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Abstract

Deep results have been obtained recently on randomly generated £-SAT instances.
They have been shown hard on average, threshold phenomena have been experi-
mentally established and greedy local search methods have been demonstrated very
efficient on these instances.

In this paper, we show that it is possible to generate randomly £-SAT instances
that are harder (or easier) than those obtained with the usual generation model. The
same method permits also the random generation of hard satisfiable instances. This is
of a particular interest to evaluate incomplete methods. We report some experimental
results for the Davis and Putnam’s procedure — that can be considered as a sample
of complete methods — and for the Selman’s GSAT method as well — that can be
considered in turn as a sample of incomplete methods.

1 Introduction

Let ¢ = Cy ACy A ... A C,, be a Boolean expression in conjunctive normal form, i.e.
where each clause C; is a disjunction of literals and each literal is either a variable x; or its
negation —z; (1 <7 < n).

The SAT(isfiability) problem consists in determining whether such an expression ¢ is
true for some assignment of Boolean values to the variables xq,...,2,. Cook [CooTl]
showed that SAT is NP-complete and it is now the reference NP-complete problem [GJ79].
¢ 1s said to be a SAT-instance. A k-SAT instance is a SAT instance whose clauses are all of
length k, i.e. contain k literals. There exist linear algorithms to solve the 2-SAT problem
(see for instance [APT79]). k-SAT for k > 3 is equivalent to SAT, i.e. is NP-complete.
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In this paper, we present a new method to generate randomly k-SAT instances that
are statistically hard for the usual resolution methods. This method can be adapted to
generate randomly satisfiable £-SAT instances that have the same property. In the sequel,
by abuse of terminology, we say simply “hard” for “statistically hard for the usual resolution
methods”.

In order to test the practical efficiency of an algorithm designed to solve SAT, one needs
a benchmark. An easy way to build such a benchmark consists in randomly generating
k-SAT instances (and more specifically 3-SAT instances). The standard generation model
— so-called fixed length model — consists in drawing independently the C' clauses of the
instance. In order to draw each clause, one first chooses randomly & distinct variables
among a set V all of the variables having the same probability to be drawn, namely 1/|V|
. Then, a sign is randomly chosen for each variable, positive and negative signs having the
same probability to be drawn, namely 1/2.

Other generation models have been proposed but it is has been shown that they build
easy instances (see for instance [Fra86]). On the converse, Chvatal and Szemerédi, in their
very deep paper [CS88], showed that the above one captures in some sense the hardness of
SAT. More precisely, they showed that:

1. For any k£ > 3, beyond a given ratio C'/V, the probability to draw a satisfiable £-SAT
instance tends to 0 as V' tends to infinity.

2. For a given ratio C'/V, the mean number of resolution steps required to show that a
randomly generated instance is unsatisfiable increases exponentially with V.

Since, as noted by Gallil in [Gal77], resolution based methods can be seen as non-deterministic
counterparts of enumerative ones, the Chvatal and Szemerédi’s result holds also for Davis
and Putnam’s procedure [DLL62] and the related algorithms, and thus for most of complete
methods used to solve SAT.

It was known, at least since the paper by Haken [Hak85], that there exist families of
parametric formulae — typically those encoding the well known Pigeon-Hole problem —
for which the length of the shortest resolution proof cannot be bound by any polynomial.
The major interest of the Chvatal and Szemerédi’s result is that it gives a method to build
as many such formulae as one wants.

The interest in randomly generated k-SAT instances has been increased recently by
an experimental result due to several authors independently [DC91, MSL92, L'T93, CA93]
that remarked that £-SAT instances obey a 0/1 law. Below a ratio C'/V that depends on £,
the probability to draw a satisfiable instance tends to 1 as V' tends to infinity. Beyond this
ratio it tends (quickly) to 0. For k = 2 the threshold has been actually established equal
to 1 by, among other, Chvatal and Reed [CR92]. For £ = 3 and k = 4 experimental values
have been found (respectively 4.25 for £ = 3 and 9.8 for k = 4). Researchers work hard to
find (theoretical) lower and upper bounds for these values and Dubois in [DABC94] gives
a general equation [n(2) — V.28 — exp(kV/(2* — 1) = 0, for which the upper zeros would
be very close to the values of the thresholds of k-SAT instances (for k=3 and beyond).



Threshold phenomena also appear for instances having clauses of different lengths
[GW94].

In a practical point of view, one can observe that the hardest randomly generated k-
SAT instances for Davis and Putnam’s procedure are those around the threshold [CKT91,
MSL92, DABC94, Rau94] that is where about 50% of the drawn instances are satisfiable.
Even for small numbers of variables (say 50) running times suddenly increase near the
threshold and quickly decrease after. Satisfiable instances are significantly easier than
unsatisfiable ones, but they are hard too, i.e. that running times quickly increase as V'
increases.

