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- 1 -1 IntroductionIn order to replicate and study a certain contiguous stretch of the DNA (a chromosome or a partof one), copies of the target DNA are cut using enzymatic or mechanical means into shortersegments, which in turn can be inserted into the DNA molecule of another host organism(cosmid, phage, yeast etc.). The host then preserves, replicates and reproduces the fragmentof the target DNA as if it were part of its own genome. In particular, numerous copies of thefragment can be generated using the host's reproduction system, with all copies being identicalto the original fragment. This process is called cloning, and the preserved fragments are calledclones.In the cloning process, all information on the relative location of the clones along the targetgenome is lost. On the other hand, since the procedure is applied to many copies of the originalgenome, fragments may overlap. The problem of reconstructing the relative position of theclones along the original stretch of DNA, based on this redundancy, is called Physical Mapping(PM), and the result is called a physical map. Physical mapping [9, 42] is a central problem inmolecular biology. A physical map is an essential part of most sequencing, gene locating andcloning projects. One of the main initial goals set for the Human Genome Project is to obtaina detailed physical map of all human chromosomes [47, 11].The key to map construction is determining overlap (intersection) between pairs of clones.There are various biological techniques for determining if two clones intersect [12, 38, 44]. Allof these techniques involve obtaining some partial information on the contents of a clone, whichwe call the �ngerprint of that clone. Intuitively, two clones should intersect if their �ngerprintsare su�ciently similar. Ideally one would like to compute the intersection probability for eachpair of clones from their �ngerprints, and then, based on the set of probabilities, determine themost likely placement of all the clones.In this paper we show that several simpli�ed versions of the physical mapping problem areNP-complete, and therefore unlikely to have exact, e�cient algorithms. (For a discussion ofcomplexity and NP-completeness in general see [18].) These problems assume a simpli�ed inputdata and each tries to model di�erently uncertainties in the data. For the biologist, these resultsmay provide insight to what makes a mapping problem di�cult. For the computer scientist,these results may indicate directions for future research which can be pursued once a problemhas been established to be hard (e.g., approximation, probabilistic analysis, parameterizedanalysis). >From our own experience, perhaps the most positive outcome which may come outof such results is using insights on the problem di�culty in order to modify and specialize themodel and obtain a tractable problem. This process requires strong interaction between thebiologist and the computer scientist in order to �nd out what is feasible both experimentally



- 2 -and computationally.To formulate the problems graph theoretically we use the model of interval graph: (For ageneral introduction and basic terminology in graph theory see, e.g., [21].) G is an intervalgraph if one can assign an interval on the real line to each vertex so that two vertices are adjacenti� their intervals have a nonempty intersection. The set of intervals is called a realization of G.A graph is a unit interval graph if it is an interval graph which has a realization in which allintervals have the same length. Interval graphs have been studied intensively (cf. [21]) becauseof their wide applicability to practical problems and to biological problems in particular [5, 48].In the context of PM, both the interval graph model, which allows arbitrary interval lengths,and the unit interval model are relevant: Some cloning techniques (YACs [8], P1 [46]) generateclones of variable lengths, while in other clone types (cosmid [13], Lambda [12]) clones are ofroughly the same length.The problems we study here are as follows:A. Detecting false negatives in mapping with equal length clones with severalcomplete digests:Biological motivation: Suppose a set of clones is obtained by complete digestion of thegenome by one or more restriction enzymes (cf. [12]). Since the digestion is complete, in sucha set no two clones will overlap. Consider a PM project in which the set of clones (the clonelibrary) consists of equal length clones (cosmids, lambda, etc.), and it is composed of severalsubsets of clones, where each subset is obtained by a complete digest with a di�erent set ofenzymes. We would like to reconstruct the map from clone overlap data, in the presence of\false negative" errors, i.e., some overlaps which are not detected experimentally. We wish toconstruct a map which is as close as possible to our input data, i.e., it assumes as few errors aspossible.Mathematical formulation: Assign a vertex for each clone and connect two vertices byan edge whenever the corresponding clones overlap according to the experimental data. Denotethe disjoint sets of clones obtained from k complete digests by S1; : : : ; Sk. Recall that a propercoloring of a graph G = (V;E) is a function c : V ! Z (i.e., assigning a \color" c(v) toeach vertex v), such that for every (u; v) 2 E, c(u) 6= c(v) (i.e., adjacent vertices have di�erentcolors). Since in each set Si all clones are disjoint, it forms an independent set in the graph, andall its vertices can be assigned the same color, say i. The biological problem is thus equivalentto augmenting the graph by adding as few edges (corresponding to false negatives) as possiblein order to obtain a unit interval graph, without violating the color constraints. A decisionversion of the problem is thus the following:COLORED UNIT INTERVAL GRAPH COMPLETION:



- 3 -Given a graph G1 = (V;E1) with a proper coloring c for it, does there exist a unitinterval graph G = (V;E) such that E � E1 and G is still properly colored by c?Discussion: This problem can be viewed as a restriction of the unit interval sandwichproblem: Given a graph G1 = (V;E1) and G2 = (V;E2) such that E1 � E2, does there exista \sandwich graph" G = (V;E) where E1 � E � E2 and G is a unit interval graph? In ourcase E2 = f(u; v)jc(u) 6= c(v)g. Sandwich formulations have been used in the past to modelambiguity in the data of PM, where for each two clones either we are sure that they intersect,or we are sure that they do not, or we have no information. The interval sandwich problem wasde�ned in [24] in the context of temporal reasoning, where it was shown to be NP-complete.Sandwich problems for other graph families were later systematically studied in [22]. NP-completeness proofs were given in [23] for the unit interval sandwich and the colored versionwith non-unit intervals. Fellows et al. [16] have given another proof for the latter result, andhave also shown that the colored interval graph completion is polynomial if the bound on thenumber of colors is �xed. They also showed that if that bound is viewed as a parameter, theproblem is W [t]-hard for all t. (For an exposition of the W hierarchy see [15].)In Section 2 we sketch a simple NP-completeness proof for problem (A). This also providesa new NP-completeness proof for the unit interval sandwich problem, which is much simplerthan the proof in [23]. Quite recently, two of us [27] have given a polynomial algorithm for theversion of problem (A) in which the number of colors is �xed. On the other hand, they havegiven a W[1]-hardness proof for the parameterized version of problem (A), where the numberof colors is a parameter. While this result implies the NP-completeness of problem (A), readersof the 10-page parametric reduction there may appreciate the simplicity of the one here.B. Detecting false positive errors:Biological motivation: In some �ngerprinting techniques (e.g., �ngerprints based onrestriction enzyme fragments [7]) the accuracy of the decision about clone pair intersectionis proportional to the amount of overlap. Assuming that false negative errors are caused byinsu�cient overlap between clones, they will, in many cases, cause the decomposition of themap into more components (contigs) than there are in the \real" map, without destroying theinterval structure. Under this assumption (which is made in most statistical analyses, e.g. [35]),the few but crucial false positive errors are those which may destroy the interval property, andmust be detected. Problem (B) models this situation where we wish to �nd a realization withas few false positive errors as possible.Mathematical formulation: Form the clone intersection graph as in A. The problemthen is equivalent to the following:



