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Abstract

Physical Mapping is a central problem in molecular biology and the human genome
project. The problem is to reconstruct the relative position of fragments of DNA along the
genome from information on their pairwise overlaps. We show that four simplified models of
the problem lead to NP-complete decision problems: Colored unit interval graph completion,
the maximum interval (or unit interval) subgraph, the pathwidth of a bipartite graph, and
the k-consecutive ones problem for k& > 2. These models have been chosen to reflect various
features typical in biological data, including false negative and positive errors, small width

of the map and chimericism.






1 Introduction

In order to replicate and study a certain contiguous stretch of the DNA (a chromosome or a part
of one), copies of the target DNA are cut using enzymatic or mechanical means into shorter
segments, which in turn can be inserted into the DNA molecule of another host organism
(cosmid, phage, yeast etc.). The host then preserves, replicates and reproduces the fragment
of the target DNA as if it were part of its own genome. In particular, numerous copies of the
fragment can be generated using the host’s reproduction system, with all copies being identical
to the original fragment. This process is called cloning, and the preserved fragments are called

clones.

In the cloning process, all information on the relative location of the clones along the target
genome is lost. On the other hand, since the procedure is applied to many copies of the original
genome, fragments may overlap. The problem of reconstructing the relative position of the
clones along the original stretch of DNA, based on this redundancy, is called Physical Mapping
(PM), and the result is called a physical map. Physical mapping [9, 42] is a central problem in
molecular biology. A physical map is an essential part of most sequencing, gene locating and
cloning projects. One of the main initial goals set for the Human Genome Project is to obtain

a detailed physical map of all human chromosomes [47, 11].

The key to map construction is determining overlap (intersection) between pairs of clones.
There are various biological techniques for determining if two clones intersect [12, 38, 44]. All
of these techniques involve obtaining some partial information on the contents of a clone, which
we call the fingerprint of that clone. Intuitively, two clones should intersect if their fingerprints
are sufficiently similar. Ideally one would like to compute the intersection probability for each
pair of clones from their fingerprints, and then, based on the set of probabilities, determine the

most likely placement of all the clones.

In this paper we show that several simplified versions of the physical mapping problem are
NP-complete, and therefore unlikely to have exact, efficient algorithms. (For a discussion of
complexity and NP-completeness in general see [18].) These problems assume a simplified input
data and each tries to model differently uncertainties in the data. For the biologist, these results
may provide insight to what makes a mapping problem difficult. For the computer scientist,
these results may indicate directions for future research which can be pursued once a problem
has been established to be hard (e.g., approximation, probabilistic analysis, parameterized
analysis). jFrom our own experience, perhaps the most positive outcome which may come out
of such results is using insights on the problem difficulty in order to modify and specialize the
model and obtain a tractable problem. This process requires strong interaction between the

biologist and the computer scientist in order to find out what is feasible both experimentally



and computationally.

To formulate the problems graph theoretically we use the model of interval graph: (For a
general introduction and basic terminology in graph theory see, e.g., [21].) G is an interval
graph if one can assign an interval on the real line to each vertex so that two vertices are adjacent
iff their intervals have a nonempty intersection. The set of intervals is called a realization of G.
A graph is a unit interval graph if it is an interval graph which has a realization in which all
intervals have the same length. Interval graphs have been studied intensively (cf. [21]) because
of their wide applicability to practical problems and to biological problems in particular [5, 48].
In the context of PM, both the interval graph model, which allows arbitrary interval lengths,
and the unit interval model are relevant: Some cloning techniques (YACs [8], P1 [46]) generate
clones of variable lengths, while in other clone types (cosmid [13], Lambda [12]) clones are of

roughly the same length.
The problems we study here are as follows:

A. Detecting false negatives in mapping with equal length clones with several

complete digests:

Biological motivation: Suppose a set of clones is obtained by complete digestion of the
genome by one or more restriction enzymes (cf. [12]). Since the digestion is complete, in such
a set no two clones will overlap. Consider a PM project in which the set of clones (the clone
library) consists of equal length clones (cosmids, lambda, etc.), and it is composed of several
subsets of clones, where each subset is obtained by a complete digest with a different set of
enzymes. We would like to reconstruct the map from clone overlap data, in the presence of
“false negative” errors, i.e., some overlaps which are not detected experimentally. We wish to
construct a map which is as close as possible to our input data, i.e., it assumes as few errors as

possible.

