
NetBench: A Benchmarking Suite for Network Processors

Gokhan Memik William H. Mangione-Smith Wendong Hu
Department of Electrical Engineering
University of California, Los Angeles

Los Angeles, CA 90095fmemik, billms, wendongg@ee.ucla.edu

Abstract— In this study we introduce NetBench, a benchmarking
suite for network processors. NetBench contains a total of 9applications
that are representative of commercial applications for network proces-
sors. These applications are from all levels of packet processing; Small,
low-level code fragments as well as large application levelprograms are
included in the suite.

Using SimpleScalar simulator we study the NetBench programs in de-
tail and characterize the network processor workloads. We also compare
key characteristics such as instructions per cycle, instruction distribu-
tion, branch prediction accuracy, and cache behavior with the programs
from MediaBench. Although the aimed architectures are similar for
MediaBench and NetBench suites, we show that these workloads have
significantly different characteristics. Hence a separatebenchmarking
suite for network processors is a necessity. Finally, we present perfor-
mance measurements from Intel IXP1200 Network Processor toshow
how NetBench can be utilized.

1. INTRODUCTION
Emerging applications in the networking field demand increas-

ingly higher network bandwidths. In addition, new applications and
protocols not only require the network to deliver packets. Instead,
they have requirements such as quality of service guarantees, secure
transmission of data and intelligent/dynamic routing and switching
among others. These applications require significant amount of pro-
cessing which should be satisfied by the processor. Coupled with the
higher network link speeds this set of features puts a heavy demand
on the network processing elements.

Traditionally, embedded processors in networks are eithercustom-
designed ASIC chips or variations of general-purpose processors.
Both schemes have their advantages and shortcomings. ASIC chips
have better performance, but they have higher manufacturing costs
and lack the flexibility of programmable processors. If there is a
change in the protocol or application, it is hard to reflect the change
onto the design. General-purpose processors, on the other hand, are
not optimized for networking applications and hence do not provide
satisfactory performance for most of the applications. Network pro-
cessors eliminate the drawbacks of general-purpose processors and
ASIC designs by combining the flexibility of general-purpose pro-
grammable processors and performance of ASIC chips.

Soon after their introduction [10], network processor market be-
came one of the fastest growing segments of the microprocessor in-
dustry. Only in the last year, more than 40 new vendors have an-
nounced their network processor architectures. Although,these pro-
cessors aim at the same application domains, they vary widely in
their architectural designs. Hence, there is a tremendous need to
evaluate the performances of these different designs.

A designer of a product should know the type of applications,
based on marketing requirements, for which the processor isopti-
mized. Similarly, customers benefit from benchmarks by selecting
the product that gives the best performance for the applications they
consider important (when benchmarks are aligned with commercial

workloads). In this paper, we create a benchmarking suite bydefin-
ing a set of applications that are common for network processors.
This benchmarking suite can be used to evaluate performanceof
different network processor designs. We also investigating several
characteristics of these networking applications to understand their
nature and compare some characteristics of these applications with
the applications from MediaBench [9]. Finally, we demonstrate how
NetBench can be utilized by providing a performance measurement
of Intel IXP1200 Network Processor [6].

This paper is organized as follows. In the next section, we provide
the necessary background and discuss the related work. In Section 3,
we present the applications in NetBench. Applications in NetBench
are compared with the MediaBench applications in Section 4.In
Section 5, we present experimental results for Intel IXP1200 simu-
lations. Section 6 concludes the paper.

2. RELATED WORK
Network processors are a class of programmable IC’s based on

SOC (system-on-a-chip) technology that implement communication-
specific functions more efficiently than general-purpose processors.
Crowley, et. al. [4] evaluate different design mechanisms for net-
work processor. They measure the performance of a VLIW-based, a
SMT-based, a fine-grain multithreaded multiprocessor, anda single-
chip multiprocessor.