- 4 -MAXIMUM INTERVAL SUBGRAPH:Given a graph G = (V;E) �nd a subgraph G0 = (V;E 0) where E 0 � E, G0 is intervaland jE 0j is maximum.Discussion: In Section 3 we prove that this problem is NP-complete, even under severe re-strictions on the graph, both for arbitrary and for unit intervals. Maximum subgraph problemshave been studied for many graph properties, see [18, pp.194{199]. The analogous completionproblem where one asks for adding as few edges as possible to a graph and making it intervalis known to be NP-complete [18, problem GT35],[28]. The NP-completeness of the unit in-terval graph completion problem is implied by the proof of Yannakakis [51] for chordal graphcompletion, as the graphs generated by that proof are chordal if and only if they are unitinterval.C. Generating minimum-width map in the presence of false negatives:Biological motivation: We say that a physical map has width k if k is the largest numberof mutually overlapping clones, in any position in the map. Put di�erently, the width is thelargest number of intervals cut by any vertical line across the map. We have observed thatmost published physical maps have very small width: Typically, the width in genome mappingexperiments ranges between 5 and 15, while the total number of clones may be thousands [32,43, 10]. The reasons for this phenomenon are the statistical distribution of the clones along thegenome, and the need to minimize the experimental e�ort which grows (up to quadratically)with the number of clones. Since trying to minimize the number of false negatives needed toform a map is known to be hard, (this is the completion problem discussed above) a reasonablealternative goal is to recognize false negatives which will yield a map with minimum width. I.e.,the parameter we would like to optimize on now is the width of the resulting map, while we donot directly minimize the number of corrected false negatives. We show here that the decisionversion of this problem is NP-complete, even under the severe restrictions on the input.Mathematical formulation: The width of a map as de�ned above is equivalent to theclique size of the corresponding interval graph. (The clique size of a graph is the size of thelargest set of vertices each two of which are adjacent). There are several notions of graphwidth, the one which we shall need here is called pathwidth. A formal de�nition of pathwidthwe be given in section 4. We shall consider the problem when the input graph is assumed tobe bipartite:PATHWIDTH OF A BIPARTITE GRAPH:Given a bipartite graph G and a constant k, is there an interval supergraph of Gwhose clique size is at most k?Equivalently, is the pathwidth of G at most k � 1?



- 5 -Discussion: The Pathwidth problem is NP-complete on arbitrary graphs [29, 2], and evenfor chordal graphs [25] and (using the equivalence to node search [30]) for planar graphs withvertex degrees at most three [41]. On the other hand, it is solvable in linear time when k is�xed [31, chapter 11]. We shall prove that under the restriction of the problem to bipartitegraphs it remains NP-complete.D. Handling probe-clone errorless data under chimericism:Biological motivation: In some �ngerprinting techniques (cf. [3, 37]) one has a collectionof clones, and a set of short genomic inserts (called anchors or probes). A probe de�nes a singlelocation where a given subset of the clones coincide. For each probe/clone pair, biological tech-niques can �nd out whether the clone contains the probe as a subsequence. Then the problemis to construct an ordering in which the probes could occur along the original chromosome,that is consistent with this probe/clone incidence information. This has an e�cient solution ifwe assume that all clones are simple substrings of the chromosome. We show that the problemis potentially much harder in the presence of chimericism. Chimericism (see [49]) is the resultof concatenating two or more clones from di�erent parts of the genome, producing a \chimericclone" { one that is no longer a simple substring. Given a collection of clones obtained froma single chromosome, it is not known which are chimeric, but some clone libraries su�er fromhigh rates of chimericism (estimated to be as high as 60% [49]). However, most chimeric clonesconsist of the concatenation of just two substrings, so we would like to �nd probe orderingsthat show the clones as consisting of one or two subsequences.Mathematical formulation: Consider the probe-clone incidence matrix M , with rowsindexed by probes and columns by clones, and 1 in position (i; j) if clone j contains probe i. Ifeach clone is a contiguous interval, the problem is to permute the rows so that the ones in eachcolumns are consecutive. In the presence of chimeric clones, each of which is a concatenation ofat most two substrings, the problem corresponds to �nding an arrangement of the rows of Msuch that there are at most two sequences of consecutive ones in each column. More generally,let us say that a (0; 1) matrix has the k-consecutive ones property (k-C1P) if there exists a roworder such that in each column the occurrences of all ones appear in at most k consecutiveblocks. The decision version of our problem is the following:The k-CONSECUTIVE ONES Problem:Does a given (0; 1) matrix have the k-consecutive ones property?Discussion: For k = 1 this problem is polynomial [6]. We show in Section 5 that decidingif there exists an order satisfying the property is NP-complete for every k � 2. This appliesin particular to the case where k = 2 which is of interest to PM. Note that if instead wehave pairwise overlap information between such chimeric clones, then the problem is to �nd