Mathematical formulation: Assign a vertex for each clone and connect two vertices by
an edge whenever the corresponding clones overlap according to the experimental data. Denote
the disjoint sets of clones obtained from k complete digests by Sy, ..., Sk. Recall that a proper
coloring of a graph G = (V,F) is a function ¢ : V. — Z (i.e., assigning a “color” ¢(v) to
each vertex v), such that for every (u,v) € I, c¢(u) # ¢(v) (i.e., adjacent vertices have different
colors). Since in each set S; all clones are disjoint, it forms an independent set in the graph, and
all its vertices can be assigned the same color, say ¢. The biological problem is thus equivalent
to augmenting the graph by adding as few edges (corresponding to false negatives) as possible
in order to obtain a unit interval graph, without violating the color constraints. A decision

version of the problem is thus the following:

COLORED UNIT INTERVAL GRAPH COMPLETION:
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Given a graph G = (V, E') with a proper coloring ¢ for it, does there exist a unit

interval graph G = (V, F) such that £ D E' and G is still properly colored by ¢?

Discussion: This problem can be viewed as a restriction of the unit interval sandwich
problem: Given a graph G' = (V, E') and G? = (V, E?) such that F! C E? does there exist
a “sandwich graph” GG = (V, F) where E* C E C E? and ( is a unit interval graph? In our
case F? = {(u,v)|c(u) # ¢(v)}. Sandwich formulations have been used in the past to model
ambiguity in the data of PM, where for each two clones either we are sure that they intersect,
or we are sure that they do not, or we have no information. The interval sandwich problem was
defined in [24] in the context of temporal reasoning, where it was shown to be NP-complete.
Sandwich problems for other graph families were later systematically studied in [22]. NP-
completeness proofs were given in [23] for the unit interval sandwich and the colored version
with non-unit intervals. Fellows et al. [16] have given another proof for the latter result, and
have also shown that the colored interval graph completion is polynomial if the bound on the
number of colors is fixed. They also showed that if that bound is viewed as a parameter, the

problem is W{t]-hard for all ¢. (For an exposition of the W hierarchy see [15].)

In Section 2 we sketch a simple NP-completeness proof for problem (A). This also provides
a new NP-completeness proof for the unit interval sandwich problem, which is much simpler
than the proof in [23]. Quite recently, two of us [27] have given a polynomial algorithm for the
version of problem (A) in which the number of colors is fixed. On the other hand, they have
given a WJ[1]-hardness proof for the parameterized version of problem (A), where the number
of colors is a parameter. While this result implies the NP-completeness of problem (A), readers

of the 10-page parametric reduction there may appreciate the simplicity of the one here.
B. Detecting false positive errors:

Biological motivation: In some fingerprinting techniques (e.g., fingerprints based on
restriction enzyme fragments [7]) the accuracy of the decision about clone pair intersection
is proportional to the amount of overlap. Assuming that false negative errors are caused by
insufficient overlap between clones, they will, in many cases, cause the decomposition of the
map into more components (contigs) than there are in the “real” map, without destroying the
interval structure. Under this assumption (which is made in most statistical analyses, e.g. [35]),
the few but crucial false positive errors are those which may destroy the interval property, and
must be detected. Problem (B) models this situation where we wish to find a realization with

as few false positive errors as possible.

Mathematical formulation: Form the clone intersection graph as in A. The problem

then is equivalent to the following:
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MAXIMUM INTERVAL SUBGRAPH:
Given a graph G = (V, F) find a subgraph G’ = (V, E') where E' C F, G’ is interval

and |F’| is maximum.

Discussion: In Section 3 we prove that this problem is NP-complete, even under severe re-
strictions on the graph, both for arbitrary and for unit intervals. Maximum subgraph problems
have been studied for many graph properties, see [18, pp.194—-199]. The analogous completion
problem where one asks for adding as few edges as possible to a graph and making it interval
is known to be NP-complete [18, problem GT35],[28]. The NP-completeness of the unit in-
terval graph completion problem is implied by the proof of Yannakakis [51] for chordal graph
completion, as the graphs generated by that proof are chordal if and only if they are unit

interval.
C. Generating minimum-width map in the presence of false negatives:

Biological motivation: We say that a physical map has width k if k is the largest number
of mutually overlapping clones, in any position in the map. Put differently, the width is the
largest number of intervals cut by any vertical line across the map. We have observed that
most published physical maps have very small width: Typically, the width in genome mapping
experiments ranges between 5 and 15, while the total number of clones may be thousands [32,
43, 10]. The reasons for this phenomenon are the statistical distribution of the clones along the
genome, and the need to minimize the experimental effort which grows (up to quadratically)
with the number of clones. Since trying to minimize the number of false negatives needed to
form a map is known to be hard, (this is the completion problem discussed above) a reasonable
alternative goal is to recognize false negatives which will yield a map with minimum width. Le.,
the parameter we would like to optimize on now is the width of the resulting map, while we do
not directly minimize the number of corrected false negatives. We show here that the decision

version of this problem is NP-complete, even under the severe restrictions on the input.

