
EWAVES: AN EFFICIENT DECODING ALGORITHM FOR LEXICAL TREE BASED
SPEECH RECOGNITION

Patrick Nguyen, Luca Rigazio, Jean-Claude Junqua

Panasonic Technologies Inc. / Speech Technology Laboratory
3888 State Street, Suite 202, Santa Barbara, CA 93105, U.S.A.

email:fnguyen, rigazio, jcjg@stl.research.panasonic.com

ABSTRACT

We present an optimized implementation of the Viterbi algo-
rithm suitable for small to large vocabulary, and isolated or
continuous speech recognition. The Viterbi algorithm is cer-
tainly the most popular dynamic programming algorithm used
in speech recognition. In this paper we propose a new algo-
rithm that outperforms the Viterbi algorithm in term of com-
plexity and of memory requirements. It is based on the as-
sumption of strictly left to right models and explores the lex-
ical tree in an optimal way, such that book-keeping computa-
tion is minimized. The tree is encoded such that children of a
node are placed contiguously and in increasing order of mem-
ory heap so that the proposed algorithm also optimizes cache
usage. Even though the algorithm is asymptotically two times
faster that the conventional Viterbi algorithm, in our experi-
ments we measured an improvement of at least three.

1. OVERVIEW

The core of a speech recognition system lies in the search al-
gorithm. Its speed will be the prominent factor that determines
the overall speed of the recognition system. It is widely under-
stood that the organization of the search space for the dynamic
programming alignment is a key factor. However, it is com-
monplace to keep linked lists or hash tables to maintain the
list of active hypotheses, or list of so-calledtokens. Storing
and consulting items from these data structures is calledbook-
keepingof active hypotheses and in most systems the proces-
sor spends a non-negligible time performing this task. Typi-
cally, at the end of each frame, the list is sorted in decreasing
order of score. Finding a hypothesis is usually solved through
the use of a hash table or a linear search [1].

In this paper we propose an algorithm that reduces the book-
keeping to a minimum: merging two sorted linked lists. Inser-
tion of a hypothesis as well as lookup have a costO(1) (con-
stant cost).

Our algorithm can be used for isolated word recognition or
as a first pass fast match for continuous speech recognition.It
could be extended to cross-word modeling.

The algorithm traverses the list of active nodes in a way that
maximizes speed. For that purpose, we rely on the topology of
our HMM models.

2. ACTIVE ENVELOPE

In this section we introduce the preliminaries to understand
the algorithm, calledactive envelopeor ewavessearch. We
start with lexical trees and the so-called dynamic programming
equations. Then, we show how to manipulate the equations to
obtain a faster implementation.

2.1. Lexical tree

Organization of possible words in a lexical tree [4], or pro-
nunciation prefix tree is the first and perhaps most effective
reorganization of the search space. The larger the vocabulary,
the larger gain we can achieve. The fan out of the search space
at the beginning of a word or the explosion in the number of
hypotheses, if entries of the vocabulary are listed linearly, is
equal to the number of words. On the other hand, if words
beginning with the same prefix are hypothesized only once,
the fan out is drastically reduced. It can be at most equal to
the number of phonemes in the case of context independent
models, and to the number of left states if we use context-
dependent acoustic units. Globally a lexical tree implies a
two to three fold reduction in the representation of the lexi-
cal items.

We build a static lexical tree based on states. That is, the
prefix information is compared at the state-level. This allows
us to take advantage of the tying that results from the decision
trees. As we will see later, it also minimizes the overhead
of book-keeping and traversal of hypotheses. However, for
cross-word context dependent modeling we expand the tree
dynamically to contain memory usage.

2.2. The Viterbi step

The Viterbi algorithm traverses the lexical tree in a time-
synchronous fashion and applies thedynamic programming
equationsat each active node. Let us consider the state hy-
potheses. Letk be a node of the lexical tree, andaj;k the log
probability of transition from nodej to nodek. Let sk(t) be
its score at timet, and' one of its parents, that is, a node such
thata'k 6= �1. We further define the acoustic match,dk(t),
to be the emission log probability of the current observation.
Hence if the transition from a node' to the nodek is chosen at
timet, then its score will besk(t) = s'(t�1)+a';k+dk(t).

