
Gossip versus Deterministic Flooding: Low Message Overhead and

High Reliability for Broadcasting on Small Networks

Meng-Jang Lin

Department of Electrical and Computer Engineering

The University of Texas at Austin

Keith Marzullo

Department of Computer Science and Engineering

University of California, San Diego

Stefano Masini

Department of Computer Science

University of Bologna, Italy

Abstract

Rumor mongering (also known as gossip) is an epidemiological protocol that implements
broadcasting with a reliability that can be very high. Rumor mongering is attractive because it
is generic, scalable, adapts well to failures and recoveries, and has a reliability that gracefully
degrades with the number of failures in a run. However, rumor mongering uses random selection
for communications. We study the impact of using random selection in this paper. We present
a protocol that super�cially resembles rumor mongering but is deterministic. We show that
this new protocol has most of the same attractions as rumor mongering. The one attraction
that rumor mongering has|namely graceful degradation|comes at a high cost in terms of the
number of messages sent. We compare the two approaches both at an abstract level and in
terms of how they perform in an Ethernet and small wide area network of Ethernets.

1 Introduction

Consider the problem of designing a protocol that broadcasts messages to all of the processors in
a network. One can be interested in di�erent metrics of a broadcast protocol, such as the number
of messages it generates, the time needed for the broadcast to complete, or the reliability of the
protocol (where reliability is the probability that either all or no nonfaulty processors deliver a
broadcast message and that all nonfaulty processors deliver the message if the sender is nonfaulty).
Having �xed a set of metrics, one then chooses an abstraction for the network. There are two
approaches that have been used in choosing such an abstraction for broadcast protocols.

One approach is to build upon the speci�c physical properties of the network. For example,
there are several broadcast protocols that attain very high reliability for Ethernet networks [16] or
redundant Ethernets [2, 5, 7]. Such protocols can be very e�cient in terms of the chosen metrics
because one can leverage o� of the particularities of the network. On the other hand, such protocols
are not very portable, since they depend so strongly on the physical properties of the network.

The other approach is to assume a generic network. With this approach, one chooses a set
of basic network communication primitives such as sending and receiving a message. If reliability
is a concern, then one can adopt a failure model that is generic enough to apply to many di�er-
ent physical networks. There are many examples of reliable broadcast protocols for such generic
networks [25]. We consider in this paper broadcast protocols for generic networks.

1

Unfortunately, many reliable broadcast protocols for generic networks do not scale well to large
numbers of processors [4]. One family of protocols for generic networks that are designed to scale
are called epidemiological algorithms or gossip protocols.1 Gossip protocols are probabilistic in
nature: a processor chooses its partner processors with which to communicate randomly. They are
scalable because each processor sends only a �xed number of messages, independent of the number
of processors in the network. In addition, a processor does not wait for acknowledgments nor does
it take some recovery action should an acknowledgment not arrive. They achieve fault-tolerance
against intermittant link failures and processor crashes because a processor receives copies of a
message from di�erent processors. No processor has a speci�c role to play, and so a failed processor
will not prevent other processors from continuing sending messages. Hence, there is no need for
failure detection or speci�c recovery actions.

A drawback of gossip protocols is the number of messages that they send. Indeed, one class
of gossip protocols (called anti-entropy protocols [9]) send an unbounded number of messages in
nonterminating runs. Such protocols seem to be the only practical way that one can implement
a gossip protocol that attains a high reliability in an environment in which links can fail for long
periods of time [24]. Hence, when gossiping in a large wide-area network, anti-entropy protocols
are often used to ensure high reliability. However, for applications that require timely delivery, the
notion of reliability provided by anti-entropy may not be strong enough since it is based on the
premise of eventual delivery of messages.

Another class of gossip protocols is called rumor mongering [9]. Unlike anti-entropy, these
protocols terminate and so the number of messages that are sent is bounded. The reliability may
not be as high as anti-entropy, but one can trade o� the number of messages sent with reliability.
Rumor mongering by itself is not appropriate for networks that can partition with the prolonged
failure of a few links, and so is best applied to small wide-area networks and local area networks.

Consider the undirected clique that has a node for each processor, and let one processor p
broadcast a value using rumor mongering. Assume that there are no failures. As the broadcast
takes place, processors choose partners at random. For each processor q and a partner r it chooses,
mark the edge from q to r. At the end of the broadcast, remove the edges that are not marked. The
resulting graph is the communications graph for that broadcast. This graph should be connected,
since otherwise the broadcast did not reach all processors. Further, the node and link connectivities
of the communications graph give a measure of how well this broadcast would have withstood a set
of failures. For example, if the communications graph is a tree, and if any processor represented by
an internal node had crashed before the initiation of the broadcast, then the the broadcast would
not have reached all noncrashed processors.

In this paper, we compare rumor mongering with a deterministic version of rumor mongering.
This nondeterministic protocol superimposes a communication graph that has a minimimal number
of links given a desired connectivity. The connectivity is chosen to attain a desired reliability, and
by being minimal link, the broadcast sends a small number of messages. This comparison allows
us to ask the question what value does randomization give to rumor mongering? We show that the
nonrandomized version does compare favoribly with traditional rumor mongering in all but one
metric, namely graceful degradation.

We call the communications graphs that we impose Harary graphs because the construction we
use comes from a paper by Frank Harary [14]. The deterministic protocol that we compare with
rumor mongering is a simple ooding protocol over a Harary graph.

The rest of the paper proceeds as follows. We �rst discuss some related research. We then

1The name gossip has been given to di�erent protocols. For example, some authors use the term gossip to mean
all-to-all communications, and what we describe here would be called random broadcasting in the whispering mode [21].

2

describe gossip protocols and their properties. Next, we describe Harary graphs and show that
some graphs yield higher reliabilities than others given a �xed connectivity. We then compare
Harary graph-based ooding with gossip protocols both at an abstract level and using a simple
simulation.

2 Related Work

Superimposing a communications graph is a well-known technique for implementing broadcast
protocols. Let an undirected graph G = (V;E) represent such a superimposed graph, where each
node in V is a processor and each edge in E means that the two nodes incident on the edge can
directly send each other messages at the transport level. Two nodes that have an edge between
them are called neighbors. A simple broadcast protocol has a processor initiate the broadcast of m
by sending m to all if its neighbors. Similarly, a node that receives m for the �rst time sends m
to all of its neighbors except for the one which forwarded it m. This technique is commonly called
ooding [1]. Depending on the superimposed graph structure, a node may be sent more than one
copy of m. We call the number of messages sent in the reliable broadcast of a single m the message
overhead of the broadcast protocol. For ooding, the message overhead is between one and two
times the number of edges in the superimposed graph.

The most common graph that is superimposed is a spanning tree (for example, [10, 22]). Span-
ning trees are attractive when one wishes to minimize the number of messages: in failure-free runs,
each processor receives exactly one message per broadcast and so the message overhead is jV j � 1.
Their drawback is that when failures occur, a new spanning tree needs to be computed and dis-
seminated to the surviving processors. This is because a tree can be disconnected by the removal
of any internal (i.e. nonleaf) node or any link.