Mathematical formulation: The width of a map as defined above is equivalent to the
clique size of the corresponding interval graph. (The clique size of a graph is the size of the
largest set of vertices each two of which are adjacent). There are several notions of graph
width, the one which we shall need here is called pathwidth. A formal definition of pathwidth
we be given in section 4. We shall consider the problem when the input graph is assumed to

be bipartite:

PATHWIDTH OF A BIPARTITE GRAPH:
Given a bipartite graph G and a constant k, is there an interval supergraph of G
whose clique size is at most k7

Equivalently, is the pathwidth of GG at most k£ — 17
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Discussion: The Pathwidth problem is NP-complete on arbitrary graphs [29, 2], and even
for chordal graphs [25] and (using the equivalence to node search [30]) for planar graphs with
vertex degrees at most three [41]. On the other hand, it is solvable in linear time when £ is
fixed [31, chapter 11]. We shall prove that under the restriction of the problem to bipartite

graphs it remains NP-complete.
D. Handling probe-clone errorless data under chimericism:

Biological motivation: In some fingerprinting techniques (cf. [3, 37]) one has a collection
of clones, and a set of short genomic inserts (called anchors or probes). A probe defines a single
location where a given subset of the clones coincide. For each probe/clone pair, biological tech-
niques can find out whether the clone contains the probe as a subsequence. Then the problem
is to construct an ordering in which the probes could occur along the original chromosome,
that is consistent with this probe/clone incidence information. This has an efficient solution if
we assume that all clones are simple substrings of the chromosome. We show that the problem
is potentially much harder in the presence of chimericism. Chimericism (see [49]) is the result
of concatenating two or more clones from different parts of the genome, producing a “chimeric
clone” — one that is no longer a simple substring. Given a collection of clones obtained from
a single chromosome, it is not known which are chimeric, but some clone libraries suffer from
high rates of chimericism (estimated to be as high as 60% [49]). However, most chimeric clones
consist of the concatenation of just two substrings, so we would like to find probe orderings

that show the clones as consisting of one or two subsequences.

Mathematical formulation: Consider the probe-clone incidence matrix M, with rows
indexed by probes and columns by clones, and 1 in position (%, j) if clone j contains probe 7. If
each clone is a contiguous interval, the problem is to permute the rows so that the ones in each
columns are consecutive. In the presence of chimeric clones, each of which is a concatenation of
at most two substrings, the problem corresponds to finding an arrangement of the rows of M
such that there are at most two sequences of consecutive ones in each column. More generally,
let us say that a (0, 1) matrix has the k-consecutive ones property (k-C1P) if there exists a row
order such that in each column the occurrences of all ones appear in at most & consecutive

blocks. The decision version of our problem is the following:

The k-CONSECUTIVE ONES Problem:

Does a given (0, 1) matrix have the k-consecutive ones property?

Discussion: For k = 1 this problem is polynomial [6]. We show in Section 5 that deciding
if there exists an order satisfying the property is NP-complete for every k > 2. This applies
in particular to the case where k& = 2 which is of interest to PM. Note that if instead we

have pairwise overlap information between such chimeric clones, then the problem is to find
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a 2-interval realization of the associated graph (where each vertex corresponds to one or two
intervals on the real line). This problem has already been shown to be NP-complete by West
and Shmoys [50].

Other generalizations of the C1P have been shown to be NP-complete, in the context of con-
secutive retrieval in databases. Kou [34] proves the NP-completeness of finding a permutation
of the rows that minimizes the total number of sets of consecutive ones in a matrix. The result
here mirrors that of [50] for the related problem of recognizing k-interval graphs. However, the
kind of information contained in an interval graph about the corresponding sets of intervals is
different from the information contained in an incidence matrix, and it does not appear possible

to prove this result by a simple application of [50] (or vice versa.)

There have been several statistical and algorithmic studies of PM. The papers [35, 4, 3]
study probabilistic models for the distribution of the number and size of connected components
in the map, as a function of experimental parameters, and its implications for mapping project
design. Alizadeh et al. [1] have recently investigated the model of [35] for the special case of
hybridization fingerprints with equal-length clones. Using heuristics for a combinatorial version
of the problem, they obtained encouraging results with simulated data. They also prove NP-
hardness of two variants of the problem. Goldstein and Waterman [20] show that restriction
mapping is NP-complete. These related hardness results are not equivalent to those presented

here.

2 Colored Unit Interval Graph Completion

Given a set of intervals on the real line, one can define a partial order on the intervals by a < b
if and only if the interval a is completely to the left of interval b. We use this interval order
to give a reduction from BETWEENNESS [45]: Given a set of elements S = {ay,...,a,},
and a set T' = {T1,..., T} of ordered triplets of elements from S, where T; = (a;,, a;,, a;,)

i=1,...,m, does there exist a one-to-one function f : S — {1,2,...,n} such that either

f(ail) < f(alé) < f(ais) or f(ail) > f(alé) > f(ais) fori=1,...,m?
Theorem 2.1 The colored unit interval graph sandwich problem is NPC.