We state the dynamic programming equation for a nodek:sk(t) = max' �s'(t�1) + a';k	+ dk(t) (1)

We are confronted with a simple problem: given a node, we
must have a list of its predecessors and their correspondingac-
tive hypotheses (if any) to apply the DP equations. We call it
inheritance since each node mustinherit its score from its par-
ents. This is unnatural and also expensive in the framework of
lexical trees. If we look at the equations in the other direction,
then our design becomes clearer: for each node, we transmit
or bequeathfrom the parent node to its children. However,
merging hypotheses becomes an issue. If we keep active hy-
potheses in an array�(t) and the next�(t+ 1), whenever we
activate a child of a node in�(t), we need to check whether
it is already in�(t + 1), which is expensive. Obviously, the
book-keeping of these arrays is somewhat cumbersome. We
refer to this method as thearray-swapping method, because
we apply�(t) �(t + 1) once all of�(t) were processed.
In the next section we explain how to order�(�) properly so as
to lookup an hypothesis in�(t+ 1) at costO(1), and how to
replace�(t) immediately after a node was processed, to avoid
the use of another array.

2.3. Active envelope

We consider left-to-right models with no skip. Each state can
loop unto itself and activate the state that is immediately to
its right. The algorithm can be extended to models with skip
states but with a penalty ofO(H), whereH is the number
of active hypotheses at any given time. Our special topology
implies thataj;k = �18k; j : j 6= k; j 6= k� wherek� is
the parent (ie state on the left) of nodek.

Clearly, any given node in the lexical tree can only be ac-
tivated by its only parent. Define the depth of the node in the
lexical tree as the number of states on its left, and a column of
the lexical tree as the set of nodes of the same depth. For each
column, define and fix an arbitrary order relation on the nodes,
such that, ifn is a node with parentn�, and similarlyk andk�,k� < n� impliesk < n. Since all nodes of a given depth in
the lexical tree can be processed in an almost arbitrary order,
we choose the traversing sequence that maximizes the perfor-
mance of the memory cache, that is, in increasing order of the
heap. Thus we choose the convenient pointer comparison as
the order relation. Let the list of active nodes oractive enve-
lope for that level be the set of nodes with non trivial score.
We traverse the active envelope in the order as shown in fig-
ure 1. We named it Z-traversal because we traverse nodes in
an increasing order within a column, but process columns in
reverse order.

For best performance the implementation uses a single
linked list. We insert nodes in the active envelope in increasing
order, and thus by induction no additional step to sort the en-
velope is required. Nodes in the active envelope are traversed
exactly twice: one for activation (see next section), and one
for insertion purposes only. Also, accessing children hypothe-
ses is combined with insertion. The total cost for traversal,
insertion and lookup and is linear (O(H)).

We proceed as follows

1. Start from the deepest active list in the lexical tree.

Figure 1: Z-traversal of the active envelope

2. Letn be the smallest ranked node in the active list of the
children column.

3. Traverse the active list in increasing order.

4. For each child
 of the current nodek, if n <
, then
incrementn until that condition is false.

5. if n =
, then apply the DP equations; incrementn.

6. if n >
, then simply link
 beforen.

7. Decrement the depth and process the parent column.

It is easy to show that the algorithm merges two sorted lists,
namely, the existing sorted list with the list of activated chil-
dren. To complete the algorithm we must show why this is suf-
ficient to retain onlyonelist at each level. We reduce the mem-
ory requirements by one half over the array-swapping method.
It should be obvious by now nonetheless that we do not need to
access hypotheses in the active list arbitrarily but only during
the insertion process.

2.4. Traversing a hypothesis

Define the loop and incoming probabilities aslk = ak;k andik = ak�;k. The scoresk(�) at timet + 1 can be computed
withsk(t+ 1) = max fsk(t) + lk; sk�(t) + ikg+ dk(t) (2)

Note that we uset andt + 1 instead oft andt � 1 to denote
a forward recursion instead of abackwardsrecursion: the ulti-
mate goal is to compute score based on knowledge of children
only (i.e. fromk� and notk) to avoid use of back-pointers (i.e.
knowledge of father).

