
On the Random Generation of 3-SAT Instances�Antoine RauzyLaBRI, Universit�e Bordeaux I351, Cours de la Lib�eration33405 Talence CedexFRANCErauzy@labri.u-bordeaux.frFebruary 28, 1995AbstractDeep results have been obtained recently on randomly generated k-SAT instances.They have been shown hard on average, threshold phenomena have been experi-mentally established and greedy local search methods have been demonstrated verye�cient on these instances.In this paper, we show that it is possible to generate randomly k-SAT instancesthat are harder (or easier) than those obtained with the usual generation model. Thesame method permits also the random generation of hard satis�able instances. This isof a particular interest to evaluate incomplete methods. We report some experimentalresults for the Davis and Putnam's procedure | that can be considered as a sampleof complete methods | and for the Selman's GSAT method as well | that can beconsidered in turn as a sample of incomplete methods.1 IntroductionLet � = C1 ^ C2 ^ : : : ^ Cm be a Boolean expression in conjunctive normal form, i.e.where each clause Ci is a disjunction of literals and each literal is either a variable xi or itsnegation :xi (1 � i � n).The SAT(is�ability) problem consists in determining whether such an expression � istrue for some assignment of Boolean values to the variables x1; : : : ; xn. Cook [Coo71]showed that SAT is NP-complete and it is now the reference NP-complete problem [GJ79].� is said to be a SAT-instance. A k-SAT instance is a SAT instance whose clauses are all oflength k, i.e. contain k literals. There exist linear algorithms to solve the 2-SAT problem(see for instance [APT79]). k-SAT for k � 3 is equivalent to SAT, i.e. is NP-complete.�This work is supported by the french inter-PRC project \Classes Polynomiales"1

In this paper, we present a new method to generate randomly k-SAT instances thatare statistically hard for the usual resolution methods. This method can be adapted togenerate randomly satis�able k-SAT instances that have the same property. In the sequel,by abuse of terminology, we say simply \hard" for \statistically hard for the usual resolutionmethods".In order to test the practical e�ciency of an algorithm designed to solve SAT, one needsa benchmark. An easy way to build such a benchmark consists in randomly generatingk-SAT instances (and more speci�cally 3-SAT instances). The standard generation model{ so-called �xed length model { consists in drawing independently the C clauses of theinstance. In order to draw each clause, one �rst chooses randomly k distinct variablesamong a set V , all of the variables having the same probability to be drawn, namely 1=jV j. Then, a sign is randomly chosen for each variable, positive and negative signs having thesame probability to be drawn, namely 1=2.Other generation models have been proposed but it is has been shown that they buildeasy instances (see for instance [Fra86]). On the converse, Chv�atal and Szemer�edi, in theirvery deep paper [CS88], showed that the above one captures in some sense the hardness ofSAT. More precisely, they showed that:1. For any k � 3, beyond a given ratio C=V , the probability to draw a satis�able k-SATinstance tends to 0 as V tends to in�nity.2. For a given ratio C=V , the mean number of resolution steps required to show that arandomly generated instance is unsatis�able increases exponentially with V .Since, as noted by Gallil in [Gal77], resolution based methods can be seen as non-deterministiccounterparts of enumerative ones, the Chv�atal and Szemer�edi's result holds also for Davisand Putnam's procedure [DLL62] and the related algorithms, and thus for most of completemethods used to solve SAT.It was known, at least since the paper by Haken [Hak85], that there exist families ofparametric formulae | typically those encoding the well known Pigeon-Hole problem |for which the length of the shortest resolution proof cannot be bound by any polynomial.The major interest of the Chv�atal and Szemer�edi's result is that it gives a method to buildas many such formulae as one wants.The interest in randomly generated k-SAT instances has been increased recently byan experimental result due to several authors independently [DC91, MSL92, LT93, CA93]that remarked that k-SAT instances obey a 0/1 law. Below a ratio C=V that depends on k,the probability to draw a satis�able instance tends to 1 as V tends to in�nity. Beyond thisratio it tends (quickly) to 0. For k = 2 the threshold has been actually established equalto 1 by, among other, Chv�atal and Reed [CR92]. For k = 3 and k = 4 experimental valueshave been found (respectively 4:25 for k = 3 and 9:8 for k = 4). Researchers work hard to�nd (theoretical) lower and upper bounds for these values and Dubois in [DABC94] givesa general equation ln(2) � V:2k � exp(kV=(2k � 1) = 0, for which the upper zeros wouldbe very close to the values of the thresholds of k-SAT instances (for k=3 and beyond).2