This paper is an attempt to answer the following questions:

1. Is it possible to generate randomly k-SAT instances that are harder to solve than
those generated with the fixed length model, or in other words are the latter the
hardest possible ?

2. Is it possible to generate randomly satisfiable £-SAT instances that are at least as
hard as those generated with the fixed length model ?

The second question is very interesting because Selman, in a series of recent papers (starting
with [SLM92]), showed that greedy local search methods could find models of hard instances
with 1000 variables and more, i.e. far beyond the limits of Davis and Putnam’s procedure
(that cannot currently go beyond 400 variables). However, greedy local search methods
— a family to which belongs simulated annealing, tabu, ...— are incomplete and thus it
would be very interesting to test them on sets of hard satisfiable instances in order to have
a precise evaluation of their success rates.

Our starting remark was that a set of clauses is satisfiable if and only if it contains
no positive clause, up to a renaming. Thus, in order to be sure to generate satisfiable
instances, it suffices to forbid the drawing of positive clauses. However, this cannot be
done roughly otherwise one loses the property that positive and negative literals have the
same frequency which is actually essential to obtain hard instances. The idea is thus to
draw the clauses in two steps: first one draws & distinct variables, second one draws the
structure for the clause, i.e. the sequence of the signs of its literals. There are 2% — 1
allowed structures and the problem is to define the probability of each structure in such a
way that positive and negative literal frequencies are balanced. Of course, the same idea
applies also for instances that are not a priori satisfiable (and thus may contain positive
clauses).

In the remaining of this paper, we report the experimental results we have obtained with
the generation model described above. This new generation model is detailed at the next
section. Performances of the Davis and Putnam’s procedure — that can be considered as a
sample of complete methods — are given section 3. Those of the Selman’s GSAT algorithm
— that can be considered as a sample of incomplete methods — are given section 4.
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Figure 1: Running times for different probabilities of drawing a positive literal

2 Random Generation of 3-SAT Instances

Preliminary Observations Our first point is to give empirical evidence that the fre-
quencies of positive and negative literals must be balanced in order to obtain hard instances.
As the matter of fact, if it is not the case, the generated instances tend to be Horn-sets, i.e.
sets of clauses with at most one positive literal per clause (up to a renaming). In [Rau94],
it is shown that the Davis and Putnam’s procedure (that will be detailed at section 3) is
quadratic on Horn-sets. Fig. 1 presents the curves of running times of this procedure for
the probabilities 1/3 and 1/2 of tossing a positive literal.

Ratios C'/V, where C is the number of clauses and V is the number of variables, are
indicated as abscissae. These curves are pictured by extrapolating points obtained for the
values 3.8, 3.9, 4.0, 4.1, ... of the ratio C'/V. Each point is obtained by means of 100 draws
of 3-SAT instances built over 200 variables. In remaining of this paper, each presented curve
has been obtained in the same way. 200 is almost the maximum number of variables we
can handle within reasonable running times (say few seconds) with our implementation of
the Davis and Putnam’s procedure on our computer (a SUN sparc station IPX). 100 draws
is also a tradeoff between running times and precision of the measures. In our experience,
at least first order phenomena are captured with this sample size.

On Fig. 1, one can see first that a difficulty peek — corresponding to a threshold
phenomenon — still exists, even shifted to the right and attenuated, for the probability 1/3
of drawing a positive literal. Second, that the top of the peek is higher for the probability
1/2 than for the probability 1/3.

If variables have different probabilities to be drawn, the situation is slightly more com-
plicated, but not essentially different. In [GS94], Génisson and Sais showed that instances



with unbalanced variable frequencies are in general easier to solve than those in which all
literals have approximately the same number of occurrences. However, this question would
require further investigations.

Anyway, it seems clear that hard instances are obtained when on the one hand positive
and negative literals and on the other hand all of the variables have the same probability
to be drawn.

Structure-Driven Generation The idea behind the variations of the generation model
we have studied is to toss a structure for each clause rather than to draw individually the
sign of each literal. We call structure the sequence of the signs of the literals of the clause.
For a clause of length, k there are 2% possible structures. For instance, for a clause of
length 3, the 8 possible structures are —, —, —«—, —+, +—, +—+, ++— and ++.

We denote by p(*xx) the probability given to the drawing of the structure x%x. In
the standard generation model, all of the structures are given the same probability to
be drawn, namely 1/2%. However, it is possible to draw instances with balanced sign
frequencies in which the structures are given different probabilities to be drawn. To be
such, these probabilities must obey the two following conditions.