Now let us define thetopological scorerk(t) = sk(t) �dk(t) and thepartial topological score~r(t) = sk(t) + l. The
operations diagram is shown on figure 2.

It is more convenient to apply the acoustic matchat the be-
ginningof the iteration. Note that~r(t) = r(t) whenk� does

+
+

+ +
: maximum

+

+
~rk(t + 1)sk(t)

rk(t)Standard DP recursion:

dk(t)

ik
Acoustic-score delayed recursion:

lksk(t) lk
dk(t) sk(t+ 1)

~rk(t + 1)sk�(t) ik
rk(t + 1)

sk�(t)

rk(t)
Figure 2: Block diagram of the DP equations

not belong to the active list. The cellk computes its own topo-
logical score and acoustic scores at each frame. We call this
propertyself-activation. Each cell activates itself and then, for
all of its children, if they have activated themselves already,
we just need to bequeath our score to every children. Thus
when traversing a cell in the active envelope, we perform the
following operations:� Compute scoresk rk + dk (acoustic match)� Bequeathal: for each child
, r
 maxfsk + i
; r
g.

The score field of the child is assumed to hold the partial
score~r� Self-activation:rk ~rk = rk+ lk. The score field now
holds the partial topological score. If no score inheri-
tance takes place then this is also the topological score
for t+ 1.

Bequeathal and self-activation can be inverted if we keepsk
and the next active node in variables: we can discard the node
from the memory cache right after self-activation.

It is important that during the bequeathal process, a node
has a direct access to its children. This is ensured by construc-
tion of our active envelope.

A small difference occurs when we apply the beam. Stan-
dard Viterbi algorithms compute and apply the beam onsk(t).
We beam based on the topological scores,rk(t). This can be
seen as a mini topological lookahead. HMM transition proba-
bilities have however seldom proven of much influence in the
past. Other than the application of the beam heuristic, how-

ever, the algorithm is equivalent to the standard Viterbi algo-
rithm. Figure 3 illustrates the array swapping implementation:
the beam is applied after summing thedk(�).lNiNiN�2iN�1

: inactive node : active node

sk(t+ 1) beam
sk�(t) dk(t+ 1)rk(t)

beam in ewaves

Figure 3: Array-swapping Viterbi with beam

2.5. Extension to continuous speech recognition

In continuous speech recognition, the processor must spend
time on computation of the acoustic match, the search algo-
rithm itself, and language modeling. Due to the late appli-
cation of language model penalties, the search space must be
split. We can no longer store the hypotheses embedded in the
lexical tree. If word-internal context-dependent models are
used, however, we need only one instance of the static lexi-
cal tree. Furthermore, unigram language models (LM) can be
pre-factored. They are useful for unigram or bigram language
model lookahead. In addition, a vast number of nodes in the
lexical tree will share the same LM lookahead score. For ex-
ample, a typical lexical tree for Wall Street Journal (WSJ0),
20k words, non-verbalized pronunciation, with about 2k mix-
tures, will expand into a tree comprising about 200k nodes.
Each node corresponds to a state in an HMM. The LM trees,
on the other hand, have only 39k nodes. It is typical to fac-
torize the small LM lookahead trees in the forward direction
using DP alignment, because it allows for partial, on-demand
factorization. We factorize the full tree backwards, starting
from non-backoff bigrams.

Our representation is especially adequate for a tree fast

R
ea

l t
im

e
fa

ct
or

Search Effort (active states per frame)

1000 2000 3000 4000 5000 6000 7000 80001000 2000 3000 4000 5000 6000 7000 8000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

◊

◊

◊

◊

◊

∇

∇

∇

∇

∇

Figure 4: Overall speed of recognition with respect to the
search effort

match, since the algorithm is very efficient at processing a
large number of state hypotheses.

3. EXPERIMENTAL RESULTS

As far as recognition results are concerned, our algorithm di-
verges from the standard Viterbi only in the place where the
beam is applied. Therefore, recognition performance are only
marginally different. In our experiments, results are almost ex-
actly the same. It is clear, however, that a faster search makes
room for a wider beam or more complex algorithmic improve-
ments.