Threshold phenomena also appear for instances having clauses of di�erent lengths[GW94].In a practical point of view, one can observe that the hardest randomly generated k-SAT instances for Davis and Putnam's procedure are those around the threshold [CKT91,MSL92, DABC94, Rau94] that is where about 50% of the drawn instances are satis�able.Even for small numbers of variables (say 50) running times suddenly increase near thethreshold and quickly decrease after. Satis�able instances are signi�cantly easier thanunsatis�able ones, but they are hard too, i.e. that running times quickly increase as Vincreases.This paper is an attempt to answer the following questions:1. Is it possible to generate randomly k-SAT instances that are harder to solve thanthose generated with the �xed length model, or in other words are the latter thehardest possible ?2. Is it possible to generate randomly satis�able k-SAT instances that are at least ashard as those generated with the �xed length model ?The second question is very interesting because Selman, in a series of recent papers (startingwith [SLM92]), showed that greedy local search methods could �nd models of hard instanceswith 1000 variables and more, i.e. far beyond the limits of Davis and Putnam's procedure(that cannot currently go beyond 400 variables). However, greedy local search methods| a family to which belongs simulated annealing, tabu, : : :| are incomplete and thus itwould be very interesting to test them on sets of hard satis�able instances in order to havea precise evaluation of their success rates.Our starting remark was that a set of clauses is satis�able if and only if it containsno positive clause, up to a renaming. Thus, in order to be sure to generate satis�ableinstances, it su�ces to forbid the drawing of positive clauses. However, this cannot bedone roughly otherwise one loses the property that positive and negative literals have thesame frequency which is actually essential to obtain hard instances. The idea is thus todraw the clauses in two steps: �rst one draws k distinct variables, second one draws thestructure for the clause, i.e. the sequence of the signs of its literals. There are 2k � 1allowed structures and the problem is to de�ne the probability of each structure in such away that positive and negative literal frequencies are balanced. Of course, the same ideaapplies also for instances that are not a priori satis�able (and thus may contain positiveclauses).In the remaining of this paper, we report the experimental results we have obtained withthe generation model described above. This new generation model is detailed at the nextsection. Performances of the Davis and Putnam's procedure | that can be considered as asample of complete methods | are given section 3. Those of the Selman's GSAT algorithm| that can be considered as a sample of incomplete methods | are given section 4.3

0100000200000300000400000500000600000700000
3.5 4 4.5 5 5.5 6 6.5

"1/2""1/3"
Figure 1: Running times for di�erent probabilities of drawing a positive literal2 Random Generation of 3-SAT InstancesPreliminary Observations Our �rst point is to give empirical evidence that the fre-quencies of positive and negative literals must be balanced in order to obtain hard instances.As the matter of fact, if it is not the case, the generated instances tend to be Horn-sets, i.e.sets of clauses with at most one positive literal per clause (up to a renaming). In [Rau94],it is shown that the Davis and Putnam's procedure (that will be detailed at section 3) isquadratic on Horn-sets. Fig. 1 presents the curves of running times of this procedure forthe probabilities 1=3 and 1=2 of tossing a positive literal.Ratios C=V , where C is the number of clauses and V is the number of variables, areindicated as abscissae. These curves are pictured by extrapolating points obtained for thevalues 3:8, 3:9, 4:0, 4:1, : : : of the ratio C=V . Each point is obtained by means of 100 drawsof 3-SAT instances built over 200 variables. In remaining of this paper, each presented curvehas been obtained in the same way. 200 is almost the maximum number of variables wecan handle within reasonable running times (say few seconds) with our implementation ofthe Davis and Putnam's procedure on our computer (a SUN sparc station IPX). 100 drawsis also a tradeo� between running times and precision of the measures. In our experience,at least �rst order phenomena are captured with this sample size.On Fig. 1, one can see �rst that a di�culty peek | corresponding to a thresholdphenomenon | still exists, even shifted to the right and attenuated, for the probability 1=3of drawing a positive literal. Second, that the top of the peek is higher for the probability1=2 than for the probability 1=3.If variables have di�erent probabilities to be drawn, the situation is slightly more com-plicated, but not essentially di�erent. In [GS94], G�enisson and Sa��s showed that instances4