> pler) = 1 (1)

*e{‘l'v_}

3X p(—) +2 X p(—+) + 2 X p(—+) + p(—++) + 2 X p(+—) + p(+—+) + p(++)

pl—+) +p(—=) + 2 X p(—+) + p(+—) + 2 X p(+—+) + 2 X p(++—) + 3 X p(+++) (2)

Equation 1 is the basic rule of probabilities. The left member of equation 2 denotes the
expectation of the number of negative literals in a clause. Its right member denotes the
expectation of the number of positive literals in a clause. This equation can be simplified
as follows.

3% p(—) + p(—+) + pl—+) + pl+—) = p(—+) + p(+—+) + p(+—) + 3 X p(++)  (3)

However, for sake of symmetry, we over-constrain the condition 3 by means of conditions

4 and 5.
p(—) = p(++) (4)

p(—+) = p(—) = p(—++) = p(+—) = pl+—+) = p(++) ()
Finally, equations 1, 4 and 5 define a single equation with two unknowns:

2xa+6xg=1 (6)

Where « stands for the probability given to the drawing of the structures — and ++
and 3 stands for the probability given to the drawing of the structures —, ., —+, +—,
+—+ and ++.
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Figure 2: Percentages of satisfiable instances for different values of «

Note that the fixed length generation model is obtained for « = # = 1/8. Now, if
a =0 (and 3 = 1/6), the generated instances are always satisfiable and admit at least
two solutions: the assignments giving respectively the value 0 and the value 1 to all of the
variables (each clause contains at least a negative literal and at least a positive literal).
Finally, if a reaches its maximum, namely 1/2 (in which case = 0), the generated
instances contain only positive and negative clauses.

This raises a question: what happens for positive values of a 7 Curves of percentages of
satisfiable instances for the values 1/2, 1/8 and 1/128 of « are pictured Fig. 2 (we do not
draw more curves for sake of clarity of the picture, but the presented results are confirmed
by measures for a dozen of values of «).

On Fig. 2, one observes the following points.

1. For the values of v greater than 1/8, up to its maximum value 1/2, the curves are very
similar to the one obtained for @ = 1/8. The greater « is, the more the corresponding
curve is close to the 0/1 law. Moreover, its seems that threshold value is the same
for all these values of «.

2. The threshold phenomenon is still observable for very low values of a, in other words a
very low number of positive clauses suffices to make instances unsatisfiable. However,
the percentage of satisfiable instances increases as « decreases, for a given value of

the ratio C'/V.

As we will see, these observations can be directly translated as a measure of hardness
of instances: the more « is high, the more generated instances are hard to solve.



Generation of Satisfiable Instances Our first aim when starting this work was to
generate randomly hard satisfiable instances in order to test efficiently the success rate of
incomplete methods. Our starting remark was that an instance is satisfiable if and only
if it contains no clause without negative literal, up to a renaming. We call renaming the
operation that substitutes simultaneously and for some variables, positive literals for neg-
ative literals and conversely negative literals for positive literals. Given a total assignment
that satisfies a set of clauses S, in order to obtain from S a set without positive clause it
suffices to rename the variables taking the value 1 in the assignment.

For instance, the set S = (a VbV —c)A(—aVb)A(=bV —c)A(cVa) is satisfied by the
assignment [a « 1,b <« 1,¢ « 0] and thus the renaming of the literals built over a and
b transforms S into a set S’ that contains no positive clause (S’ = (=a V =bV =¢) A (a V
=b) A (bV =e) A (e V —a)).

The idea is thus to perform structure driven generations in which the probability given
to the drawing of the structure ++ is zero.

In order to keep the property that the expectation of the number of positive and negative
literals are equal, the generation must still obey conditions 1 and 3, but now p(++) = 0.
For sake of symmetry, we also impose the conditions 7 and 8.

p(—) = p(—+) = p(+) (7)

p(—+) = p(+—+) = p(++—) (8)

Finally, equations 1, 3, 7 and 8 define a system of two equations with three unknowns:

a+3xp+3xy =1 9)
atf = 7 (10)

Where a stands for p(—), 4 stands for p(—+), p(—) and p(+—), and v stands for p(—+),
plit) and p(++-).

a may vary from 0, in which case 8 = v = 1/6, to 1/4, in which case § = 0 and
v = 1/4. We will see in the next section the effects of these variations on the practical
difficulty of finding a model of the generated instances.