If a graph more richly connected than a tree is superimposed, then not all sets of link and
internal node failures will disconnect the graph. Hence, if a detected and persistent failure occurs,
any recon�guration | that is, the computation of a new superimposing graph | can be done while
the original superimposed graph is still used to ood messages. Doing so lessens the impact of the
failure.

One example of the use of a graph more richly connected than a tree is discussed in [11]. In this
work, they show how a hypercube graph can be used instead of a tree to disseminate information
for purposes of garbage collection. It turns out that a hypercube is a Harary graph that is three-
connected.

A more theoretical example of the use of a more richly connected graph than a tree is given by
Liestman [17]. The problem being addressed in this work is, in some ways, similar to the problem
we address. Like our work, they are interested in fault-tolerant broadcasting. And, like us, they
wish to have a low message overhead. The models, however, are very di�erent. They consider only
link failures while we consider both link and node failures. They assume that a �xed unit of time
elapses between a message being sent and it being delivered. They are concerned with attaining
a minimum broadcast delivery time while we are not. And, the graphs that they superimpose are
much more complex to generate as compared to Harary graphs. However, it turns out that some
of the graphs they construct are also Harary graph.

Similarly, the previous work discussed in the survey paper [21] on fault-tolerant broadcasting
and gossiping is, on the surface, similar to the work reported here. The underlying models and the
goals, however, are di�erent from ours. Our work is about what kind of communication graphs to
superimpose such that ooding on such a graph masks a certain number of failures while sending
the minimum number of messages. We also consider how the reliability degrades with respect to

3

the graph structure when the number of failures exceeds what can be masked. Those earlier work,
on the other hand, assumes messages transmitted or exchanged through a series of calls over the
graph. The main goal is to compute the minimum time or its upper bound to complete a broadcast
in the presence of a �xed number of failures, given di�erent communication modes and failure
models. The minimum number of calls that have to take place in order for a broadcast message to
reach all processes is not always a metric of interest.

The utility of the graphs described by Harary in [14] for the purposes of reducing the probability
of disconnection was originally examined in [23]. This work, however, was concerned with rules
for laying out wide-area networks to minimize the cost of installing lines while still maintaining a
desired connectivity. It is otherwise unrelated to the work described in this paper.

3 Gossip Protocols

Gossip protocols, which were �rst developed for replicated database consistency management in
the Xerox Corporate Internet [9], have been built to implement not only reliable multicast [4, 12]
but also failure detection [20] and garbage collection [13]. Nearly all gossip protocols have been
developed assuming the failure model of processor crashes and message links failures that lead to
dropped messages. Coordinated failures, such as the failure of a broadcast bus-based local area,
are not usually considered. Such failures can only be masked by having redundant local area
networks that fail independently (see, for example, [2, 5, 7]). And, they are not usually discussed
in the context of synchronous versus asynchronous or timed asynchronous models [8, 25]. Like
earlier work in gossip protocols, we do not consider coordinated failures or the question of how
synchronous the environment must be to ensure that these protocols terminate in all runs.

Gossip protocols have the following features:

� scalability Their performance does not rapidly degrade as the number of processors grow. Each
processor sends a �xed number of messages that is independent of the number of processors.
And, each processor runs a simple algorithm that is based on slowly-changing information.
In the protocol above, a processor needs to know the identity of the other processors on its
(local-area or small wide-area) network and a few constants. Hence, as long as the stability
of the physical network does not degrade as the number of processors grow, then gossip is
scalable.

� adaptability It is not hard to add or remove processors in a network. In both cases, it can be
done using the gossip protocol itself.

� graceful degradation For many reliable broadcast protocols, there is a value f such that if there
are no more than f failures (as de�ned by a failure model) then the protocol will function
correctly. If there are f + 1 failures, however, then the protocol may not function correctly.
The reliability of the protocol is then equal to the probability that no more than f failures
occur. Computing this probability, however, may be hard to do and the computation may be
based on values that are hard to measure. Hence, it is advantageous to have a protocol whose
probability of functioning correctly does not drop rapidly as the number of failures increases
past f . Such a protocol is said to degrade gracefully. One can build gossip protocols whose
reliability is rather insensitive to f .

There are many variations of gossip protocols within the two approaches mentioned in Section 1.
Below is one variation of rumor mongering. This is the protocol that is used in [15] (speci�cally,

4

F = 1 and the number of hops a gossip message can travel is �xed) and is called blind counter
rumor mongering in [9]:

initiate broadcast of m:

send m to Binitial neighbors

when (p receives a message m from q)
if (p has received m no more than F times)

send m to B randomly chosen neighbors that

p does not know have already seen m;

A gossip protocol that runs over a local-area network or a small wide-area network e�ectively
assumes that the communications graph is a clique. Therefore, the neighbors of a processor would
be the other processors in the network. A processor knows that another processor q has already
received m if it has previously received m from q. Processors can more accurately determine
whether a processor has already received m by having m carry a set of processor identi�ers. A
processor adds its own identi�er to the set of identi�ers before forwarding m, and the union of the
sets it has received on copies of m identify the processors that it knows have already received m.
Henceforth in this paper, the gossip protocol we discuss is this speci�c version of rumor mongering
that uses this more accurate method.

Since a processor selects it partners randomly, there is some chance that a message may not
reach all processors even when there are no failures. However, in a clique, such probability is
small [19]. Therefore, the reliability of gossip protocols is considered to be high. This is not the
case when the connectivity of the network is not uniform, though. It has been shown that when
the network has a hierarchical structure, a gossip message can fail to spread outside a group of
processors [18].

It is often very di�cult to obtain an analytical expression to describe the behavior of a gossip
protocol. Often, the best one can get are equations that describe asymptotic behavior for simple
network topologies. For more complex topologies or protocols, one almost always resorts to simu-
lations. Below we give reliability results obtained from simulations when failures are considered.

Table 1 shows the measured reliability of 10,000 broadcasts among n = 32 processors for di�erent
values of B, F and f , where f is the number of crashed processors. No link failures occurred during
these broadcasts and all processors that crashed did so before the �rst broadcast. As can be seen,
the reliability does not drop too much between f = 0 and f = 4 since a processor can receive
messages from many processors. Also, the reliability of gossip rapidly increases with B � F . In
general, for a given value of B �F , higher reliability is obtained by having a larger F (and therefore
a smaller B). This is because a processor will have a more accurate idea of which processors already
have m the later it forward m.

Table 2 shows the average number of messages sent per broadcast for the runs that were used
to generate Table 1. The number of messages sent is bounded by BF (n � f). For a given value
of F � B, fewer messages are sent for larger F . In this case, some processors learn that most other
processors have already received the broadcast by the time they receive m F � 1 times, and so do
not forward m to B processors.