- 6 -a 2-interval realization of the associated graph (where each vertex corresponds to one or twointervals on the real line). This problem has already been shown to be NP-complete by Westand Shmoys [50].Other generalizations of the C1P have been shown to be NP-complete, in the context of con-secutive retrieval in databases. Kou [34] proves the NP-completeness of �nding a permutationof the rows that minimizes the total number of sets of consecutive ones in a matrix. The resulthere mirrors that of [50] for the related problem of recognizing k-interval graphs. However, thekind of information contained in an interval graph about the corresponding sets of intervals isdi�erent from the information contained in an incidence matrix, and it does not appear possibleto prove this result by a simple application of [50] (or vice versa.)There have been several statistical and algorithmic studies of PM. The papers [35, 4, 3]study probabilistic models for the distribution of the number and size of connected componentsin the map, as a function of experimental parameters, and its implications for mapping projectdesign. Alizadeh et al. [1] have recently investigated the model of [35] for the special case ofhybridization �ngerprints with equal-length clones. Using heuristics for a combinatorial versionof the problem, they obtained encouraging results with simulated data. They also prove NP-hardness of two variants of the problem. Goldstein and Waterman [20] show that restrictionmapping is NP-complete. These related hardness results are not equivalent to those presentedhere.2 Colored Unit Interval Graph CompletionGiven a set of intervals on the real line, one can de�ne a partial order on the intervals by a � bif and only if the interval a is completely to the left of interval b. We use this interval orderto give a reduction from BETWEENNESS [45]: Given a set of elements S = fa1; : : : ; ang,and a set T = fT1; : : : ; Tmg of ordered triplets of elements from S, where Ti = (ai1 ; ai2 ; ai3)i = 1; : : : ; m, does there exist a one-to-one function f : S ! f1; 2; : : : ; ng such that eitherf(ai1) < f(ai2) < f(ai3) or f(ai1) > f(ai2) > f(ai3) for i = 1; : : : ; m?Theorem 2.1 The colored unit interval graph sandwich problem is NPC.Proof. The problem is in NP since recognition of unit interval graphs can be done in lineartime [6, 33, 14]. We provide a reduction from Betweenness: Given a set of triplets fT1; : : : ; Tkg,of elements from the ground set S = fs1; : : : ; sng, suppose w.l.o.g. that n is odd, say, n =2m� 1 > 1. Construct a graph G = (V;E) where the vertex set is V = U [W1[ � � �[Wk . U =fuijsi 2 Sg i.e., each ui 2 U corresponds to an element si 2 S. The vertex setWi corresponding



- 7 -to triplet Ti consists of 2n vertices: Wi = fv1i ; : : : ; v2ni g. De�ne for each triplet Ti = (x; y; z)the edges (x; v1i ); (v1i ; v2i );(v2i ; v3i ); : : : ; (vni ; y),(y; vn+1i ),(vn+1i ; vn+2i ); : : : ; (v2n�1i ; v2ni );(v2ni ; z). Inother words,Wi together with the vertices x; y; z form a chain of 2n+3 vertices, with x; y in theends and z in the middle. The union of the k chains is the edge set E. Finally, color c(u) = 0for each u 2 U , c(vti) = c(vn+1�ti ) =c(vn+ti ) = c(v2n+1�ti ) = (i � 1)m+ t for i = 1; : : : ; k andt = 1; : : : ; m. Note that the coloring is proper.Suppose there is a linear order on S solving the Betweenness problem. Then one can placen disjoint unit open intervals, one for each vertex in U , on the line segment [0; n] in the sameorder. Since the middle interval for each triplet appears between the other two, it is easy toverify that one can now add unit intervals for theW -vertices in each chain so that no like-coloredintervals are overlapping and the mandatory overlaps are respected (see �gure 1)
120 x y3 z4y i i i i i i i y i i i i i i i yx0 1 2 3 4 3 2 1 0 1 2 3 4 3 2 1 0y z

Figure 1: Top: A chain corresponding to the the triplet (x; y; z), for the case where m = 4.Numbers denote colors. Bottom: A unit interval representation of the chain. Numbers denote thecolor of all intervals on that level.Conversely, suppose that there is a solution to the colored sandwich problem. Since allvertices in U have the same color, their intervals must be pairwise disjoint in every realization,and thus form a linear order along the line. The coloring of the chains guarantees that in eachchain, the intervals to the left and to the right of the middle vertex in it do not cross. Thus, theinterval corresponding to the middle element in each triplet must be between the intervals ofthe other two elements. Hence, any interval realization of the sandwich graph induces a linearorder on the set S which satis�es the betweenness condition.3 Maximum Interval Subgraph ProblemsThe graph G0 = (V 0; E 0) is a subgraph of the graph G = (V;E) if V 0 � V and E 0 � E. A graphis cubic if every vertex has exactly three edges incident on it. A graph is chordal if it does not