Proof. The problem is in NP since recognition of unit interval graphs can be done in linear
time [6, 33, 14]. We provide a reduction from Betweenness: Given a set of triplets {7, ..., T4},
of elements from the ground set S = {sy,...,s,}, suppose w.l.o.g. that n is odd, say, n =
2m —1 > 1. Construct a graph G = (V, /) where the vertex set is V =UUWjU---UW,. U =

{u;|s; € S} i.e., each u; € U corresponds to an element s; € S. The vertex set W; corresponding
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to triplet 7; consists of 2n vertices: W; = {v}, ..., v?"}. Define for each triplet T; = (=, y, 2)

g Uy

the edges (x, Uz'l)v (Uilv Uz'z)v(vizv U?)v o (07 9), (s U;H_l)v(vgﬂ_lv U?—I_z)v s (Uzzn_lv Uz'zn)v(viznv z). In
other words, W; together with the vertices z, y, z form a chain of 2n4 3 vertices, with z, y in the
ends and z in the middle. The union of the k chains is the edge set £. Finally, color ¢(u) =0
for each u € U, c(v!) = c(vfT71) =c(vf) = (v = (i — )m +t for i = 1,...,k and

t=1,...,m. Note that the coloring is proper.

Suppose there is a linear order on S solving the Betweenness problem. Then one can place
n disjoint unit open intervals, one for each vertex in U, on the line segment [0, n] in the same
order. Since the middle interval for each triplet appears between the other two, it is easy to
verify that one can now add unit intervals for the W-vertices in each chain so that no like-colored

intervals are overlapping and the mandatory overlaps are respected (see figure 1)

Figure 1: Top: A chain corresponding to the the triplet (z,y,z), for the case where m = 4.
Numbers denote colors. Bottom: A unit interval representation of the chain. Numbers denote the

color of all intervals on that level.

Conversely, suppose that there is a solution to the colored sandwich problem. Since all
vertices in U have the same color, their intervals must be pairwise disjoint in every realization,
and thus form a linear order along the line. The coloring of the chains guarantees that in each
chain, the intervals to the left and to the right of the middle vertex in it do not cross. Thus, the
interval corresponding to the middle element in each triplet must be between the intervals of
the other two elements. Hence, any interval realization of the sandwich graph induces a linear

order on the set S which satisfies the betweenness condition. m

3 Maximum Interval Subgraph Problems

The graph G' = (V', E’) is a subgraph of the graph G = (V, E)if V! C V and F' C F. A graph

is cubic if every vertex has exactly three edges incident on it. A graph is chordal if it does not
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contain an induced cycle of length greater than three. Three vertices in G form an asteroidal
triplet in G if they are pairwise nonadjacent, and any two of them are connected by a path
which does not pass through the neighborhood of the third. In the proof below, we shall use
the fact that an interval graph cannot contain an asteroidal triplet and must be chordal [36].
We refer to the decision version of the problem where one asks for an interval subgraph with

at least k edges.
Theorem 3.1 The Mazximum Interval Subgraph problem is NP-complete.

Proof. The problem is in NP since one can recognize an interval graph in linear time [6, 26].
We give a reduction from the Hamiltonian Path problem restricted to planar cubic graphs [19].
Given a cubic graph G = (V, F') with |V| = n, we create a new graph G’ = (V', E’) by “blowing
up each vertex into a triangle, and maintaining the cubic property of the graph”. Precisely, the
vertex set is V/ = {vi, v, v} | v € V}. We call v}, v}, v} the representatives of v'. The edge set
consists of two types of edges ' = E™" U E°!, as follows:

(1) B = { (v, vb), (v, vi), (vs, vi) | v' € V}. Hence, the three representatives of each vertex
v' € V form a triangle in G’.

(2) For each original edge (v',v’) € F define an edge (Ué,?]j) € B choosing the indices
k,l in such a way that all E°“edges are nonadjacent. In other words, the edge connects
representatives of its original endpoints, and for every v € V, each of the three original edges
incident on v in G is incident on a different representative of v. Call the edges in the F™*"-
triangles new and the E°“-edges old. Finally, set k = 4n — 1.

The reduction is clearly polynomial. Note that (G’ is cubic and has 3n new edges and 37” old
edges. Moreover, G’ is planar since it does not contain a K5 or a K3 3. (Equivalently, it is easy
to see that starting from a planar representation of G, the choice in (2) can be made so that

no edges cross.) We claim that G has a hamiltonian path iff G’ has an interval subgraph with
at least 4n — 1 edges.

Suppose G contains a hamiltonian path P. Delete all old edges in G’ which do not correspond
to edges in P. Denote the resulting subgraph by G (see figure 2(a)). i is an interval graph, as
can be verified by its interval representation as depicted in figure 2(b). Moreover, G contains

exactly 4n — 1 edges: 3n new edges and n — 1 old edges.