Figure 1 illustrates how gracefully the measured reliability of gossip degrades as a function of
f . This �gure was generated using simulation with 10,000 broadcasts done for each value of f and
having the f processors crash at the beginning of each run. The number of processors n is 32,
B = 4, and F = 3. The measured reliability is 0.9999 for f = 3 crashed processors and is 0.869
for f = 16 crashed processors. Notice that the measured reliability is not strictly decreasing with

5

B F B � F f = 0 f = 1 f = 2 f = 3 f = 4

2 1 2 0.0290 0.0243 0.0171 0.0150 0.0157

3 1 3 0.3598 0.3242 0.3021 0.2708 0.2547

4 1 4 0.7351 0.7120 0.6781 0.6483 0.6174

2 2 4 0.8011 0.7711 0.7349 0.6880 0.6429

3 2 6 0.9786 0.9724 0.9663 0.9614 0.9458

2 3 6 0.9912 0.9872 0.9844 0.9784 0.9703

4 2 8 0.9982 0.9963 0.9964 0.9956 0.9906

2 4 8 0.9996 0.9996 0.9996 0.9995 0.9987

3 3 9 0.9996 0.9997 0.9997 0.9991 0.9990

4 3 12 1.0000 1.0000 1.0000 0.9999 1.0000

3 4 12 0.9999 0.9999 1.0000 1.0000 0.9999

4 4 16 1.0000 1.0000 1.0000 1.0000 1.0000

Table 1: Measured reliability with 104 broadcasts. n = 32, Binitial = min(B; f + 1).

B F B � F f = 0 f = 1 f = 2 f = 3 f = 4

2 1 2 64.00 62.00 61.00 60.00 59.00

3 1 3 96.00 93.00 90.00 88.00 86.00

4 1 4 128.00 124.00 120.00 116.00 113.00

2 2 4 121.64 116.99 114.19 111.09 107.77

3 2 6 187.97 181.75 175.46 170.58 165.44

2 3 6 180.29 173.00 169.09 164.42 159.37

4 2 8 251.80 243.75 235.66 227.53 220.57

2 4 8 235.52 225.39 220.51 214.31 207.58

3 3 9 280.12 270.68 261.10 253.77 246.06

4 3 12 375.59 363.45 351.19 338.95 328.30

3 4 12 370.57 357.66 344.79 335.27 325.02

4 4 16 498.84 482.36 465.90 449.32 435.11

Table 2: Average number of messages per broadcast with 104 broadcasts. n = 32, Binitial =
min(B; f + 1).

6

0 10 20 30

f

0.2

0.4

0.6

0.8

1.0

R
el

ia
bi

lit
y

Figure 1: Reliability of gossip as a function of f (B = 4; F = 3; n = 32).

f ; when f is close to n, only a few processors need to receive the message for the broadcast to be
successful. Indeed, when f = n� 1, gossip trivially has a reliability of 1.

4 Harary Graphs

In this section, we discuss the approach of imposing a Harary graph of certain connectivity on a
network of processors and having each processor ood over that graph. The graph will be connected
enough to ensure that the reliability of the ooding protocol will be acceptably large.

4.1 Properties of Harary Graphs

A Harary graph is an n�node graph that satis�es the following three properties:

1. It is t-node connected. The removal of any subset of t�1 nodes will not disconnect the graph,
but there are subsets of t nodes whose removal disconnects the graph.

2. It is t-link connected. The removal of any subset of t� 1 links will not disconnect the graph,
but there are subsets of t links whose removal disconnects the graph.

3. It is link minimal. The removal of any link will reduce the link connectivity (and therefore
the node connectivity) of the graph.

Let Hn;t denote the set of Harary graphs that contains n nodes and has a link and a node
connectivity of t. For example, Hn;1 is the set of all n�node trees, and Hn;2 is the set of all n�node
circuits. Figures 2 show examples of graphs in H7;3;H8;3 and H8;4.

Harary gave an algorithm for the construction of a graph inHn;t for any value of n and t < n. [14]
We denote this graph as Hc

n;t and call it the canonical Harary graph. The algorithm is as follows:

Hc
n;1: The tree with edges 8i : 0 � i < n� 1 : (i; i + 1).

Hc
n;2: The circuit with edges 8i : 0 � i < n : (i; i+ 1 mod n).

Hc
n;t for t > 2 and even: First construct Hc

n;2. Then, for each value of m : 2 � m � t=2 add edges
(i; j) where ji� jj = m mod n.

7

H8,4H8,3H7,3

Figure 2: Graphs of H7;3;H8;3 and H8;4.

Figure 3: Another graph of H8;3.

Hc
n;t for t > 2 and odd: First construct Hc

n;t�1. Then, connect all pairs (i; j) of nodes such that
j � i = bn=2c.

For most values of n and t, there are more than one graph in the set of Hn;t graphs. The graphs
given in Figure 2 are canonical Harary graphs, while the graph in Figure 3 is not (it is the unit
cube).

It is not hard to see why Harary graphs are link-minimal among all t-connected graphs. For
any graph G, the node connectivity �(G), link connectivity �(G), and minimum degree �(G) are
related:

�(G) � �(G) � �(G) (1)

Harary showed that �(G) is bounded by d2`=ne, where ` is the number of links [14]. Therefore,
to have t node or link connectivity, the number of links has to be at least dnt=2e. If G is a regular
graph (that is, all of the nodes have the same degree), then �(G) = �(G) = �(G) = t. A regular
graph with nt=2 links is thus link-minimal among all graphs with t node or link connectivity. Harary
graphs are such graphs when t is even or when n is even and t is odd.

When both n and t are odd, Harary graphs are not regular graphs because there is no regular
graph of odd degree with an odd number of nodes. Rather, there are n� 1 nodes of degree t and
one node of degree t+ 1. The number of links is dnt=2e. They are link-minimal because removing
any link will result in at least one node having its node degree reduced from t to t� 1.

8

4.2 Overhead and Reliability of Flooding on Harary Graphs

When n or t is even and assuming no failures, the overhead of ooding over a Harary graph is
bounded from above by n(t� 1) + 1: the processor that starts the broadcast sends t messages and
all the other processors send no more than t�1 messages. When n and t are odd one more message
can be sent because the graph is not regular.

As long as the communications graph remains connected, a ooding protocol is guaranteed to
be reliable. Hence, we characterize reliability as the probability of Hn;t disconnecting. We �rst
consider a failure model that includes the failure of nodes | that is, processor crashes, and the
failure of links | that is, message channels that can drop messages due to congestion or physical
faults. We then consider only node failures.

For local-area networks and small wide-area networks, one normally assumes that each link has
the same probability p` of failing and each node has the same probability pn of failing, and that all
failures are independent of each other. We do so as well.