3 Experimental Results with the Davis and Put-
nam’s Procedure

Algorithm Let S be a set of clauses. A literal is said monotone (in S5) if its opposite
does not occur in S. A literal is said unit if it occurs in a unit clause of S (i.e. if it is the
unique literal of this clause). We denote by S,_, the set S in which the Boolean value v
has been assigned to the variable p. L.e. the set of clauses obtained from S by deleting the
clauses that contain an occurrence of p satisfied by the assignment and by deleting from
the other clauses the occurrences of p falsified by the assignment. By extension, we denote
by S; the set S in which the literal [ has been satisfied.
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Figure 3: Mixed instances: Running times for different values of «

The Davis and Putnam’s procedure [DLL62], can be sketched as follows.
let S the set of clauses to be tested. If the satisfiability of S is not immediately decidable
(i.e. if S is not empty and does not contain an empty clause), then there are two cases:

e S contains a monotone or an unit literal /. In this case, one checks the satisfiability

of Sl.

e S5 does not contain a monotone or an unit literal. In this case, a variable p and a
Boolean value v are chosen and the algorithm is called recursively first on 5,_, and
second on S,_1_,, if S,_, is not satisfiable.

In practice, a good heuristics to choose the next literal to assign improves dramatically
the performances of the algorithm. Of course, a tradeoff must be found between the cost
of a heuristics and its efficiency. For this study, we used a very simple heuristics so called
firstfail. It chooses the most frequent variable in the shortest clauses. The chosen value is
those corresponding to the most frequent literal. It gives pretty good results and it is better
(in our experience) than many other proposed ones, in particular the one of Jeroslow and
Wang [JW90] (For a discussion about heuristics see [DABC94]). Anyway, the presented
results do not depend on a particular heuristics (as far as our tests with a few number of
heuristics are representative).

Performances on Mixed Instances Curves of running times for the value 1/2, 1/8,
1/128 and 0 of « (i.e. the probability of the structures —and ++) are displayed Fig. 3.
This curves enlighten the following phenomena.

1. If there is no positive and negative clauses (o = 0), instances are trivial.
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Figure 4: Satisfiable instances: Running times for different values of «

2. For any value of a, one observes a difficulty peek near the threshold.

3. The hardest instances are those drawn with @ = 1/2, i.e. those that contain only
negative and positive clauses. However these instances are not essentially harder
than those generated with the fixed length model (a = 1/8).

4. Even if the number of positive and negative clauses is quite low (exemplifies here
with o = 1/128), the generated instances are hard.

Finally, experiments we have performed with other values of a seem to show that the
hardness of instances, for a given value of the ration C'/V, increases continuously as «
increases.

Performances on Satisfiable Instances Fig. 4 permits the comparison of running
times of the Davis and Putnam’s procedure on satisfiable instances for the two generation
models. The curves named s1/2, s1/8 and 0 have been obtained by drawing mixed in-
stances for the values 1/2, 1/8 and 0 of a and by considering among them the satisfiable
ones only (this explains why the curve stops at the value 4.7 of the ratio C'//V, beyond there
is a too small probability of drawing a satisfiable instance). The curves named 1/4 and
1/8 have been obtained with the model described in the previous section — that ensures
to draw satisfiable instances —, for the values 1/4 and 1/8 of a.
This curves enlighten the following phenomena.

1. For both models, one observes a difficulty peek near the threshold.

2. For both models, the difficulty of solving satisfiable instances increases as « increases,
even if there is not a big difference between the different values of a.



3. By generating directly satisfiable instances, one obtains instances that are harder
than those obtained by peeking satisfiable instances among mixed instances.

This last point is questioning. On the one hand, we would like to generate satisfiable
instances that are as hard as those generated with the standard model, and our result is
thus not absolutely satisfying. On the other hand, our main goal was to generate hard
satisfiable instances and we succeed in some sense beyond our initial hope.

It raises two questions:

o [s there a value of a such that the instance generated with the second model are
as hard as those generated with the standard model (for the Davis and Putnam’s
procedure) 7 At this point, we are not able to answer this question.

e In a more fundamental point of view, it would be interesting to understand why
instances are difficult. It could be the case that the number of negative clauses is a
good parameter of the actual difficulty, but this must be understood up to renaming.
Note that the Davis and Putnam’s procedure + the first fail principle is absolutely
stable w.r.t. renaming. l.e. that by renaming some of the variables, one produces only
minor variations in the computation times. Renaming could be used to standardize
instances but not to make predictions about the hardness of the instance because
finding a renaming that gives the minimum number of negative clauses (and keeping
the number of positive clauses to zero) is surely as hard as finding a model.