with unbalanced variable frequencies are in general easier to solve than those in which allliterals have approximately the same number of occurrences. However, this question wouldrequire further investigations.Anyway, it seems clear that hard instances are obtained when on the one hand positiveand negative literals and on the other hand all of the variables have the same probabilityto be drawn.Structure-Driven Generation The idea behind the variations of the generation modelwe have studied is to toss a structure for each clause rather than to draw individually thesign of each literal. We call structure the sequence of the signs of the literals of the clause.For a clause of length, k there are 2k possible structures. For instance, for a clause oflength 3, the 8 possible structures are ���, ��+, �+�, �++, +��, +�+, ++� and +++.We denote by p(???) the probability given to the drawing of the structure ???. Inthe standard generation model, all of the structures are given the same probability tobe drawn, namely 1=2k . However, it is possible to draw instances with balanced signfrequencies in which the structures are given di�erent probabilities to be drawn. To besuch, these probabilities must obey the two following conditions.X?2f+;�g p(???) = 1 (1)3� p(���) + 2� p(��+) + 2 � p(�+�) + p(�++) + 2� p(+��) + p(+�+) + p(++�)=p(��+) + p(�+�) + 2� p(�++) + p(+��) + 2� p(+�+) + 2 � p(++�) + 3� p(+++) (2)Equation 1 is the basic rule of probabilities. The left member of equation 2 denotes theexpectation of the number of negative literals in a clause. Its right member denotes theexpectation of the number of positive literals in a clause. This equation can be simpli�edas follows.3� p(���) + p(��+) + p(�+�) + p(+��) = p(�++) + p(+�+) + p(++�) + 3 � p(+++) (3)However, for sake of symmetry, we over-constrain the condition 3 by means of conditions4 and 5. p(���) = p(+++) (4)p(��+) = p(�+�) = p(�++) = p(+��) = p(+�+) = p(++�) (5)Finally, equations 1, 4 and 5 de�ne a single equation with two unknowns:2 � � + 6� � = 1 (6)Where � stands for the probability given to the drawing of the structures ��� and +++and � stands for the probability given to the drawing of the structures ��+, �+�, �++, +��,+�+ and ++�. 5

0204060
80100
3.8 4 4.2 4.4 4.6 4.8 5 5.2

"1/2""1/8""1/128"
Figure 2: Percentages of satis�able instances for di�erent values of �Note that the �xed length generation model is obtained for � = � = 1=8. Now, if� = 0 (and � = 1=6), the generated instances are always satis�able and admit at leasttwo solutions: the assignments giving respectively the value 0 and the value 1 to all of thevariables (each clause contains at least a negative literal and at least a positive literal).Finally, if � reaches its maximum, namely 1=2 (in which case � = 0), the generatedinstances contain only positive and negative clauses.This raises a question: what happens for positive values of � ? Curves of percentages ofsatis�able instances for the values 1=2, 1=8 and 1=128 of � are pictured Fig. 2 (we do notdraw more curves for sake of clarity of the picture, but the presented results are con�rmedby measures for a dozen of values of �).On Fig. 2, one observes the following points.1. For the values of � greater than 1=8, up to its maximumvalue 1=2, the curves are verysimilar to the one obtained for � = 1=8. The greater � is, the more the correspondingcurve is close to the 0/1 law. Moreover, its seems that threshold value is the samefor all these values of �.2. The threshold phenomenon is still observable for very low values of �, in other words avery low number of positive clauses su�ces to make instances unsatis�able. However,the percentage of satis�able instances increases as � decreases, for a given value ofthe ratio C=V .As we will see, these observations can be directly translated as a measure of hardnessof instances: the more � is high, the more generated instances are hard to solve.6