Since Hn;t is both t-connected and t-link connected, one can compute an upper bound on the
probability of Hn;t being disconnected: the disconnection of Hn;t requires x node failures and y link
failures such that x+ y � t. [3] The reliability r is thus bounded from below by the following:

r � 1�
n�2X
x=0

�n
x

�
pxn(1� pn)

n�x
X̀

y=max(t�x;0)

�`
y

�
py` (1� p`)

`�y (2)

where ` is the number of links in Hn;t : ` = dnt=2e. This formula, however, is conservative since it
assumes that all such failures of nodes and links disconnect the graph. For example, consider H4;2

and assume that pn = 0:99 and p` = 0:999 (that is, each processor is crashed approximately 14
minutes a day and a link is faulty approximately 1.4 minutes a day). The above formula computes
a lower bound on the reliability of 0.9993. If we instead examine all of the failures that disconnect
H4;2 and sum the probabilities of each of these cases happening, then we obtain an actual reliability
of 0.9997.

In general, computing the probability of a graph disconnecting given individual node and link
failure probabilities is hard [6], and so using Equation 2 is the only practical method we know of
for computing the reliability of ooding on Hn;t. But, if one assumes that links do not fail then one
can compute a more accurate value of the reliability. Note that assuming no link failures may not
be an unreasonable assumption. A vast percentage of the link failures in small wide-area networks
and local area networks are associated with congestion at either routers or individual processors.
Hence, link failures rarely endure and can often be masked by using a simple acknowledgment and
retransmission scheme.

Consider the following metric:

De�nition 1 Given a graph G 2 Hn;t, the fragility F (G) of G is the fraction of subsets of t nodes
whose removal disconnects G.

For example, in the left graph of Figure 4, 187 of the 7,315 subsets of 4 nodes are cutsets of the
graph, and so the graph has a fragility of 0.0256. The graph on the right, also a member of H22;4,
has a fragility of 22/7,315 = 0.0030. The di�erences in fragility of the two graphs of Figure 4 is
large. As we show below, the left-hand graph has a fragility of n(n � t � 1)=

�
2
�n
t

��
, whereas the

right-hand one has a fragility of n=
�n
t

�
.

Since here we consider node failures only, p` is zero. We further assume that pn is small. Thus,
the probability of G disconnecting can be estimated as the probability of t nodes failing weighted
by F (G): F (G)ptn(1� pn)

n�t. So,

9

Figure 4: Two graphs of H22;4.

r � 1� F (G)ptn(1� pn)
n�t (3)

This is an upper bound on r because it does not consider disconnections arising from more than t
nodes failing. But, when pn is small the contribution due to more than t nodes failing is small.

Assume that each processor is crashed for �ve minutes a day, and so pn = 0:0035. From
Equations 2 and 3 and setting p` = 0 we compute 0:999998989 � r � 0:999999974 for ooding
in the left graph of Figure 4. In fact, the reliability r computed by enumerating all the cutsets
and summing their probability of occurring is 0.999999973. Similarly, for the right-hand graph of
Figure 4, we compute 0:999998989 � r � 0:999999997 and r is 0.999999997.

4.3 Graceful Degradation

Still assuming that p` = 0, one can extend the notion of fragility to compute how gracefully
reliability degrades in ooding on a Harary graph.

De�nition 2 Given a graph G 2 Hn;t, F (G; f) is the fraction of subsets of f nodes whose removal
disconnects G.

Hence, F (G; t) = F (G) and F (G; f) = 0 for 0 � f < t or n � 1 � f � n. On the condition
of any subset of f nodes having failed, the graph will remain connected with the probability of
1� F (G; f). Thus, we can use 1� F (G; f) as a way to characterize the reliability of ooding on a
Harary graph G. This is much like the way we measured the reliability of gossip as a function of f
as illustrated in Figure 1. There, the reliability was measured after f nodes have crashed.

The graphs of 1�F (G; f) for the two graphs of Figure 4 is shown in Figure 5. As can be seen,
the less fragile graph also degrades more gracefully than the canonical graph.

4.4 Bounds on Fragility

Since the upper bound on reliability and how gracefully reliability degrades depend on the fragility
of a Harary graph, we examine some fragility properties of canonical Harary graphs. We show
that canonical Harary graphs can be signi�cantly more fragile than some other families of Harary
graphs, and describe how to construct these less fragile graphs.

10

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 f
1

−
 F

(G
,f)

H(22,4) canonical
H(22,4) modified

Figure 5: Graceful degradation of H22;4. The dashed line is for the modi�ed graph and the solid
line for the canonical graph.

In the following, the symbol � signi�es addition modulo n and 	 subtraction modulo n. Given
a node i, the set of nodes fi; i� 1; i� 2; : : : ; i� kg for some k � 0 are sequential to each other, and
the node i + n=2 the antipodal node of i. A single node can be thought of as a one-element set of
sequential nodes.

We de�ne a t�cutset of a graph G to be a set of t nodes of G whose removal disconnects G.
And, given a subgraph S of G, we de�ne the joint neighbors of S to be those nodes in G�S that are
a neighbor of a node in S. The two ideas are related: if S is connected, A are the joint neighbors
of S, and A [S � G, then A is a jAj�cutset of G.

Hn;n�1 is an n�clique and so F (Hn;n�1; f) = 0 for all f between 0 and n. Hence, in the
following we assume that t < n� 1.

Lemma 1 For Hc
n;t with even t, the set of joint neighbors of any sequence of nodes A = fi; i �

1; : : : ; i� zg has a size of t as long as z < n� t.

Proof: Since Hc
n;t for even n or t is symmetric, we can assume without loss of generality that i = 0.

>From the de�nition of Hc
n;t, the joint neighbors of A are fn� t=2; n� t=2+ 1; : : : ; n� 1; z +1; z +

2; : : : ; z + t=2g. These nodes are distinct as long as z � t=2 < n � t=2, or as long as z < n � t. If
this holds, then the number of joint neighbors is t.
2

Lemma 2 For Hc
n;t with even t > 2, consider any two nodes i and i� (k + 1) for k > 0. If k < t,

then all of the nodes between i and i � k are joint neighbors of i and i � (k + 1); otherwise, t of
these nodes are joint neighbors of i and i� (k + 1).

Proof: Without loss of generality, let i = 0. From the de�nition of Hc
n;t, the nodes f1; 2; : : : ; t=2g

are all neighbors of 0 and the nodes fk � t=2 + 1; k � t=2 + 2; : : : ; kg are all neighbors of k + 1.
If k � t=2 + 1 � t=2 (which is equivalent to k < t) then these two sets intersect and their union
contains k nodes. Otherwise, the union of these two sets contains t nodes.
2

11

Lemma 3 For any subset A of Hc
n;t such that A does not consist of sequential nodes and 1 < jAj �

n� t� 2, the set of joint neighbors of A contains at least t+ 1 nodes.

Proof: We only consider subgraphs A of Hc
n;t that have no more than b(n� t)=2c nodes. Any larger

subgraph A0 with a t�cutset shares that cutset with a subgraph A whose size is n� t� jA0j which
is less than b(n� t)=2c.

A consists of g > 1 sets of sequential nodes. Let H1;H2; : : : ;Hg be the corresponding sets of
sequential nodes in Hc

n;t�A (which we call the \holes"). Without loss of generality, let H1 be hole
with the largest size. Since g > 1 there is a second hole H2. We consider two cases:

1. jH1j � t. By Lemma 2, H1 contributes t joint neighbors to A, and by the same lemma H2

contributes at least one joint neighbor to A. Hence, there are at least t+1 joint neighbors of
A.