Benchmarks play a major role in any product design process. SPEC
[19] benchmarks have been well accepted and used by several pro-
cessor manufacturers and researchers to measure the effectiveness
of their design. Other fields have popular benchmarking suites de-
signed for the specific application domain: TCP [20] for database
systems, SPLASH [22] for parallel machine architectures. The need
for a benchmarking suite in the network processor area has been
pointed out by several researchers. Nemirovsky [11] discusses the
requirements and challenges of a benchmarking suite for network
processors. He defines a set of metrics to be used with any bench-
marking suite and draws the guidelines for defining a benchmark.

There has also been some effort in characterizing the network pro-
cessor applications. Wolf and Franklin [21] simulate four packet
header processing applications along with four payload processing
applications.

3. NETBENCH PROGRAMS
In this section, we present the applications in NetBench. Any

benchmarking suite should be a representative of the applications
in the domain the benchmark is designed for. This was the most
important criterion in our selection of the applications.

Network Processor applications contain a large variety of tasks
such as traditional routing and switching tasks to much morecom-
plicated applications containing intelligent routing andswitching de-



cisions. Therefore, any benchmarking suite attempting to represent
the applications on Network Processors should consider alllevels
of a networking application. We have categorized these levels into
three: Low or Micro level routines contain operations nearest to the
link or operations that are part of more complex tasks; Routing level
applications are similar to traditional IP level routing and similar
tasks; Application level programs, which have to parse the packet
header and sometimes a portion of the payload and make intelligent
decisions about the destination of the packet. We list the applications
in NetBench according to the category they belong:

3.1 Micro-Level Programs
In our benchmarking suite, we have 2 micro-level programs:

CRC: The CRC-32 checksum calculates a checksum based on a
cyclic redundancy check as described in ISO 3309 [7]. CRC-32is
used in Ethernet and ATM Adaptation Layer 5 (AAL-5) checksum
calculation. The code is available in the public-domain [3].
TL: TL is the table lookup routine common to all routing processes.
We have used radix-tree routing table which was used in several
UNIX systems. The code segment is from FreeBSD operating sys-
tem [5].

3.2 IP-Level programs
These programs make a decision depending on the source or des-

tination IP of the packet.
Route:Route implements IPv4 routing according to RFC 1812 [1].
Route implements the table lookup along with internet checksum
(for the header). It makes the necessary changes in the header (for
example, the Time-To-Live value), fragments the packet if necessary
and forwards it. The code is from the FreeBSD operating system [5].
DRR: Deficit-round robin (DRR) scheduling [18] is a scheduling
method implemented in several switches today. In DRR, all the
connections through the router have separate queues. Usingthese
queues, the router tries to accomplish a fair scheduling by allowing
same amount of data to be passed from each queue. The implemen-
tation is based on [18].
NAT: Network Address Translation (NAT) is a common method for
IP address simplification and conservation. It operates on arouter,
usually connecting two networks, and translates the private (not glob-
ally unique) addresses in the internal network into legal addresses
before packets are forwarded onto the other network. Hence,for any
departing packet, the source IP on the packet should be changed.
The program accomplishing this task is using several routines from
FreeBSD operating system [5].
IPCHAINS:IPCHAINS is a firewall application that checks the IP
source of each of the incoming packet and decides either to pass the
packet through the firewall (accept), to deny the packet (deny), to
modify it (masq), or to reject the packet and send information to the
sender (reject). The implementation is from Rustcorp Inc. [17].

3.3 Application-Level Programs
These programs are the most time consuming applications in Net-

Bench due to their processing requirements.
URL: URL implements the URL-based switching, which is a com-
monly used context-switching mechanism. In URL-based switch-
ing, all the incoming packets to a switch are parsed and switched
according to the URL requested by it. This increases the utility of
specialized servers in a server farm. The implementation isbased on
the description from PMC-Sierra [14].
DH: Diffie-Hellman (DH) is a common public key encryption-de-
cryption mechanism. It is the security protocol employed inseveral
Virtual Private Networks (VPN’s). The implementation is from RSA
Data Security, Inc [16].

MD5: Message Digest algorithm (MD5) creates a cryptographically
secure signature for each outgoing packet, which is checkedat the
destination [15]. If the received packet does not match the signature,
then the receiver will detect it and discard the packet. The imple-
mentation is also from RSA Data Security, Inc [16].