- 8 -contain an induced cycle of length greater than three. Three vertices in G form an asteroidaltriplet in G if they are pairwise nonadjacent, and any two of them are connected by a pathwhich does not pass through the neighborhood of the third. In the proof below, we shall usethe fact that an interval graph cannot contain an asteroidal triplet and must be chordal [36].We refer to the decision version of the problem where one asks for an interval subgraph withat least k edges.Theorem 3.1 The Maximum Interval Subgraph problem is NP-complete.Proof. The problem is in NP since one can recognize an interval graph in linear time [6, 26].We give a reduction from the Hamiltonian Path problem restricted to planar cubic graphs [19].Given a cubic graph G = (V;E) with jV j = n, we create a new graph G0 = (V 0; E 0) by \blowingup each vertex into a triangle, and maintaining the cubic property of the graph". Precisely, thevertex set is V 0 = fvi1; vi2; vi3 j vi 2 V g. We call vi1; vi2; vi3 the representatives of vi. The edge setconsists of two types of edges E 0 = Enew [ Eold, as follows:(1) Enew = f(vi1; vi2); (vi2; vi3); (vi3; vi1) j vi 2 V g. Hence, the three representatives of each vertexvi 2 V form a triangle in G0.(2) For each original edge (vi; vj) 2 E de�ne an edge (vik; vjl ) 2 Eold, choosing the indicesk; l in such a way that all Eold-edges are nonadjacent. In other words, the edge connectsrepresentatives of its original endpoints, and for every v 2 V , each of the three original edgesincident on v in G is incident on a di�erent representative of v. Call the edges in the Enew-triangles new and the Eold-edges old. Finally, set k = 4n� 1.The reduction is clearly polynomial. Note that G0 is cubic and has 3n new edges and 3n2 oldedges. Moreover, G0 is planar since it does not contain a K5 or a K3;3. (Equivalently, it is easyto see that starting from a planar representation of G, the choice in (2) can be made so thatno edges cross.) We claim that G has a hamiltonian path i� G0 has an interval subgraph withat least 4n� 1 edges.Suppose G contains a hamiltonian path P . Delete all old edges in G0 which do not correspondto edges in P . Denote the resulting subgraph by ~G (see �gure 2(a)). ~G is an interval graph, ascan be veri�ed by its interval representation as depicted in �gure 2(b). Moreover, ~G containsexactly 4n� 1 edges: 3n new edges and n� 1 old edges.Conversely, suppose ~G = (V; ~E) is an interval subgraph of G0 with j ~Ej � 4n� 1. First, weprove that ~G contains all the new edges of G0 and exactly n� 1 old edges:For every vertex v in G, let Sv be the subgraph of G0 induced by the three representativesof v together with their three neighbors. Sv is an asteroidal triplet, and deleting any edge in Svcancels the asteroidality of the triplet. There are n such triplets. Since ~G is an interval graph,



- 9 -(a) e e���eAAA e e���eAAA r r r e e���eAAA (b) q q qFigure 2: (a) The interval subgraph ~G. (b) A unit interval realization of ~G.it cannot contain an asteroidal triplet [36], so out of each such Sv, at least one edge must bemissing in ~G.Each Sv contains three new and three old edges. Suppose two new edges are missing fromsome Sx. Since the total number of edges removed from G0 to form ~G does not exceed n2 + 1,it turns out that at most n2 � 1 additional edges must be removed from G0 in order to cancelthe remaining n � 1 asteroidal triplets fSv j v 6= xg. Since each (new or old) edge is containedin at most two Sv-s we obtain a contradiction. Hence, out of the edge set of each Sv , at mostone new edge can be missing in ~G. In particular, the representatives of each vertex induce aconnected subgraph in ~G.Let H be the graph obtained from ~G by contracting all new edges. By what we have justproved, the number of vertices in H is exactly n, one for each original vertex in G. Moreover,H is acyclic, since the existence of a cycle in H would imply the existence of a chordless cycleat least twice as long in ~G, contradicting the fact that ~G must be chordal, as an interval graph.It follows that H contains at most n�1 edges. Thus, ~G contains at most n�1 old edges. Sincethe total number of edges in ~G is at least 4n � 1, ~G must contain all the 3n new edges in G0and exactly n � 1 old edges.Since H is acyclic with n�1 edges and n vertices it must be connected. Suppose H containsa vertex v with degree three. Since we have just proved that ~G contains all the new edges, thisimplies that the asteroidal triplet Sv from G0 exists also in ~G, contradicting the fact that ~G isan interval graph. Hence, H de�nes a hamiltonian path in G.The same reduction in the theorem above applies also to the maximum unit interval sub-graph problem: Simply observe that the graph ~G is actually a unit interval graph. In fact, aunit interval realization of it is drawn in �gure 2(b).Corollary 3.2 The Maximum Unit Interval Subgraph problem is NP-complete.Remark 3.3 The reductions above imply the stronger results that the Maximum Interval (andUnit Interval) Subgraph problems are NP-complete even when the input is restricted to planarcubic graphs.



- 10 -4 Pathwidth of bipartite graphsA path decomposition of a given graph G = (V;E), is a sequence of subsets of V , (X) =(X1; : : : ; Xl) such that(1) V = [iXi(2) For each edge (u; v) 2 E, there exists some i 2 f1; : : : ; lg so that both u and vbelong to Xi.(3) For each v 2 V there exist some s(v); e(v) 2 f1; : : : ; lg so that s(v) � e(v), andv 2 Xj if and only if j 2 fs(v); s(v) + 1; : : : ; e(v)g.The width of a path decomposition (X) is de�ned by pwX(G) = maxfjXij j i = 1; : : : ; lg�1.The pathwidth of G, denoted pw(G), is the minimum value of pwX(G) over all path decom-positions, i.e., pw(G) = minfpwX(G) j (X) is a path decomposition of Gg. The PATHWIDTHproblem is to decide for a given graph G and a given integer k if pw(G) � k.The notions of pathwidth and interval graphs are related by the following well-known ob-servation:Lemma 4.1 (cf. [39]) For every graph G, the pathwidth of G is one less than the least cliquesize of any interval supergraph of G.Hence, computing the pathwidth is equivalent to �nding an interval supergraph with minimumclique size.Theorem 4.2 Computing the pathwidth of bipartite graphs is NP-complete.Proof. Reduction from PATHWIDTH on arbitrary graphs: Given a graph G = (V;E) wherejV j = n and a parameter k as the input of PATHWIDTH, we de�ne a new bipartite graphas follows: Replace each original edge by n + 1 parallel edges and add a vertex on each suchedge. Formally, the new bipartite graph is G0 = (V; U; E 0), where U = fei j e = (u; v) 2 E; i =1; : : : ; n+ 1g, and E 0 = f(u; ei); (v; ei) j e = (u; v) 2 E; i = 1; : : : ; n+ 1g. The parameter in thenew problem is set to k + 1. The reduction is clearly polynomial.Suppose (X1; : : : ; Xr) is a width k path decomposition of G. Fix an edge e = (u; v) 2 E.There must exist at least one original set Xi such that u; v 2 Xi. Pick one such set and de�nea new decomposition(X1; : : : ; Xi�1; Xi; Xi [ e1; Xi [ e2; : : : ; Xi [ en+1; Xi+1; : : : ; Xr)Repeat the process with each edge e 2 E. Note that we allow only original sets to be \expanded"in this way, possibly expanding the same set several times for several edges. It is easy to verifythat the �nal result is a path decomposition for G0 with width at most k + 1.



