bargain, accepted
the offer; what was the price of the horse?

By calculating as before, the 24th term of the progression 1, 2, 4, 8, &c, will be found to
be 8388608, equal to the number of farthings the purchaser ought to give for the horse.
The price therefore amounted to 8738£ 2sh 8d, which is more than any Arabian horse,
even of the noblest breed, was ever sold for.

The problem is of a familiar type and the solution involves nothing more than a computation, but
the setting prompted this marginal annotation:



Blair Atholl a horse which won the Derby in 1864 was recently sold by another for
£12000. [5, p. 81]

That got my interest for the Kentucky Derby is the only sporting event I pay attention to and the
race did not begin until 1875. Google set me straight: Blair Atholl won the Derby at Epson Downs.

There are more interesting things in the section on arithmetic. After discussing the convergence
of the geometric series, the author considers the harmonic series, noting that the sum “is not a
finite number.” But instead of giving a proof he gives a vague citation to a paper in the Journal
de Trevoux which uses “mere paralogisms” to argue that the sum is finite [5, p. 87]. A nice little
research project would be to find this paper and to see what these paralogisms are.

How many anagrams of the Latin word ‘amor’ are there? One might quickly answer 24, but only
7 of them are Latin words (p. 98). The Genoese lottery is discussed (without mentioning Euler), p.
120. There are river crossing problems: the wolf-goat-cabbage and the three jealous husbands and
their wives, p. 171. The Knight’s tour is here (p. 178) as well as the age of Diophantus, complete
with the problem posed in a Latin verse (p. 190). This should be enough to give you the flavor.
The book is interesting reading — recreational mathematics is supposed to be interesting — but
there is nothing very deep here.

Chapter XII of Hutton’s Recreations is a long presentation (pp. 211-240) on magic squares.
After defining what a magic square is he comments on their origin:

These squares have been called magic squares, because the ancients ascribed to them
great virtues; and because this disposition of numbers formed the bases and principle
of many of their talismans.

According to this idea, a square of one cell, filled up with unity, was the symbol of the
deity, on account of the unity and immutability of God; for they remarked that this
square was by its nature unique and immutable; the product of unity by itself being
always unity.

The square of the root of 2 was the symbol of imperfect matter, both on account of
the four elements, and of the impossibility of arranging this square magically, as will be
shown hereafter.

A square of 9 cells was assigned or consecrated to Saturn; that of 16 to Jupiter; that of
25 to Mars; that of 36 to the Sun; that of 49 to Venus; that of 64 to Mercury, and that
of 81, or nine on each side, to the Moon.

Those who can find any relation between the planets and such an arrangement of num-
bers, must no doubt have minds strongly tinctured with superstition; [5, p. 212]

The connections with astrology were standard lore of the time. One thing we find missing is a
citation of the Lo Shu as the source of the 3 by 3 magic square. Another is the promised proof for
the non-existence of a 2 by 2 magic square.

Hutton notes several properties of magic squares, e.g., that numbers symmetrically placed with
respect to the center add to twice that central value. Methods attributed to de la Loubere, Mo-
scopulus, Bachet, Poignard, and de la Hire are given in the texts as rules to follow for constructing
magic squares using the first n? integers, n odd.

Then he turns to the even case. He provides several rules, but in this case no attributions are
given (except vaguely to de la Hire). What is interesting is that he notes the uniqueness of the
3 by 3 magic square: Whatever method is employed “the same square will always arise, except
that it will be inverted, or turned from left to right, which is not a variation.” [5, p. 235]. That



is a trivial result, but then the result of Bernard Frenicle de Bessey is quoted that there are “at
most” 880 magic squares of order 4 (the exactness of this result was verified several times, but an
arithmetic proof was not presented until 1973). The estimate of the number of 5 by 5 magic squares,
using the construction method of de la Hire, namely 57600, is grotesquely small; the correct answer
is 275305224. The situation is even worse for 6 by 6 where 4055040 is given and 7 by 7 where
405425600 is given although it is recognized as too small; indeed it is, for the number of 7 by 7
squares is around 1034. This is sequence A006052 in Neal Sloane’s On-Line Encyclopedia of Integer
Sequences.