Conversely, suppose G = (V, E) is an interval subgraph of G’ with |E| > 4n — 1. First, we
prove that G contains all the new edges of G and exactly n — 1 old edges:

For every vertex v in G, let S, be the subgraph of G/ induced by the three representatives
of v together with their three neighbors. .S, is an asteroidal triplet, and deleting any edge in S,

cancels the asteroidality of the triplet. There are n such triplets. Since G is an interval graph,



Figure 2: (a) The interval subgraph G (b) A unit interval realization of G.

it cannot contain an asteroidal triplet [36], so out of each such S,, at least one edge must be
missing in G.

Each S, contains three new and three old edges. Suppose two new edges are missing from
some S,. Since the total number of edges removed from G’ to form G does not exceed % + 1,
it turns out that at most % — 1 additional edges must be removed from G’ in order to cancel
the remaining n — 1 asteroidal triplets {S, | v # «}. Since each (new or old) edge is contained
in at most two 5,-s we obtain a contradiction. Hence, out of the edge set of each 5,, at most
one new edge can be missing in G. In particular, the representatives of each vertex induce a

connected subgraph in G.

Let H be the graph obtained from G by contracting all new edges. By what we have just
proved, the number of vertices in H is exactly n, one for each original vertex in G. Moreover,
H is acyclic, since the existence of a cycle in H would imply the existence of a chordless cycle
at least twice as long in G, contradicting the fact that ¢ must be chordal, as an interval graph.
It follows that H contains at most n — 1 edges. Thus, G contains at most n— 1 old edges. Since
the total number of edges in G is at least 4n — 1, G/ must contain all the 3n new edges in G’

and ezactly n — 1 old edges.

Since H is acyclic with n—1 edges and n vertices it must be connected. Suppose H contains
a vertex v with degree three. Since we have just proved that G contains all the new edges, this
implies that the asteroidal triplet S, from G’ exists also in G, contradicting the fact that ¢ is

an interval graph. Hence, H defines a hamiltonian path in G. m

The same reduction in the theorem above applies also to the maximum wunit interval sub-
graph problem: Simply observe that the graph G is actually a unit interval graph. In fact, a

unit interval realization of it is drawn in figure 2(b).
Corollary 3.2 The Mazimum Unit Interval Subgraph problem is NP-complete. m

Remark 3.3 The reductions above imply the stronger results that the Mazimum Interval (and
Unit Interval) Subgraph problems are NP-complete even when the input is restricted to planar

cubic graphs.
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4 Pathwidth of bipartite graphs

A path decomposition of a given graph G = (V, F), is a sequence of subsets of V, (X) =
(X1,...,X)) such that
(1) V=uUX;
(2) For each edge (u,v) € F, there exists some ¢ € {1,...,{} so that both « and v
belong to X;.
(3) For each v € V there exist some s(v),e(v) € {1,...,[} so that s(v) < e(v), and
v € X; if and only if j € {s(v),s(v)+1,...,e(v)}.

The width of a path decomposition (X ) is defined by pwx (G) = max{|X;| |i=1,...,l} - 1.
The pathwidth of G, denoted pw((), is the minimum value of pwy (G) over all path decom-
positions, i.e., pw(G) = min{pwx (G) | (X) is a path decomposition of G'}. The PATHWIDTH
problem is to decide for a given graph G and a given integer £ if pw(G) < k.

The notions of pathwidth and interval graphs are related by the following well-known ob-

servation:

Lemma 4.1 (cf. [39]) For every graph G, the pathwidth of G is one less than the least clique

size of any interval supergraph of G'.

Hence, computing the pathwidth is equivalent to finding an interval supergraph with minimum

clique size.
Theorem 4.2 Computing the pathwidth of bipartite graphs is NP-complete.

Proof. Reduction from PATHWIDTH on arbitrary graphs: Given a graph G = (V, F) where
|V| = n and a parameter k as the input of PATHWIDTH, we define a new bipartite graph
as follows: Replace each original edge by n + 1 parallel edges and add a vertex on each such
edge. Formally, the new bipartite graph is G' = (V,U, E'), where U = {e; | e = (u,v) € E, i =
1,...,n+ 1}, and £ = {(u, e;), (v,€;) |e= (u,v) € E, i =1,...,n+ 1}. The parameter in the
new problem is set to k4 1. The reduction is clearly polynomial.

Suppose (Xi,...,X,) is a width k path decomposition of G. Fix an edge e = (u,v) € F.