4 Experimental Results with the Selman’s GSAT

Algorithm GSAT performs greedy local search for a satisfying assignment of a set of
clauses. The procedure starts with a randomly generated truth assignment. It then changes
(“flips”) the assignment of a variable chosen with a given heuristics. Such flips are repeated
until either a satisfying assignment is found or a pre-set maximum number of flips (called
max-flips) is reached. This process is repeated as needed up to a maximum of max-tries
times. The whole algorithm is pictured Fig. 5. The heuristics we use for our tests is called
“Random walk” by Selman and Kautz in [SK93]. It works as follows. With a probability
1/2, a variable is randomly picked in unsatisfied clauses, and with a probability 1/2 a
variable is randomly picked among those that give the largest decrease in the total number
of unsatisfied clauses. This heuristics allows to escape from local minima and is considered
as a pretty good one by Selman and al. (see [SK93]).

For experiments described in this section, we have considered 3-SAT instances built
over 200 variables. Max-tries was fixed to 10 and max-flips to 40000. These parameters
according to the Selman’s papers are a reasonable tradeoff. Anyway, phenomena we observe
are in some sense independent of particular values of max-tries and max-flips (provided
they are sufficiently large).
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procedure GSAT
Input: a set of clauses S, max-flips and max-tries.
Output: a satisfying truth assignment of 5, if found.

begin
for : := 1 to max-tries
o := a randomly generated truth assignment

for j :=1 to max-flips
if o satisfies S then return o
p := a variable chosen with a given heuristics.
o := o with the truth assignment of p reversed.
end for
end for
return “no satisfying assignment found”.
end

Figure 5: The procedure GSAT

Performances Fig. 6 permits the comparison of the percentages of instances that have
been shown satisfiable by GSAT for the two generation models. The curves named s1/2
and s1/8 have been obtained by drawing mixed instances for the values 1/2 and 1/8 of
a and by considering among them the satisfiable ones only (this explains why the curve
stops at the value 4.7 of the ratio C/V, beyond there is a too small probability of drawing
a satisfiable instance). The curves named 1/4 and 1/8 have been obtained by drawing

directly satisfiable instances, for the values 1/4 and 1/8 of a.
This curves enlighten the following phenomena.

1.

For both models and all of the values of a, GSAT finds a solution for almost all of
the instances below the threshold. This just confirms Selman’s results.

For both models and all of the values of «, curves are very similar around the thresh-
old. It means that we succeed in generating randomly satisfiable instances that are
at least as hard for GSAT as those generated with the fixed length model.

For both models and all of the values of «, the percentage of instances shown to
be satisfiable decreases dramatically just after the threshold (for values around 4.7
of the ratio C'/V'). This percentage even falls near 0% for o = 1/4 (in the second
model).

. For all of the value of o, with the second generation model, the percentage of instances

shown to be satisfiable increases more or less quickly as the ratio C'/V increases (after
the minima).

11
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5. In the second model, the more « is high the less GSAT finds solutions (especially
after the threshold).

These last points could be explain by variations in the number of solutions or in the
structure of solutions that the variations of « introduce:

o [t could be the case that for a given value of the ratio, the number of solutions
decreases as « increases. This is confirmed by preliminary experiments with instances
with a small number of variables (between 50 and 100).

o [t could be also the case that for a given value of the ratio, the number of deep local
minima increases as « increases, which causes some troubles to GSAT.

However, we do not have practical methods to count the number of solutions or study
their structures for not too small instances. And it is not sure that observations made
for instances with a quite small number of variables (say between 50 and 100) could be
safely extended for instances with 200 variables and beyond. Anyway, this requires further
investigations both in a practical and in an analytical points of view. In a practical point of
view, several directions could be explored in addition to Davis and Putnam like procedures,
including the algorithm proposed by Dubois in [Dub91] and methods derived from Bryant’s
Binary Decision Diagrams [BRB90].

Finally, Fig. 7 shows the curves of running times of GSAT for both models and different
values of a. There is not many things to say about this curves excepted that they are similar
before and around the threshold and very instable after. Even with a big number of tested
instances, there are big variations in the observed performances.

12
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5 Conclusion

In this paper, we have proposed a method to generate k-SAT instances and satisfiable
k-SAT instances that draws clause structures rather than to draw individually each literal
signs.

We provide experimental evidence that the generated instances could be at least as
hard as those generated with the standard model for both complete methods — such as
the Davis and Putnam’s procedure — and incomplete methods — such as the Selman’s
GSAT algorithm. More precisely, we show that the hardness of an instance is strongly
related to the percentage of negative clauses it contains (up to a renaming).

As a future work it would be interesting to investigate, both in a practical and in an
analytical points of view, in which way this percentage influences the number of solutions
or the structure of the solutions.
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