The Chapter ends with a discussion of the magic squares of “the ingenious Dr. Franklin” who
has “carried this curious speculation further than any of his predecessors”. His 16 by 16 square
is given on a plate as is his magic circle of circles. The properties of the former are discussed in
detail.

One thing missing from this chapter is the first magic square in Europe, but this provides a
segue to the most famous magic square in art.

Diirer’s Magic Square

Albrecht Diirer (1471-1528) was a superb artist. He created art works and wrote books that are
of considerable interest to mathematicians, but I don’t believe that his work is as appreciated as it
should be. Diirer was born in Nuremberg, learned goldsmithing from his father and studied painting
and engraving, on both wood and copper, with Michael Wolgemut. As was the custom of the times
he took his Wanderjahre, which actually lasted four years. He became fascinated with the work of
Italian artists and “became convinced that the new art must be based on science — in particular,
upon mathematics, as the most exact, logical, and graphically constructive of the sciences.” [10,
vol. 4, p. 258]. He then traveled to Venice where he began the study of mathematics and the
theory of art, including linear perspective. He met Luca Pacioli whose Divina proportione (1509)
contained Leonardo da Vinci’s drawings of the skeletons of the regular polyhedra. Incidentally
Pacioli wrote on double-entry bookkeeping as so is known as the father of accounting. He is also
the first mathematician that we have an authentic portrait of [28].

Direr published the second book on mathematics that was published in the German language,
Underweysung der Messung mit Zirkel und Richtscheyt in Linien, Ebnen, und gantzen Corporen
(Treatise on Mensuration with the Compass and Ruler in Lines, Planes, and Whole Bodies) (1525).
This is a work in four parts. The first treats the construction of curves including the conics, spiral
of Archimedes and the conchoid, using techniques that anticipated descriptive geometry [21]. The
second deals with the regular polygons; the fourth with the Platonic and Archimedean solids. The
third designs the letters of the alphabet using Euclidean tools. Diirer’s second book was a technical
book on fortifications, while his third was the posthumous Vier Biicher von menschlicher Proportion
(Four Books on the Proportions of Men) (1528), a treatise on proportion.

Art critics are agreed that Albrecht Diirer created three ‘master engravings,” all of which are
copperplates. The earliest was ‘The Knight, Death and the Devil’ (1513). These were followed
the next year by ‘St. Jerome in his Study’ and ‘Melencolia I,” which is the object of our interest.
This is certainly Diirer’s most mysterious work and many interpretations were attempted before
Erwin Panofski and Fritz Saxl in Diirer’s ‘Melencolia I’, eine quellen- und typengeschichtliche
Untersuchung (A Source- and Type-History of Diirer’s ‘Melenchoia I’) (1923) argued that it was a
symbolic self-portrait.

Hutton’s discussion quoted earlier about the connection between magic square and the planets
is just one thing involved in the interpretation of this magnificent etching. To discuss this will take



us too far afield, but you can consult Panofsky [29] or Finkelstein [23] to get you started. You will
also find lots of junk on the web on this topic.
Our interest in this work is the 4 by 4 magic square that appears in the upper right corner:

163 2 13
5 10118
9 6 7 12
4 15141

There are two things to note about this square. The middle two numbers in the bottom row
are the date that this work was done 15 14. The outer two, 4 and 1 can be thought of as the
fourth and first letter of the Latin alphabet, representing the letters D A, Diirer’s monogram. The
most important source that Diirer drew upon in composing Melencolia was Cornelius Agrippa of
Nettesheim’s De Occulta Philosophia (1509-1510). He was also most likely Diirer’s source for the
magic square [20, 25]. The magic square in ‘Melencolia I’ has the additional property that any
pair of entries symmetrical to the center add to 17. It is just one of four magic squares with this
property and with the numerals 15 and 14 centered on the bottom of the square [18].

The second object in the engraving of obvious mathematical interest is the strange shaped block
of stone. Its precise mathematical shape has been the subject of conjecture for more than a century,
but of all the papers I have read about it, I regret to say that I am unconvinced about what its
true shape is. There are many papers dealing with this solid and I encourage you to consult some
of them, e.g., [22, 24, 26, 27, 31, 33, 34, 35].