Generation of Satis�able Instances Our �rst aim when starting this work was togenerate randomly hard satis�able instances in order to test e�ciently the success rate ofincomplete methods. Our starting remark was that an instance is satis�able if and onlyif it contains no clause without negative literal, up to a renaming. We call renaming theoperation that substitutes simultaneously and for some variables, positive literals for neg-ative literals and conversely negative literals for positive literals. Given a total assignmentthat satis�es a set of clauses S, in order to obtain from S a set without positive clause itsu�ces to rename the variables taking the value 1 in the assignment.For instance, the set S = (a_ b _:c) ^ (:a _ b) ^ (:b_ :c) ^ (c _ a) is satis�ed by theassignment [a 1; b 1; c 0] and thus the renaming of the literals built over a andb transforms S into a set S 0 that contains no positive clause (S 0 = (:a _ :b _ :c) ^ (a _:b) ^ (b _ :c) ^ (c _ :a)).The idea is thus to perform structure driven generations in which the probability givento the drawing of the structure +++ is zero.In order to keep the property that the expectation of the number of positive and negativeliterals are equal, the generation must still obey conditions 1 and 3, but now p(+++) = 0.For sake of symmetry, we also impose the conditions 7 and 8.p(��+) = p(�+�) = p(+��) (7)p(�++) = p(+�+) = p(++�) (8)Finally, equations 1, 3, 7 and 8 de�ne a system of two equations with three unknowns:�+ 3� � + 3�
 = 1 (9)� + � =
 (10)Where � stands for p(���), � stands for p(��+), p(�+�) and p(+��), and
 stands for p(�++),p(+�+) and p(++�).� may vary from 0, in which case � =
 = 1=6, to 1=4, in which case � = 0 and
 = 1=4. We will see in the next section the e�ects of these variations on the practicaldi�culty of �nding a model of the generated instances.3 Experimental Results with the Davis and Put-nam's ProcedureAlgorithm Let S be a set of clauses. A literal is said monotone (in S) if its oppositedoes not occur in S. A literal is said unit if it occurs in a unit clause of S (i.e. if it is theunique literal of this clause). We denote by Sp v the set S in which the Boolean value vhas been assigned to the variable p. I.e. the set of clauses obtained from S by deleting theclauses that contain an occurrence of p satis�ed by the assignment and by deleting fromthe other clauses the occurrences of p falsi�ed by the assignment. By extension, we denoteby Sl the set S in which the literal l has been satis�ed.7

0100000200000300000400000500000600000700000800000
3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

"1/2""1/8""1/128""0"
Figure 3: Mixed instances: Running times for di�erent values of �The Davis and Putnam's procedure [DLL62], can be sketched as follows.let S the set of clauses to be tested. If the satis�ability of S is not immediately decidable(i.e. if S is not empty and does not contain an empty clause), then there are two cases:� S contains a monotone or an unit literal l. In this case, one checks the satis�abilityof Sl.� S does not contain a monotone or an unit literal. In this case, a variable p and aBoolean value v are chosen and the algorithm is called recursively �rst on Sp v andsecond on Sp 1�v, if Sp v is not satis�able.In practice, a good heuristics to choose the next literal to assign improves dramaticallythe performances of the algorithm. Of course, a tradeo� must be found between the costof a heuristics and its e�ciency. For this study, we used a very simple heuristics so called�rstfail. It chooses the most frequent variable in the shortest clauses. The chosen value isthose corresponding to the most frequent literal. It gives pretty good results and it is better(in our experience) than many other proposed ones, in particular the one of Jeroslow andWang [JW90] (For a discussion about heuristics see [DABC94]). Anyway, the presentedresults do not depend on a particular heuristics (as far as our tests with a few number ofheuristics are representative).Performances on Mixed Instances Curves of running times for the value 1=2, 1=8,1=128 and 0 of � (i.e. the probability of the structures ���and +++) are displayed Fig. 3.This curves enlighten the following phenomena.1. If there is no positive and negative clauses (� = 0), instances are trivial.8