- 11 -Conversely, let (Y 0) = (Y 01; : : : ; Y 0t ) be a path decomposition of G0 with width k+1. Withoutloss of generality no Y 0i induces an independent set, since if there is one it can simply be deletedfrom the decomposition. Hence, every Y 0i contains at least one vertex from U . Let Yi = Y 0i \V .jY 0i j � k � 1 for each i. We shall show that (Y ) = (Y1; : : : ; Yt) is a path decomposition for G.Clearly, for each v 2 V the set fijv 2 Yig is contiguous in the decomposition since the propertyholds for the original decomposition (Y 0).Let e = (x; y) 2 E and suppose x; y do not appear together in any set in (Y ). Without lossof generality, suppose j = maxfijx 2 Yig < l = minfijy 2 Yig. Since in G0 each of the verticesin the set S = feiji = 1; : : : ; n + 1g is incident on both x and y, it follows that S � Y 0i forj � i � l. Since n+ 1 > k+ 1 this is a contradiction. Hence, for every edge e = (x; y) 2 E, x; yappear together in some set of the decomposition (Y 0) and therefore also in the decomposition(Y ).It is now natural to ask the same problem with unit intervals: Here we can obtain an evenstronger result, using the following recent theorem from [27]: Computing the bandwidth isequivalent to �nding a unit interval supergraph with minimum clique size. Hence, the NP-completeness of BANDWIDTH on trees [17, 40], immediately implies that given a graph G,�nding a unit interval supergraph of G whose clique size is minimum is NP-complete, even ifG is a binary tree, or a caterpillar with hair-length three.5 k-Consecutive Ones MatricesRecall that the k-consecutive-ones property (abbreviated to k-C1P) of a (0,1)-matrix M is theproperty that the rows of M can be permuted such that within each column, there are at mostk sequences of consecutive ones. We show in this section that testing the k-C1P is NP-completefor all k � 2.Using the terminology of [49], we refer to a maximal sequence of consecutive ones in a columnas a contig. Then we say that a matrix is k-consecutive if there are at most k contigs in eachcolumn. (Thus the k-C1P is the property that some permutation of the rows makes a matrixk-consecutive.) We refer to a permutation of the rows of M which makes M k-consecutive asa k-consecutive arrangement of M .We use the following notation: A column in a (0,1)-matrix is represented by a list of thepositions at which a 1 occurs. Thus [1; 2; 5] represents a column of zeroes and ones in whichonly the �rst, second and �fth entries are ones.Lemma 5.1 For any k � 2, any (0,1)-matrix M and any two rows, a set of columns canbe appended to M so as to constrain those two rows to be adjacent (in either order) in any



- 12 -k-consecutive arrangement of M .Proof. Consider the column [1; 2; : : : ; k; k + 1]. If this column occurs in a matrix M then itrequires at least two of the �rst k+ 1 rows to be adjacent in some order. Now suppose that Mcontains the columns f[1; 2; : : : ; k; l] : l = k + 1; k+ 2; : : : ; 3k+ 1gThen if in fact no two of the �rst k rows are adjacent in some k-consecutive arrangement ofM , then in that arrangement, each of the subsequent 2k + 1 rows must be adjacent to one ofthe �rst k rows. However, this is impossible since there are at most 2k positions adjacent tothese rows. So we conclude that the above set of columns must imply that two of the �rst krows must be adjacent. (Note that no further constraints are implied by these columns on thepositions of the subsequent 2k + 1 rows in k-consecutive permutations of M .)We can now repeat this entire construction in the same way but so as to constrain twoof rows 1; : : : ; k � 1 and row l to be adjacent, for l = k + 1; : : : ; 3k � 1. The resulting set ofcolumns imply that two of rows 1; : : : ; k � 1 must be adjacent. Continuing in this fashion, wecan eventually force rows 1 and 2 in particular to be adjacent.As a consequence of this result, we have that for any k, there is in fact a matrix whichdoes not have the k-C1P. We can construct such a matrix by forcing the �rst 2k + 1 rows tobe adjacent and in order (row i is adjacent to row i + 1 for i = 1; : : : ; 2k), and then includingthe column [1; 3; 5; 7; : : : ; 2k+1]. Note that the construction uses only 3k+1 rows, but (�(k))!columns, which is a weak upper bound. It is relatively easy to prove, using the probabilisticmethod, the existence of matrices whose size is polynomial in k which do not have the k-C1P.The following proof, of some independent interest, shows this fact by constructing such a matrix.Let P be the (k + 1)2 � (k + 1)2 permutation matrix0BBBBBBBBBB@ 0 0 0 : : : 0 11 0 0 : : : 0 00 1 0 : : : 0 00 0 1 : : : 0 0... ... ... . . . ... ...0 0 0 : : : 1 01CCCCCCCCCCALet M be the (k + 1)3 � (k + 1)3 matrix0B@ P a1;1 : : : P a1;(k+1)... . . . ...P a(k+1);1 : : : P a(k+1);(k+1) 1CA