4. PROGRAM CHARACTERISTICS
In this section, we compare several characteristics of NetBench

applications with MediaBench [9] applications. MediaBench is de-
signed for multimedia and communication systems, which arein
many ways similar to network processors. We have selected Me-
diaBench to compare against NetBench, due to this similarity of the
aimed processor architectures. Although processor architectures are
similar, we show that the applications for these architectures are sig-
nificantly different, thus validating the need for a separate bench-
marking suite for network processors.

4.1 Simulation Environment
In order to compare NetBench and MediaBench applications, we

have performed several simulations on SimpleScalar simulator [2].
We simulate a 4-way superscalar processor with 64 KB of direct-
mapped level 1 (L1) data and instruction caches and a 1 MB uni-
fied level 2 (L2) cache much like in the Alpha 21264 [8] processor.
The L1 and L2 cache latencies are set to 2 and 10 cycles, respec-
tively. The simulated processor uses a bimodal branch predictor [23]
with 2048 table entries. We have simulated 9 programs from Me-
diaBench to perform the comparison. The remaining applications in
MediaBench are office development programs and hence are left out.

NetBench applications take a IP header trace as input. We have
used the traces from Columbia University available in the public
domain [13]. In the experiments, the first 10000 packets are read
by the application. All the applications use this trace except the dh
program, which generates and communicates 20 Diffie-Hellman key
pairs and hence does not need any packet trace. The routing table
sizes for drr, ipchains, nat, route and tl is set to 128. The input vari-
ables along with the application code can be found at the NetBench
web site [12].

4.2 Experimental Results
In this section we compare the instruction level parallelism(ILP),

branch prediction accuracy, instruction distribution andcache behav-
ior of NetBench applications with MediaBench applications. These
are the key architectural characteristics of an application and hence
are used to differentiate between different application sets.

4.2.1 Instruction Level Parallelism
The first characteristic we explore is the instruction levelpar-

allelism (ILP) measured in instructions per cycle (IPC). Itis well
known that the networking applications have a high data-level paral-
lelism. However, dependency between the instructions thatprocess
same data is not known. We first study this characteristic. Table 1
gives the results for the instruction level parallelism. Itgives the
instructions per cycle values along with the total number ofinstruc-
tions and cycles executed. The average IPC value of NetBenchap-
plications is14:5% higher than the average of MediaBench applica-
tions. A statistical study shows that the NetBench applications have
a higher IPC value using a90% confidence interval.

4.2.2 Branch Prediction Accuracy
The branch predictor simulated was explained in Section 4.1. Ta-

ble 1 summarizes the results. In average, the predictor has a4:78%
better address prediction accuracy and4:18% better direction pre-
diction rate for NetBench applications. The lower prediction rate



Table 1: Instructions per cycle (IPC) and branch prediction values for the NetBench and MediaBench applications. IPC measures
instruction level parallelism (ILP). IPC value is high when the dependency of the instructions within a program is low. Avg. is the
arithmetic mean.

NetBench Programs MediaBench Programs

#of #of address direction #of #of address direction
Program inst. cycles IPC pred. pred. Program inst. cycles IPC pred. pred.

[M] [M] rate[%] rate[%] [M] [M] rate[%] rate[%]
r
 239 121 1:97 99:1 99:1 adp
m 6:6 5:8 1:13 73:1 73:1dh 2434 1432 1:69 87:8 87:9 epi
 6:8 4:9 1:38 93:1 93:1drr 61 41 1:48 97:9 97:9 g721 1076 610 1:76 90:6 91:0ip
hains 74 44 1:65 93:9 95:0 ghosts
: 1294 935 1:38 95:2 95:6md5 204 104 1:96 96:8 97:0 gsm 73 40 1:80 98:3 98:4nat 21 14 1:48 90:5 91:1 jpeg 3:5 2 1:75 93:4 94:2route 18 12 1:51 92:1 92:2 mesa 68 51 1:24 94:1 99:8tl 12 9:3 1:38 91:2 91:3 mpeg 1133 861 1:34 76:7 76:9url 171 94 1:81 96:0 96:0 pegwit 12:7 9:7 1:31 87:8 87:8Avg: 359 207 1:66 93:9 94:2 Avg: 408 280 1:45 89:1 89:9
Table 2: Percentage of instructions executed from each instruction category for NetBench and MediaBench applications. The ab-
breviations are: LD/ST for load and store instructions, Jump for unconditional jump instructions, Branch for conditio nal branch
operations, Add for addition instructions, Sub for subtraction operations, Log. for bitwise logical operations, and Arit. is for arith-
metic shift operations like shift left logical.