05000001e+061.5e+062e+062.5e+063e+06
3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

"1/4""1/8""s1/2""s1/8""0"
Figure 4: Satis�able instances: Running times for di�erent values of �2. For any value of �, one observes a di�culty peek near the threshold.3. The hardest instances are those drawn with � = 1=2, i.e. those that contain onlynegative and positive clauses. However these instances are not essentially harderthan those generated with the �xed length model (� = 1=8).4. Even if the number of positive and negative clauses is quite low (exempli�es herewith � = 1=128), the generated instances are hard.Finally, experiments we have performed with other values of � seem to show that thehardness of instances, for a given value of the ration C=V , increases continuously as �increases.Performances on Satis�able Instances Fig. 4 permits the comparison of runningtimes of the Davis and Putnam's procedure on satis�able instances for the two generationmodels. The curves named s1/2, s1/8 and 0 have been obtained by drawing mixed in-stances for the values 1=2, 1=8 and 0 of � and by considering among them the satis�ableones only (this explains why the curve stops at the value 4:7 of the ratio C=V , beyond thereis a too small probability of drawing a satis�able instance). The curves named 1=4 and1=8 have been obtained with the model described in the previous section | that ensuresto draw satis�able instances |, for the values 1=4 and 1=8 of �.This curves enlighten the following phenomena.1. For both models, one observes a di�culty peek near the threshold.2. For both models, the di�culty of solving satis�able instances increases as � increases,even if there is not a big di�erence between the di�erent values of �.9

3. By generating directly satis�able instances, one obtains instances that are harderthan those obtained by peeking satis�able instances among mixed instances.This last point is questioning. On the one hand, we would like to generate satis�ableinstances that are as hard as those generated with the standard model, and our result isthus not absolutely satisfying. On the other hand, our main goal was to generate hardsatis�able instances and we succeed in some sense beyond our initial hope.It raises two questions:� Is there a value of � such that the instance generated with the second model areas hard as those generated with the standard model (for the Davis and Putnam'sprocedure) ? At this point, we are not able to answer this question.� In a more fundamental point of view, it would be interesting to understand whyinstances are di�cult. It could be the case that the number of negative clauses is agood parameter of the actual di�culty, but this must be understood up to renaming.Note that the Davis and Putnam's procedure + the �rst fail principle is absolutelystable w.r.t. renaming. I.e. that by renaming some of the variables, one produces onlyminor variations in the computation times. Renaming could be used to standardizeinstances but not to make predictions about the hardness of the instance because�nding a renaming that gives the minimum number of negative clauses (and keepingthe number of positive clauses to zero) is surely as hard as �nding a model.4 Experimental Results with the Selman's GSATAlgorithm GSAT performs greedy local search for a satisfying assignment of a set ofclauses. The procedure starts with a randomly generated truth assignment. It then changes(\
ips") the assignment of a variable chosen with a given heuristics. Such
ips are repeateduntil either a satisfying assignment is found or a pre-set maximum number of
ips (calledmax-
ips) is reached. This process is repeated as needed up to a maximum of max-triestimes. The whole algorithm is pictured Fig. 5. The heuristics we use for our tests is called\Random walk" by Selman and Kautz in [SK93]. It works as follows. With a probability1=2, a variable is randomly picked in unsatis�ed clauses, and with a probability 1=2 avariable is randomly picked among those that give the largest decrease in the total numberof unsatis�ed clauses. This heuristics allows to escape from local minima and is consideredas a pretty good one by Selman and al. (see [SK93]).For experiments described in this section, we have considered 3-SAT instances builtover 200 variables. Max-tries was �xed to 10 and max-
ips to 40000. These parametersaccording to the Selman's papers are a reasonable tradeo�. Anyway, phenomena we observeare in some sense independent of particular values of max-tries and max-
ips (providedthey are su�ciently large). 10