Cardano’s Rings

Perhaps the oldest mathematical recreation is the Chinese Rings puzzle or Cardano’s Rings as I
shall call them. The puzzle consists of seven or ten or whatever number of rings, each threaded
through the eye of a short post that is able to slide up and down in a solid base. Connecting
the rings is a long oval or slotted bar that goes through them and over the posts. The goal is to
manipulate the rings and free the bar from the rest of the device. The rings, posts, and base are
permanently hooked together but there is considerable room for movement as the posts can slide
up and down through the base and the rings can slide around the eyes in the posts. It is sure to
provide you with several hours of mathematical recreation.
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Figure 1. Cardano’s Rings

According to the ethnographer Stewart Culin (1858-1929) this puzzle was known in the Chinese
Sung Dynasty (960-1279). His Games of the Orient: Korea, China, Japan (1895 with another title;
reprinted 1959 and 1991 under this title) attributes the puzzle to Hung Ming (181-234), a famous
Chinese hero. T am skeptical of this early origin and have been unable to track down a solid modern
reference to such an early date. Another puzzle of supposedly ancient Chinese roots is the Tower of
Hanoi puzzle. It was published by Edouard Lucas (1842-1891) in his four volume work, Récréations
mathématiques (1883) under the name ‘M. Claus,” an anagram of Lucas. The next year the scientist
Henri de Parville (1838-1909) made up the story about the monks of Siam moving 64 gold disks
between three diamond needles. The world was to end when the task was completed [36, p. 304].
While that has not yet happened, the world of Lucas ended in an unusual way. At a banquet he
was attending, a waiter dropped some dinnerware and Lucas was cut on the cheek with a shard. A
few days later he died of septicemia.

The earliest mention of this puzzle in print, where it is called a ‘meleda,’ is in Girolamo Cardano’s
De subtilitate libri XXI (A Treatise on Subtelty, 1550; book XV, paragraph 2), an encyclopedia of
wide range which contains sound subjects ranging from natural philosophy, cosmology, mechanics
and cryptography, and the construction of machines to such unsound subjects as alchemy, the
occult, and the evil influence of demons. This work was widely read, there being five editions in the
remainder of the sixteenth century [39]. Cardano is best known to mathematicians as author of the
Ars Magna (1545)[38, 41], a book that explains how to solve third and fourth degree polynomial
equations.

Recently, however, a manuscript of Luca Pacioli (1445-1517) has turned up that contains a
description of the Chinese Rings [42]. This places their European origin around 1500.

After Cardano, the next mention of the puzzle is not in the 1685 English edition of John Wallis’s
Algebra [46], as is often incorrectly said, but in the Latin edition of 1693 [49], where it is described
in Caput CXI (pp. 472-478), which is entitled ‘De complicatis annulis,” the complicated rings.
Wallis gives a description of how to solve the puzzle and it is for this reason that I refer to it as
‘Cardano’s Rings.’

Ball and Coxeter have a footnote [36, p. 305] indicating that Cardano’s Rings are pictured
without explanation in the Récreations Mathématiques in the 1723 edition (volume 4, p. 439), but
I have not seen this edition. There is no mention of the rings in Hutton’s English translation of this
work. Nonetheless, we include them here because they are part of the Ozanam-Hutton tradition.

One sign of the popularity of this puzzle is that it has been patented at least 34 times in
half-a-dozen countries in the twentieth-century, including twenty-one times in the United States
[42] and is still sold under a number of names. When traveling to the midwest, my wife and I
occasionally stop at Yoder’s Shopping Center in Shipshewana, Indiana, an Amish area of the state.
While my wife looks at fabric, I look first for material for neckties, and then at the wide variety of
tools and household goods that this old-fashioned shop has (if anyone needs a lamp wick, a hand-
cranked five-quart ice cream maker, or replacement blades for a meat grinder, this is the place to
look: http://www.yodershardware.com). On a trip earlier this summer, I was pleased to be able
to purchase a set of Cardano’s Rings, or a ‘patience puzzle,” as it was called. This is one of the
twenty puzzles in the ‘Tavern Puzzle Collection’ manufactured by the blacksmith Dennis Sucilsky
(http://www.tavernpuzzle.com).