- 13 -M has exactly k + 1 ones per row and k + 1 ones per column. We next show that thereexists an appropriate choice of values for the powers ai;j such thatM does not have the k-C1P.We want to choose the powers ai;j such that there is no 2� 2 submatrix containing all ones.Such a submatrix would have to have its four entries from four distinct P ai;j submatrices withpowers of the form a�;; a�;�; a�;; a�;� (where we may assume � < �,  < �). We claim thatthese powers must satisfy the equation a�;� = a�;� + a�; � a�; .To prove this claim, note �rst that the one in row x of P ai;j is in column (x� ai;j) of P ai;j ,and the one in column y of P ai;j is in row (y + ai;j) of P ai;j . Now suppose that the abovematrices have a 2� 2 submatrix containing all ones. Let x be the row number in P a�; wherean entry of this submatrix occurs. The one in row x of P a�; is in column (x� a�;) of P a�; ,and corresponds to the one in row x of P a�;� , which must be in column (x�a�;�) of P a�;� . Thecorresponding one in column (x� a�;) of P a�; must be in row (x� a�; + a�;) of P a�; . Thecorresponding one in row (x� a�; + a�;) of P a�;� must be in column (x� a�; + a�; � a�;�)of P a�;� . This must be the same column as the one in P a�;� (ie. column (x� a�;�)), hence theequation follows.We may choose the ai;j to avoid this situation: there are (k + 1)2 possible values for eachof the ai;j , and the assignment of a value to a di�erent one of the ai;j will eliminate at mostone possibility for each of the others. Since this set has only (k + 1)2 members, we may assignvalues to them all without introducing the submatrix that we wish to avoid.Any permutation of the rows involves only (k + 1)3 � 1 adjacencies of rows, and so forappropriate choices of the ai;j described above, makes at most (k + 1)3 � 1 pairs of ones incolumns adjacent. Hence there will be at least one column with none of its ones made adjacent.We next show the main result of this section, that it is NP-complete to test a matrix for the2-C1P. We prove the result in the standard way, using a reduction from 3SAT, the problem of�nding a satisfying assignment to a boolean formula in 3CNF (cf. [18]).Theorem 5.2 Testing for the 2-C1P is NP-complete.Proof. Reduction from 3SAT. We show how to transform a formula � in 3CNF into a (0,1)-matrix M� in polynomial time, in such a way that � is satis�able if and only if M� has the2-C1P.Let � be a 3CNF formula over n variables fv1; : : : ; vng, and with m clauses fC1; : : : ; Cmg.We construct the associated matrix M� (having 2n+ 5m rows and 6m+ 10n� 5 columns) asfollows.Let r1; : : : ; r2n+5m be the rows ofM� (in order from top to bottom). Associate with variable



- 14 -vi the rows r2i�1 and r2i. vi is to represent the statement (about a permutation of the rows)\r2i�1 is above r2i". So � represents a statement about a permutation of the rows of M�. Weconstruct M� to ensure that any 2-consecutive arrangement of M� corresponds to a satisfyingassignment of �, and that if � is satis�able then M� has the 2-C1P.We introduce a set of columns which have the following e�ects:� In any 2-consecutive arrangement of M�, r2i�1 must be adjacent to r2i, for i = 1; : : : ; n.� In any 2-consecutive arrangement of M�, the pair fr2i�1; r2ig must be adjacent to thepair fr2i+1; r2i+2g, for i = 1; : : : ; n� 1.So the position of r2i�1 immediately above or below r2i encodes an assignment of truth orfalsity to the variable vi, and the pairs of rows encoding the variables are consecutive and inorder. But �rst it is necessary to show how these constraints may be imposed.Include the �ve columns [1; 2; 3]; [1; 2; 4]; [1; 2; 5]; [1; 2; 6]; [1; 2; 7]. This is the constructionof Lemma 5.1 for k = 2, and these columns force rows r1 and r2 to be consecutive in any2-consecutive arrangement of M�.Hence we may enforce the �rst of the above constraints using 5n columns, applying theabove construction for each pair r2i�1; r2i.Refer to a set of rows which must be adjacent in some order as a block. Let block bi be thepair fr2i�1; r2ig, for i = 1; : : : ; n. So block bi represents variable vi.We may constrain two blocks to be adjacent in much the same way as for individual rows. Forexample, to make b1 and b2 adjacent, include the columns [1; 2; 3; 4; 5]; [1; 2; 3; 4; 6]; [1; 2; 3; 4; 7];[1; 2; 3; 4; 8]; [1; 2; 3; 4; 9]. Applying this construction repeatedly and shifting the ones two rowslower at each repetition, we may use 5(n� 1) columns to make block bi adjacent to block bi+1,for i = 1; : : : ; n � 1, in any permutation that makes M� 2-consecutive. This ensures that thesecond constraint holds.Having used two rows for each variable, we now use an additional block of �ve rows for eachclause in �. Assume n � 3 in what follows, and consider the column[2n� 4; 2n� 1; 2n; 2n+ 1; 2n+ 2; 2n+ 3; 2n+ 4; 2n+ 5]:Any 2-consecutive arrangement of M� must now leave the �ve rows r2n+1; : : : ; r2n+5 adjacentin some order, and adjacent to block bn. (This is because r2n�4 is not allowed to be adjacent tothe other rows containing a 1 in this column.) No other constraints are placed on 2-consecutivepermutations. We may then force the next �ve rows r2n+6; : : : ; r2n+10 to be adjacent in someorder and for this block to be next to the block r2n+1; : : : ; r2n+5. This is accomplished with the



- 15 -column [2n� 4; 2n+ 1; 2n+ 2; 2n+ 3; : : : ; 2n+ 10]:Since m is the number of clauses in �, we need an additional m � 2 blocks of �ve rows, whichare obtained using columns of the general formf[2n� 4; 2n+ 5i� 9; 2n+ 5i� 8; 2n+ 5i� 7; : : : ; 2n+ 5i] : i = 3; : : : ; mgLet Bj be the block fr2n+5j+1; : : : ; r2n+5j+5g, j = 0; : : : ; m � 1. Bj corresponds to clauseCj . The idea now is that when any literal in that clause is set to false, this should lead to somerestriction on the order in which the �ve rows in Bj may appear in a 2-consecutive arrangementof M�. In what follows, the \top" position or positions of Bj mean the positions of rows in Bjclosest to the blocks b1; : : : ; bn representing the values of the boolean variables.Suppose that Cj contains the literal v�. Consider the column[2�; 2�+ 1; : : : ; 2n+ 5j + 1]:If the rows in block b� are switched (setting v� to false) then to make M� 2-consecutive, rowr2n+5j+1 must be the top row in Bj . (Any other arrangement of Bj gives this column threecontigs.) If Cj contains :v� then this constraint is made conditional on v� being true byswitching the 1 and 0 in b�, giving column [2�� 1; 2�+ 1; 2�+ 2; : : : ; 2n+ 5j + 1].Suppose v� is another literal in Cj and consider the column[2�; 2� + 1; : : : ; 2n+ 5j + 4]:If v� is false, this column forces r2n+5j+5 to be the bottom row of Bj . (If r2n+5j+5 is placedanywhere else in Bj , then the zero it contains breaks up the contig above it.)Suppose that v is the third literal in Cj . Introduce the following two columns:[2; 2+ 1; : : : ; 2n+ 5j + 2];[2; 2+ 1; : : : ; 2n+ 5j + 3]:If v is false then r2n+5j+1 and r2n+5j+2 must be in the top two positions in Bj . Also r2n+5j+1,r2n+5j+2, and r2n+5j+3 must be in the top three positions. Consequently r2n+5j+3 must be inthe middle position. If v is true, we have the following milder constraints: We may not letr2n+5j+1 and r2n+5j+2 be non-adjacent with neither at the top of Bj (this gives rise to threecontigs in the �rst of these two columns.) Furthermore we may not let r2n+5j+1, r2n+5j+2, andr2n+5j+3 occupy the top, middle and bottom positions, or the second, third/fourth, and bottompositions, since these arrangements give rise to three contigs in the second of the above twocolumns.