2. jH1j < t. By Lemma 2, each of the remaining g� 1 holes contributes at least 1 joint neighbor
to A. Since H1 is one of the largest holes, 8i : 1 � i � g : jHij < t. By Lemma 2, each
other hole Hi contributes jHij to the joint neighbors of A. Hence, there are

Pg
i=1 jHij joint

neighbors of A.

By de�nition, n = jAj +
Pg

i=1 jHij, and so
Pg

i=1 jHij = n � jAj � n � b(n � t)=2c. This
implies

Pg
i=1 jHij � d(n+ t)=2e. Since n > t, d(n+ t)=2e > t and so A has more than t joint

neighbors.

In both cases, the lemma holds.
2

Theorem 1 For even t > 2 and n � t+ 2, the number of subsets of t nodes that disconnects Hc
n;t

is n(n� t� 1)=2.

Proof: Lemmas 1 and 3 together show that for Hc
n;t with even t, the only sets of nodes that have

a set of joint neighbors of size t are sequential nodes of size no larger than n� t. They also imply
that each t�cutset divides the graph into two sequential sets of nodes.

Let A = fi; i�1; : : : ; i�zg be a set of sequential nodes, C its joint neighbors, and B = G�C�A
the remaining set of n� t� z � 1 sequential nodes.

For any value of z, there are n pairs of A and B, one pair for each value of i : 0 � i � n � 1.
And, for any value of z, as long as jAj < jBj, we can count n cutsets without double counting.
When jAj = jBj, we can count n=2 cutsets without double counting.

Thus we count n cutsets for all integer values of z : z � 0 and z+1 < n� t� z�1. Simplifying,
we get 0 � z < (n� t� 2)=2. Similarly, we count n=2 cutsets when z = (n� t� 2)=2 is an integer.

If n is odd, then (n � t � 2)=2 is not an integer and the largest integer value of z satisfying
z < (n� t�2)=2 is (n� t�3)=2. Hence, we count n((n� t�3)=2+1) = n(n� t�1)=2 cutsets. If n
is even, then (n� t�2)=2 is an integer and the largest integer value of z satisfying z < (n� t�2)=2
is (n� t� 2)=2 � 1. Hence, we count n((n� t� 2)=2� 1 + 1 + 1=2) = n(n� t� 1)=2 cutsets.
2

We can construct a member of Hn;t for even t and n > 2t that are less fragile than Hc
n;t. These

graphs, which we call modi�ed Harary graphs and denote with Hm
n;t, have n distinct t�cutsets.

The right hand graph of Figure 4 is Hm
22;4, while the left hand graph is Hc

22;4. An algorithm for
constructing Hm

n;t is as follows:

12

Hm
n;t: First construct Hc

n;2. Then, for each value of m: 2 � m � t=2 add edges (i; j) where
ji� jj = (m+ 1) mod n.

Lemma 4 For Hm
n;t, the set of joint neighbors of any sequence of nodes A = fi; i�1; : : : ; i�zg has

size t when z = 0 or z = n�t�1, size t+1 when z = n�t�2, and size t+2 when 0 < z < n�t�2.

Proof: Since Hm
n;t is symmetric, we can assume without loss of generality that i = 0. From the

de�nition of Hm
n;t:

� When z = 0, the neighbors of 0 are f1; 3; 4; : : : ; t=2 + 1; n� 1; n � 3; n � 4; : : : ; n� t=2 � 1g.
These nodes are unique as long as n� t=2� 1 > t=2 + 1 which can be rewritten as n > t+2.
Since Hm

n;t is de�ned only for n > 2t and for even t > 2, n > t+ 2 holds.

� When z > 0 then the joint neighbors of A are fz + 1; z + 2; z + 3; : : : ; z + t=2 + 1; n� 1; n�
2; n� 3; n� 4; : : : ; n� t=2� 1g. If z+ t=2+1 < n� t=2� 1 then this set contains t+2 nodes.
This inequality can be rewritten as z < n� t� 2. If z + t=2 + 1 = n� t=2� 1 (which can be
written as z = n� t� 2) then this set contains t+ 1 nodes. Similarly, if z = n� t� 1 then
this set contains t nodes.

These two cases establish the lemma.
2

Lemma 5 For Hm
n;t consider any two nodes i and i� (k+1) for k > 0. C(k) of the nodes between

i and i� (k + 1) are joint neighbors of fi; i � (k + 1)g where

C(k) =

8>>>>><
>>>>>:

t k > t+ 1
k � 2 t=2 + 3 � k � t+ 1
k 4 � k � t=2 + 2
2 2 � k � 3
1 k = 1

Proof: Without loss of generality we can set i = 0; hence, C(k) is not a function of i. From the
de�nition of Hm

n;t, f1; 3; 4; : : : ; t=2 + 1g are neighbors of 0 and fk � t=2; : : : ; k � 3; k � 2; kg are
neighbors of k + 1. If t=2 + 1 < k � t=2 then all of these t nodes are distinct. For smaller values of
k through k � t=2 = 3, only k � 2 of these nodes are distinct and in the range of 1 through k. For
yet smaller values of k through k = 4 all k of the nodes in the range of 1 through k are distinct.
The other two cases follow directly from substituting the corresponding value of k.
2

Lemma 6 For any subset A of Hm
n;t such that A is not a single set of sequential nodes and 1 <

jAj � b(n� t)=2c, the set of joint neighbors of A contains at least t+ 1 nodes.

Proof: A consists of g > 1 sets of sequential nodes. Let H1;H2; : : : ;Hg be the corresponding sets
of sequential nodes in Hm

n;t�A (the \holes"). Thus, d(n+ t)=2e �
Pg

i=0 jHij � n� 2. Without loss
of generality, let H1 be hole with the largest size. There is at least one more hole H2. There are
two cases:

13

1. jH1j > t+1. By Lemma 5, H1 contributes t joint neighbors to A, and by the same lemma H2

contributes at least one joint neighbor to A. Hence, there are at least t+1 joint neighbors of
A.

2. jH1j � t + 1. The number of joint neighbors of A is
Pg

i=1 C(jHij). From Lemma 5, when
t � 6 C(jHij)=jHij � 2=3 (the lower bound is met when jHij = 3). There are two cases:

(a) t = 4: We consider the possible values of jH1j and use the fact that d(n + 4)=2e �Pg
i=1 jHij � n � 2. If jH1j = 5 then H1 contributes 3 joint neighbors. From the

de�nition of Hm
n;t, n � 9 and so 7 � jH1j +

Pg
i=2 jHij or

Pg
i=2 jHij � 2. Hence, the

remaining holes contribute 2 joint neighbors bringing the total to 5. If jH1j = 4 then H1

contributes 4 joint neighbors,
Pg

i=2 jHij � 3 and the remaining holes contribute at least 2
joint neighbors. If jH1j = 3 then H1 contributes 2 joint neighbors,

Pg
i=2 jHij � 4 and the

remaining holes contribute at least 3 joint neighbors. If jH1j = 2 then H1 contributes
2 joint neighbors,

Pg
i=2 jHij � 5 and the remaining holes contribute at least 3 joint

neighbors. Finally, if jH1j = 1 then H1 contributes 1 joint neighbor,
Pg

i=2 jHij � 6 and
the remaining holes contribute at least 4 joint neighbors. In all cases there are at least
5 joint neighbors of A.