I encourage you to find a copy of Cardano’s Rings and spend a few dozen hours trying to solve
the puzzle. If you become frustrated you can buy one from blacksmith Sucilsky (they come with
solutions), consult [37], or read on. But if you want to try to master it yourself, skip the remainder
of this section.
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W. W. Rouse Ball, in his delightful book on mathematical recreations gives a nice presentation
of the solution to this puzzle. First he describes the puzzle and gives the key to its solution:

It consists of a number of rings hung upon a bar in such a manner that the ring at
one end (say A) can be taken off or put on the bar at pleasure; but any other ring can
be taken off or put on only when the one next to it towards A is on, and all the rest
towards A are off the bar. The order of the rings cannot be changed. [36, p. 305]

Using straightforward counting techniques, Ball develops a recursive relationship for the solu-
tion, and shows that if the number n of rings is odd then (2! — 1)/3 steps are needed whereas
(27+1 —2)/3 are needed if n is even. A ‘step’ is when a ring is put on or taken off the bar.

Then he gives “another solution, more elegant, though rather artificial.” Ball attributes this
to L. Gros, Théorie du Baguenodier (Theory of the Time-Waster) (1872). What is artificial about
this solution is the way binary numerals are assigned to the different arrangements of the rings:

Denote the rings which are on the bar by the digits 1 or 0 alternately, reckoning from
left to right, and denote a ring which is on the bar by the digit assigned to that ring on
the bar which is nearest to it on the left of it, or by 0 if there is no ring to the left of it.
(36, p. 308].

When the 10 rings of the exemplar in Figure 1 are all on the bar, then the Gros code is
1010101010. When they are all off the bar, the code is 0000000000. In Figure 1, the arrangement
is 1010101111. With a little practice it is easy to convert back and forth between the rings and
the Gros coding. Now solution of the puzzle is particularly easy with this notation. Start with
1010101010 as the initial position and subtract 1 (using binary subtraction). This is the next
position. Now repeatedly subtract 1 until you get to a string of Os; these Gros codes give the
intermediate positions. To see how many moves this will take, subtract the ending position from
the starting position and convert to decimal; in this case it takes 682 moves. To put the rings back
on the bar, repeatedly add 1. Of course this method works if someone has left your puzzle partway
worked and you want to put it back in the original shape; you can even compute how many moves
it will take in advance by doing the binary subtraction. Ball was right, the coding is artificial, but
the solution is elegant.

There is a second way of coding that also solves the ring puzzle. If a ring is on the bar denote
it by 1, if off by 0. This assigns a string of Os and 1s to every position of the puzzle. Now in solving
the puzzle only one ring can move on or off the bar at a time. The codes for those two positions
differ in only one digit. This prompts us to define a Gray code as an ordering of the 2" sequences
of length n consisting of 0s and 1s in such a way that adjacent sequences differ by just one digit.
Such sequences were patented by Frank Gray in 1953 (U.S. patent 2 632 058); hence the name.
These Gray codes are never unique and it is still an open question as to how many of them there
are for a given n [40].

Now not any Gray sequence will provide a solution to Cardano’s Ring puzzle, because some
adjacent codes do not represent posssible moves on the puzzle. The only Gray code that will work
is the reflected Gray code. Here is how to construct it. Begin with G; = 0,1, i.e., the sequence of
0 followed by 1. Then let

Gni1 = 0G, U1G,

i.e., to go from G, to G,+1 concatnenate 1 with each code in G,, and follow that sequence with 0
concatenated with each code in GG,, but with the order reversed. Here are the first few codes:
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G = 0,1
G, = 00,01,11,10
Gs = 000,001,011,010,110,111, 101, 100

Let us now give an example comparing the two codes and how they are used to solve the 4-ring
puzzle. Note that although G4 contains 16 elements, we only use those between 0000 and 1111:

Gray Gros
1111 1010
1101 1001
1100 1000
0100 0111
0101 0110
0111 0101
0110 0100
0010 0011
0011 0010
0001 0001
0000 0000

Note that with the reflecting Gray code one must write out the code before one can use it to
solve the puzzle. This time the coding is elegant, but the solution is artificial.