There must exist at least one original set X; such that u,v € X;. Pick one such set and define

a new decomposition
(X17 .. '7Xi—17Xi7XiU€17XiU €2, .. '7XiU €n+17Xi+17 .. '7X7’)

Repeat the process with each edge e € F. Note that we allow only original sets to be “expanded”
in this way, possibly expanding the same set several times for several edges. It is easy to verify

that the final result is a path decomposition for G with width at most & + 1.
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Conversely, let (Y') = (Y{,...,Y/) be a path decomposition of G/ with width £+ 1. Without
loss of generality no Y/ induces an independent set, since if there is one it can simply be deleted
from the decomposition. Hence, every Y/ contains at least one vertex from U. Let ¥; = Y/NV.
|Y/| <k —1 for each i. We shall show that (Y) = (Y7,...,Y}) is a path decomposition for G.
Clearly, for each v € V the set {i|v € Y;} is contiguous in the decomposition since the property
holds for the original decomposition (Y”).

Let e = (2,y) € F and suppose z,y do not appear together in any set in (). Without loss
of generality, suppose j = max{i|z € Y;} <= min{i|ly € Y;}. Since in G’ each of the vertices
in the set S = {e;]s = 1,...,n + 1} is incident on both 2 and y, it follows that S C Y/ for
Jj <@ <. Since n+1 > k+1 this is a contradiction. Hence, for every edge e = (z,y) € F, z,y
appear together in some set of the decomposition (Y') and therefore also in the decomposition

(V). m

It is now natural to ask the same problem with unit intervals: Here we can obtain an even
stronger result, using the following recent theorem from [27]: Computing the bandwidth is
equivalent to finding a unit interval supergraph with minimum clique size. Hence, the NP-
completeness of BANDWIDTH on trees [17, 40], immediately implies that given a graph G,
finding a unit interval supergraph of G whose clique size is minimum is NP-complete, even if

(' is a binary tree, or a caterpillar with hair-length three.

5 k-Consecutive Ones Matrices

Recall that the k-consecutive-ones property (abbreviated to k-C1P) of a (0,1)-matrix M is the
property that the rows of M can be permuted such that within each column, there are at most

k sequences of consecutive ones. We show in this section that testing the k-C1P is NP-complete

for all & > 2.

Using the terminology of [49], we refer to a maximal sequence of consecutive ones in a column
as a contig. Then we say that a matrix is k-consecutive if there are at most k contigs in each
column. (Thus the k-C1P is the property that some permutation of the rows makes a matrix
k-consecutive.) We refer to a permutation of the rows of M which makes M k-consecutive as

a k-consecutive arrangement of M.

We use the following notation: A column in a (0,1)-matrix is represented by a list of the
positions at which a 1 occurs. Thus [1,2,5] represents a column of zeroes and ones in which

only the first, second and fifth entries are ones.

Lemma 5.1 For any k > 2, any (0,1)-matriz M and any two rows, a set of columns can

be appended to M so as to constrain those two rows to be adjacent (in either order) in any
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k-consecutive arrangement of M.

Proof. Consider the column [1,2,...,k, k4 1]. If this column occurs in a matrix M then it
requires at least two of the first £ + 1 rows to be adjacent in some order. Now suppose that M

contains the columns
{[1,2,.., k] : I=k+1,k+2,...,3k+ 1}

Then if in fact no two of the first £ rows are adjacent in some k-consecutive arrangement of
M, then in that arrangement, each of the subsequent 2k + 1 rows must be adjacent to one of
the first k& rows. However, this is impossible since there are at most 2k positions adjacent to
these rows. So we conclude that the above set of columns must imply that two of the first &
rows must be adjacent. (Note that no further constraints are implied by these columns on the

positions of the subsequent 2k + 1 rows in k-consecutive permutations of M.)

We can now repeat this entire construction in the same way but so as to constrain two
of rows 1,...,k — 1 and row [ to be adjacent, for [ = k 4+ 1,...,3k — 1. The resulting set of
columns imply that two of rows 1,...,k — 1 must be adjacent. Continuing in this fashion, we

can eventually force rows 1 and 2 in particular to be adjacent. m

As a consequence of this result, we have that for any k, there is in fact a matrix which
does not have the k-C1P. We can construct such a matrix by forcing the first 2k 4+ 1 rows to
be adjacent and in order (row 7 is adjacent to row ¢ + 1 for ¢ = 1,...,2k), and then including
the column [1,3,5,7,...,2k+ 1]. Note that the construction uses only 3k + 1 rows, but (©(k))!
columns, which is a weak upper bound. It is relatively easy to prove, using the probabilistic
method, the existence of matrices whose size is polynomial in & which do not have the £-C1P.

The following proof, of some independent interest, shows this fact by constructingsuch a matrix.

Let P be the (k+1)? x (k+ 1)* permutation matrix

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

000 ... 10
Let M be the (k+ 1)% x (k + 1)? matrix

P . P (k+1)

Pa(k+1),1 L. Pa(k+1),(k+1)
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M has exactly k 4+ 1 ones per row and k + 1 ones per column. We next show that there

exists an appropriate choice of values for the powers a; ; such that M does not have the k-C1P.