- 16 -Include the column [2n + 5j + 1; 2n + 5j + 3; 2n + 5j + 5]. If all three literals in Cj arefalse, then the three ones in this column (which occur in Bj) must be separated by zeroes ifthe rows of M� have been permuted such that the rest of the columns described earlier are2-consecutive. It remains to show that if any literal in Cj is true, then some arrangement of therows in Bj leaves this latest column with only two contigs while satisfying the other constraintsput on their order.If v� is true then rows r2n+5j+1; : : : ; r2n+5j+5 may be arranged in the order:r2n+5j+2; r2n+5j+1; r2n+5j+3; r2n+5j+4; r2n+5j+5:If v� is true then they may be arranged in the order:r2n+5j+1; r2n+5j+2; r2n+5j+3; r2n+5j+5; r2n+5j+4:If v is true then they may be arranged in the order:r2n+5j+1; r2n+5j+3; r2n+5j+2; r2n+5j+4; r2n+5j+5:These sequences (which are from top to bottom) work even if both the other two literals arefalse.If we encode all m clauses in this way, using block Bi for clause Ci, this requires 5mcolumns, and to make M� 2-consecutive corresponds to satisfying their conjunction. Hence wehave constructed a matrix M� which has the 2-C1P if and only if � is satis�able.Having shown that testing the 2-C1P is NP-complete, we can use the lemma to generalizethis result to the k-C1P, for every �xed k > 2. This is done by attaching an extra 2k � 1 rowsto the top of M� which are constrained to be in order, and extend each column of M� with2k � 1 alternating zeroes and ones. This adds k � 2 to the number of contigs in each column.In reality, sparse matrices are likely to be of more interest to biologists, since typically aclone will only contain a small number of the probes, and there is also only limited coverageof the whole sequence by the clones. Hence it is appropriate to ask how hard it is to test forthe k-C1P given a limit l on the number of ones per row and per column. The above reductioncan no longer be used, and it remains an open problem whether the 2-C1P is NP-hard for somevalue of l. Note that it can be shown by similar constructions to the above, that testing for thek-C1P (for any k � 3) is NP-hard for matrices with a limited number of ones per column (i. e.short clones).AcknowledgmentsWe thank Mike Waterman and an anonymous referee for their comments which improved thereadability of this manuscript. Paul Goldberg would like to thank Sorin Istrail for bringing to



- 17 -his attention computational problems related to physical mapping, and for many stimulatingdiscussions. His work was carried out at Sandia National Laboratories supported by the U.S.Department of Energy under contract DE-AC04-76DP00789. Ron Shamir's work has beensupported in part by a grant from the Israel Ministry of Science and the Arts.References[1] F. Alizadeh, R. M. Karp, L. W. Newberg, and D. K. Weisser. Physical mapping of chromosomes: Acombinatorial problem in molecular biology. In Proc. fourth annual ACM-SIAM Symp. on DiscreteAlgorithms (SODA 93), pages 371{381. ACM Press, 1993.[2] S. Arnborg, D. J. Corneil, and A. Proskurowski. Complexity of �nding embedding in a k-tree.SIAM J. Alg. Disc. Meth., 8:227{284, 1987.[3] R. Arratia, E. S. Lander, S. Tavar�e, and M. S. Waterman. Genomic mapping by anchoring randomclones: A mathematical analysis. Genomics, 11:806{827, 1991.[4] E. Barillot, J. Dausset, and D. Cohen. Theoretical analysis of a physical mapping strategy usingrandom single-copy landmarks. PNAS, 88:3917{3921, 1991.[5] S. Benzer. On the topology of the genetic �ne structure. Proc. Nat. Acad. Sci. USA, 45:1607{1620,1959.[6] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, andplanarity using PQ-tree algorithms. J. Comput. Sys. Sci., 13:335{379, 1976.[7] E. Branscomb et al. Optimizing restriction fragment �ngerprinting methods for ordering largegenomic libraries. Genomics, 8:351{366, 1990.[8] D. T. Burke, G. F. Carle, and M. V. Olson. Cloning of large segments of exogenous DNA into yeastby means of arti�cial chromosome vectors. Science, 236:806{812, 1987.[9] A. V. Carrano. Establishing the order of human chromosome-speci�c DNA fragments. In A. D.Woodhead and B. J. Barnhart, editors, Biotechnology and the Human Genome, pages 37{50. PlenumPress, 1988.[10] D. Cohen, A. Chumakov, and J. Weissenbach. A �rst-generation physical map of the human genome.Nature, 366:698{701, 1993.[11] F. Collins and D. Galas. A new �ve-year plan of the U.S. Human Genome Project. Science,262:43{46, 1 October 1993.[12] A. Coulson, J. Sulston, S. Brenner, and J. Karn. Toward a physical map of the genome of thenematode caenorhabditis elegans. PNAS, 83:7821{7825, 1986.[13] Alister G. Craig et al. Ordering of cosmid clones covering the herpes simplex virus type I (HSV-I)genome: A test case for �ngerprinting by hybridization. NAR, 18:2653{2660, 1990.