The line between recreational mathematics and the mathematics of the professional mathe-
matician is never entirely clear. In a conversation about this paper earlier this summer, a former
colleague Charles Holland remarked “Isn’t all mathematics recreational mathematics?” While I
am inclined to agree with him, this puzzle crossed the line between recreational and research by
motivating a paper by Przytycki and Sikora that is published in the Proceedings of the AMS [43].
The paper uses low-dimensional topology and group theory to prove a conjecture of L. Kauffman
that the minimum number of moves to solve Cardano’s Rings with n-rings is 2"~!, but they use a
different method of counting moves.

Geometrical Problems

The “Part Second” of volume I of Hutton’s Mathematical and Philosophical Recreations begins
with 72 geometrical problems (pp. 262-441). Many of these will be familiar to any student of high
school geometry (even today), but others are rather esoteric. Let us illustrate with some examples.
We begin with the alpha and omega of these problems and then sample a few more.

Problem I. For the extremity of a given right line to raise a perpendicular, without
continuing the line, and even without changing the opening of the compass if necessary.

Problem LXXII. If each of the sides of any irregular polygon whatever, as A B C' D E
A, (fig. 122 pl. 14) be divided into two equal parts, as a, b, ¢, d, e; and if the points
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of division in the contiguous sides be joined; the result will be a new polygon a b c d e
a: if the same operation be performed on this polygon; then on the one resulting from
it; and so on ad infinitum; it is required to find the point where these divisions will
terminate.

Hutton comments that Problem LXXII is “impossible to be resolved perhaps by considerations
purely geometrical” but that it is “susceptible of a very simple solution, deduced from another
consideration.” He leaves this to the second volume [5, vol. 2, pp. 8-9] so that “our readers may
exercise their ingenuity upon it.”

One of the nice things that Hutton does do on many problems is to give some indication of
their origins. This time he adds that “it was proposed in 1750 by M. D —, who said he had it
from M. Buffon.” I have no idea why Hutton hides Monsieur D’s surname, but it seems likely that
the Compte de Buffon (1707-1788), who is best known to us via his needle problem, presented it
orally in a letter to M. D —.

Fig. 122 .

Figure 2. Diagram for Problem LXXII

Problem I is not so well known today and certainly does not show up in common geometry texts,
but is has long been of interest to artisans who want a erect a right angle at the end of a line which
cannot be extended because of the limited physical circumstances. Hutton provides two solutions.
If you can vary the opening of the compass, then he constructs a 3-4-5-triangle at the end of the
line segment. If the compass opening is fixed (shades of Abu’l Wafa (940-998)) then he constructs
an equilateral triangle at the end of the line segment and then extends one side by a length equal
to one of the equal legs of the equilateral triangle. He indicates that “The demonstration of this is
so easy, that it requires no illustration.” But then he provides one nonetheless.

o . D
Fig.2.

Fig.i.

e e

7 ' ’ A B A

Figure 3. Two solutions to Problem I
Problem XXVII. Of inscribing regular polygons in a circle.

One would hardly call this a problem in recreational mathematics, but it is something that
has always interested the learned layman. Hutton describes how to construct the regular triangle,
quadrilateral, pentagon, and pentadecagon and is aware that the number of sides can be continually
doubled with “rule and compass.” Thus he knows just what Fuclid knew two millennia ago.

13



The rest, such as the heptagon, ennaegon, endecagon, &c, cannot be described by means
of the rule and compasses alone, without trial; and all those who have attempted this
method, have failed, or have produced ridiculous paralogisms. [5, p. 304]

This sounds like an empirical statement, not one informed by the work of Gauss in his Disquisi-
tiones arithmeticae (1801) which was just published two years before. Although Gauss’s construc-
tion of the regular 17-gon spread quickly, what is written here indicates that Hutton did not find
out immediately, for this was something that he surely would have mentioned. Sadly, the text in
the 1851 edition is word for word the same [6].