NetBench Programs MediaBench Programs

Prog. LD/ST Jump Branch Add Sub Log. Arit. Prog. LD/ST Jump Branch Add Sub Log. Arit.
r
 25:8 2:4 5:2 44:1 0:1 6:8 12:3 adp
m 7:3 2:0 22:7 25:5 5:5 9:0 27:9dh 32:4 1:9 2:8 51:8 1:1 2:0 6:4 epi
 19:5 0:8 15:2 44:4 1:1 3:1 9:5drr 38:9 4:2 8:4 45:9 0:2 0:2 1:9 g721 31:4 4:4 6:6 47:6 0:7 1:3 7:3ip
ha: 26:5 7:5 9:7 41:5 0:3 5:8 7:9 ghost: 18:4 5:0 12:2 41:1 2:3 8:0 10:2md5 13:6 0:5 5:8 41:4 0:1 19:4 15:7 gsm 10:1 4:8 11:4 33:9 2:1 3:7 30:9nat 30:1 4:8 6:6 49:0 0:6 0:9 7:0 jpeg 23:8 0:5 3:4 54:5 2:1 3:3 12:0route 30:3 4:7 6:4 49:1 0:6 0:9 7:3 mesa 26:1 4:3 7:5 38:4 0:1 5:2 2:9tl 28:9 4:0 5:9 48:4 0:9 1:5 10:0 mpeg 22:4 0:9 12:3 43:4 11:4 0:4 6:1url 22:5 3:3 13:9 41:6 0:7 12:7 3:3 pegwit 19:5 1:9 10:4 45:7 0:2 10:2 12:0Avg: 27:7 3:7 7:2 45:9 0:5 5:6 8:0 Avg: 19:8 2:7 11:3 41:6 2:8 4:9 13:2
coupled with having more frequent branches as we will study in the
next subsection causes the lower IPC values for the MediaBench ap-
plications observed in Subsection4.2.1.

4.2.3 Instruction Distribution
In these simulations, we count different number of instruction

types in the NetBench and MediaBench applications. The results are
summarized in Table 2. The table gives the number of instructions
executed from each of the major instruction categories. Thetwo
benchmarking suites differ in almost all instruction categories, but
we concentrate on the load/store and conditional branch operations,
because they are more important than other instructions in determin-
ing the nature of an application and its performance. In average, Net-
Bench applications have a higher load/store frequency. This shows
the data-intensive nature of these applications. The MediaBench ap-
plications, on the other hand, have a higher conditional branch in-
struction percentage. A statistical analysis shows that with a 95%
confidence interval NetBench applications have higher load/store in-
struction frequency, whereas the MediaBench applicationshave a
higher conditional branch instruction frequency with a90% confi-
dence interval.

4.2.4 Cache Behavior
The last characteristic we are interested in is the cache behavior.

The architectural values for the cache sizes were explainedin Sec-
tion 4.1. Table 3 gives the first and second level cache accesses and
miss ratios. The last row gives the average access numbers and miss
ratios. The table shows the significant difference in the miss ratios
for NetBench and Mediabench applications.

We have also studied the cache behavior of NetBench applications
with different level 1 cache sizes. The results are not presented due
to lack of space. Our experiments reveal that instruction cache miss

ratios are more effected by the cache size. For NetBench applica-
tions, the processor with a 4 KB L1 cache size have an average miss
ratio is2:8% for instruction cache, and an average data cache miss
ratio of 2:6%. For 128 KB cache size the miss ratios are0:6% and
approximately zero for data and instruction caches, respectively.