- 18 -[14] X. Deng, P. Hell, and J. Huang. Linear time representation algorithms for proper circular arcgraphs and proper interval graphs. Technical report, School of Computing Science, Simon FraserUniversity, 1993.[15] R. G. Downey and M. R. Fellows. Fixed-parameter intractability. In Proc. Structures 92, pages36{49, 1992.[16] M. R. Fellows, M. T. Hallet, and H. T. Wareham. DNA physical mapping: Three ways di�cult. InProc. First European Symp. on Algorithms (ESA '93), pages 157{168. Springer, 1993. LNCS 726.[17] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth. Complexity results for bandwidthminimization. SIAM J. Appl. Math., 34(3):477{495, 1978.[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco, 1979.[19] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar hamiltonian circuit problem is NP-complete. SIAM J. on Computing, 5:704{714, 1976.[20] L. Goldstein and M. S. Waterman. Mapping DNA by stochastic relaxation. Advances in AppliedMathematics, 8:194{207, 1987.[21] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.[22] M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. Technical Report 270-92,Computer Science Dept., Tel Aviv University, 1992. To appear in Journal of Algorithms.[23] M. C. Golumbic, H. Kaplan, and R. Shamir. On the complexity of DNA physical mapping.Advancesin Applied Mathematics, 15:251{261, 1994.[24] M. C. Golumbic and R. Shamir. Complexity and algorithms for reasoning about time: A graph-theoretic approach. J. ACM, 40:1108{1133, 1993.[25] J. Gustedt. On the pathwidth of chordal graphs. Technical report, Fachbereich Mathematik,Technische Universit�at Berlin, 1992. To appear in Discrete Math.[26] W.-L. Hsu. A simple test for interval graphs. Technical report, Inst. of Information Science,Academica Sinica, Taipei, Taiwan, 1992.[27] H. Kaplan and R. Shamir. Pathwidth, bandwidth and completion problems to proper intervalgraphs with small cliques. Technical report, CS Department, Tel Aviv University, November 1993.to appear in SIAM Journal on Computing.[28] T. Kashiwabara and T. Fujisawa. An NP-complete problem on interval graphs. In IEEE Symp. ofCircuits and Systems, pages 82{83. IEEE, 1979.[29] T. Kashiwabara and T. Fujisawa. NP-completeness of the problem of �nding a minimum-clique-number interval graph containing a given graph as a subgraph. In IEEE Symp. of Circuits andSystems, pages 657{660. IEEE, 1979.[30] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theoretical Computer Science,47:205{218, 1986.



- 19 -[31] T. Kloks. Treewidth. PhD thesis, Dept. of Computer Science, Utrecht University, 1993.[32] Y. Kohara, K. Akiyama, and K. Isono. The physical map of the whole E. coli chromosome: appli-cation of a new strategy for rapid analysis and sorting of large genomic libraries. Cell, 50:495{508,1987.[33] N. Korte and R. H. M�ohring. An incremental linear time algorithm for recognizing interval graphs.SIAM J. Comput., 18:68{81, 1989.[34] L.T. Kou. Polynomial computable consecutive information retrieval problems. SIAM J. Comput.,6:67{75, 1977.[35] E. S. Lander and M. S. Waterman. Genomic mapping by �ngerprinting random clones: A mathe-matical analysis. Genomics, 2:231{239, 1988.[36] C. G. Lekkerkerker and J. Ch. Boland. Representation of a �nite graph by a set of intervals on thereal line. Fundam. Math., 51:45{64, 1962.[37] R. D. Little et al. Yeast arti�cial chromosomes spanning 8 megabases and 10-15 centimorgans ofhuman cytogenetics band Xq26. PNAS, 89:177{181, 1992.[38] F. Michiels, A. G. Craig, G. Zehetner, G. P. Smith, and H. Lehrach. Molecular approaches togenome analysis: a strategy for the construction of ordered overlapping clone libraries. CABIOS,3(3):203{210, 1987.[39] R. H. M�ohring. Graph problems related to gate matrix layout and PLA folding. In G. Tinhoferet al., editors, Computational Graph Theory, Computing Supplement 7, pages 17{51. Springer,Vienna, 1990.[40] B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete.SIAM J. Algeb. Discr. Meth., 7:505{512, 1986.[41] B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted trees. TheoreticalComputer Science, 58:209{229, 1988.[42] R. Nagaraja. Current approaches to long-range physical mapping of the human genome. InR. Anand, editor, Techniques for the Analysis of Complex Genomes, pages 1{18. Academic Press,London, 1992.[43] M. V. Olson et al. Random-clone strategy for genomic restriction mapping in yeast. Proc. Nat.Acad. Sci. USA, 83:7826{7830, 1986.[44] M. V. Olson, L. Hood, C. Cantor, and D. Botstein. A common language for physical mapping ofthe human genome. Science, 234:1434{1435, 1985.[45] J. Opatrny. Total ordering problems. SIAM J. Computing, 8(1):111{114, 1979.[46] N. Sternberg. Bacteriophage P1 cloning system for the isolation, ampli�cation and recovery of DNAfragments as large as 100 kilobase pairs. PNAS, 87:103{107, 1990.[47] U. S. Congress. Mapping our genes{the genome projects, how big, how fast? Technical ReportOTA-BA-373, O�ce of Technology Assessment, Washington, D.C., 1988.



- 20 -[48] M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bull. Math. Biol., 48:189{195,1986.[49] J.D. Watson, M. Gilman, J. Witkowski, and M. Zoller. Recombinant DNA. W.H. Freeman, NewYork, 2nd edition, 1992.[50] D. B. West and D. B. Shmoys. Recognizing graphs with �xed interval number is NP-complete.Discrete Applied Math., 8:295{305, 1984.[51] M. Yannakakis. Computing the minimum�ll-in is NP-complete. SIAM J. Alg. Disc. Meth., 2, 1981.