We present benchmarks for the Voice PhoneBook
database [7]. The database consists of isolated words spoken
over a telephone channel. We used 9 static PLP coefficients
augmented with their time derivative, and cepstral filtering.
Our recognition system uses decision-tree clustered context-
dependent models, with a total of 7131 mixture distributions
which comprise a total of 19332 gaussian distributions. The
Hidden Markov Models (HMM) are left-to-right with 3 emit-
ting states. Our phoneme set has 55 items. There are about
1800 words in the decoding lexicon. We used phonological
rules to generate multiple transcriptions. There were about
44k transcriptions in total. The static state-based lexical tree
has 551435 nodes. The recognition accuracy is 91%.

Figure 4 compares the active envelope search with conven-
tional Viterbi. On this task we improved speed by a factor
of three. We measured the real-time factor (xRT) on an In-
tel Pentium III, 500 MHz machine running Linux. The figure
shows the overall speed of recognition, including the frontend
parameterization, acoustic match score computations, andthe
search itself. The baseline Viterbi algorithm uses a model-
based lexical tree. The more efficient, state-based lexicaltree
used in the ewaves search reduces the amount of gaussian dis-
tance computations by 20%. The ewaves algorithm tends to be
more profitable when used in conjunction with multiple tran-
scriptions since is provides a more efficient way to explore the
search space. On the other hand, a larger number of gaussian
distributions may reduce the overall speed-up provided by the

search algorithm. It is clear that the overall gain will be depen-
dent on the application.

4. CONCLUSION

Our method operates on three points� Delay acoustic match scoring.� Traverse from the deepest level in the lexical tree so that
we can lookup and insert into the active envelope at a
minimal cost.� Replace inheritance by bequeathal (forward recursion in-
stead of backwards recursion) so that we need only one
active list.

Although not strictly required by the algorithm, a statically
encoded lexical tree improves the performance even further.

In this paper, we have described an implementation of a
lexical tree based Viterbi algorithm. We utilize the assump-
tion of left-to-right topology and reorder the search spaceto
minimize the book-keeping of hypotheses. Our new decoder
performs three times faster than our older implementation on
the Voice Phonebook database. With some modifications, the
approach can be used with continuous speech recognizers.

5. REFERENCES

[1] K. Demuynck, J. Duchateau, D. Van Compernolle, and
P. Wambacq. An efficient search space representation for
large vocabulary continuous speech recognition.Speech
Communication, 30(1):37–54, January 2000.

[2] Neeraj Deshmukh, Aravind Ganapathiraju, and Joseph Pi-
cone. Hierarchical Search for Large Vocabulary Conversa-
tional Speech Recognition.IEEE Signal Processing Mag-
azine, 6(5):84–107, September 1999.

[3] Hermann Ney and Stefan Ortmanns. Dynamic Pro-
gramming Search for Continuous Speech Recognition.
IEEE Signal Processing Magazine, 6(5):63–83, Septem-
ber 1999.

[4] J. Odell. The Use of Context in Large Vocabulary Speech
Recognition. PhD thesis, Cambride University, 1995.

[5] S. Ortmans, A. Eiden, H. Ney, and N. Coenen. Language-
model look-ahead for large vocabulary speech recogni-
tion. In Proceedings of the Fourth European Conference
on Speech Communication and Technology, pages 2095–
2098, Philadelphia, PA, October 1996.

[6] S. Ortmans, A. Eiden, H. Ney, and N. Coenen. Look-
ahead techniques for fast beam search. InInternational
Conference on Acousitics, Speech, and Signal Process-
ing (ICASSP), volume 3, pages 1783–1786, Munich, Ger-
many, April 1997.

[7] J. Pitrelli, C. Fong, S.H. Wong, J. R. Spitz, and H. C.
Lueng. Phonebook: A phonetically-rich isolated-word
telephone-speech database. InInternational Conference
on Acousitics, Speech, and Signal Processing (ICASSP),
pages 1767–1770, 1995.

[8] Mosur K. Ravishankar.Efficient Algorithms for Speech
Recognition. PhD thesis, Carnegie Mellon University,
1996.