Problem XXXV. On the form in which the bees construct their combs.

Problem XLVI. To make the same body pass through a square hole, a round hole, and
an elliptical hole.

The penultimate problem is a classic, although it seems to have disappeared from the current
literature:

Problem LXXI. In the island of Delos, a temple consecrated to Geometry was erected,
on a circular basis, (fig. 118 pl. 14), and covered by a hemispherical dome, having four
windows in its circumference, with a circular aperture at the top, so combined, that
the remainder of the hemispherical surface of the dome was equal to a rectilineal figure;
and in the cylindric part of the temple was a door, absolutely squarable or equal to a
rectilineal space. What geometrical means did the architect employ in the construction
of this monument?

M
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BT TTTTE DR R R

Figure 4. Viviani’s Temple

This was an important challenge to Leibniz and the other devotees of the new calculus, for its
poser, Vincenzo Viviani (1622-1703), believed that the calculus was “nothing but a kind of game
that could only solve its own problems.” Of course Leibniz solved the problem promptly [17]. This
problem became more important later for it was one of the things that motivated Euler to develop
surface integrals.
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Prince Rupert’s Cube

We end our discussion of the first volume of Hutton’s Recreations by discussing the final problem
that is mentioned in the title of this paper:

Problem XXX. To cut a hole in a cube, through which another cube of the same size
shall be able to pass.

When one first hears this problem, one is incredulous. This cannot be done. But it can and
that is what gives the problem its appeal. The Poles have an even more amazing way of stating
this problem:

We have two cubes, a smaller one with an edge of 30 in., and a bigger one with an edge
of 31 in. Is it possible to bore a hole through the smaller cube so that the bigger one
can slide through it? [55, p. 77]

The poser of this puzzle was Prince Rupert of Palantine (1619-1682), but to understand who
he was we need to review our (limited) knowledge of the kings of seventeenth-century England.
King Charles I of the House of Stewart was born in 1600 and became King in 1625. He married
Henrietta Marie, the daughter of King Henry IV of France, and a staunch Catholic. They produced
nine children, four boys and five girls. Charles I inherited financial problems from his father, James
I, and fought with Parliament over money. His wife was a meddler and economic and religious
issues, partly of her making, led to Civil War between the backers of the king, the Cavalier’s, and
the supporters of Parliament, the Roundheads. The Roundheads were destined to win due to their
superior numbers and finances, and indeed they did win. This led to the execution of Charles I
in 1649. After the fall of the Parliamentarians, the second son became King Charles II, reigning
from 1660 to 1685 (the first son lived less than a day). Charles IT is important in the history of
mathematics as a supporter of science and founder of the Royal Society of London. The third son
became King James II who reigned from 1685 to 1688 was the last Catholic monarch of England.
One daughter, Elizabeth Stuart, married the Winter King Frederick V of the Palatinate and a
prime mover in the start of the Thirty Years’ War (which lasted from 1618 to 1648).

Elizabeth and Frederick had three sons and one daughter that survived to adulthood. The
daughter, Sophia of Hanover married Ernst August, Duke of Brunswich-Liineburg and an employer
of Leibniz. Their son became George I of Great Britain, reigning 1714-1727. The first son became
Elector Palatine after the Peace of Westphalia in 1648 at the conclusion of the Thirty Years’ War.
The other two sons were Rupert (1619-1652) and Maurice (1620-1652) both of whom served in the
English Civil War.