We want to choose the powers a; ; such that there is no 2 x 2 submatrix containing all ones.
Such a submatrix would have to have its four entries from four distinct P%.j submatrices with
powers of the form a, ., @q s, a5~, s (Where we may assume a < 3, v < 6). We claim that

these powers must satisfy the equation ags = aq,s + gy — o -

To prove this claim, note first that the one in row z of P% is in column (2 — a; ;) of P*,
and the one in column y of P%J is in row (y + a; ;) of P*s. Now suppose that the above
matrices have a 2 X 2 submatrix containing all ones. Let 2 be the row number in P**Y where
an entry of this submatrix occurs. The one in row 2 of P**” is in column (z — a, ) of P*7,
and corresponds to the one in row 2 of P%e4, which must be in column (2 — a, ) of P*~é. The
corresponding one in column (z — a, ) of P*#7 must be in row (z — a4~ + ag) of P*#v. The
corresponding one in row (z — ao + ag,) of P25 must be in column (2 — aq~ + ag~ — ag,s)
of P*8¢. This must be the same column as the one in P%¢ (ie. column (2 — a, 5)), hence the

equation follows.

We may choose the a; ; to avoid this situation: there are (k 4 1)? possible values for each
of the a; ;, and the assignment of a value to a different one of the a;; will eliminate at most
one possibility for each of the others. Since this set has only (k+ 1)? members, we may assign

values to them all without introducing the submatrix that we wish to avoid.

Any permutation of the rows involves only (k4 1)® — 1 adjacencies of rows, and so for
appropriate choices of the a;; described above, makes at most (k + 1) — 1 pairs of ones in

columns adjacent. Hence there will be at least one column with none of its ones made adjacent.

We next show the main result of this section, that it is NP-complete to test a matrix for the
2-C1P. We prove the result in the standard way, using a reduction from 3SAT, the problem of
finding a satisfying assignment to a boolean formula in 3CNF (cf. [18]).

Theorem 5.2 Testing for the 2-C1P is NP-complete.

Proof. Reduction from 3SAT. We show how to transform a formula ® in 3CNF into a (0,1)-
matrix Mg in polynomial time, in such a way that ® is satisfiable if and only if Mg has the
2-C1P.

Let ® be a 3CNF formula over n variables {vy,...,v,}, and with m clauses {C4,...,C},}.
We construct the associated matrix Me (having 2n + 5m rows and 6m + 10n — 5 columns) as

follows.

Let ri, ..., 72n45m be the rows of Mg (in order from top to bottom). Associate with variable
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v; the rows ro;_q and ry;. v; is to represent the statement (about a permutation of the rows)
“ro;_1 is above r9;”. So ® represents a statement about a permutation of the rows of Mg. We
construct Mg to ensure that any 2-consecutive arrangement of Mg corresponds to a satisfying

assignment of ®, and that if ® is satisfiable then Mg has the 2-C1P.

We introduce a set of columns which have the following effects:

e In any 2-consecutive arrangement of Mg, r9;_1 must be adjacent to rq;, for e = 1,..., n.

e In any 2-consecutive arrangement of Mg, the pair {rg;_y,ro;} must be adjacent to the

pair {ro;y1, roita}, fori=1,...,n— 1.

So the position of ry;_; immediately above or below ry; encodes an assignment of truth or
falsity to the variable v;, and the pairs of rows encoding the variables are consecutive and in

order. But first it is necessary to show how these constraints may be imposed.

Include the five columns [1,2,3],[1,2,4],[1,2,5],[1,2,6],[1,2,7]. This is the construction
of Lemma 5.1 for & = 2, and these columns force rows ry and r; to be consecutive in any

2-consecutive arrangement of Mg.

Hence we may enforce the first of the above constraints using 5n columns, applying the

above construction for each pair rq;_1, ro;.

Refer to a set of rows which must be adjacent in some order as a block. Let block b; be the

pair {ro;_1, 79}, for i = 1,...,n. So block b; represents variable v;.

We may constrain two blocks to be adjacent in much the same way as for individual rows. For
example, to make by and by adjacent, include the columns [1,2,3,4,5],[1,2,3,4,6],[1,2,3,4,7],
[1,2,3,4,8],[1,2,3,4,9]. Applying this construction repeatedly and shifting the ones two rows
lower at each repetition, we may use 5(n — 1) columns to make block b; adjacent to block b;41,
fore=1,...,n — 1, in any permutation that makes Mg 2-consecutive. This ensures that the

second constraint holds.

Having used two rows for each variable, we now use an additional block of five rows for each

clause in ®. Assume n > 3 in what follows, and consider the column
2n —4,2n— 1,2n,2n+ 1,2n+ 2,20+ 3,2n+ 4,2n + 5].