(b) t > 4:
Pg

i=1 C(jHij) � 2=3
Pg

i=1 jHij. From above,
Pg

i=1 jHij � d(n + t)=2e which is at
least (n+ t)=2. Hence, there are at least (n+ t)=3 joint neighbors of A. By de�nition of
Hm

n;t, n > 2t hence (n+ t)=3 > t. Thus, there are more than t joint neighbors of A.

In both cases, the lemma holds.
2

Theorem 2 When n > 2t, Hm
n;t has n t�cutsets.

Proof: From Lemma 4, Hm
n;t has at least n t�cutsets, namely those for each value of i and when

z = 0. The other value of z which results in a set of joint neighbors of size t is when A has n� t
nodes, and so the removal of these nodes will not disconnect Hm

n;t. Lemma 6 shows that any other
subset of Hm

n;t has at least a t+ 1�cutset. Hence there are only n t�cutsets.
2

Theorem 2 was shown by showing that all subsets of nodes of Hm
n;t have at least t joint neighbors.

Hence, Hm
n;t is t�node connected. It is easy to see that each node has degree t and that the graph

has dnt=2e edges. Hence, by Equation 1 Hm
n;t is in Hn;t.

It is not hard to �nd examples of Harary graphs that have fewer than n t�cutsets. For example,
consider a bipartite graph with t nodes on each side and with each node on one side connected to
each node on the other side. It is easy to see that this graph has two t�cutsets, no cutsets smaller
than t, a degree of t, and t2 edges. Hence, it is in H2t;t. Or, consider a Harary graph G 2 Hn;t (for
any t and n > t) that has c t�cutsets. Construct the graph G0 as follows:

1. For every node in G, create k nodes in G0.

2. For every edge (u; v) in G, add the k2 edges connecting each of the nodes associated with u
with each of the nodes associated with v.

14

The graphG0 has degree kt and dk2nt=2e edges. It can be disconnected only by deleting the kt nodes
associated with a t�cutset of G. Hence, G0 is in Hkn;kt and has c kt�cutsets. Thus, for example,
instead of using Hm

100;16 which has 100 16�cutsets, one can construct a graph by replicating each
node in Hm

25;4 four times. This results in a graph that has 25 16�cutsets, which is four times less
fragile than Hm

100;16. For arbitrary n and t, however, it remains an open problem of what is the
minimum number of cutsets of size t for graphs in Hn;t.

Canonical Harary graphs have a better fragility when t is odd, which we now show. We �rst
show that when t = 3, Hc

n;t has n 3�cutsets for even n > 6 or odd n > 7. Then, we show that for
t � 5 and n > t+ 2, there are n t�cutsets in Hc

n;t.

Theorem 3 For Hc
n;t with even n > 6 and t = 3, there are n cutsets of size t.

Proof: Since every node in Hc
n;3 has degree 3, each node has a 3�cutset. For two nodes i; j to have

the same set of neighbors, there is (with no loss of generality) some node k such that i+1 = k = j�1
and another node m such that i�1 = m = j+n=2. Thus, j = i+2 and j+n=2 = i�1 = n+ i�1.
Rewriting the �rst equation gives j� i = 2 and rewriting the second equation gives j� i = n=2�1.
Combining, we get 2 = n=2 � 1 or n = 6. Thus, if n > 6 then all nodes have distinct sets of
neighbors. Hence, when n > 6 and even, there are at least n cutsets of size 3.

When n > 6 and even, a set of connected nodes A is either a set of sequential nodes or a set
of sequential nodes and a subset of their corresponding antipodal nodes. If A is a set of sequential
nodes fi; : : : ; i� kg where 1 � k � b(n� t)=2c, then the number of joint neighbors is at least four:
fi	 1; i� (k + 1)g and the k corresponding antipodal nodes. If A is a set of sequential nodes plus
a subset of their antipodal nodes, then again the number of joint neighbors is at least four. If only
one antipodal node is in A, then the two neighbors of this node are joint neighbors. If there are
at least two antipodal nodes, then at least two of them will contribute a neighbors to the joint
neighbor set.
2

Theorem 4 For Hc
n;t with odd n > 7 and t = 3, there are n cutsets of size t.

Proof: In Hc
n;t, node (n� 1)=2 has four neighbors; the rest have three neighbors. Each node except

(n� 1)=2 has a cutset of size 3, and the subset f0; n� 1g has the cutset f1; (n� 1)=2; n� 2g which
has a size 3.

An argument similar to the previous proof says all nodes except (n� 1)=2 have distinct neigh-
bors. The only nodes that can have same cutset as f0; n � 1g are 2 and n� 3. If 2 has the same
cutset, that is, f1; (n � 1)=2; n � 2g = f1; 3; 2 + (n� 1)=2g, then we have (n � 1)=2 = 3 or n = 7.
A similar argument holds for n� 3. Hence, if n > 7 then Hc

n;3 has n distinct cutsets of size 3.
2

Theorem 5 For Hc
n;t with even n � t + 2 and odd t � 5, there are n cutsets of size t. For Hc

n;t

with odd n > t+ 2 and odd t � 5, there are n cutsets of size t.

Proof: Hc
n;t for odd t has embedded within it H

c
n;t�1. From the de�nition of Hc

n;t, each node (except
bn=2c when n is odd) has t neighbors that are distinct. When n is odd, nodes f0; n � 1g have as
joint neighbors the t nodes f1; 2; : : : ; (t� 1)=2; n� 2; n� 3; : : : ; n� (t� 1)=2� 1; (n� 1)=2g. Hence,
when n is even and n � t + 2 then there are at least n t�cutsets. If n is odd, f0; n � 1g is not

15

separable by removing its t joint neighbors unless n > t+ 2, in which case there again are at least
n t�cutsets.

We now show that there are no other t�cutsets. We only consider the cutsets for subgraphs A
of Hc

n;t that have no more than b(n� t)=2c nodes. Any larger subgraph A0 with a t�cutset shares
that cutset with a graph A whose size is within our range of consideration.

First consider a subgraph of Hc
n;t that consists of z + 1 sequential nodes for z > 1. Let A be

the nodes of this subgraph. By Lemma 1 A has t� 1 joint neighbors not considering the antipodal
nodes of A. Let i be the �rst node of A. Since bn=2c > b(n� t)=2c the antipodal nodes of the �rst
and last nodes of A are not in A; indeed, none of of the antipodal nodes of A are in A. And, the
antipodal nodes of all nodes (except for 0 and n� 1 when n is odd) are distinct. Hence, as long as
n is even or A is not f0; n� 1g, it has at least t+ 1 joint neighbors.