4.3 Discussion
In the previous subsection, we studied four important character-

istics of NetBench and MediaBench applications. In all these cate-
gories, NetBench applications had significantly differentvalues than
the MediaBench applications. One important property of NetBench
applications is its data-intensive nature. As seen in the load/store
instruction ratios, the NetBench applications make high number of
memory accesses. The MediaBench applications, on the otherhand,
has more frequent branch instructions resulting in a lower instruction
level parallelism.

5. INTEL IXP1200 PERFORMANCE MEA-
SUREMENTS

In this section we give an example of how to utilize NetBench
by presenting experimental results with the Intel IXP1200 network
processor [6]. We have used the Intel IXP simulator to perform these
simulations.

Intel IXP1200 processor is one of the most commonly used net-
work processors. It combines the StrongARM microprocessorwith
six 32-bit RISC data engines having hardware multithread support
that provide a total of 1 giga-operations per second with 200MHz
clock speed [6].

5.1 Simulation Results
In order to simulate the IXP1200, we have converted codes from



Table 3: Number of cache accesses and miss ratios of the NetBench and MediaBench applications. Ratios are given in percentage,
il1 stands for first level instruction cache, dl1 stands for first level data cache and L2 is the unified level 2 cache.

NetBench Programs MediaBench Programs

Prog. il1 il1 miss dl1 dl1 miss L2 miss Prog. il1 il1 miss dl1 dl1 miss L2 miss
acc.[M] ratio[%] acc.[M] ratio[%] ratio[%] acc.[M] ratio[%] acc.[M] ratio[%] ratio[%]
r
 242 0:0 72 0:1 9:5 adp
m 11 0:0 0:5 0:1 53:7dh 2745 0:0 1046 0:0 1:4 epi
 8 0:1 1:7 5:9 7:9drr 64 0:0 30 1:0 7:4 g721 1202 0:0 44 0:1 2:8ip
ha: 85 0:3 20 0:4 2:5 ghost: 1448 0:1 290 0:2 6:7md5 209 0:0 31 0:2 20:9 gsm 75 0:0 8 0:1 8:6nat 23 0:0 8 1:1 14:3 jpeg 4 1:1 1:1 0:2 30:8route 21 0:0 7 0:8 16:9 mesa 75 1:7 24 0:7 3:1tl 15 0:1 5 1:5 12:6 mpeg 1839 0:0 405 1:2 18:3url 196 0:0 46 2:3 2:1 pegwit 16 0:1 3:1 7:4 1:4Avg: 400 0:05 140 0:8 9:7 Avg: 519 0:4 86 1:8 14:8

Intel IXP1200 vs. GCPU

0

0.5

1

1.5

2

2.5

route md5 crc
Applications

M
ax

. S
up

po
rt

ed
 B
an

dw
ith

 [G
bp

s]

IXP1200 GCPU

Figure 1: Intel IXP1200 Simulation results.

NetBench applications to Intel IXP Micro-code. We compare the
performance of IXP1200 with a general-purpose processor (GCPU),
similar to Intel Pentium, having a 1 GHz clock speed, using three
applications from NetBench.

To gather information about the general-purpose processor, we
again used SimpleScalar simulator [2]. Figure 1 summarizesthe re-
sults. The figure gives the maximum amount of traffic the processor
can handle. This value is calculated by finding the total number of
bytes manipulated in the program and dividing this value to the sim-
ulated time required to execute the program. Figure 1 illustrates the
power of the IXP processor. Although the simulated IXP processor
had a clock speed of 200 MHz, it outperformed the GCPU in all
programs; by 51% for crc, by 44% for md5, and by 80% for route.

The results also show how NetBench can be utilized. It shows that
the IXP is more suitable for route than it is for MD5, because the rel-
ative performance improvement over GCPU is much higher withthe
route application. Also, it gives the maximum amount of traffic the
IXP1200 can handle for a given application. Customers can decide
whether this supported bandwidth meets their requirements.