The year after Rupert was born the family was forced into exile and so he grew up in Holland.
His father died when he was 12 and the next year he became a soldier. Two years later he traveled
to London, where he became a favorite of his uncle King Charles I. Later, during an invasion of
Westphalia he was captured and held prisoner for three years. During this time he was allowed to
keep his pet poodle Boy; he taught him many tricks, including jumping in the air whenever he heard
the words “King Charles 1.” But he also spent his time as a prisoner profitably studying military
manuals. When the English Civil War broke out, he joined the cause and was appointed General of
Horse. He practically invented the cavalry charge, but was unable to control his troops after they
routed the enemy, so his victories were not as successful as they should have been. Nonetheless,
he became the most brilliant, the most dashing, and the most successful of the King’s generals.
Eventually though, he realized the war was lost and so advised his uncle. This led to his being
relieved of command [61].
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He settled in France and Germany studying warfare, chemistry, and even art. Mezzotint is a
method of engraving which dates from the mid-seventeenth century. A plate is first laboriously
worked over completely with a tool with a serrated edge, called a rocker. This brings up a uniform
burr on the plate and the artist scrapes away some of the roughened surface to create lighter areas.
The advantage of this method, over that of a woodcut, is that subtle shades of gray can be produced.
The technique was invented by Ludwig von Seigen who produced his first plate, just one of seven,
in 1642. Prince Rupert met Seigen in 1654 and learned his methods but did not take up mezzotint
until 1657 with his Head of Titan. It was Rupert who produced the first masterpiece of the genre,
The Great Executioner (1658). He also introduced the technique into England in 1660 where it was
used primarily to reproduce paintings. Collecting these was popular in from about 1870 to 1929
when the stock market crash killed the trade. Rupert is also credited with the invention of the
hand rocker. The work of preparing the plate is time consuming and boring, so artists hired out
the task. Doing this days on end caused some of these folks to go mad, hence the phrase ‘off his
rocker.’

It was immediately after his return to England after the Restoration that Prince Rupert enters
the history of mathematics. We have already posed the Prince Rupert’s question about the cube,
now we look at the solution as told by Ozanam/Hutton:

If we conceive a cube raised on one of its angles, in such a manner, that the diagonal
passing through that angle shall be perpendicular to the plain which it touches; and
if we suppose a perpendicular let fall on that plane from each of the elevated angles,
the projection thence resulting will be a regular hexagon, each side and each radius of
which may be found by the following manner.

On the vertical line AB (fig. 53 pl. 7), equal to the diagonal of the cube, or the sphere of
which is triple to that of the cube, describe a semicircle, and make AC equal to the side
of the cube, and AD equal to the diagonal of one of its faces; if from the point C' there
be let fall, on the horizontal tangent of the circle in B, the perpendicular CE, passing
through the point D, BE will be the side and the radius of the required hexagon a b ¢
d fig. 54.

If one takes a cube in ones hand, holding opposite vertices between ones thumb A and index
finger B (using the notation in Hutton’s diagram), then one can turn the cube around this axis
between thumb and forefinger. If one turns the cube so that one of the upper vertices is at C,
then you can ‘see’ the line CE. If the cube has edge length 1, it’s diagonal AB has length v/3;
then since the triangle ACB is inscribed in a triangle, we have CB = v/2. Now if one rotates the
cube by /6 one of the lower vertices will be at D, a point directly below where the vertex at C
was. Incidentally, Hugo Steinhaus points out in his delightful Mathematical Snapshots that a cube
rotating this way generates two cones connected by a hyperboloid of revolution.

When this operation is finished, describe on this hexagonal projection, and around the
same centre, the square which forms the projection of the given cube placed on one
of its bases, so that one of its sides shall be parallel, and the other perpendicular to
the diameter ac: it may be demonstrated, that this square can be contained within
the hexagon, in such a manner, as not to touch with its angles and of the sides: a
square hole therefore, equal to one of the bases of the cube, may be made in it, in a
direction parallel to one of its diagonals, without destroying the continuity of any side;
and consequently another cube of equal size may pass through it, provided it be made
to move in the direction of the diagonal of the former.
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Figure 5. Hutton’s figures for Rupert’s Cube

Note that while the claim is made that “it may be demonstrated” he does not do it. The first
to do so, to my knowledge, was John Wallis in chapter 109 of his Latin Algebra, “Perforatio cubi,
alterum ipsi aequalem recipiens” [49, II, pp. 470-471]. He made a mistake in his computations and
even tried to correct himself in a paper in the Philosopical Transactions [50]. But he still did not
have it right, as was pointed out by the historian Christoph Scriba in 1968 [60]. Scriba is puzzled by
the whole thing, for the computation is not that hard. You should be able to prove by elementary
geometry that the largest square that can be inscribed in the hexagon of side length v/2/4/3 has
side length v/6 — v/2 = 1.03527 (where the original cube has side length 1). Thus a cube can be
passed through a cube of the same size.