procedure GSATInput: a set of clauses S, max-
ips and max-tries.Output: a satisfying truth assignment of S, if found.beginfor i := 1 to max-tries� := a randomly generated truth assignmentfor j := 1 to max-
ipsif � satis�es S then return �p := a variable chosen with a given heuristics.� := � with the truth assignment of p reversed.end forend forreturn \no satisfying assignment found".end Figure 5: The procedure GSATPerformances Fig. 6 permits the comparison of the percentages of instances that havebeen shown satis�able by GSAT for the two generation models. The curves named s1/2and s1/8 have been obtained by drawing mixed instances for the values 1=2 and 1=8 of� and by considering among them the satis�able ones only (this explains why the curvestops at the value 4:7 of the ratio C=V , beyond there is a too small probability of drawinga satis�able instance). The curves named 1=4 and 1=8 have been obtained by drawingdirectly satis�able instances, for the values 1=4 and 1=8 of �.This curves enlighten the following phenomena.1. For both models and all of the values of �, GSAT �nds a solution for almost all ofthe instances below the threshold. This just con�rms Selman's results.2. For both models and all of the values of �, curves are very similar around the thresh-old. It means that we succeed in generating randomly satis�able instances that areat least as hard for GSAT as those generated with the �xed length model.3. For both models and all of the values of �, the percentage of instances shown tobe satis�able decreases dramatically just after the threshold (for values around 4:7of the ratio C=V). This percentage even falls near 0% for � = 1=4 (in the secondmodel).4. For all of the value of �, with the second generation model, the percentage of instancesshown to be satis�able increases more or less quickly as the ratio C=V increases (afterthe minima). 11

0204060
80100

3 4 5 6 7 8 9 10
"1/4""1/8""s1/2""s1/8"

Figure 6: Satis�able instances: Percentages of success for di�erent values of �5. In the second model, the more � is high the less GSAT �nds solutions (especiallyafter the threshold).These last points could be explain by variations in the number of solutions or in thestructure of solutions that the variations of � introduce:� It could be the case that for a given value of the ratio, the number of solutionsdecreases as � increases. This is con�rmed by preliminary experiments with instanceswith a small number of variables (between 50 and 100).� It could be also the case that for a given value of the ratio, the number of deep localminima increases as � increases, which causes some troubles to GSAT.However, we do not have practical methods to count the number of solutions or studytheir structures for not too small instances. And it is not sure that observations madefor instances with a quite small number of variables (say between 50 and 100) could besafely extended for instances with 200 variables and beyond. Anyway, this requires furtherinvestigations both in a practical and in an analytical points of view. In a practical point ofview, several directions could be explored in addition to Davis and Putnam like procedures,including the algorithm proposed by Dubois in [Dub91] and methods derived from Bryant'sBinary Decision Diagrams [BRB90].Finally, Fig. 7 shows the curves of running times of GSAT for both models and di�erentvalues of �. There is not many things to say about this curves excepted that they are similarbefore and around the threshold and very instable after. Even with a big number of testedinstances, there are big variations in the observed performances.12

010000200003000040000500006000070000
3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

"1.4""1.8""s1.2""s1.8"
Figure 7: Running times on satis�able instances for values of �5 ConclusionIn this paper, we have proposed a method to generate k-SAT instances and satis�ablek-SAT instances that draws clause structures rather than to draw individually each literalsigns.We provide experimental evidence that the generated instances could be at least ashard as those generated with the standard model for both complete methods | such asthe Davis and Putnam's procedure | and incomplete methods | such as the Selman'sGSAT algorithm. More precisely, we show that the hardness of an instance is stronglyrelated to the percentage of negative clauses it contains (up to a renaming).As a future work it would be interesting to investigate, both in a practical and in ananalytical points of view, in which way this percentage in
uences the number of solutionsor the structure of the solutions.AcknowledgmentI would like to thank Richard G�enisson and Lakdhar Sa��s, from the LIM (Marseilles) andOlivier Dubois from the LAFORIA (Paris), for the many fruitful discussions we had onSAT.References[APT79] B. Aspvall, M. Plass, and R. Tarjan. A Linear Time Algorithm for Testing the13