6. CONCLUSION
In this paper, we introduced a benchmarking suite for network

processors. In spite of the the increase in demand and supplyfor
network processors, there still does not exist a common framework
for evaluating them. Many designers still use benchmarks designed
for other purposes, such as MediaBench and SPEC2000. We have
shown that the applications for network processors are significantly
different than the applications for media processors, hence a specific
benchmarking suite is a necessity. We have also presented a perfor-
mance study of a popular network processor.

7. REFERENCES
[1] Baker, F.Requirements for IP version 4 routers.Request for Comment:

1812, June 1995.
[2] Burger, D. and Austin, T.The SimpleScalar Tool Set, Version 2.0.

Technical Report CS-TR-97-1342, University of Wisconsin,June 1997.
[3] Cell Relay Retreat.CRC-32 Calculation, Test Cases and HEC Tutorial.

http://cell.onecall.net/cell-relay/publica tions/software/
[4] Crowley, P., Fiuczynski, M. E., Baer, J. L, Bershad, B. N.

Characterizing Processor Architectures for ProgrammableNetwork
Interfaces. InProc. of International Symposium on Supercomputing,
Santa Fe, NM, 2000.

[5] The FreeBSD Project.FreeBSD Operating System.
http://www.freebsd.org

[6] Halfhill, T. R. Intel Network Processor Targets Routers..
Microprocessor Report, Sep. 13, 1999, vol. 13-12.

[7] International Organization for Standardization.ISO Information
Processing Systems - Data Communication High-Level Data Link
Control Procedure - Frame Structure. IS 3309, October 1984, 3rd
Edition.

[8] Kessler, R.The Alpha 21264 Microprocessor. In IEEE Micro, 19(2),
Mar/Apr 1999.

[9] Lee, C., Potkonjak, M., Mangione-Smith, W. MediaBench:A Tool for
Evaluating and Synthesizing Multimedia and Communications
Systems. InProc. of International Symposium on Microarchitecture,
IEEE Micro-30, 1997.

[10] MMC Networks, Inc.Leading the Network Processor Revolution.
http://www.mmcnet.com/Solutions

[11] Nemirovsky, A.Towards Characterizing Network Processors: Needs
and Challenges.XStream Logic Inc., November 2000.

[12] NetBench Web Site. http://istanbul.icsl.ucla.edu/NetBench
[13] The NLANR project.NLANR Network Traffic Packet Header Traces.

http://moat.nlanr.net/Traces
[14] PMC-Sierra Inc.URL-based Switching. http://www.pmcsierra.com,

PMC-2002232, Feb 2001.
[15] Rivest, R.The MD5 Message-Digest Algorithm. Request for

Comment: 1321, April 1992.
[16] RSA Data Security, Inc.RSA Security Downloads.

http://www.rsasecurity.com/download
[17] Russell, P.IPCHAINS version 1.3.10.

http://netfilter.filewatcher.org/ipchains
[18] Shreedhar, M., Varghese, G. Efficient Fair Queuing using Deficit

Round Robin. InProc. of SIGCOMM’95, Cambridge, MA, 1995,
Aug/Sep 1995.

[19] Standard Performance Evaluation Council.Spec CPU2000:
Performance Evaluation in the New Millenium, Version 1.1.December
27, 2000.

[20] Transaction Processing Council.TPC Benchmarks.
http://www.tpc.org.

[21] Wolf, T., Franklin, M., CommBench - A Telecommunication
Benchmark for Network Processors. InProceedings of IEEE
International Symposium on Performance Analysis of Systems and
Software, Austin, TX, April 2000.

[22] Woo, S. et al. The SPLASH-2 Programs: Characterizationand
Methodological Considerations. InProc. of International Symposium
on Computer Architecture, June 1995, pg. 24-36.

[23] Yeh, T. H., Patt, Y. Alternative implementations of two-level adaptive
branch prediction. InProc. of International Symposium on Computer
Architecture, pp.124-134, Queensland, Australia, May 1992.