Now consider a subgraph of Hc
n;t whose nodes A are not a single sequential set of nodes. Hence,

A consists of g > 1 sets of sequential nodes. As in the previous proofs, let Hi represent the
corresponding g > 1 \holes", which are the sets of sequential nodes in the nodes of Hc

n;t minus A.
As before, we assume without loss of generality that H1 has the largest size. There are three cases:

1. jH1j > t�1. Let H1 = fi�1; i�2; : : : ; i�kg for some k > t�1. By the de�nition of Hc
n;t, the

nodes fi�1; i�2; : : : ; i�(t�1)=2g are neighbors of i and fi�(k�(t�1)=2+1); i�(k�(t�1)=2+
2); : : : ; i�kg are neighbors of i�(k+1). Thus, we have counted t�1 joint neighbors of A, and
the remaining k�t+1 nodes ofH1 are fi�((t�1)=2+1); i�((t�1)=2+2); : : : ; i�(k�(t�1)=2)g.
Denote this set as M .

Since g > 1, there is at least one other hole. If there is more than one node in the remaining
holes, then by Lemma 2 we could add at least two more joint neighbors to A bringing the
total up to at least t + 1. Hence, for contradiction, we assume that there is one more hole
H2 = fhg. This hole contributes one more joint neighbor, bringing the total up to t. And,
since

Pg
i=1 jHij � d(n+ t)=2e, jH1j � d(n + t)=2e � 1. In particular, jH1j > n=2, and so the

antipodal nodes of A are in H1; in particular, they overlap the middle of H1, where M is.

Every node of A that has an antipodal node in M contributes one more joint neighbor to A.
M must contain at least one node, since otherwise jH1j � t � 1. If A is to have only t joint
neighbors, then M can contain only one node and whose antipodal node is not in A. Thus
jH1j = t.

We thus have the following scenario: jAj = n� t� 1 (that is, it contains all of the nodes not
in H1 and H2) and it may have a t�cutset. If it does, then removing these t nodes results in
the two disconnected graphs A and a graph containing a single node. Hence, if there is such
a cutset, then it was counted above as one of the n t�cutsets of Hc

n;t.

2. jH1j = t � 1. Since
Pg

i=2 jHij � d(n + t)=2e � jH1j, we have
Pg

i=2 jHij � (n � t + 1)=2.
This latter quantity is greater than 1 when n > t+ 1, that is when Hc

n;t is not a clique. By
Lemma 2, H1 contribute t � 1 joint neighbors of A, and from Lemma 2 and

Pg
i=2 jHij � 2

the remaining holes contribute at least two joint neighbors of A. Hence, A has more than t
joint neighbors.

3. jH1j < t � 1. From Lemma 2, each Hi contributes jHij neighbors of A. Since
Pg

i=1 jHij �
d(n+ t)=2e and d(n+ t)=2e > t, A has more than t joint neighbors.

Thus, the only t�cutsets are the n enumerated above.
2

16

Figure 6: A less fragile H9;3.

When n and t are both odd, only n� 1 nodes have t neighbors; one node has t+ 1 neighbors.
Hence, it may be surprising that Hc

n;t for odd n and t has n t�cutsets. It is not hard to construct
graphs in Hn;t for odd n and t that have n� 1 t�cutsets. For example, Figure 6 gives a graph in
H9;3 that has 8 3�cutsets. The improvement in fragility for such graphs, however, is small.

For a �xed t > 2, the fragility F (Hc
n;t) decreases with increasing n. This is because the number

of cutsets of size t grows either linearly or quadratically with n, while
�n
t

�
is of O(nt). Similarly,

F (Hm
n;t) decreases with increasing n. The same observations hold for F (Hc

n;t) and F (Hc
n;t) when n

is �xed and t is increased.

5 Comparing Harary Graph-Based Flooding and Gossip

A simple comparison of ooding over a Harary graph and gossip indicates that each has its own
strengths:

� scalability

For a small wide-area network and local area network, the two protocols are equivalent. Both
protocols run simple algorithms that are based on slowly-changing information. Both require
a processor to know the identity of the other processors on its (small wide-area or local area)
network and a small amount of constant information (the rule used to identify neighbors
versus the constants B and F). And, in both protocols the number of messages that each
processor sends is independent of n.

� adaptability

The ooding protocol requires the processors to use the same Harary graph. Since each pro-
cessor independently determines its neighbors, it might appear that gossip is more adaptable
than ooding over a Harary graph. From a practical point of view, though, we expect that
they are similar in adaptability. Given the controlled environment of local-area networks and
small wide-area networks, it is not hard to bound from below with equivalent reliabilities
the time it takes for each protocol to terminate. Then, one can use reliable broadcast based
on the old set of processors to disseminate the new set of processors. In addition, adding
or removing a single processor causes only t processors to change their neighbors in Harary
graph ooding. If t is small, then a simple (and non-scalable) agreement protocol can be used
to change the set of processors.

17

0 5 10 15 20

f

0.2

0.4

0.6

0.8

1.0

R
el

ia
bi

lit
y Canonical H(22,4)

Modified H(22,4)
Gossip B=3, F=2
Gossip B=2, F=2

Figure 7: Graceful degradation of gossip and ooding on H22;4

� graceful degradation

Gossip degrades more gracefully than Harary graph ooding. Figure 7 illustrates this for
n = 22. The Harary graphs used here are the Hc

22;4 and Hm
22;4, and the gossip protocols use

B = 3; F = 2 and B = 2; F = 2, both with Binitial = B. We compare the degradation of
reliability of these protocols because they have similar message overheads. Note that while
the Harary graph ooding yields a higher reliability for small f even when f > t, both gossip
protocols have a higher reliability for f > 10.

� message overhead

Since Hn;t has a minimum number of links while remaining t-connected, it is not surprising
that Harary graph ooding sends fewer messages than gossip. For example, given n = 32,
ooding on H32;4 and gossip with B = 4 and F = 3 provide similar reliabilities given proces-
sors that are crashed for �ve minutes a day. Gossip sends roughly BF=(t � 1) = 4 times as
many messages as Harary graph ooding.

To make a more detailed comparison of message overhead, we evaluated the performance of gos-
sip and Harary graph ooding using the ns simulator [26]. We simulated Ethernet-based networks.
One of the networks we considered was a LAN of a single Ethernet, where there are 32 processors.
The other was a small WAN of three Ethernets pairwise connected, where each Ethernet has 21
processors, one of them also acting like a router.

For the single LAN we imposed the Hm
32;4 graph on the processors, and for the small WAN Hm

63;4

was imposed where processors 0, 21 and 42 were the routers connecting the three LANs. Thus on
each LAN, the router has two neighbors on a di�erent LAN and another processor has one neighbor
outside of the LAN. Flooding on these Harary graphs was compared with gossip with B = 4; F = 3;
and Binitial = B.