Truth of Certain Quanti�ed Boolean Formulae. Information Processing Letter,8(3):121{123, 1979.[BRB90] K. Brace, R. Rudell, and R. Bryant. E�cient Implementation of a BDD Pack-age. In Proceedings of the 27th ACM/IEEE Design Automation Conference.IEEE 0738, 1990.[CA93] J.M. Crawford and L.D. Auton. Experimental results on the crossover point insatis�ability problems. In Proceedings of the Eleventh National Conference onArti�cial Intelligence (Washington, D.C., AAAI'1993), pages 21{27, 1993.[CKT91] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the Really Hard Prob-lems Are. In Proceedings of the International Joint Conference of Arti�cialIntelligence, IJCAI'91, 1991.[Coo71] S.A. Cook. The Complexity of Theorem Proving Procedures. In Proceedings ofthe 3rd Ann. Symp. on Theory of Computing, ACM, pages 151{158, 1971.[CR92] V. Chv�atal and B. Reed. Miks gets some (the odds are on his side). In Pro-ceedings of the 33rd IEEE Symp. on Foundations of Computer Science, pages620{627, 1992.[CS88] V. Chv�atal and E. Szemer�edi. Many Hard Examples for Resolution. JACM,35(4):759{768, october 1988.[DABC94] O. Dubois, P. Andr�e, Y. Boufkhad, and J. Carlier. SAT versus UNSAT, 1994.Position paper, DIMACS chalenge on Satis�ability Testing, to appear.[DC91] O. Dubois and J. Carlier. Sur le probl�eme de satis�abilit�e. Communication atthe Barbizon Workshop on SAT, october 1991.[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program for TheoremProving. JACM, 5:394{397, 1962.[Dub91] O. Dubois. Counting the Number of Solutions for Instances of Satis�ability.Theoretical Computer Science, 81:49{64, 1991.[Fra86] J. Franco. On the probabilistic performances of algorithms for the satis�abilityproblem. Information Processing Letters, 23:103{106, 1986.[Gal77] Z. Gallil. On the Complexity of Regular Resolution and the Davis and Putnam'sProcedure. Theoretical Computer Science, 4:23{46, 1977.[GJ79] M.R. Garey and D.S. Johnson. Computer and Intractability: A Guide to theTheory of NP-Completness. Freeman, San Fransisco, 1979.14

[GS94] R. G�enisson and L. Sa��s. Some ideas on random generation of k-SAT instances.In J.M. Crawford and B. Selman, editors, Proceedings of post-conference work-shop on Experimental Evaluation of Reasonning and Search Methods, AAAI'94,pages 91{92, 1994.[GW94] I.P. Gent and T. Walsh. The SAT Phase Transition. In A.G. Cohn, editor,Proceedings of 11th European Conference on Arti�cial Intelligence, ECAI'94,pages 105{109. Wiley, 1994.[Hak85] A. Haken. The intractability of the resolution. Theoretical Computer Science,39:297{308, 1985.[JW90] R.J. Jeroslow and J. Wang. Solving Propositional Satis�ability Problems. An-nals of Mathematics and Arti�cial Intelligence, 1:167{188, 1990.[LT93] T. Larrabee and Y. Tsuji. Evidence for a satis�ability threshold for random3cnf formulas. In H. Hirsh and al., editors, Proceedings of Spring Symposiumon Arti�cial Intelligence and NP-Hard Problems (Stanford CA 1993), pages112{118, 1993.[MSL92] D. Mitchell, B. Selman, and H. Levesque. Hard and Easy Distributions of SATProblems. In Proceedings Tenth National Conference on Arti�cial Intelligence(AAAI'92), 1992.[Rau94] A. Rauzy. On the Complexity of the Davis and Putnam's Procedure on SomePolynomial Sub-Classes of SAT. Technical Report 806-94, LaBRI, URA CNRS1304, Universit�e BordeauxI, 9 1994. Submitted to Journal of Logic Program-ming.[SK93] B. Selman and H.A. Kautz. Domain Independent Extensions to GSAT : SolvingLarge Structured Satis�ability Problems. In Proceedings of the InternationalConference on Arti�cial Intelligence (IJCAI'93), 1993.[SLM92] B. Selman, H. Levesque, and D. Mitchell. A New Method for Solving HardSatis�ability Problems. In Proceedings of the 10th National Conference onArti�cial Intelligence (AAAI'92), 1992.
15