Any 2-consecutive arrangement of Mg must now leave the five rows ry,41, ..., ronts adjacent
in some order, and adjacent to block b,,. (This is because rg,_4 is not allowed to be adjacent to
the other rows containing a 1 in this column.) No other constraints are placed on 2-consecutive
permutations. We may then force the next five rows rg,46, ..., 2,410 to be adjacent in some

order and for this block to be next to the block rg9,41,...,72,45. This is accomplished with the
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column

2n —4,2n4+1,2n+2,2n+ 3, ...,2n+ 10].

Since m is the number of clauses in ®, we need an additional m — 2 blocks of five rows, which

are obtained using columns of the general form

{2n—4,2n+51—9,2n+ 51— 8,2n+ 51— 7,...,2n+51] : i =3,...,m}

Let B; be the block {ron45;41,-. -3 24545}, J = 0,...,m — 1. B; corresponds to clause
C';. The idea now is that when any literal in that clause is set to false, this should lead to some
restriction on the order in which the five rows in B; may appear in a 2-consecutive arrangement
of Mg. In what follows, the “top” position or positions of B; mean the positions of rows in B;

closest to the blocks by, ..., b, representing the values of the boolean variables.

Suppose that C; contains the literal v,. Consider the column
20,200+ 1,...,2n4+ 55 + 1].

If the rows in block b, are switched (setting v, to false) then to make Mg 2-consecutive, row
ron455+1 must be the top row in B;. (Any other arrangement of B; gives this column three
contigs.) If C; contains —w, then this constraint is made conditional on v, being true by

switching the 1 and 0 in b,, giving column [2a — 1,204+ 1,204+ 2,...,2n+ 55 + 1].

Suppose vg is another literal in C'; and consider the column
(26,28 +1,...,2n4 55 +4].

If vg is false, this column forces rg,45;45 to be the bottom row of B;. (If rg,45;45 is placed

anywhere else in Bj, then the zero it contains breaks up the contig above it.)

Suppose that v, is the third literal in C;. Introduce the following two columns:
27,274+ 1,...,2n+ 5j + 2],

27,2y +1,...,2n4 55 4 3].

If v, is false then ro,45;41 and ro,45;42 must be in the top two positions in B;. Also rap15;41,
Ton+55+2, and 72,45;43 must be in the top three positions. Consequently ro,45;43 must be in
the middle position. If v, is true, we have the following milder constraints: We may not let
ron455+1 and ronts;42 be non-adjacent with neither at the top of B; (this gives rise to three
contigs in the first of these two columns.) Furthermore we may not let rop,45;41, 724542, and
T2n+455+3 occupy the top, middle and bottom positions, or the second, third/fourth, and bottom
positions, since these arrangements give rise to three contigs in the second of the above two

columns.
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Include the column [2n + 5j + 1,2n + 55 + 3,2n 4+ 5j + 5]. If all three literals in C; are
false, then the three ones in this column (which occur in B;) must be separated by zeroes if
the rows of Mg have been permuted such that the rest of the columns described earlier are
2-consecutive. It remains to show that if any literal in C; is true, then some arrangement of the
rows in B; leaves this latest column with only two contigs while satisfying the other constraints

put on their order.

If v, is true then rows ropq5;41, ..., 72045545 may be arranged in the order:

T2n455425 T2n4554+15 T2n45543 "2n4+55+45 I2n4-5545-

If vg is true then they may be arranged in the order:

2455415 T2n4554+25 T2n45543 "2n4+55455 I2n4-5;54+4-

If v, is true then they may be arranged in the order:

2455415 T2n45543, T2n455425 "2n4+55+45 M2n45545-

These sequences (which are from top to bottom) work even if both the other two literals are

false.

If we encode all m clauses in this way, using block B; for clause C}, this requires 5m
columns, and to make Mg 2-consecutive corresponds to satisfying their conjunction. Hence we

have constructed a matrix Mg which has the 2-C1P if and only if ® is satisfiable. m

Having shown that testing the 2-C1P is NP-complete, we can use the lemma to generalize
this result to the k-C1P, for every fixed & > 2. This is done by attaching an extra 2k — 1 rows
to the top of Mg which are constrained to be in order, and extend each column of Mg with

2k — 1 alternating zeroes and ones. This adds k& — 2 to the number of contigs in each column.

In reality, sparse matrices are likely to be of more interest to biologists, since typically a
clone will only contain a small number of the probes, and there is also only limited coverage
of the whole sequence by the clones. Hence it is appropriate to ask how hard it is to test for
the k-C1P given a limit [ on the number of ones per row and per column. The above reduction
can no longer be used, and it remains an open problem whether the 2-C1P is NP-hard for some
value of [. Note that it can be shown by similar constructions to the above, that testing for the
k-C1P (for any k > 3) is NP-hard for matrices with a limited number of ones per column (i. e.

short clones).
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