We obtained the properties of an Ethernet based on those of a common Ethernet for LANs.
For the single LAN, we assume a bandwidth of 10 Mbps, and for the small WAN, we assumed that
the links between routers of the LANs have a bandwidth of 1 Mbps and a delay of 10 ms. The ns
simulator followed the Ethernet speci�cations and provided the low-level details. Each message was
contained in a 1K-byte packet. We did not consider failures in these simulations. All the results
shown are the average of 100 broadcasts.

18

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

time (ms)

pr
oc

es
so

rs
 th

at
 h

av
e

de
liv

er
ed

gossip with B = 4, F = 3
flooding on H

32,4

Figure 8: Completion time of gossip with B = 4; F = 3 and ooding on H32;4

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

time (5ms per slot)

pa

ck
et

s
in

 e
ac

h
tim

e
sl

ot

gossip with B = 4, F = 3
flooding on H

32,4

Figure 9: Number of packets per time slot of gossip with B = 4; F = 3 and ooding on H32;4

Figure 8 shows that gossip initially delivers faster. However, it takes longer for the last few
processors to receive the message. Therefore, it takes longer for gossip to complete a broadcast
than for Harary graph ooding. For both protocols, the completion time would be shorter if there
were no collisions. There were a fair amount of collisions because both protocols make intensive
use of the network.

In Figure 9, we plot the number of packets on the Ethernet histogrammed into 5-ms time slot.
All the packets delivered after the completion time shown in Figure 8 are redundant packets. As
can be seen, the packet ow of Harary graph ooding diminishes much more quickly than that of
gossip. This shows that, as discussed above, gossip has a much higher message overhead.

In the small WAN, Harary graph ooding imposes a much smaller load on the routers than
gossip does. We measured the number of packets that were sent across the LANs. With gossip,
an average of 169 packets were sent between each pair of LANs. With Harary graph ooding, only
6 packets went across because processors on each LAN have a total of three neighbors on another
LAN. This kind of overloading of routers with redundant messages happens when the network
topology is not taken into account [20, 18].

19

6 Conclusions

Gossip protocols are often advertised as being attractive because their simplicity and their use of
randomization makes them scalable and adaptable. Furthermore, their reliability degrades grace-
fully with respect to the actual number of failures f . We believe that, while these advertised
attractions are valid, Harary graph ooding also provides most of these attractions with a substan-
tially lower message overhead. Furthermore, Harary graph ooding appears to be faster than gossip
for broadcast-bus networks. Hence, for local-area networks and small wide-area networks, the only
bene�t of gossip is that its reliability more gracefully degrades than Harary graph ooding.

This remaining advantage of gossip, however, should be considered carefully. While it is true
that gossip more gracefully degrades than Harary graph ooding, the reliability of ooding over
Hm

n;t decreases only slightly for values of f slightly larger than t. Hence, Harary graph ooding
provides some latitude in computing t. And, both su�er from reduced reliability as f increases
further. One improves graceful degradation of gossip by increasing F (or, to a slightly less degree,
B). Doing so increases the message overhead and network congestion, and therefore the protocol
completion time.

References

[1] G. R. Andrews. Concurrent programming: principles and practice, Benjamin/Cummings, 1991.

[2] �O. Babao�glu. On the reliability of consensus-based fault-tolerant distributed computing sys-
tems. ACM Transactions on Computer Systems, 5:394{416, 1987.

[3] L. W. Beineke and F. Harary. The connectivity function of a graph. Mathematika 14(1967),
pp. 197{202.

[4] K. Birman, et al. Bimodal multicast. Cornell University, Department of Computer Science
Technical Report TR-98-1665, May 1998.

[5] M. Clegg and K. Marzullo. A Low-cost processor group membership protocol for a hard real-
time distributed system. In Proceedings of the 18th IEEE Real-Time Systems Symposium, 1997,
pp. 90{98.

[6] C. J. Colbourn. The combinatorics of network reliability, Oxford University Press, 1987.

[7] F. Cristian. Synchronous atomic broadcast for redundant broadcast channels. Real-Time Sys-
tems 2(1990), pp. 195{212.

[8] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE Transac-
tions on Parallel and Distributed Systems, June 1999, 10(6):642{657.

[9] A. Demers, et al. Epidemic algorithms for replicated database maintenance. In Proceedings of
6th ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia,
Canada, 10{12 August 1987, pp. 1{12.

[10] S. Floyd, et al. A reliable multicast framework for light-weight sessions and application level
framing. IEEE/ACM Transactions on Networking 5(6):784{803, December 1997.

[11] R. Friedman and S. Manor and K. Guo. Scalable stability detection using logical hypercube.
Technion, Department of Computer Science Technical Report 0960, May 1999.

20

[12] R. A. Golding and D. E. Long. The performance of weak-consistency replication protocols. Uni-
versity of California at Santa Cruz, Computer Research Laboratory Technical Report UCSC-
CRL-92-30, July 1992.

[13] K. Guo, et al. GSGC: an e�cient gossip-style garbage collection scheme for scalable reliable
multicast. Cornell University, Department of Computer Science Technical Report TR-97-1656,
December 3 1997.

[14] F. Harary. The maximum connectivity of a graph. In Proceedings of the National Academy of
Sciences, 48:1142{1146, 1962.

[15] M. G. Hayden and K. P. Birman. Probabilistic broadcast. Cornell University, Department of
Computer Science Technical Report TR-96-1606, September 1996.

[16] T. Abdelzaher, A. Shaikh, F. Jahanian and K. Shin. RTCAST: Lightweight multicast for real-
time process groups. In Proceedings of the Second IEEE Real-Time Technology and Applications
Symposium, 1996, pp.250{259.

[17] A. Liestman. Fault-tolerant broadcast graphs. Networks 15:159{171, 1985.

[18] M. -J. Lin and K. Marzullo. Directional gossip: gossip in a wide area network. To be pub-
lished in Proceedings of the Third European Dependable Computing Conference (Springer-
Verlag LNCS).

[19] B. Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics, 47(1987):213{223.

[20] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. In Pro-
ceedings of the IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware '98), The Lake District, England, September 1998, pp.
55-70.

[21] A. Pelc. Fault-tolerant broadcast and gossiping in communication networks. Networks, 28:143{
156.

[22] Fred B. Schneider. Byzantine generals in action: implementing fail-stop processors. ACM
Transactions on Computer Systems 2(1984), pp. 145{154.

[23] Amitabh Shah. Exploring Trade-o�s in the Design of Fault-Tolerant Distributed Databases.
Ph.D. dissertation, Cornell University Department of Computer Science, August 1990.

[24] D. B. Terry, et al. Managing update conicts in Bayou, a weakly connected replicated storage
system. In Proceedings of the 15th Symposium on Operating System Principles, 1995, pp. 3{6.

[25] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Distributed
Systems (S. Mullender, editor), ACM Press, 1993.

[26] Network Simulator. http://www-mash.cs.berkeley.edu/ns.

21