As always seems to be the case in mathematics, there is more to the story. The solution given
above makes an assumption about the problem, an unwarranted assumption. Perhaps you would
like to pause a moment and think about what it is.

As posed the question just asks about passing one cube through another of the same size. No
assumption is made about how that is to be done. But Wallis makes one. He assumes that the
hole be cut parallel to a main diagonal of one cube. What if we cut at an angle slightly oblique
to this diagonal? This problem was attacked by Pieter Nieuwland (1764-1794) who was appointed
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professor at Leiden University in 1793, but died a year later. His teacher, J. H. van Swinden, found
Nieuwland’s solution among his papers and published it in the second edition of his geometry book,
Grondbeginsels der Meetskunde (1816). This work was highly valued in Germany and translated
and enlarged by C. F. A. Jacobi, Elemente der Geometrie; this is not the famous Carl Gustav Jakob
Jacobi (1804-1851). Nieuwland’s solution shows that a cube of edge 3v/2/4 = 1.06066172 can be
passed through a cube with edge length 1. For details see Schrek [59]. This problem also occurs in
the Montucla edition of Ozanam [4], but I have not verified that. A generalization of this problem
is found in [57].

We turn finally to a very interesting object that bears Prince Rupert’s name, even if it is not
connected with mathematics.

Problem XXXVIII. Of Prince Rupert’s Drops, or Batavian Tears.

This appellation is given to a sort of glass drops terminating in a long tail, which posess
a very singular property; for if you give one of them a pretty smart blow on the belly,
it opposes a considerable resistance; but if the smallest bit be broken off from the tail,
it immediately bursts into a thousand pieces, and it is reduced to dust.

These drops are made by letting glass, in a state of fusion, fall drop by drop into a
vessel filled with water. They are then found at the bottom completely formed. A great
number of them however generally burst in the water, or immediately after they have
been take from it. As these drops were first made in Holland, they are called by the
French Larmes Bataviques. [5, Vol. 4, pp. 144-145]

When Prince Rupert returned to England, he showed some of these tear-drop shaped pieces of
glass to his cousin King Charles IT and on March 4, 1660-61, the King sent “five little glass bubbles,
two with liquor in them, and the other three solid” to the Royal Society as Thomas Birch wrote in
his History (1756-57). The philosophers, as scientists were then called, did several experiments on
them but were puzzled by the phenomenon. Robert Hooke pictured one in his great Macrographia
(1665) and gave a good explanation of their behavior: When the drop is quickly cooled the outer
layers harden first, forming a rigid exterior. The still hot interior cannot change its volume and so
usually produces the ‘liquor’ mentioned above, which are really air bubbles. The compression of
the outer layers is balanced against the high tensile stress in the interior. Thus the head is very
strong, but once the outer layer is penetrated the tear bursts into tiny needles [53]. For a picture
of several Prince Rupert’s Drops, and especially one shattering, see [56]. After describing several
experiments with the drops Hutton admits that

Philosophers have always been much embarrassed respecting the cause of this extraordi-
nary phenomena; and it must indeed be confessed that it is still very obscure. ... [This
problem is left] to the sagacity and researches of our readers. [5, Vol. 4, pp. 145-146]

Indeed this problem remained unsettled until the twentieth century when the concept of tem-
pered glass was understood. These strange drops led eventually to safe eyeglasses, basketball back-
boards, car windows that shatter instead of breaking into lethal shards, and windows for the space
shuttle that can withstand high velocity impacts. To learn more, I encourage you to pay a visit to
the Corning Museum of Glass in Corning, New York, where you can pound on the head of a Prince
Rupert drop yourself. On a recent visit there I met glass artist B. Brian (http://greentreeglass.com)
and he agreed to make some Prince Rupert’s drops for me. I can assure you that the phenomenon
is truly spectacular!
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